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The beam equation with nonlinear memory
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Abstract. In this paper, we study the critical exponent for the beam equation with nonlinear memory, i.e., utt+Δ2u = F (t, u),
where

F =

t∫

0

f(t − s)N(u)(s, x) ds, N(u) ≈ |u|p.

For suitable f and p, we prove the existence of local-in-time solutions and small data global solutions to the Cauchy problem,
in homogeneous and nonhomogeneous Sobolev spaces. In some cases, we prove that the local solution cannot be extended
to a global one. We also consider the limit case of power nonlinearity, i.e., F = N(u).

Mathematics Subject Classification. 35A01 · 35G25.

1. Introduction

We consider the existence theory for the following Cauchy problem⎧⎪⎪⎨
⎪⎪⎩

utt + Δ2u =
t∫
0

f(t − s)N(u)(s, x) ds, t ≥ 0, x ∈ R
n,

u(0, x) = u0(x),
ut(0, x) = u1(x)

(1.1)

being Δ2 = ΔxΔx, N(u) a polynomial type nonlinear term and f(t) a convolution kernel with respect to
the time variable. In particular, formally setting f = δ, Dirac distribution, we find a standard polynomial
type nonlinearity N(u)(t, x). For f(t) = cγt−γ , γ ∈ (0, 1), where cγ > 0, we have a nonlinear memory
term representing a (Riemann-Liouville) fractional integral of order 1 − γ of N(u)(t, x). Indeed,

lim
z→1

s−z
+

Γ(1 − z)
= δ(z),

where

s−z
+ =

{
s−z s > 0,

0 s < 0
Re z < 1,

s−z
+ =

1
1 − z

d

ds
s1−z 1 ≤ Re z < 2, z �= 1,

in distribution sense and Γ is the Euler Gamma function. This special choice for the kernel f(t) motivated
us to study the forward Cauchy problem in this paper, but all of our existence results also apply to the
backward Cauchy problem.

The linear operator ∂2
t + Δ2 is known as Germain–Lagrange operator, as well as beam operator, in

particular for n = 1, or plate operator, in particular for n = 2. It models a vibration of an elastic surface,
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and it is a 2-evolution operator, in the sense of Petrowsky, since its (full) symbol τ2 + |ξ|4 has purely
imaginary roots ±i|ξ|2.

The linear beam operator inherits some but not all properties from Schrödinger operator. In particular,
we do not have the mass conservation law, since in the beam equation the coefficients are real. On the
other hand, the functional representation of the solution contains oscillations like it happens for the
wave operator. However, the beam operator is not Kovalesvkian and we do not have the finite speed of
propagation.

There has been a growing interest in recent years for memory terms, which may describe hereditary
processes. Memories of polynomial type nonlinearities have been considered in [3] for the heat equation
and recently for damped wave type equations, which inherit decay properties from the corresponding
diffusion equation. Nondamped models require a different approach and, up to our knowledge, no result
is known for the beam equation with nonlinear memory. Also, only few results are known for the beam
equation with polynomial type nonlinearity (see Sect. 5).

We assume that N(0) = 0 and

|N(u) − N(v)| � |u − v| (|u|p−1 + |v|p−1
)

for some p > 1. (N0)

Typical examples of such nonlinearity are N(u) = |u|p or N(u) = ±|u|p−1u, p > 1.
In this paper, we will consider, in general, mixed space–time norms, according to the following.

Definition 1.1. For any T ∈ (0,∞], and for fixed q ∈ [1,∞], the mixed space–time norm ‖ · ‖Lq
T X over

[0, T ) × R
n is given by

‖u‖Lq
T X :=

⎛
⎝

T∫

0

‖u(τ, ·)‖q
X(Rn) dτ

⎞
⎠

1/q

.

If T = ∞, we may omit the time index writing LqX.

In particular, in Definition 1.1 we will consider homogeneous or nonhomogeneous Sobolev spaces X =
Ẇ s,r or X = W s,r, with s ∈ R, r ∈ (1,∞), see Appendix.

We first study the existence of the solution in homogeneous Sobolev spaces.

Definition 1.2. Let T > 0 and s ∈ [0, 2]. A Ḣs (mild) local solution to (1.1) is a function u ∈ L∞
T Ḣs such

that ut ∈ L∞
T Ḣs−2, and

u(t, x) = cos(tΔ)u0(x) +
sin(tΔ)

Δ
u1(x) +

t∫

0

sin((t − s)Δ)
Δ

s∫

0

f(s − τ)N(u)(τ, x) dτ ds, (1.2)

where each term of (1.2) belongs to L∞
T Ḣs. If T = ∞, we say that the Ḣs solution is global.

Theorem 1.1. Let n ≥ 5 and s ∈ [0, 2], or n ≥ 4 and s ∈ (0, 2), or n = 3 and s ∈ (1/2, 3/2). Let f ∈ Lθ
T0
,

for some θ ∈ [1, 2], T0 ∈ (0,∞), and let N(u) satisfy (N0) with

1 +
4

n − 2s
≤ p < 1 +

4(3 − θ−1)
n − 2s

. (1.3)

Assume (u0, u1) ∈ Ḣs × Ḣs−2. Then, there exists T ∈ (0, T0] and a unique Ḣs local solution in [0, T )
to (1.2).

Theorem 1.2. Let n ≥ 5 and s ∈ [0, 2], or n ≥ 4 and s ∈ (0, 2), or n = 3 and s ∈ (1/2, 3/2). Let f ∈ Lθ,
for some θ ∈ [1, 2] and let N(u) satisfy (N0) with

p = 1 +
4(3 − θ−1)

n − 2s
. (1.4)
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Then, there exists ε > 0 such that if (u0, u1) ∈ Ḣs × Ḣs−2 with ‖u0‖Ḣs + ‖u1‖Ḣs−2 < ε, then there
exists a unique global Ḣs solution to (1.2). Moreover, it holds ‖u‖L∞

T Ḣs < ε.

By Theorem 1.2, we derive the following.

Corollary 1.1. Let n ≥ 3, f ∈ Lθ, for some θ ∈ [1, 2], and N(u) satisfies (N0) for some

1 +
4(3 − θ−1)

n
≤ p ≤ 1 +

4(3 − θ−1)
n − 4

, if n ≥ 5,

1 +
4(3 − θ−1)

n
= 4 − θ−1 < p < ∞, if n = 4,

1 +
4(3 − θ−1)

n − 1
= 7 − 2θ−1 < p < ∞, if n = 3.

Let

s = s(p, n):=
n

2
− 2(3 − θ−1)

p − 1
.

Then, there exists ε > 0 such that if (u0, u1) ∈ Ḣs × Ḣs−2 with ‖u0‖Ḣs + ‖u1‖Ḣs−2 < ε, then there exists
a unique global Ḣs solution to (1.2). Moreover, it holds ‖u‖L∞

T Ḣs < ε.

Now we consider nonhomogeneous Sobolev spaces.

Definition 1.3. Let T > 0. A Hs local solution of (1.1), s > 0, is a function u ∈ L∞
T Hs such that

ut ∈ L∞
T Ḣ−2 ∩ L∞

T Ḣs−2, each term of (1.2) is in L∞
T Hs and u satisfies (1.2).

Theorem 1.3. Let n ≥ 5 and s ∈ (0, 2]. Let f ∈ Lθ
T0
, for some θ ∈ [1, 2] and T0 > 0, and let N(u)

satisfy (N0) with

1 +
4
n

≤ p < 1 +
4(3 − θ−1)

n − 2s
. (1.5)

Assume (u0, u1) ∈ Hs × (Ḣs−2 ∩ Ḣ−2). Then, there exists T ∈ (0, T0) and a unique L∞
T Hs local

solution to (1.2).

The restriction s ≤ 2 in Theorems 1.1–1.3 is consistent with the fact that Ḣ2 is the energy space of
the beam equation.

The previous local existence results may be directly applied to the case in which the nonlinear term
represents a fractional integration of a polynomial type nonlinear term.

Example 1.1. Let f(t) = cγt−γ , for some γ ∈ (0, 1) and cγ > 0, i.e., we are considering a fractional
integral of order 1 − γ in (1.1). If γ ∈ [1/2, 1), then f ∈ Lθ

loc, for any 1 ≤ θ < γ−1, so that (1.3) and (1.5)
reduce, respectively, to the ranges

1 +
4

n − 2s
≤ p < 1 +

4(3 − γ)
n − 2s

,

1 +
4
n

≤ p < 1 +
4(3 − γ)
n − 2s

.

On the other hand, if γ ∈ (0, 1/2), then f ∈ Lθ
loc, for any θ ∈ [1, 2], so that (1.3) and (1.5) reduce,

respectively, to the ranges

1 +
4

n − 2s
≤ p < 1 +

10
n − 2s

,

1 +
4
n

≤ p < 1 +
10

n − 2s
.
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Example 1.2. We cannot apply Theorem 1.2 to kernels related to the fractional integration, since t−γ �∈
Lθ([0,∞)), for any θ ∈ [1, 2], γ ∈ (0, 1). However, Theorem 1.2 and, hence, Corollary 1.1, may be applied
to nonsingular kernels of type f(t) = (1 + t)−γ , γ > 1/2, for any γ−1 < θ ≤ 2 if γ ∈ (1/2, 1], or for
any θ ∈ [1, 2] if γ > 1.

If γ ∈ (1/2, 1] and N(u) satisfies (N0) for some

1 +
12 − 4γ

n
< p ≤ 1 +

10
n − 4

, if n ≥ 5,

1 +
12 − 4γ

n
= 4 − γ < p < ∞, if n = 4,

1 +
12 − 4γ

n − 1
= 7 − 2 γ < p < ∞, if n = 3,

we find a global small data solution in Ḣs, for any s such that

n

2
− 5

p − 1
≤ s <

n

2
− 2(3 − γ)

p − 1
.

If γ > 1 and N(u) satisfies (N0) for some

1 +
8
n

≤ p ≤ 1 +
10

n − 4
, if n ≥ 5,

1 +
8
n

= 3 < p < ∞, if n = 4,

1 +
8

n − 1
= 5 < p < ∞, if n = 3,

we find a global small data solution in Ḣs, for any s such that
n

2
− 5

p − 1
≤ s ≤ n

2
− 4

p − 1
.

The plan of the paper is the following:
• in Sect. 2, we summarize some Strichartz estimates for the linear equation, recently obtained by

Cordero and Zucco [4], and we fix the auxiliary spaces where we will derive the existence of the
solution to the nonlinear problem;

• in Sect. 3, we prove the existence results in homogeneous Sobolev spaces (Theorems 1.1 and 1.2);
• in Sect. 4, we prove the existence results in nonhomogeneous Sobolev spaces (Theorem 1.3);
• in Sect. 5, we extend the previous results to the limit case of power nonlinearity, obtaining the Ḣs

and Hs well-posedness for a wider range of (p, s) than the known one. For any s ∈ [0, 2], our range
for p is obtained by formally setting θ = 1 into (1.3), (1.4), (1.5);

• in Sect. 6, we apply the test function method to prove the nonexistence of global solutions below a
critical exponent; comparing this result with our existence theorems, we find a range of exponents
for which the local solution cannot be extended to a global one;

• in Appendix, we recall the definition of Riesz potential, its mapping properties and the definition of
homogeneous and nonhomogeneous Sobolev spaces, as well as the related embedding theorems and
the fractional Gagliardo–Nirenberg inequality.

2. Preliminary results

The functional representation of the solution to{
utt + Δ2u = F (t, x),
u(0, x) = u0(x), ut(0, x) = u1(x)
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is given by

u(t, ·) = cos(tΔ)u0 +
sin(tΔ)

Δ
u1 +

t∫

0

sin((t − s)Δ)
Δ

F (s, x) ds, (2.1)

where

cos(tΔ)u0:=F−1

(
cos

(
t|ξ|2

)
F(u0)

)
,

sin(tΔ)
Δ

u1:=F−1

(
|ξ|−2 sin

(
t|ξ|2

)
F(u1)

)
.

This equation inherits many properties of the Schrödinger equation, since cos(tΔ) and sin(tΔ) may be
expressed as linear combinations of e± itΔ. Indeed, the beam operator may be obtained as a composition
of Schrödinger operators:

∂tt + Δ2 = (i∂t + Δ)(−i∂t + Δ),

and Strichartz estimates for the beam equation may be derived from the corresponding Schrödinger ones.

Definition 2.1. Given n ≥ 1, we say that the pair (q, r) is admissible if
2
q

+
n

r
=

n

2
, (q, r) ∈ [2,∞], (n, q, r) �= (2, 2,∞).

Lemma 2.1. ([4]) Let s ∈ R. Let (q, r) be a admissible couple and (σ′, ρ′) Hölder conjugate indexes of an
admissible couple (σ, ρ). Then, the following estimates hold:

‖ cos(tΔ)u0‖Lq
T Ẇ s,r + ‖Δsin(tΔ)u0‖Lq

T Ẇ s−2,r � ‖u0‖Ḣs , (2.2)∥∥∥∥ sin(tΔ)
Δ

u1

∥∥∥∥
Lq

T Ẇ s,r

+ ‖cos(tΔ)u1‖Lq
T Ẇ s−2,r � ‖u1‖Ḣs−2 , (2.3)

∣∣∣∣∣∣

∣∣∣∣∣∣
t∫

0

sin((t − τ)Δ)
Δ

F (τ, ·) dτ
∣∣∣∣∣∣

∣∣∣∣∣∣
Lq

T Ẇ s,r

� ‖F‖Lσ′
T Ẇ s−2,ρ′ , (2.4)

∣∣∣∣∣∣

∣∣∣∣∣∣
t∫

0

cos((t − τ)Δ)F (τ, ·) dτ
∣∣∣∣∣∣

∣∣∣∣∣∣
Lq

T Ẇ s,r

� ‖F‖Lσ′
T Ẇ s,ρ′ . (2.5)

There is a huge literature about fixed point results. Our notation is closer to the one in [13].

Lemma 2.2. Let (Ξ1,X1), (Ξ2,X2) be Banach spaces, D : Ξ1 → Ξ2 a linear operator and Ñ : Ξ2 → Ξ1 a
map such that Ñ(0) = 0. Given ũ0 ∈ Ξ2, one considers the equation

u = ũ0 + DÑ(u).

Assume that there exist C0 > 0 and R > 0, such that

X2(DG) ≤ C0X1(G), for any G ∈ Ξ1; (2.6)

X1(Ñ(u) − Ñ(v)) ≤ 1
2C0

X2(u − v) (2.7)

for any u, v ∈ Ξ2 with X2(u) ≤ R, X2(v) ≤ R. If X2(ũ0) ≤ R/2, then there exists a unique u ∈ Ξ2,
solution to u = ũ0 + DÑ(u). Moreover, X2(u) ≤ 2X2(ũ0).

Instead of assuming (2.7), one can suppose that there exist λ > 0 and C1 > 0, such that

X1(Ñ(u) − Ñ(v)) ≤ C1X2(u − v)(X2(u) + X2(v))λ, u, v ∈ Ξ2. (2.8)

Then, there exists a small ε > 0 such that for any ũ0 ∈ Ξ2 with X2(ũ0) ≤ ε/2, the equation u =
ũ0 + DÑ(u) admits a unique solution u ∈ Ξ2 and X2(u) ≤ ε.
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The functional spaces in which we will use Lemma 2.2 for the beam equation are given by the closure
of the Schwartz space under the following norms:

‖G‖Ss(T ):= sup
(q,r) admissible

‖G‖Lq
T Ẇ s,r ,

‖G‖N s(T ):= inf
(σ,ρ) admissible

‖G‖Lσ′
T Ẇ s,ρ′ ,

where s ∈ R. These norms satisfy

‖G‖Lq
T Ẇ s,r ≤ ‖G‖Ss(T ), ‖G‖N s(T ) ≤ ‖G‖Lσ′

T Ẇ s,ρ′ (2.9)

for any admissible couple (q, r), (σ, ρ).

3. Proof of Theorems 1.1 and 1.2

In order to find a Ḣs local solution, we look for a time T > 0 for which we can apply Lemma 2.2 with
Ξ2 = Ss(T ) and Ξ1 = N s−2(T ).

The relation (1.2) can be rewritten as u = ũ0 + DÑ(u) where

ũ0 = cos(tΔ)u0(x) +
sin(tΔ)

Δ
u1(x),

DG(t, x) =

t∫

0

sin((t − s)Δ)
Δ

G(s, x) ds,

Ñ(u)(t, x) =

t∫

0

f(t − τ)N(u)(τ, x) dτ

Strichartz estimates (2.2) and (2.3) imply that ũ0 ∈ Ξ2, whereas Strichartz estimate (2.4) gives (2.6).
It remains to prove (2.7). For any admissible couple (σ, ρ), it holds

‖Ñ(u) − Ñ(v)‖N s−2(T ) ≤ ‖(−Δ)−α/2(Ñ(u) − Ñ(v))‖Lσ′
T Lρ′ where α = 2 − s.

Extending to f(t) = 0 and N(u)(t, ·) ≡ 0 for t < 0, by Young’s inequality over [0, T ) (see Remark 3.1),

‖(−Δ)−α/2(Ñ(u) − Ñ(v))‖Lσ′
T Lρ′ ≤

∥∥∥∥∥∥
t∫

0

|f(t − τ)| ‖(−Δ)−α/2(N(u) − N(v))(τ, x)‖Lρ′ dτ

∥∥∥∥∥∥
Lσ′

T

=
∥∥∥|f(t)| ∗(t) ‖(−Δ)−α/2(N(u) − N(v))(t, x)‖Lρ′

∥∥∥
Lσ′

T

≤ ‖f‖Lθ
T

‖(−Δ)−α/2(N(u) − N(v))‖Lρ′ Lσ0
T

,

where
1
σ0

= 1 +
1
σ′ − 1

θ
= 2 − 1

σ
− 1

θ
, (3.1)

provided that
1
σ

≥ 1 − 1
θ
. (3.2)

Remark 3.1. Clearly, taking Young’s inequality over [0, T ) when T ∈ (0,∞), means that we first write
T∫

0

φ ∗ ψ(t) dt =
∫

R

χ[0,T )(t)

t∫

0

φ(t − s)ψ(s)dsdt
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=
∫

R

∫

R

(
χ[0,T )φ

)
(t − s)

(
χ[0,T )ψ

)
(s)dsdt =

∫

R

(
χ[0,T )φ

) ∗ (
χ[0,T )ψ

)
(t)dt,

where χ[0,T ) is the characteristic function of the interval [0, T ), and φ, ψ vanish for t < 0; then, we apply
Young’s inequality over R to the functions χ[0,T )φ and χ[0,T )ψ.

Let

σ ≤ θ

θ − 1
, ρ ∈ [2, n/α),

2
σ

+
n

ρ
=

n

2
. (3.3)

For s = 2, i.e., α = 0, we take ρ ∈ [2,∞) in (3.3). Condition (3.3) implies that n ≥ 3 if s ∈ (1/2, 2],
n ≥ 4 if s ∈ (0, 1/2] and n ≥ 5 if s = 0.

Since we assumed ρ < n/α in (3.3), we may apply Lemma 7.1 for s ∈ [0, 2), obtaining

‖(−Δ)− α
2 (N(u) − N(v))‖Lρ′ � ‖N(u) − N(v)‖Lm (3.4)

with
n

n − α
< ρ′ ≤ 2,

1
ρ′ =

1
m

− α

n
. (3.5)

Via Hölder inequality, we find

‖N(u) − N(v)‖Lm � ‖u(t) − v(t)‖Lm1

(
‖u(t)‖p−1

Lm2(p−1) + ‖v(t)‖p−1

Lm2(p−1)

)
(3.6)

with
1
m

=
1

m1
+

1
m2

. (3.7)

Now we can manipulate the time norm:

‖N(u) − N(v)‖L
σ0
T Lm � T

1
σ ‖u − v‖L

σ1
T Lm1

(
‖u‖p−1

L
σ2(p−1)
T Lm2(p−1)

+ ‖v‖p−1

L
σ2(p−1)
T Lm2(p−1)

)
(3.8)

with σ1, σ2, σ in [σ0,∞], satisfying
1
σ0

=
1
σ1

+
1
σ2

+
1
σ

. (3.9)

Due to Ξ2 = Ss, as a consequence of the (fractional) Sobolev embeddings, for any admissible couple (τ, r)
such that r ∈ [2, n/s), we may estimate

‖G‖
Lτ

T Lr� ≤ C ‖G‖Ss , r� =
nr

n − sr
. (3.10)

Then, we may conclude

‖N(u) − N(v)‖L
σ0
T Lm � T

1
σ ‖u − v‖Ss (‖u‖Ss + ‖v‖Ss)p−1

if (σ1,m1) and (σ2(p − 1),m2(p − 1)) are related to Strichartz n-admissible couples (σ1, q1) and
(σ2(p − 1), q2), i.e., such that

2
σ1

+
n

q1
=

n

2
,

2
σ2(p − 1)

+
n

q2
=

n

2
, (3.11)

as described in (3.10):

m1 = q�
1 =

nq1

n − sq1
, m2(p − 1) = q�

2 =
nq2

n − sq2
,

for some q1, q2 ∈ [2, n/s). That is,

q1 =
nm1

n + sm1
, q2 =

nm2(p − 1)
n + sm2(p − 1)

.
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In particular, the restriction q1, q2 ∈ [2, n/s) implies that n > 2s. One has

m1 ≥ 2n

n − 2s
, m2(p − 1) ≥ 2n

n − 2s
. (3.12)

We shall now check whether the bound in (3.12) is consistent with (3.2), (3.5) and (3.7). Indeed,
being (σ, ρ) admissible, from (3.2) it follows that

1
ρ′ =

1
2

+
2

nσ
≥ 1

2
+

2
n

(
1 − 1

θ

)
.

On the other hand, by (3.5), (3.7), and (3.12), we get
1
ρ′ =

1
m1

+
1

m2
− α

n
≤ n − 2s

2n
p − α

n
=

n − 2s

2n
p − 2 − s

n
.

The two inequalities for 1/ρ′ are compatible if, and only if,

1
2

+
2
n

(
1 − 1

θ

)
≤ n − 2s

2n
p − 2 − s

n
,

that is,
n − 2s

2n
(p − 1) ≥ 2

n

(
2 − 1

θ

)
,

i.e.,

p ≥ 1 +
4(2 − θ−1)

n − 2s
. (3.13)

Due to (3.11), we derive
1
σ1

=
n

4
− n

2q1
=

n

4
− n + sm1

2m1
=

n

4
− n

2m1
− s

2
,

as well as
1
σ2

=
n(p − 1)

4
− n(p − 1)

2q2
=

n(p − 1)
4

− n + sm2(p − 1)
m2

=
n(p − 1)

4
− n

2m2
− s

2
(p − 1).

Combining these relations with (3.1), (3.3), (3.5), (3.7), (3.9), we get
1
σ

= 2 − 1
θ

− 1
σ

− 1
σ1

− 1
σ2

= 2 − 1
θ

− n

4
+

n

2ρ
− n

4
+

n

2m1
+

s

2
− n(p − 1)

4
+

n

2m2
+

s

2
(p − 1)

= 2 − 1
θ

+
s

2
− n

2ρ′ +
n

2m
− (n − 2s)(p − 1)

4

= 2 − 1
θ

+
s + α

2
− (n − 2s)(p − 1)

4
= 3 − 1

θ
− (n − 2s)(p − 1)

4
.

Then, 1/σ > 0 if, and only if,

p < 1 +
4(3 − θ−1)

n − 2s
. (3.14)

Therefore, if p satisfies both (3.13) and (3.14), we can conclude that

‖Ñ(u) − Ñ(v)‖N s−2(T ) � T
1
σ̄ ‖f‖Lθ

T
‖u − v‖Ss(T )

(‖u‖Ss(T ) + ‖v‖Ss(T )

)p−1
, (3.15)

for some positive 1/σ̄ > 0. On the other hand, if p satisfies (1.4), then

‖Ñ(u) − Ñ(v)‖N s−2(T ) � ‖f‖Lθ
T

‖u − v‖Ss(T )

(‖u‖Ss(T ) + ‖v‖Ss(T )

)p−1
. (3.16)

We are now in a position to prove Theorems 1.1 and 1.2.
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Proof of Theorems 1.1 and 1.2. Due to the previous discussion, the proof is an application of Lemma 2.2
once we recall that for n �= 2 the couple (∞, 2) is admissible so that the contraction in Ss implies the
existence in L∞

T Ḣs.
First, we prove Theorem 1.1. Due to Lθ

T0
⊂ Lθ̃

T0
for any θ̃ ∈ [1, θ], being T0 finite, we may derive (3.15)

for any p as in (1.3), due to,

⋃
θ̃∈[1,θ]

[
1 +

4(2 − θ̃−1)
n − 2s

, 1 +
4(3 − θ̃−1)

n − 2s

)
=

[
1 +

4
n − 2s

, 1 +
4(3 − θ−1)

n − 2s

)
.

We can apply the first part of Lemma 2.2. Let R > 0 such that ‖u‖S2 ≤ R and ‖v‖S2 ≤ R. Due to the
previous discussion, we can take a sufficiently small T > 0 in (3.15), so that 2T

1
σ Rp−1 ≤ (2C0)−1 and

conclude the contraction argument.
It remains to prove that ut ∈ L∞

T Ḣs−2. We can formally derive in time the integral equation (1.2)
obtaining

ut(t, ·) = −Δsin(tΔ)u0 + cos(tΔ)u1 +

t∫

0

cos((t − s)Δ)Ñ(u)(s, ·) ds.

In particular,

‖ut‖L∞
T Ḣs−2 ≤ ‖Δsin(tΔ)u0‖L∞

T Ḣs−2 + ‖ cos(tΔ)u1‖L∞
T Ḣs−2 +

∣∣∣∣∣∣

∣∣∣∣∣∣
t∫

0

cos((t − s)Δ)Ñ(u) ds

∣∣∣∣∣∣

∣∣∣∣∣∣
L∞

T Ḣs−2

,

from which, by (2.2), (2.3) and (2.5), we derive

‖ut‖L∞
T Ḣs−2 � ‖u0‖Ḣs + ‖u1‖Ḣs−2 + ‖Ñ(u)‖N s−2 .

Since Ñ(0) = 0, we can take v = 0 in (3.15) concluding that ‖ut‖L∞
T Ḣs−2 is finite being

‖ut‖L∞
T Ḣs−2 � ‖u0‖Ḣs + ‖u1‖Ḣs−2 + T

1
σ̄ ‖u‖p

Ss .

The same argument works for showing that the time derivative of (1.2) is indeed not just formally defined.
This concludes the proof of Theorem 1.1.

If p satisfies (1.4), by using (3.10) and f ∈ Lθ, we can apply the second part of Lemma 2.2. This
concludes the proof of Theorem 1.2. �

4. Proof of Theorem 1.3

Proof. We want to apply the first part of Lemma 2.2 with Ξ2 = S0 ∩Ss and Ξ1 = N −2 ∩N s−2. Since for
n �= 2 the couple (∞, 2) is admissible, the contraction in S0 ∩ Ss implies the existence and uniqueness in
L∞

T Hs.
Concerning the initial data, it is sufficient to apply Strichartz estimates (2.2), (2.3): from (u0, u1) ∈

Hs × (Ḣs−2 ∩ Ḣ−2), we derive that

ũ0 = cos(tΔ)u0 +
sin(tΔ)

Δ
u1 ∈ S0 ∩ Ss.

Strichartz estimate (2.4) gives (2.6) with a suitable C0 > 0.
Once we prove (2.7), deriving in time the integral equation and applying (2.7) with v = 0, we obtain

that each term of (1.2) is in L∞
T Hs and ut ∈ L∞

T Ḣ−2 ∩ L∞
T Ḣs−2.
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Therefore, it only remains to prove (2.7). Following the argument in Sect. 3, we have

X1(Ñ(u) − Ñ(v)) � ‖f‖Lθ
T

∑
α=2,2−s

‖(−Δ)− α
2 (N(u) − N(v))‖L

σ0
T Lρ′ = ‖f‖Lθ

T

∑
α=2,2−s

Iα, (4.1)

where σ0 is as in (3.1), and (σ, ρ) are admissible couples satisfying (3.3) with α = 2 (so that it also
satisfies (3.3) with α = 2 − s).

Due to Ξ2 = S0 ∩ Ss, for any admissible couple (τ, r) with r < n/s, we may estimate

‖G‖Lτ
T Lr̃ � ‖G‖S0∩Ss , for any r̃ ∈ [r, r�], where r� =

nr

n − sr
. (4.2)

Estimate (4.2) follows by the fractional Gagliardo–Nirenberg inequality (see Proposition 7.2),

‖G‖Lτ
T Lr̃ � ‖G‖γ

Lτ
T Ẇ s,r

‖G‖1−γ
Lτ

T Lr � ‖G‖S0∩Ss ,

where γ satisfies
1
r̃

=
1
r

− γ

n
s.

We proceed as in Sect. 3: we have again (3.4) with ρ′,m as in (3.5), estimate (3.6) with m1,m2

satisfying (3.7), and (3.8), with σ1, σ2, σ as in (3.9).
Then, we may conclude

‖N(u) − N(v)‖L
σ0
T Lm � T

1
σ ‖u − v‖S0∩Ss (‖u‖S0∩Ss + ‖v‖S0∩Ss)p−1

if (σ1,m1) and (σ2(p − 1),m2(p − 1)) are related to Strichartz n-admissible couples (σ1, q1) and (σ2(p −
1), q2) as described in (4.2):

m1 ∈ [q1, q
�
1], q�

1 =
nq1

n − sq1
, m2(p − 1) ∈ [q2, q

�
2], q�

2 =
nq2

n − sq2
,

for some q1, q2 ∈ [2, n/s). That is,

nm1

n + m1s
≤ q1 ≤ m1,

nm2(p − 1)
n + m2(p − 1)s

≤ q2 ≤ m2. (4.3)

Due to
2
σ1

+
n

q1
=

n

2
,

2
σ2(p − 1)

+
n

q2
=

n

2
,

we derive
1
σ1

=
n

4
− n

2q1
∈

[
n

4
− n

2m1
− s

2
,
n

4
− n

2m1

]
,

as well as
1
σ2

=
n(p − 1)

4
− n(p − 1)

2q2
∈

[
n(p − 1)

4
− n

2m2
− (p − 1)s

2
,
n(p − 1)

4
− n(p − 1)

2m2

]
.

Let us combine these relations with (3.1), (3.3), (3.5), (3.7) and (3.9). We get

max
q1,q2

1
σ

= 2 − 1
θ

− 1
σ

− 1
σ1

− 1
σ2

= 2 − 1
θ

− n

4
+

n

2ρ
− n

4
+

n

2m1
+

s

2
− n(p − 1)

4
+

n

2m2
+

(p − 1)s
2

= 2 − 1
θ

+
s

2
− n

2ρ′ +
n

2m1
+

n

2m2
− (n − 2s)(p − 1)

4

= 2 − 1
θ

+
s + α

2
− (n − 2s)(p − 1)

4
,
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where the maximum is taken over the couples (q1, q2), satisfying (4.3). Then, 1/σ > 0 for α = 2, 2 − s for
some choice of q1, q2 verifying (4.3), if, and only if,

p < 1 +
4(3 − θ−1) + min{2s, 0}

n − 2s
= 1 +

4(3 − θ−1)
n − 2s

.

On the other hand, for a fixed p, the bound in (3.2) holds for some choice of q1, q2 verifying (4.3), if, and
only if,

1
2

+
2
n

(
1 − 1

θ

)
≤ 1

ρ′ =
1
m

− α

n
=

1
m1

+
1

m2
− α

n
≤ 1

q1
+

p − 1
q2

− α

n
≤ p

2
− α

n
,

for both α = 2, 2 − s, that is, if, and only if,

p ≥ 1 +
4(2 − θ−1) − min{0, 2s}

n
= 1 +

4(2 − θ−1)
n

. (4.4)

This concludes the estimate of both I2 and I2−s in (4.1). Recalling that Lθ
T0

⊂ Lθ̃
T0

for any θ̃ ∈ [1, θ], the
range of p for which (4.4) holds for some θ̃ ∈ [1, θ] is given by p ≥ 1 + 4/n. The proof of Theorem 1.3
follows. �

5. The case of power nonlinearity

Let us consider ⎧⎨
⎩

utt + Δ2u = N(u),
u(0, x) = u0(x),
ut(0, x) = u1(x),

(5.1)

which is obtained by formally setting f = δ, Dirac distribution, in (1.1).
The linear case, N(u) = V (t, x)u, with V in a suitable Sobolev space, is treated by Cordero and Zucco

in [4]. The stability of a very particular nonlinear term in one-dimension case is considered by Fortunato
and Benci in [1]. The case of power nonlinearity, with N satisfying (N0), has been studied in [11,14].

The statements of the existence results for (5.1) are obtained by formally setting θ = 1 in Theo-
rems 1.1–1.3 and in Corollary 1.1 and replacing (1.2) by

u(t, x) = cos(tΔ)u0(x) +
sin(tΔ)

Δ
u1(x) +

t∫

0

sin((t − s)Δ)
Δ

N(u)(s, x) ds. (5.2)

In particular, we obtain the range of exponents

1 +
4

n − 2s
≤ p < 1 +

8
n − 2s

,

for local solutions in homogeneous Sobolev spaces Ḣs, for n ≥ 5 and s ∈ [0, 2], for n = 4 and s ∈ (0, 2)
and for n = 3 and s ∈ (1/2, 3/2). The corresponding critical exponent is 1 + 8/(n − 2s) for small data
global Ḣs solutions. We obtain the range of exponents

1 +
4
n

≤ p < 1 +
8

n − 2s
.

for local solutions in nonhomogeneous Sobolev spaces Hs, for n ≥ 5 and s ∈ (0, 2].
The proof immediately follows by setting σ0 = σ′ in the proof of Theorems 1.1–1.3, due to the fact

that Ñ = N ; hence, it is no longer necessary to apply Young inequality in time.
We notice that the critical exponent for the small data global solution is consistent with scaling

symmetry arguments deriving by the invariance of the equation with respect to the transformation
u(t, x) → λ− 4

p−1 u(λ−2t, λ−1x) (see [13]).
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In the figure below, we summarize the range of exponents p for which the Ḣs local or global existence
follows from Theorems 1.1 and 1.2, as s ranges from 0 to 2, taking n ≥ 5 for the sake of brevity.

The small data critical exponent is found on the critical curve AD where p = p(s) = 1 + 8/(n − 2s).
The range for local well-posedness, with arbitrarily large data, is represented by the ABCD closed set to
which we subtract the curve AD of critical exponents. Line DC is the energy space line s = 2.

Along line DC, some scattering results have been established by Pausader [11] for N(u) = −|u|p−1u.
More recently, Wang [14] proved the existence of small data global solutions along curve AD, with the
exception of the point A = (0, 1 + 8/n), also obtaining partial results for p = 1 + 8/(n − 2s) and s > 2.

p

s2

n 4
n 4

1 8
n

1 4
n

n
n 4

A
B

D

C

6. Nonexistence of global weak solutions for beam equation with source term

Following the ideas in [5,10], by using the test function method, we may prove the nonexistence of global
(weak) solutions to (1.1) with f(t) = cγ t−γ , cγ > 0, and N(u) = |u|p, for suitable p, and estimate the
local existence time from above.

By weak local solution in [0, T ), we mean a L1
loc([0, T ) × R

n) function u such that the convolution
of t−γ with |u|p is in L1

loc([0, T ) × R
n) (see Remark 3.1) and

cγ

T∫

0

∫

Rn

η(t)φ(x)

t∫

0

(t − s)−γ |u(s, x)|pdsdxdt

=

T∫

0

∫

Rn

u(ηtt(t)φ(x) + η(t)Δ2φ(x))dxdt

−
∫

Rn

u1(x)η(0)φ(x)dx +
∫

Rn

u0(x)ηt(0)φ(x)dx, (6.1)

for any φ ∈ C4
c (Rn) and any η ∈ C2([0, T )), compactly supported. The solution is global if (6.1) holds for

any T > 0, that is, we may replace T = ∞ in (6.1).
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Theorem 6.1. Let n ≥ 1 and f(t) = cγt−γ , with γ ∈ (0, 1), cγ > 0, and N(u) = |u|p for some

1 < p ≤ 1 +
2(3 − γ)

(n + 2γ − 4)+
. (6.2)

Let u0 ∈ L1
loc with u0 ≥ 0, g ∈ L1 be such that∫

Rn

g(x) dx > 0, (6.3)

and let u1 = εg, for some ε > 0. Then, there exists no global weak solution u ∈ Lp
loc([0,∞)×R

n) to (1.1).
Moreover, there exists C = C(g) > 0 such that, if the equality does not hold in (6.2), then the existence

time T of any local weak solution u ∈ Lp
loc([0, T )×R

n) to (1.1), verifies the following estimate from above:

T ≤ Cε− 1
κ , κ =

3 − γ

p − 1
− n + 2γ − 4

2
. (6.4)

Remark 6.1. Let γ ∈ (0, 1). For any p, such that

1 +
4
n

≤ p ≤ 1 +
2(3 − γ)

n + 2γ − 4
, (6.5)

the Hs local solution, whose existence follows from Theorem 1.3 (Example 1.1), cannot be globally
extended to a Lp

loc solution, due to Theorem 6.1, provided that the initial data satisfy the assumption
therein.

In particular, due to

Hs ⊂ Ḣs ⊂ L
2n

n−2s ⊂ Lp
loc, p ≤ 2n

n − 2s
,

the Hs local solution cannot be extended to a global one, even if we restrict to Ḣs, for p ≤ 2n/(n − 2s).
This latter holds for any s ∈ [0, 2] and for any p in (6.5), if n ≥ 10 − 4γ.

Theorem 6.1 may be extended to the case of polynomial type nonlinearity. Here, by weak solution we
mean that

T∫

0

∫

Rn

η(t)φ(x)|u(t, x)|pdxdt =

T∫

0

∫

Rn

u(ηtt(t)φ(x) + η(t)Δ2φ(x))dxdt

−
∫

Rn

u1(x)η(0)φ(x)dx +
∫

Rn

u0(x)ηt(0)φ(x)dx, (6.6)

for any φ ∈ C4
c (Rn) and any η ∈ C2([0, T )), compactly supported. The solution is global if (6.6) holds for

any T > 0, that is, we may replace T = ∞ in (6.6).

Proposition 6.1. Let n ≥ 1 and N(u) = |u|p for some 1 < p ≤ 1 + 4/(n − 2)+. Let u1 = εg ∈ L1, with g
satisfying (6.3), for some ε > 0. Then, there exists no global weak solution u ∈ Lp

loc([0,∞)×R
n) to (5.1).

Moreover, there exists C = C(g) > 0 such that if

1 < p < 1 +
4

(n − 2)+
, (6.7)

then the existence time T of any local weak solution u ∈ Lp
loc([0, T ) × R

n) to (5.1), verifies the following
estimate from above:

T ≤ Cε− 1
κ , κ =

2
p − 1

− n − 2
2

. (6.8)
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In particular, the nonexistence result in Proposition 6.1 follows by applying Theorem 2.1 in [7] and
taking into account of Theorem 2.2 in [6]. Choosing η(t) such that η is constant in a neighborhood
of {t = 0}, we may remove all the assumptions on the initial data u0, since the integral containing it
vanishes in (6.6). The estimate for the existence time is directly obtained as in the last part of the proof
of Theorem 6.1.

Remark 6.1 clearly extends to the case of power nonlinearity formally setting γ = 1; in particular, for

1 +
4
n

≤ p ≤ 1 +
4

n − 2
, (6.9)

obtained setting γ = 1 in (6.5), the Hs local solution, whose existence follows from Theorem 1.3, formally
setting θ = 1, cannot be globally extended to a Lp

loc solution, due to Proposition 6.1, provided that the
initial data satisfy the assumption therein. Also, Hs or Ḣs local solution cannot be extended to a global
one, for p ≤ 2n/(n − 2s). This latter holds for any s ∈ [0, 2] and for any p in (6.9), if n ≥ 6.

Remark 6.2. The nonexistence result in Proposition 6.1 does not contradict the global existence result
in Sect. 5, since p = 1 + 8/(n − 2s), as in (1.4) with θ = 1, cannot verify the following two conditions at
the same time:

• p ≤ 1 + 4/(n − 2), so that the nonexistence of Lp
loc global solutions follows;

• p ≤ 2n/(n − 2s), so that Ḣs ⊂ Lp
loc.

Indeed, the first one implies that n ≤ 4 − 2s and the second one that n ≥ 8 − 2s.

6.1. Preliminaries

Following [5], for any α ∈ (0, 1) and for a fixed τ > 0, we introduce the fractional integral and differential
operators J0|t,D0|t, Jt|τ ,Dt|τ , t ∈ [0, τ ], defined by:

Jα
0|t h(t) :=

1
Γ(α)

t∫

0

(t − s)−(1−α)h(s) ds, Dα
0|t := ∂t J1−α

0|t ,

Jα
t|τ h(t) :=

1
Γ(α)

τ∫

t

(s − t)−(1−α)h(s) ds, Dα
t|τ := − ∂t J1−α

t|τ .

We have the following properties:
τ∫

0

(Dα
0|t h1)(t)h2(t)dt =

τ∫

0

h1(t) (Dα
t|τ h2)(t)dt, (6.10)

Dα
0|tJ

α
0|t h(t) = h(t). (6.11)

Let us define

ω(t):=

{
(1 − t/τ) if t ∈ [0, τ ],
0 if t > τ .

(6.12)

It follows that suppω = [0, τ ] and ω(t)β ∈ Ck
c ([0,∞)), k ≥ 0, for any β > k. Moreover, we have the

following.

Lemma 6.1. (Lemma 4.1 in [5]) For any α ∈ (0, 1), it follows that

Dα
t|τ ω(t)β = C(α, β) τ−αω(t)β−α, for any β > α, (6.13)
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where

C(α, β) =
Γ(β + 1)

(β + 2 − α)Γ(β − α)
.

6.2. Proof of Theorem 6.1

Proof of Theorem 6.1. We put α:= 1 − γ. Let u ∈ Lp
loc([0, T ) × R

n) be a weak solution, that is, it satis-
fies (6.1). Let us fix τ ∈ (0, T ), and let Ψ ∈ C∞

c be a radial test function, such that:

• supp Ψ = B1;
• Ψ(x) = 1, for any x ∈ B1/2;
• Ψ(x1) ≥ Ψ(x2) if |x1| ≤ |x2|.

For any R ≥ 1, we denote ΨR(x):= Ψ(x/R). Let us fix

β > (α + 2)p′, and � > 2p′, (6.14)

where p′:= p/(p − 1) is the Hölder conjugate of p, and let

ΦR(t, x):= ω(t)β ΨR(x)�, ϕ(t, x):= Dα
t|τΦR(t, x).

Then, by using Lemma 6.1, suppϕ ⊂ [0, τ ] × BR, for any τ,R ≥ 1. We may write

J :=
∫

BR

(u1(x)ϕ(0, x) − u0(x)ϕt(0, x)) dx

=

τ∫

0

∫

BR

u(ϕtt + Δ2ϕ) dxdt − cγΓ(α)

τ∫

0

∫

BR

Jα
0|t(|u|p)ϕ dxdt.

We remark that ϕ ≥ 0, ϕt ≤ 0 and ϕtt ≥ 0, thanks to (6.13). Due to u0 ∈ L1
loc with u0 ≥ 0, it holds

J ≥
∫

BR

u1(x)ϕ(0, x) dx = ε

∫

BR

g(x)ϕ(0, x) dx ≥ cε,

for R ≥ R0, with sufficiently large R0 = R0(g) and sufficiently small c = c(g).
By virtue of (6.10) and (6.11), we get

cγΓ(α)

τ∫

0

∫

BR

Jα
0|t(|u|p)ϕ dxdt = cγΓ(α)

τ∫

0

∫

BR

|u|pΦR dxdt.

Now, for δ ∈ (0, 1/3), we use Young inequality to estimate
τ∫

0

∫

BR

|u|ϕtt dxdt ≤ δcγΓ(α)

τ∫

0

∫

BR

|u|pΦRdxdt + Cδ,γ

τ∫

0

∫

BR

ϕtt
p′

Φ
− 1

p−1
R dxdt,

and, thanks to Lemma 6.1, we have

∂2
t Dα

t|τω(t)β =
Γ(β + 1)

(β + 2 − α)Γ(β − α)
τ−α∂2

t ω(t)β−α =
Γ(β + 1)

(β + 2 − α)Γ(β − α − 2)
τ−(α+2)ω(t)β−α−2.

Due to
meas ([0, τ ]) = τ, meas (BR) ≈ Rn, (6.15)
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we obtain
τ∫

0

∫

BR

ϕtt
p′

Φ
− 1

p−1
R dxdt = Cτ−(α+2)p′

τ∫

0

∫

BR

ω(t)(β−α−2)p′− β
p−1 ΨR(x)� dxdt � τ−(α+2)p′+1Rn.

We remark that the power of ω(t) in the integral above is positive, by virtue of (6.14). Similarly, we
obtain

τ∫

0

∫

BR

|u|Δ2ϕ dxdt ≤ δcγΓ(α)

τ∫

0

∫

BR

|u|pΦRdxdt

+Cδ,γτ−αp′
τ∫

0

∫

BR

(Dα
t|τω(t)β |Δ2ΨR(x)�|)p′

Φ
− 1

p−1
R dxdt.

By Glaeser’s inequality [8],

|Δ2ΨR(x)�| ≤ C�R
−4 ΨR(x)�−2.

Recalling (6.13) and (6.15), we may estimate

τ−αp′
R−4p′

τ∫

0

∫

BR

ω(t)(β−α)p′− β
p−1 ΨR(x)(�−2)p′− 


p−1 dxdt ≤ Cτ−αp′+1 R−4p′+n.

We notice that the powers of ω(t) and ΨR(x) in the integral above are positive, by virtue of (6.14).
Summarizing, we obtained:

J ≤ C1 τ−αp′+1Rn(τ−2p′
+ R−4p′

) − C2

τ∫

0

∫

BR

|u|pΦR dxdt, (6.16)

for some C2 > 1/3, due to δ < 1/3. Assuming τ ≥ R2
0, we may fix R =

√
τ in (6.16), so that

τ−αp′+1Rn(τ−2p′
+ R−4p′

) ≈ τ−(α+2)p′+ n
2 +1.

We notice that p verifies the upper bound in (6.2) if, and only if, (α + 2)p′ ≥ n/2 + 1. We first prove
that T < ∞, by only using that J ≥ 0 in (6.16). By contradiction, let T = ∞. Let (α + 2)p′ > n/2 + 1;
by Beppo Levi’s theorem on monotone convergence, being Φ√

τ ↗ 1 as τ → ∞, we derive
∞∫

0

∫

Rn

|u|p dxdt = lim
τ→∞

∞∫

0

∫

Rn

|u|pΦ√
τ dxdt ≤ C lim

τ→∞ τ−(α+2)p′+ n
2 +1 = 0 ;

hence, u ≡ 0. The limit case (α + 2)p′ = n/2 + 1 may be treated as in [5]: being
∞∫

0

∫

Rn

|u|p dxdt = lim
τ→∞

∞∫

0

∫

Rn

|u|pΦ√
τ dxdt < ∞,

it follows that u ∈ Lp; then, one may prove that u ≡ 0 by repeating the previous steps of the proof,
employing Hölder inequality instead of Young inequality, to estimate the integrals, and taking advantage
that supp Δ2ΨR ⊂ BR\BR/2.

Now, we prove the second part of our statement, for (α + 2)p′ > n/2 + 1. Due to J ≥ cε, it follows

ε ≤ Cτ−(α+2)p′+ n
2 +1 = Cτ−κ,

from which we derive (6.4) if we fix, for instance, τ = T/2. �
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Appendix: Riesz potential and homogeneous Sobolev spaces

Following [12], given α ∈ R, we introduce the Riesz potential

(−Δ)−α/2f = F−1
(
|ξ|−α

F(f)
)
,

which is meaningful, for example for f ∈ S(Rn).
We recall the Hardy–Littlewood–Sobolev inequality.

Lemma 7.1. Let 0 < α < n, and n/(n − α) < q < ∞. Then,

‖(−Δ)− α
2 f‖q � ‖f‖p

where
1
q

=
1
p

− α

n
.

For r ∈ (1,∞), one defines the homogeneous Sobolev spaces Ẇ s,r as the space of distributions with
the property that F−1(|ξ|sF(f)) ∈ Lr with finite seminorm ‖F−1(|ξ|sF(f))‖r. In order to have a norm,
one takes the distribution in S/P, where P is the set of all polynomials, as it is evident for s ∈ N, due to
the fact that Ẇ s,r = {f : ∂β

xf ∈ Lr, |β| = s}.
Clearly Ẇ 0,r = Lr. We also set Ḣs = Ẇ s,2, for any s ∈ R, in particular Ḣ0 = L2.
When s > 0 the definition is well posed; indeed, the distributions whose Fourier transform is supported

at the origin give zero under the operation F−1(|ξ|sF(f)), but the Fourier of these distributions are linear
combinations of derivatives of Dirac delta; thus, they are the polynomials and we are working in S/P.

For s < 0, the lack of smoothness of the symbol |ξ|s requires a proper definition of the distribution
|ξ|sf̂ . Let η ∈ C∞

0 (Rn), such that η = 0 in B1(0) and η = 1 in R
n\B2(0). For s ∈ R and f ∈ S ′/P, φ ∈ S,

we define 〈
|ξ|sf̂ , φ

〉
= lim

ε→0

〈
f̂ , η

(
ε−1|ξ|) |ξ|sφ

〉
,

provided that the limit exists. In such a case, we can compute the norm of F−1(|ξ|sF(f)).
In particular when 0 < s < n we can describe Ẇ−s,r by means of Riesz potential:

‖f‖Ẇ −s,r = ‖(−Δ)− s
2 f‖Lr .

These spaces do not have monotonic inclusion with respect to s, but they are interpolation spaces. In
particular if f ∈ Ẇ s1,r ∩ Ẇ s2,r, then f ∈ Ẇ s,r for any s1 ≤ s ≤ s2.

For s ≥ 0, the nonhomogeneous Sobolev spaces, which norm is∥∥F−1(〈ξ〉sF(f))
∥∥

r
,

for any r ∈ (1,∞), can be equivalently written as

W s,r = Lr ∩ Ẇ s,r,
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if s ≥ 0. Again, we set Hs = W s,2.
We recall the following inequalities in Sobolev spaces, valid for any functions such that the right sides

are finite.

Proposition 7.1. (Sobolev embedding [2]) Let f ∈ S ′(Rn), s ∈ R, 1 < r < ∞. Then,

‖f‖Ẇ s,r � ‖f‖Ẇ s1,r1

where s ≤ s1, 1 < r1 < ∞ and s − n
r = s1 − n

r1
.

Proposition 7.2. (Generalized Gagliardo–Nirenberg inequalities [9]) Let f ∈ S ′(Rn), s̃ ∈ [0, s), 1 < r, r̃ <
∞. Then,

‖f‖Ẇ s̃,r̃ � ‖f‖γ

Ẇ s,r
‖f‖1−γ

Lr

where s̃
s ≤ γ ≤ 1 is given by γ = n

s

(
1
r − 1

r̃ + s̃
n

)
. As a consequence r ≤ r̃ ≤ rn

n+r(s̃−s) .
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8. Glaeser, G.: Racine carrée d’une fonction différetiable. Ann. Inst. Fourier (Grenoble) 13, 203–210 (1963)
9. Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg

inequalities and applications to Navier–Stokes and generalized boson equations. In: Harmonic analysis and nonlinear
partial differential equations, pp 159–175, RIMS Kokyuroku Bessatsu, B26, Res. Inst. Math. Sci. (RIMS), Kyoto (2011)

10. Ikeda, M., Wakasugi, Y.: A note on the lifespan of solutions to the semilinear damped wave equation. Proc.
AMS 143(1), 163–171 (2015)

11. Pausader, B.: Scattering and the Levandosky–Strauss conjecture for fourth-order nonlinear wave equations. J. Differ.
Equ. 241, 237–278 (2007)

12. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Prince-
ton (1970)

13. Tao T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics,
106. American Mathematical Society, Providence (2006)

14. Wang, S.: Well-posedness and Ill-posedness for the nonlinear beam equation. arXiv:1306.6411 (2013)

Marcello D’Abbicco
Departamento de Computação e Matemática
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