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Abstract. In the paper, we consider a multi-dimensional bipolar hydrodynamic model from semiconductor devices and
plasmas. This system takes the form of Euler–Poisson with electric field and frictional damping added to the momentum
equations. By making a new analysis on Green’s functions for the Euler system with damping and the Euler–Poisson system
with damping, we obtain the pointwise estimates of the solution for the multi-dimensions bipolar Euler–Poisson system. As
a by-product, we extend decay rates of the densities ρi(i = 1, 2) in the usual L2-norm to the Lp-norm with p ≥ 1 and the
time-decay rates of the momentums mi(i = 1, 2) in the L2-norm to the Lp-norm with p > 1 and all of the decay rates here
are optimal.
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1. Introduction

In this paper, we consider the following multi-dimensional bipolar Euler–Poisson system (hydrodynamic
model):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ1 + divm1 = 0,
∂tm1 + div(m1⊗m1

ρ1
) + ∇P (ρ1) = ρ1∇φ − m1,

∂tρ2 + divm2 = 0,
∂tm2 + div(m2⊗m2

ρ2
) + ∇P (ρ2) = −ρ2∇φ − m2,

Δφ = ρ1 − ρ2, x ∈ R
d, t ≥ 0,

(1.1)

where the unknown functions ρi(x, t),mi(x, t) (i = 1, 2), φ(x, t) are the charge densities of electrons and
ions, momentums and electrostatic potential, respectively. The pressure P = P (ρi) is a smooth function
with P ′(ρi) > 0 for ρi > 0. The system can be used to describe charged particle fluids, for example,
electrons and holes in semiconductor devices, positively and negatively charged ions in a plasma. This
model takes an important role in the fields of applied and computational mathematics, and we can see
more details in [13,24,27] etc.

Due to their physical importance, mathematical complexity and wide range of applications, there
are many studies on well-posedness of the stationary solution, well-posedness and large-time behavior
of the non-stationary solution for the multi-dimensional bipolar Euler–Poisson equations (1.1). Li [22]
showed existence and some limit analysis of stationary solutions for the multi-dimensional bipolar Euler–
Poisson system. Ali and Jüngel [1], Li and Zhang [17] and Peng and Xu [26] studied the global smooth
solutions of the Cauchy problem for multi-dimensional bipolar hydrodynamic models in the Sobolev space
H l(Rd)(l > 1 + d

2 ) and in the Besov space, respectively. Ju [14] discussed the global existence of smooth
solutions to the initial boundary value problem for the three-dimensional bipolar Euler–Poisson system. Li
and Yang [23] and Wu and Wang [31] showed global existence and L2 decay rate of the smooth solutions to
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the three-dimensional bipolar Euler–Poisson systems when the initial data are small perturbation of the
constant stationary solution. Huang et al. [8] and Liao and Li [21] showed large-time behavior of solution
to n-dimensional bipolar hydrodynamic model for semiconductors when the initial data are near to the
planar diffusion waves. Ali and Chen [2] studied the zero-electron-mass limit in the Euler–Poisson system
for both well- and ill-prepared initial data. Lattanzio [16] and Li [20] investigated the relaxation limit of
the multi-dimensional bipolar isentropic Euler–Poisson model for semiconductors, respectively. Ju et al.
[15] discussed the quasi-neutral limit of the two-fluid multi-dimensional Euler–Poisson system. Moreover,
it is worth mentioning that there are a lot of references about the one-dimensional bipolar Euler–Poisson
equation, and the interesting reader can refer to [3,5–7,9–11,25,28,32,33] and the reference therein.

In this paper, we are interested in the asymptotic behavior of smooth solution to the system (1.1)
with the initial data

ρi(x, 0) = ρi0(x) > 0, mi(x, 0) = mi0(x), i = 1, 2, (1.2)

which satisfy

lim
|x|→∞

ρi0(x) = ρ̄ > 0.

The main concern is to deduce the pointwise estimates of the problem (1.1)–(1.2). For stating our results,
we first give the following well-posedness Theorem.

Theorem 1.1. (see [31]) Let P ′(ρi) > 0(i = 1, 2) for ρi > 0, and ρ̄ > 0. Assume that (ρi − ρ̄,mi0,∇φ0) ∈
H3(R3) for i = 1, 2, with ε0 =: ‖(ρi0 − ρ̄,mi0,∇φ0)‖H3 small. Then there is a unique global classical
solution (ρi,mi,∇φ) of the Cauchy problem (1.1)–(1.2) satisfying

‖(ρi − ρ̄,mi,∇φ)‖2
H3 ≤ Cε0. (1.3)

Notice that the case of d ≥ 4 for the problem (1.1)–(1.2) can be handled as in Theorem 1.1. On the
other hand, since the main goal in the present paper is the large-time behavior of the solution, in order to
emphasize the relation between our pointwise estimates and the dimension d, in the following the space
dimension will be presented as d with d ≥ 3. Now let us give our main results in the following Theorem.

Theorem 1.2. Let P ′(ρi) > 0(i = 1, 2) for ρi > 0, and ρ̄ > 0. Assume that (ρi − ρ̄,mi0,∇φ0) ∈ Hs+2(Rd),
s = [d/2] + 1 and d ≥ 3 for i = 1, 2, with ε0 =: ‖(ρi0 − ρ̄,mi0,∇φ0)‖Hs+2 small. For |α′| ≤ 2

|Dα′
x (ρ10 + ρ20 − 2ρ̄, ρ10 − ρ20,m10,m20),∇φ0| ≤ Cε0(1 + |x|2)−r, r >

d

2
, (1.4)

we have for |α| = 0 and |α| = 1

|Dα
x (ρ1 + ρ2 − 2ρ̄, ρ1 − ρ2)| ≤ Cε0(1 + t)− d+|α|

2 Br(|x|, t), r >
d

2
, (1.5)

|Dα
x (m1 + m2,m1 − m2)| ≤ Cε0(1 + t)− d+1+|α|

2 B d
2
(|x|, t), (1.6)

which imply that

|Dα
x (ρ1 − ρ̄, ρ2 − ρ̄)| ≤ Cε0(1 + t)− d+|α|

2 Br(|x|, t), r >
d

2
, (1.7)

|Dα
x (m1,m2)| ≤ Cε0(1 + t)− d+1+|α|

2 B d
2
(|x|, t). (1.8)

Here and in the subsequent, Bk(|x|, t) = (1 + |x|2
1+t )

−k with k = r, d
2 , N .

Furthermore, as a by-product, we have the following optimal Lp-decay rates of the solution.

Corollary 1.3. Under the assumption in Theorem 1.2, the solution (ρ1, ρ2,m1,m2) satisfies that

‖Dα
x (ρ1 − ρ̄, ρ2 − ρ̄)‖Lp(Rd) ≤ C(1 + t)− d

2 (1− 1
p ), with p ≥ 1,

‖Dα
x (m1,m2)‖Lp(Rd) ≤ C(1 + t)− d+1

2 (1− 1
p ), with p > 1.
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The outline of the proof of the main theorems is as follows. Firstly, we rewrite the system (1.1)
into the Euler system with damping on the variables (ρ1 + ρ2,m1 + m2) and the Euler–Poisson system
with damping on the variables (ρ1 − ρ2,m1 − m2), which interact each other through the nonlinear
inhomogeneous terms on the right-hand side; see (2.5) and (2.6). Then, followed the arguments and ideas
in [34,36], we make an analysis on Green’s functions of these two linearized systems. Namely, we can
directly use the pointwise estimate of Green’s functions of the linearized Euler equations with damping
and the linearized unipolar Euler–Poisson equations in the middle frequency part and high frequency
part. However, in order to overcome the interaction of two particles and make the initial conditions more
natural (see Remark 1.4), we need to achieve a refined pointwise estimates of Green’s function in low
frequency part. More precisely, note the following proposition of the lower frequency part of the Fourier
transform for Green’s function for linearized Euler equations with damping (2.4)1,2:

Ĝ(ξ, t) ∼
(

1 ξτ

ξ ξξτ

)

e−|ξ|2t +

(
1 ξτ

ξ ξξτ

|ξ|2

)

e−at, with some constant a > 0,

i.e., there is a Calderon–Zygmund operator with symbol ξξτ/|ξ|2 in Fourier space for Green’s function
corresponding to the momentum equation; however, this factor does not appear in the first line of Green’s
function corresponding to the mass equation. Here and in the subsequent, the symbol τ is used to denote
the transpose. Hence, we can expect that the decay of the density with respect to the space variable x (or,
it could be called regularity on x) can be faster than that of the momentum. That is, the time-asymptotic
shape of the densities is Br(|x|, t|) with r > d

2 , and the time-asymptotic shape of the momentums is
B d

2
(|x|, t). Moreover, from an additional condition |Dα

x ∇φ0| ≤ Cε0(1+|x|2)−r with r > d
2 on the potential

∇φ0, and the Poisson equation (1.1)5, we can regard the Calderon–Zygmund operator with symbol ξ
|ξ|2

in Green’s function of (2.4)3,4 as the Calderon–Zygmund operator with symbol ξξτ

|ξ|2 . From these facts, we
can obtain the pointwise estimate of Green’s function for linearized Euler system with damping (2.4)1,2

and the linearized unipolar Euler–Poisson system (2.4)3,4 in low frequency part. Finally, by Duhamel
principle and the energy estimate (1.3), we can deduce the pointwise estimates of the variables ρ1 + ρ2,
m1 + m2, ρ1 − ρ2 and m1 − m2. Consequently, we can immediately obtain the pointwise estimates of the
solution (ρ1, ρ2,m1,m2) to the original problem (1.1)–(1.2).

Remark 1.4. Though Wang and Yang [34] have studied Green’s function of the Euler system with damp-
ing, we reconsider it here by some new conservations and give a refined result. In fact, they showed that
if the initial data (ρ0 − ρ̄, u0) (velocity u = m

ρ ) are small in H l(Rd) with d ≥ 3 and l ≥ [d/2] + 3 and

|Dα′
x (ρ0 − ρ̄, u0)| ≤ ε0(1 + |x|2)−r, r >

3d

4
, 0 ≤ |α′| ≤ l, (1.9)

then for |α| ≤ min{d, l − 2}

|Dα
x (ρ(x, t) − ρ̄), u(x, t))| ≤ C(1 + t)− d+|α|

2 (1 +
|x|2
1 + t

)− d
2 . (1.10)

Nevertheless, (1.10) implies that ‖Dα
x (ρ(x, t)− ρ̄)‖L2(Rd) and ‖Dα

x u(x, t))‖L2(Rd) have the same decay rate
on the variable t, which is weaker than those in [29]. Comparing with (1.10), L2-decay rate with respect
to the time t derived from the pointwise estimate (1.6) is the same to that in [29], where they made a
Leray project on the velocity field to refine the L2-decay rate. In the present paper, we make a direct but
more subtle analysis on Green’s function to achieve a refined pointwise estimates. Moreover, it is worthy
mentioning that the condition (1.9) is not good enough in some sense since the initial data are in the
unusual Lp(Rd)-space with p < 1. Our initial condition (1.4) is more natural since the initial data is in
the usual L1 space with respect to space variable x.

Remark 1.5. The time-asymptotic shape B d
2
(|x|, t) for |Dα

x (m1 −m2)|, where m1 −m2 corresponds to the
solution of the momentum equation in the Euler–Poisson system with damping (2.4)3,4, is better than
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B d−1
2

(|x|, t) for the velocity (or the momentum) of the Euler–Poisson equations with damping in [36].

This is caused by an additional condition |Dα
x ∇φ0| ≤ Cε0(1 + |x|2)−r with r > d

2 on the potential ∇φ0

in (1.4) than in [36], which together with the Poisson equation (1.1)5 could help us regard the Calderon–
Zygmund operator with symbol ξ

|ξ|2 in Green’s function of (2.4)3,4 as the Calderon–Zygmund operator

with symbol ξξτ

|ξ|2 . See the details in (3.15).

Remark 1.6. Compared with [23,31], we mainly obtain the pointwise estimates of the solution for the
multi-dimensions bipolar Euler–Poisson system. Based on them, we show the decay rates of the densities
ρi(i = 1, 2) in the Lp-norm with p ≥ 1 and the time-decay rates of the momentums mi(i = 1, 2) in the
Lp-norm with p > 1 here. Moreover, our results are different from the Lp(p ∈ [2,+∞])-convergence rate
of planar waves in [21]. Finally, we believe that the method in this paper maybe could help us deduce
the pointwise results for other bipolar systems, especially for the bipolar Navier–Stokes–Poisson system,
bipolar Euler–Maxwell system or bipolar Navier–Stokes–Maxwell system. We refer to the relative articles
[4,18,30] and references therein. These are left for the forthcoming future.

Notations. Throughout this paper, we will use C or Ci denotes a positive generic constant (generally
large) that may vary at different places. Dl = ∂l

x with an integer l ≥ 0 denotes the usual any spatial
derivatives of order l. For 1 ≤ p ≤ ∞ and an integer m ≥ 0, we use Lp and Wm,p to denote the usual
Lebesgue space Lp(R3) and Sobolev spaces Wm,p(Rd) with norms ‖ · ‖Lp and ‖ · ‖W m,p , respectively, and
set Hm = Wm,2 with norm ‖ · ‖Hm when p = 2. f ∼ g means that there exist two positive constants
C1, C2 such that C1|f | ≤ |g| ≤ C2|f |.

The rest of the paper is arranged as follows. In Sect. 2, we reformulate the original system and then
give detailed analysis on Green’s functions for the Euler equations with damping and Euler–Poisson
equations with damping. The proof of pointwise estimates of the solution will be derived in Sect. 3.

2. Green’s functions

2.1. Reformulation of original problem

Assume ρ̄ = 1 and P ′(ρ̄) = 1 without loss of generality. Then the Cauchy problem (1.1)–(1.2) is reformu-
lated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ1 + divm1 = 0,

∂tm1 + m1 + ∇ρ1 − ∇φ = −div(m1⊗m1
ρ1

) − ∇(P (ρ1) − ρ1) + (ρ1 − 1)∇φ,

∂tρ2 + divm2 = 0,

∂tm2 + m2 + ∇ρ2 + ∇φ = −div(m2⊗m2
ρ2

) − ∇(P (ρ2) − ρ2) − (ρ2 − 1)∇φ,

Δφ = ρ1 − ρ2,

(ρ1, u1, ρ2, u2)(x, 0) = (ρ10, u10, ρ20, u20)(x).

(2.1)

Next, set

n1 = ρ1 + ρ2 − 2, n2 = ρ1 − ρ2, w1 = m1 + m2, w2 = m1 − m2, (2.2)

which give equivalently

ρ1 =
n1 + n2

2
+ 1, ρ2 =

n1 − n2

2
+ 1, m1 =

w1 + w2

2
, m2 =

w1 − w2

2
. (2.3)
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From (2.2) and (2.3), it follows that the Cauchy problem (2.1) can be reformulated into the following
Cauchy problem for the unknown (n1, w1, n2, w2, φ)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tn1 + divw1 = 0,
∂tw1 + w1 + ∇n1 = f1(n1, w1, n2, w2),
∂tn2 + divw2 = 0,
∂tw2 + w2 + ∇n2 − 2∇φ = f2(n1, w1, n2, w2),
Δφ = n2,
(n1, w1, n2, w2)(x, 0) = (n10, w10, n20, w20)(x),

(2.4)

where (n10, w10, n20, w20) := (ρ10 + ρ20 − 2, u10 + u20, ρ10 − ρ20, u10 − u20), and

f1 = −div
[ (w1 + w2) ⊗ (w1 + w2)

2(n1 + n2) + 4
+

(w1 − w2) ⊗ (w1 − w2)
2(n1 − n2) + 4

]

−∇
[
P (

n1 + n2

2
+ 1) − n1 + n2

2
+ P (

n1 − n2

2
+ 1) − n1 − n2

2

]
+ n2∇φ, (2.5)

f2 = −div
[ (w1 + w2) ⊗ (w1 + w2)

2(n1 + n2) + 4
− (w1 − w2) ⊗ (w1 − w2)

2(n1 − n2) + 4

]

−∇
[
P (

n1 + n2

2
+ 1) − n1 + n2

2
− P (

n1 − n2

2
+ 1) +

n1 − n2

2

]
+ n1∇φ. (2.6)

Hence, the Cauchy problem (2.4) can be formally divided into the Cauchy problem for the Euler
equations with damping (2.4)1,2 and the Euler–Poisson equations with damping (2.4)3,4,5, which interact
each other through the nonlinear inhomogeneous terms on the right-hand side.

2.2. Green’s function of linearized Euler equations with damping

In this subsection, we shall give the pointwise estimates for Green’s function for the linearized Euler
equations with damping. A similar analysis can be founded in [34]. For the convenience of the readers, a
brief analysis will be also sketched here.

Recall the linearized system on (n1, w1) in (2.4)
{

∂tn1 + divw1 = 0,
∂tw1 + ∇n1 + w1 = 0,

(2.7)

which implies

∂2
t n1 + ∂tn1 − Δn1 = 0. (2.8)

It is obvious that the symbol of the operator in (2.8) is

λ2 + λ + |ξ|2 = 0.

Here, λ and ξτ = (ξ1, ξ2, . . . , ξd) correspond to ∂
∂t and (Dx1 , . . . , Dxd

), respectively, where Dxj
= 1√−1∂/∂xj

with j = 1, . . . , d. It is easy to find that the eigenvalues of (2.7) are λ = λ±(ξ) = −1±
√

1−4|ξ|2
2 . Now we

consider Green’s function for (2.7), i.e., we study the solution to the following initial value problem:
{(

∂
∂t + A(Dx)

)
G(x, t) = 0,

G(x, 0) = δ(x),
(2.9)

where δ(x) is the Dirac function, the symbols of operator A(Dx) are

A(ξ) =
(

0
√−1ξτ√−1ξ Id×d

)

.
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Applying the Fourier transform with respect to the variable x to (2.9), we get by a direct calculation

Ĝ(ξ, t)=
(

Ĝ11 Ĝ12

Ĝ21 Ĝ22

)

=

⎛

⎝
λ+eλ−t−λ−eλ+t

λ+−λ−
−√−1 eλ+t−eλ−t

λ+−λ−
ξτ

−√−1 eλ+t−eλ−t

λ+−λ−
ξ e−tI+

(
λ+eλ+t−λ−eλ−t

λ+−λ−
−e−t

)
ξξτ

|ξ|2

⎞

⎠

=

(
η+eλ−t − η−eλ+t −√−1η0ξ

τ (−eλ+t + eλ−t)
−√−1η0ξ(−eλ+t + eλ−t) e−t(I − ξξτ

|ξ|2 )+ ξξτ

|ξ|2 (η+eλ+t − η−eλ−t)

)

,

where η0(ξ) = (λ+(ξ) − λ−(ξ))−1, η±(ξ) = λ±(ξ)η0(ξ).
Let

χ1(ξ) =
{

1, |ξ| < ε,
0, |ξ| > 2ε,

and

χ3(ξ) =
{

1, |ξ| > K + 1,
0, |ξ| < K,

be the smooth cutoff functions with 2ε < K, and χ2 = 1−χ1 −χ3, which correspond to lower, higher and
middle frequency parts in the Fourier space. The number of the subscripts on Green’s function is large
because we will analysis each term in Green’s function (a matrix). In order to facilitate the description,
here and in the sequel, when we say “|ξ| is sufficiently small” or “the lower frequency part of Green’s
function,” we are actually dealing with the function χ1(ξ)G(ξ, t), and when we say “|ξ| is sufficiently
large” or “the higher frequency part of Green’s function,” we are actually dealing with the function
χ3(ξ)G(ξ, t).

First, we consider the lower frequency part of Green’s function, i.e., |ξ| being sufficiently small. In this
case, we will write Ĝ = Ĝ+ + Ĝ− + Ĝ0 for |ξ| with

Ĝ+ =
(−η− −√−1η0ξ

τ

−√−1η0ξ η+(ξξτ )/|ξ|2
)

eλ+t :=

(
Ĝ+

1,1 Ĝ+
1,2

Ĝ+
2,1 Ĝ+

2,2

)

, (2.10)

Ĝ− =
(

η+

√−1η0ξ
τ√−1η0ξ 0

)

eλ−t +
(

0 0
0 −η−(ξξτ )/|ξ|2

)

eλ−t := Ĝ−
1 + Ĝ−

2 , (2.11)

and

Ĝ0 := Ĝ0
1 + Ĝ0

2 =
(

0 0
0 I

)

e−t +
(

0 0
0 −(ξξτ )/|ξ|2

)

e−t. (2.12)

Note that for |ξ| sufficiently small, we have

λ+(ξ) = −|ξ|2 + O(|ξ|4), λ−(ξ) = −1 + |ξ|2 + O(|ξ|4),

which implies

η−(ξ) = −1 + O(|ξ|2), η+(ξ) = −|ξ|2 + O(|ξ|4), η0(ξ) = 1 + O(|ξ|2).

Moreover, we also have

eλ+(ξ)t = e−|ξ|2t(1 + O(|ξ|4)t), eλ−(ξ)t = e−te|ξ|2t(1 + O(|ξ|4)t). (2.13)



ZAMP Solutions for the multi-dimensional bipolar Euler–Poisson system Page 7 of 20 50

Hence, we have

Ĝ+(ξ, t) :=

(
Ĝ+

1,1 Ĝ+
1,2

Ĝ+
2,1 Ĝ+

2,2

)

=
(

1 + O(|ξ|2) −
√−1

2 ξτ + O(|ξ|3)
−√−1ξ + O(|ξ|3) −ξξτ + O(|ξ|4)

)

e−|ξ|2t(1 + O(|ξ|4)t), (2.14)

Ĝ−
1 (ξ, t) =

(
−|ξ|2 + O(|ξ|4)

√−1
2 ξτ + O(|ξ|3)√−1ξ + O(|ξ|3) 0

)

e−te|ξ|2t(1 + O(|ξ|4)t). (2.15)

By differentiating both sides of (2.14) and (2.15) with respect to ξ, because of the smoothness of Ĝ+(ξ, t),
Ĝ−

1 (ξ, t) and Ĝ0
1, we can immediately obtain the following lemma.

Lemma 2.1. If |ξ| is sufficiently small, then there exists a constant b > 0, such that

|Dβ
ξ (ξαχ1(ξ)Ĝ+

1,1(ξ, t))| ≤ C(|ξ|(|α|−|β|)+ + |ξ||α|t|β|/2)(1 + t|ξ|2)|β|+1e−b|ξ|2t,

|Dβ
ξ (ξαχ1(ξ)Ĝ+

1,2(ξ, t))| ≤ C(|ξ|(|α|−|β|+1)+ + |ξ||α|+1t|β|/2)(1 + t|ξ|2)|β|+1e−b|ξ|2t,

|Dβ
ξ (ξαχ1(ξ)Ĝ+

2,1(ξ, t))| ≤ C(|ξ|(|α|−|β|+1)+ + |ξ||α|+1t|β|/2)(1 + t|ξ|2)|β|+1e−b|ξ|2t,

|Dβ
ξ (ξαχ1(ξ)Ĝ+

2,2(ξ, t))| ≤ C(|ξ|(|α|−|β|+2)+ + |ξ||α|+2t|β|/2)(1 + t|ξ|2)|β|+1e−b|ξ|2t,

|Dβ
ξ (ξαχ1(ξ)Ĝ−

1 (ξ, t))| ≤ Ce−t(|ξ|(|α|−|β|+1)+ + |ξ||α|t|β|/2)(1 + t|ξ|2)|β|+1e−b|ξ|2t,

|Dβ
ξ (ξαχ1(ξ)Ĝ0

1(ξ, t))| ≤ Ce−t(|ξ|(|α|−|β|)+ + |ξ||α|t|β|/2)(1 + t|ξ|2)|β|+1e−b|ξ|2t.

In order to get the pointwise estimate of each term in Green’s function in the lower frequency part,
we need the following lemma.

Lemma 2.2. If f̂(ξ, t) has compact support in ξ, and there exists a constant b > 0, such that if f̂(ξ, t)
satisfies

|Dβ
ξ (ξαf̂(ξ, t)| ≤ C(|ξ|(|α|+k−|β|)+ + |ξ||α|+kt|β|/2)(1 + (t|ξ|2))m exp(−b|ξ|2t)

for any multi-indexes α, β with |β| ≤ 2N (integer N could be arbitrary large), then

|Dα
x f(x, t)| ≤ CN t−(d+|α|+k)/2BN (|x|, t),

where k and m are any fixed integers, and (a)+ = max(0, a).

Proof. If |β| < k + |α|, then we have by direct calculation that

|xβDαf(x, t)| = C
∣
∣
∫

e
√−1x·ξDβξαf̂(ξ, t)dξ

∣
∣

≤ C

∫

|ξ||α|+k(|ξ|−|β| + t|β|/2)(1 + (t|ξ|2))me−b|ξ|2tdξ

≤ Ct−(|α|+d+k−|β|)/2. (2.16)
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If |β| ≥ k + |α|, one also can find that

|xβDαf(x, t)| = C

∣
∣
∣
∣

∫

e
√−1x·ξDβξαf̂(ξ, t)dξ

∣
∣
∣
∣

≤ C

∫ (
|ξ|(|α|+k−|β|)+ + |ξ||α|+kt|β|/2

)
(1 + (t|ξ|2))me−b|ξ|2tdξ

≤ C(1 + t−(|α|+k−|β|)/2)t−n/2

≤ C(1 + t)−(|α|+k−|β|)/2)t−n/2

= C(1 + t)|β|/2t−(|α|+d+k)/2

(
t

1 + t

)(|α|+k)/2

≤ C(1 + t)|β|/2t−(|α|+d+k)/2. (2.17)

Let β = 0 when |x|2 ≤ 1 + t, and |β| = 2N when |x|2 > 1 + t, we obtain from (2.16) and (2.17) that

|Dαf(x, t)| ≤ Ct−(|α|+d+k)/2 min
(

1,

(
1 + t

|x|2
)N)

.

Since

1 +
|x|2
1 + t

≤ 2

{
1, |x|2 ≤ 1 + t,
|x|2
1+t , |x|2 > 1 + t,

we have

min
(

1,
(1 + t

|x|2
)N

)

≤ 2N

(1 + |x|2
1+t )

N
= 2NBN (|x|, t).

This completes the proof. �

Based on Lemma 2.1 and 2.2, we immediately have

Lemma 2.3. When |ξ| is sufficiently small, we have for any |α| ≥ 0 and any integer N > 0

|Dα
x (χ1(Dx)G+

1,1(x, t))| ≤ C(1 + t)−(d+|α|)/2BN (|x|, t),
|Dα

x (χ1(Dx)(G+
1,2(x, t), G+

2,1(x, t)))| ≤ C(1 + t)−(d+1+|α|)/2BN (|x|, t),
|Dα

x (χ1(Dx)G+
2,2(x, t))| ≤ C(1 + t)−(d+2+|α|)/2BN (|x|, t),

|Dα
x (χ1(Dx)G−

1 (x, t))| ≤ Ce−c0tBN (|x|, t),
|Dα

x (χ1(Dx)G0
1(x, t))| ≤ Ce−c0tBN (|x|, t), for some constant c0 > 0.

The proof of Lemma 2.3 is similar as that of Lemma 4.1 in [34], and we can omit the details here.

Remark 2.4. Lemma 2.3 indicates that each term of Ĝ in lower frequency part has different decay
rate, which is an improvement of Lemma 4.1 in [34], where they obtained |Dα

x (χ1(Dx)G(x, t)| ≤ C(1 +
t)−(d+|α|)/2BN (|x|, t). In fact, these estimates in Lemma 2.3 are subtle and critical to get our improved
pointwise estimates and L2-decay rate of the solution.

Now, there are still two terms Ĝ−
2 (ξ, t) and Ĝ0

2(ξ, t) contain a Calderon–Zygmund operator Rij with
symbol ξiξj

|ξ|2 should be considered in lower frequency part of Ĝ(ξ, t). That is, we have

Lemma 2.5. When |ξ| is sufficiently small and d ≥ 3, we have for some c0 > 0 that

|Dα
x (χ1(Dx)G0

2(x, t))| + |Dα
x (χ1(Dx)G−

2 (x, t))| ≤ Ce−c0tB d
2
(|x|, t).
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Proof. We only give the proof for Dα
x (χ1(Dx)G−

2 (x, t)), since the other term can be obtained similarly.
For convenience, we denote Dα

x G−
2 (x, t) = RijD

α
x H(x, t), where Rij is the Calderon–Zygmund operator

and the symbol of H(x, t) is χ1(ξ)e−t. First, recall that

Dα
x (χ1(Dx)G−

2 (x, t)) = −F−1
(
χ1(ξ)ξα ξiξj

|ξ|2 e−t
)

by the inverse Fourier transformation and (2.12). When |ξ| is small, as in Lemma 2.1 one can get

|Dβ
ξ (χ1(ξ)ξαe−t| ≤ C(β)e−t ≤ Ce− 1

2 te−|ξ|2t

for any |β| ≥ 0, which together with Lemma 2.2 gives that

|Dα
x H(x, t)| ≤ Ce−c1tBN (|x|, t), for any integer N > 0 and some constant c1 > 0.

Next, the inverse Fourier transformation gives that

F−1
( ξiξj

|ξ|2
)

= −Dxi
Dxj

Δ−1δ(x) = CDxi
Dxj

|x|2−d

= CDxi
(xj |x|−d) = Cxixj |x|−(d+2).

If d ≥ 3, we have

|Dα
x (χ1(Dx)G−

2 (x, t))| ≤ C

∫

R

∣
∣
∣
∣
xi − yi

|x − y|d Dα
y Dyj

H(y, t)
∣
∣
∣
∣ dy,

or

|Dα
x (χ1(Dx)G−

2 (x, t))| ≤ C

∫

R

∣
∣
∣
∣
(xi − yi)(xj − yj)

|x − y|d+2
Dα

y H(y, t)
∣
∣
∣
∣ dy.

If |x|2 ≥ t and |x| ≤ 2|y|, it holds that

BN (|y|, t) = B d
2
(|y|, t)BN− d

2
(|y|, t) ≤ CB d

2
(|x|, t)BN− d

2
(|y|, t).

Let

Ω1 = {x − y; |x − y| ≤ 1}, Ω2 = {x − y; |x − y| > 1}.

By Young’s inequality,
∣
∣
∫

R

|x − y|−(d−1)BN− d
2
(|y|, t)dy

∣
∣ ≤ C(‖|x − y|−(d−1)‖L1(Ω1)‖BN− d

2
(|y|, t)‖L∞(Ω1)

+‖|x − y|−(d−1)‖L2(Ω2)‖BN− d
2
(|y|, t)‖L2(Ω2)) ≤ C.

Thus, we have

|Dα
x (χ1(Dx)G−

2 (x, t))| ≤ C ≤ Ce−c1tB d
2
(|x|, t), for some constant c1 > 0.

If |x|2 ≥ t and |x| > 2|y|, then

|Dα
x (χ1(Dx)G−

2 (x, t))| ≤ C

∫

R

∣
∣ (xi − yi)(xj − yj)

|x − y|d+2
Dα

y H(y, t)|dy

≤ C|x|−d

∫

R

BN (|y|, t)dy ≤ Ce−c1tB d
2
(|x|, t), for some constant c1 > 0.

If |x|2 ≤ t, then the fact that 1 ≤ CBk(|x|, t) for any constant k ≥ 0, and Young’s inequality yield that

|Dα
x (χ1(Dx)G−

2 (x, t))| ≤ Ce−c1tB d
2
(|x|, t).

In summary, we deduce the estimate for Dα
x (χ1(Dx)G−

2 (x, t)). The proof is completed. �
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Up to now, all of the terms in Green’s function G(x, t) in lower frequency have been estimated. With
respect to the pointwise estimates of Green’s function in middle frequency and in high frequency, we have

Lemma 2.6. For fixed ε and R defined in the cut-off functions, there exist a positive constant c0 and C
such that

|Dα
x (χ2(Dx)G(x, t))| ≤ Ce−c0tBN (|x|, t), for any integer N > 0,

and

Lemma 2.7. For |ξ| being sufficiently large, there exists distribution

χ3(Dx)Kq(x, t) =

⎛

⎝
q−1∑

j=0

Lj(x, t)

⎞

⎠ e−t/2,

where Lj(x, t) is a Dirac-like function. Then for q = [ |α|+d+3
2 ], we have for some c0 > 0

|Dα
x (χ3(D)(G+ + G− − Kq(x, t)))| ≤ Ce−c0tBN (|x|, t).

Lemma 2.6 and 2.7 can be found in [34], and we can omit the details here.
In summary, combining the pointwise estimates in the lower, middle and higher frequency parts above,

we have the following pointwise estimates for Green’s function without the singular term χ3(Dx)Kq(x, t).

Proposition 2.8. For any |α| ≥ 0, we have

|Dα
x (G1,1 − χ3(Dx)Kq)| ≤ C(1 + t)− d+|α|

2 BN (|x|, t),
|Dα

x (G1,2 − χ3(Dx)Kq)| + |Dα
x (G2,1 − χ3(Dx)Kq)| ≤ C(1 + t)− d+1+|α|

2 BN (|x|, t),
|Dα

x (G2,2 − χ3(Dx)Kq)| ≤ C(1 + t)− d+2+|α|
2 B d

2
(|x|, t),

where χ3(Dx)Kq(x, t) is defined in Lemma 2.7 and integer N could be arbitrary large.

Remark 2.9. Notice that the pointwise estimates in Proposition 2.8 is different from those in [34], where
the authors did not give the pointwise estimate for G0(x, t) with the inverse Fourier transform in (2.12).
Thus, when they want to obtain the pointwise estimate for the nonlinear system (2.1), they need an
additional lemma (cf. Lemma 3.3 [34]), which directly results in the assumption on the initial data (1.4)
in [34]. However, Proposition 2.8 could help us to relax the assumption (1.4) into the following one (
belongs to L1(Rd))

|Dα
x (ρ0,m0)| ≤ Cε0(1 + |x|2)−r, r >

d

2
.

2.3. Green’s function of linearized Euler–Poisson equations with damping

In this subsection, we shall make an analysis on Green’s function for the linearized Euler–Poisson equations
with damping, which have been studied in [36] by us.

Recall the linearized system on (n2, w2) in (2.4):
{

∂tn2 + divw2 = 0,
∂tw2 + ∇n2 + w2 − 2∇φ = 0,

(2.18)

which implies

∂2
t n2 + ∂tn2 − Δn2 + 2n2 = 0. (2.19)

Then the symbol of the symbol of the operator in (2.19) is

λ2 + λ + |ξ|2 + 2 = 0,
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whose eigenvalues are

λ = λ±(ξ) =
−1 ± √−1

√
7 + 4|ξ|2

2
.

Then we consider Green’s function for (2.18), i.e.,
{

( ∂
∂t + A(Dx))G(x, t) = 0,

G(x, 0) = δ(x),
(2.20)

where δ(x) is the Dirac function and the symbols of operator A(Dx) are

A(ξ) =
(

0
√−1ξτ√−1ξ(1 + 2

|ξ|2 ) Id×d

)

.

Thus by direct calculation, we get

Ĝ(ξ, t) =
(
Ĝ1,1 Ĝ1,2

Ĝ2,1 Ĝ2,2

)

, (2.21)

where

Ĝ1,1 =
λ+eλ−t − λ−eλ+t

λ+ − λ−
, Ĝ1,2 = −√−1

eλ+t − eλ−t

λ+ − λ−
ξτ ,

Ĝ2,1 = −√−1
(

1 +
2

|ξ|2
)

eλ+t − eλ−t

λ+ − λ−
ξ, Ĝ2,2 = e−tI +

[
λ+eλ+t − λ−eλ−t

λ+ − λ−
− e−t

]
ξξτ

|ξ|2 .

For simplicity and completeness, we just state the main results and show the difference of the Green’s
functions between these two linearized systems in Sects. 2.2 and 2.3. As shown in Section 2 in [36], the
main difference is the lower frequency part of Green’s function of (2.18) has exponential decay rate on
time t. In fact, when |ξ| is sufficiently small, by using Taylor expansion one has

λ± = −1
2

± √−1

(√
7

2
+ O(|ξ|2)

)

.

On the other hand, for a hyperbolic–parabolic system which satisfies Shizuta–Kawashima condition, the
decay rate of the solution mainly depends on the lower frequency part of the Green’s function. Thus,
we can easily deduce the exponential temporal decay rate of the Green’s function (2.20) since the higher
frequency part of the Green’s function usually has the exponential temporal decay rate. Please see the
details in [36].

Thus, we have the pointwise estimates of the Green’s function (2.20) in [36] as follows, which are
formulated in a more exhaustive way.

Proposition 2.10. For any |α| ≥ 0 and |β| ≥ 1, we have for some constant c0 > 0,

|Dα
x (G1,1 − χ3(Dx)Kq)| + |Dα

x (G1,2 − χ3(Dx)Kq)| ≤ Ce−c0tBN (|x|, t), (2.22)

|Dα
x (G2,2 − χ3(Dx)Kq)| ≤ Ce−c0tB d

2
(|x|, t), (2.23)

|(1 − χ1(Dx))G2,1 − χ3(Dx)Kq)| ≤ Ce−c0tBN (|x|, t), (2.24)

|Dβ
x(G2,1 − χ3(Dx)Kq)| ≤ Ce−c0tB d

2
(|x|, t), (2.25)

where χ3(Dx)Kq(x, t) is defined as in Lemma 2.7 and the integer N could be arbitrary large.

Proof. (2.22) and (2.23) can be deduced as in Sect. 2.2 for the Euler system with damping. On the other
hand, note that there is a Calderon–Zygmund operator with the symbol ξ

|ξ|2 in G2,1, which is singular in
the lower frequency part and has no difference from the middle and higher frequency parts from G1,1 and
G1,2. Obviously, the term in (2.24) does not contain any part with singularity, so it also can be deduced
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as in Sect. 2.2. Lastly, the estimate (2.25) with |β| ≥ 1 for G2,1 is equivalent to (2.23) with |α| ≥ 0 for
G2,2 containing the Calderon–Zygmund operator with the symbol ξξτ

|ξ|2 . The proof of Proposition 2.10 is
completed. �

Remark 2.11. The estimates (2.24) and (2.25) are critical to help us deduce the asymptotic shape
B d

2
(|x|, t) in the pointwise estimates, which is an improvement of those in [36] for Euler–Poisson equations

with damping, where the asymptotic shape for the velocity (or the momentum) is B d−1
2

(|x|, t). In fact,
when we deal with convolution Dβ

x(G2,1 − χ3(Dx)Kq) ∗ n2,0 with |β| = 0 in the next section, we can
“borrow” a derivation from n20 since n20 = Δφ0 = div∇φ0 (see the details in the proof for the term
R10).

3. Pointwise estimates for nonlinear system

In this section, we will study the pointwise estimates of the solution to the nonlinear system (2.4). Firstly,
we give several lemmas, which will be used for estimating the convolutions between the Green’s function
and the nonlinear terms.

Lemma 3.1. (1) When n1, n2 > d
2 and n3 = min (n1, n2), we have

∫

Rd

(

1 +
|x − y|2
1 + t

)−n1

(1 + |y|2)−n2dy ≤ C

(

1 +
|x|2
1 + t

)−n3

.

(2) When n2 > d
2 , we have

∫

Rd

(

1 +
|x − y|2
1 + t

)− d
2

(1 + |y|2)−n2dy ≤ C

(

1 +
|x|2
1 + t

)− d
2

.

Proof. We only prove (2), since the proof of (1) is similar. First, we have
∫

Rd

(

1 +
|x − y|2
1 + t

)− d
2

(1 + |y|2)−n2dy =
( ∫

|x|≥2|y|

+
∫

|x|<2|y|

) (

1 +
|x − y|2
1 + t

)− d
2

(1 + |y|2)−n2dy.

It is easy to obtain
∫

|x|≥2|y|

(

1 +
|x − y|2
1 + t

)− d
2

(1 + |y|2)−n2dy

≤ C

(

1 +
|x|2
1 + t

)− d
2

∫

Rd

(1 + |y|2)−n2dy ≤ C

(

1 +
|x|2
1 + t

)− d
2

.

Similarly, we have
∫

Rd

(

1 +
|x − y|2
1 + t

)− d
2

(1 + |y|2)−n2dy

≤ C(1 + |x|2)− d
2

∫

Rd

(

1 +
|x − y|2
1 + t

)− d
2

(1 + |y|2)−(n2− d
2 )dy

≤ C

(

1 +
|x|2
1 + t

)− d
2

,
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where we have used the Young’s inequality and n2 > d
2 . This proves (2) of Lemma 3.1. This completes

the proof. �

Lemma 3.2. Assume d ≥ 3.
(a) If functions F (x, t) and S(x, t) satisfy

|Dα
x F (x, t)| ≤ C(1 + t)− d+|α|

2 Bn1(|x|, t),
|Dα

x S(x, t)| ≤ C(1 + t)− 2d+|α|
2 Bn2(|x|, t),

then, we have

Iα =:

∣
∣
∣
∣
∣
∣
Dα

x

⎛

⎝

t∫

0

F (t − s) ∗ S(s)ds

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ C(1 + t)− d+|α|

2 Bn3(|x|, t).

Here n1, n2 > d
2 and n3 = min (n1, n2).

(b) If functions F (x, t) and S(x, t) satisfy

|Dα
x F (x, t)| ≤ C(1 + t)− d+1+|α|

2 Bn1(|x|, t),
|Dα

x S(x, t)| ≤ C(1 + t)− 2d+1+|α|
2 Bn2(|x|, t),

then, we have

Iα =:

∣
∣
∣
∣
∣
∣
Dα

x

⎛

⎝

t∫

0

F (t − s) ∗ S(s)ds

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ C(1 + t)− d+1+|α|

2 Bn3(|x|, t).

Here n1, n2 > d
2 and n3 = min (n1, n2).

(c) If functions F (x, t) and S(x, t) satisfy

|Dα
x F (x, t)| ≤ C(1 + t)− d+|α|

2 Bn1(|x|, t), n1 > d
2 ,

|Dα
x S(x, t)| ≤ C(1 + t)− 2d+|α|

2 Bn3(|x|, t), n3 > 2d−1
2 ,

then, we have

Iα =:

∣
∣
∣
∣
∣
∣
Dα

x

⎛

⎝

t∫

0

F (t − s) ∗ S(s)ds

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ C(1 + t)− d+|α|

2 Bn1(|x|, t).

(d) If functions F (x, t) and S(x, t) satisfy

|Dα
x F (x, t)| ≤ C(1 + t)− d+k+|α|

2 B d
2
(|x|, t),

|Dα
x S(x, t)| ≤ C(1 + t)− 2d−1+|α|

2 Bn3(|x|, t), k ≥ 0, n3 > 2d−1
2 ,

then, we have

Iα =:

∣
∣
∣
∣
∣
∣
Dα

x

⎛

⎝

t∫

0

F (t − s) ∗ S(s)ds

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ C(1 + t)− d+k+|α|

2 B d
2
(|x|, t).

The proofs are similar as those of [34,35] without any new difficulty, and we can omit the details here.
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Now, we begin to study the pointwise estimates of the solution (n1, w1, n2, w2) for (2.4). First, by
Duhamel principle, the solution (n1, w1) can be expressed as

Dα
x

(
n1

w1

)

= Dα
x

(
G1,1 G1,2

G2,1 G2,2

)

∗
(

n1,0

w1,0

)

+

t∫

0

Dα
x

(
G1,1 G1,2

G2,1 G2,2

)

(t − s) ∗
(

0
f1(n1, w1, n2, w2)

)

(s)ds, (3.1)

and (n2, w2) can be expressed as

Dα
x

(
n2

w2

)

= Dα
x

(
G1,1 G1,2

G2,1 G2,2

)

∗
(

n2,0

w2,0

)

+

t∫

0

Dα
x

(
G1,1 G1,2

G2,1 G2,2

)

(t − s) ∗
(

0
f2(n1, w1, n2, w2)

)

(s)ds. (3.2)

Without loss of generality, we assume that for |α| ≤ 2

|Dα
x (n10, w10, n20, w20,∇φ0)| ≤ Cε0(1 + |x|2)−r, r >

d

2
. (3.3)

Here ε0 is sufficiently small. We first study the pointwise estimates for the solution (n1, w1). From (3.1),
we have

Dα
x n1 = Dα

x G1,1(t) ∗ n1,0 + Dα
x G1,2 ∗ w1,0 +

t∫

0

Dα
x G1,2(t − s) ∗ f1(n1, w1, n2, w2)(s)ds

:= R1 + R2 + R3, (3.4)

and

Dα
x w1 = Dα

x G2,1(t) ∗ n1,0 + Dα
x G2,2(t) ∗ w1,0 +

t∫

0

Dα
x G2,2(t − s) ∗ f1(n1, w1, n2, w2)(s)ds

:= R4 + R5 + R6. (3.5)

We rewrite R1 as

R1 = Dα
x (G1,1 − Kq) ∗ n1,0 + Dα

x Kq ∗ n1,0 := R1
1 + R2

1,

where χ3(Dx)Kq(x, t) is generated from the higher frequency part in Green’s function defined in Lemma
2.7. As mentioned in Lemmas 2.6 and 2.7, χ3(Dx)Kq(x, t) is a Dirac-like function. Without loss of
generality, we shall write χ3(Dx)Kq = e−c0tδ(x) + e−c0tg2(x) := χ3(Dx)K1

q + χ3(Dx)K2
q , where g2(x)

satisfies

‖g2‖L1 ≤ C, supp g2(x) ⊂ {x; |x| < σ0},

with σ0 being sufficiently small. It is obvious that from (3.3)

|Dα
x χ3(Dx)K1

q ∗ n1,0| = |e−c0tδ(x) ∗ n1,0| ≤ Ce−c0tBr(|x|, t).
On the other hand, for |x − y| ≤ σ0 
 1, note

(1 + |y|2)−1 ≤ C(1 + |x|2)−1,

then we have

Dα
x χ3(Dx)K2

q ∗ n1,0 =
∫

χ3(Dx)K2
q (x − y)Dα

y n1,0(y)dy ≤ Ce−c0t(1 + |x|2)−r

≤ Ce− c0
2 tBr(|x|, t). (3.6)
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For R1
1, from Proposition 2.8, Lemma 3.1(1) and the assumption (3.3), we have

|R1
1| ≤ Cε0(1 + t)− d+|α|

2 Br(|x|, t).
Hence, we have

|R1| ≤ Cε0(1 + t)− d+|α|
2 Br(|x|, t). (3.7)

Similarly, one can get

|R2| ≤ Cε0(1 + t)− d+1+|α|
2 Br(|x|, t). (3.8)

In the completely same way, using Proposition 2.8, Lemma 3.1 and the assumption (3.3), we have

|R4| ≤ Cε0(1 + t)− d+1+|α|
2 Br(|x|, t), (3.9)

and

|R5| ≤ Cε0(1 + t)− d+2+|α|
2 B d

2
(|x|, t). (3.10)

Next, we consider the solutions (n2, w2). As mentioned above, we mainly consider the lower frequency
part of the Green’s function G. From the analysis in Sect. 2.3 we know the Fourier transform of the lower
frequency part of G is equivalent to the following form

Ĝ(ξ, t) =
(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)

∼
(

1 ξτ

ξ
|ξ|2

ξξτ

|ξ|2

)

e−c0t with c0 > 0,

from which, we know that Ĝ12 has an additional factor ξτ than Ĝ11 and Ĝ22 also has an additional
factor ξτ than Ĝ21. Thus, we give an assumption on the electric field ∇φ0(x) in (3.3) instead of the usual
assumption on the density ρ0(x) = div∇φ0(x) and want to deduce better pointwise estimates for n2 and
w2. Firstly, we have

Dαn2 = Dα
xG1,1(t) ∗ n2,0 + Dα

xG1,2 ∗ w2,0 +

t∫

0

Dα
xG1,2(t − τ) ∗ f2(n1, w1, n2, w2)(τ)dτ

:= R7 + R8 + R9, (3.11)

and

Dαw2 = Dα
xG2,1(t) ∗ n2,0 + Dα

xG2,2 ∗ w2,0 +

t∫

0

Dα
xG2,2(t − τ) ∗ f2(n1, w1, n2, w2)(τ)dτ

:= R10 + R11 + R12. (3.12)

We only deduce the pointwise estimate for R7 and R10. From (2.22), we get

|Dα
x (G1,1 − χ3(Dx)Kq) ∗ n2,0| ≤ Cε0e

−c0tBr(|x|, t), r >
d

2
,

where we have used Proposition 2.10, Lemma 3.1(1) and the assumption (3.3). The estimate for |Dα
x χ3(Dx)

Kq ∗ n2,0| can be deduced as R2
1. Thus, we have

|R7| ≤ Cε0e
−c0tBr(|x|, t), r >

d

2
. (3.13)

Next, we consider the term R10. When |α| ≥ 1, (2.25) and Lemma 3.2(d) directly give that

|R10| ≤ |Dα
x (G2,1(x, t) − χ3(Dx)Kq) ∗ n2,0| + |χ3(Dx)Kq ∗ n2,0|

≤ Cε0e
−c0tB d

2
(|x|, t) + Cε0e

−c0tBr(|x|, t)
≤ Cε0e

−c0tB d
2
(|x|, t), (3.14)
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where the second term |χ3(Dx)Kq) ∗ n2,0| is estimated as in R2
1.

When |α| = 0, from the assumption

|Dα
x ∇φ0| ≤ Cε0(1 + |x|2)−r with r >

d

2
,

and the fact n2,0 = div∇φ0, we find that

|G2,1 ∗ n2,0| ≤ |χ1(Dx)(G2,1 ∗ n2,0| + |(1 − χ1(Dx))G2,1 − χ3(Dx)Kq) ∗ n2,0| + |χ3(Dx)Kq ∗ n20|
≤ |χ1(Dx)∇G2,1 ∗ ∇φ0| + Cε0e

−c0tBr(|x|, t)
≤ Cε0e

−c0tB d
2
(|x|, t) + Cε0e

−c0tBr(|x|, t)
≤ Cε0e

−c0tB d
2
(|x|, t), (3.15)

where we have used Lemma 3.2(d) and (2.24) for the first term and (2.25) for the second term, and the
third term can be estimated as in R2

1.
Consequently, we can immediately get

|R10| ≤ Cε0e
−c0tB d

2
(|x|, t). (3.16)

In the same way, one has

|R8| ≤ Cε0e
−c0tBr(|x|, t), (3.17)

and

|R11| ≤ Cε0e
−c0tB d

2
(|x|, t). (3.18)

Up to now, we have obtained the pointwise estimates for the linearized system. Next, we shall deduce
those for the nonlinear system (2.4). To this end, we first set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(x, t) =

⎧
⎨

⎩

(1 + t)
d
2 +ν(|α|) (Br(|x|, t))−1

, |α| ≤ h − 1,

(1 + t)
d−1
2 +ν(|α|)

(
B d−1

2
(|x|, t)

)−1

, |α| = h,

M1(t) = sup
0≤τ≤t,|α|≤h;x∈Rd

|Dα
x (n1, n2)(x, τ)|ψ1(x, τ),

ψ2(x, t) =

⎧
⎪⎨

⎪⎩

(1 + t)
d+1
2 +ν(|α|)

(
B d

2
(|x|, t)

)−1

, |α| ≤ h − 1,

(1 + t)
d−1
2 +ν(|α|)

(
B d−1

2
(|x|, t)

)−1

, |α| = h,

M2(t) = sup
0≤τ≤t,|α|≤h,x∈Rd

|Dα
x (w1, w2)(x, τ)|ψ2(x, τ),

(3.19)

where

ν(|α|) =
{ |α|/2, |α| ≤ h − 1,

0, |α| = h.

It is worthy taking an explanation for the ansatz (3.19). A reasonable ansatz could help us de-
duce the desired pointwise estimates of the solution to the nonlinear system. Since the nonlinear terms
f1(n1, w1, n2, w2) and f2(n1, w1, n2, w2) of the momentum equations in (2.4) contain the term n2∇φ and
n1∇φ respectively, we have to firstly obtain the following pointwise estimates for ∇φ, which will be used
to get the pointwise estimates of the solution (n1, w1, n2, w2).

Lemma 3.3. [35] If |α| ≤ h, we have

|Dα
x ∇φ| ≤ CM1(1 + t)− d−1+|α|

2 B d−1
2

(|x|, t).
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By the definition of Mi(t)(i=1,2), we have

|Dα
y f1(n1, w1, n2, w2)(y, s)|

≤ C

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M2
1 (1 + s)− 2d+|α|

2 B2r(|y|, s) + M2
2 (1 + s)− 2d+2+|α|

2 Bd(|y|, s)
+M2

1 (1 + s)− 2d+2+|α|
2 Br+ d

2
(|y|, s), |α| ≤ h − 2,

M2
1 (1 + s)− 2d−1

2 Br+ d
2
(|y|, s) + M2

2 (1 + s)−dBr+ d
2
(|y|, s), |α| = h − 1,

ε0M1(1 + s)− d
2 Br(|y|, s) + ε0M2(1 + s)− d

2 B d
2
(|y|, s)

+M2
1 (1 + s)−(d−1)Bd−1(|y|, s), |α| = h.

(3.20)

Moreover, we rewrite R3 of (3.4) as follows:

R3 =

t∫

0

Dα
x (G1,1 − χ3(Dx)Kq)(t − τ) ∗ f1(n1, w1, n2, w2)(τ)dτ

+

t∫

0

Dα
x χ3(Dx)Kq(t − τ) ∗ f1(n1, w1, n2, w2)(τ)dτ

:= R1
3 + R2

3.

Now we consider R1
3. If |α| ≤ h − 2, by Proposition 2.1, Lemma 3.3(c) and (3.20), we know

|R1
3| =

∣
∣
∣
∣
∣
∣

t∫

0

Dα
x (G1,1 − χ3(Dx)Kq)(t − τ) ∗ f1(n1, w1, n2, w2)(τ)dτ

∣
∣
∣
∣
∣
∣

≤ C(M2
1 + M2

2 )(1 + t)− d+1+|α|
2 Br(|x|, t), r >

d

2
. (3.21)

If h − 1 ≤ |α| ≤ h, we rewrite

R1
3 =

t∫

0

Dα̃
x (Dβ(G1,1 − χ3(Dx)Kq))(t − τ) ∗ f1(n1, w1, n2, w2)(τ)dτ,

where |α̃| = h − 2 and |β| = |α| − |α̃|. Then we replace F by Dβ(G1,1 − Kq), and we can get (3.21) for
h − 1 ≤ |α| ≤ h.

Next, for R2
3, we rewrite it as

R2
3 =

t∫

0

Kq(t − τ) ∗ Dα
x f1(n1, w1, n2, w2)(τ)dτ.

Then, similar to the proof in (3.6), one can immediately find from (3.20) that for |α| ≤ min{d − 1, 2}

|R2
3| ≤ C

{
(M2

1 + M2
2 )(1 + t)− d+|α|

2 Bd(|x|, t), |α| ≤ h − 1,

ε0(M1 + M2)(1 + t)− d+|α|
2 B d

2
(|x|, t), |α| = h.

(3.22)

Lastly, repeating the process of the proof for R3, and noticing the fact in Proposition 2.1 that G2,1−Kq

and G2,2 − Kq decay faster than G1,1 − Kq and G1,2 − Kq, one can easily obtain for |α| ≤ min{d − 2, 2}

|R6| ≤ C

{
(M2

1 + M2
2 )(1 + t)− d+1+|α|

2 Bd(|x|, t), |α| ≤ h − 1,

ε0(M1 + M2)(1 + t)− d−1+|α|
2 B d−1

2
(|x|, t), |α| = h.

(3.23)
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On the other hand, the estimates of (n2, w2) could be deduced similarly. Since the unique difference is
the temporal decay rate of the Green’s function G is exponential, which will not bring any new difficulty.
In fact, we have for |α| ≤ min{d − 2, 2}

|R9| + |R12| ≤ C

{
(M2

1 + M2
2 )(1 + t)− d+1+|α|

2 Bd(|x|, t), |α| ≤ h − 1,

ε0(M1 + M2)(1 + t)− d−1
2 B d−1

2
(|x|, t), |α| = h.

(3.24)

In summary, from (3.7)–(3.10), (3.13), (3.16)–(3.18) and (3.21)–(3.24), we can conclude that

M1 ≤ C(ε0 + M2
1 + M2

2 ) and M2 ≤ C(ε0 + M2
1 + M2

2 ),

which together with the smallness of ε0 imply

M1 + M2 ≤ Cε0.

That is, for |α| ≤ 1,

|Dα
x (n1, n2)| ≤ Cε0(1 + t)− d+|α|

2 Br(|x|, t), r >
d

2
,

and

|Dα
x (w1, w2)| ≤ Cε0(1 + t)− d+1+|α|

2 B d
2
(|x|, t).

Then, by using the formula (2.3), we have

|Dα
x (ρ1 − 1, ρ2 − 1)| ≤ Cε0(1 + t)− d+|α|

2 Br(|x|, t), r >
d

2
,

and

|Dα
x (m1,m2)| ≤ Cε0(1 + t)− d+1+|α|

2 B d
2
(|x|, t).

This proves Theorem 1.2.
As a corollary, we have the following optimal decay rate in Lp(Rd)-space.

Corollary 3.4. Under the assumption in Theorem 1.2, we have

‖Dα
x (ρ1 − 1, ρ2 − 1)‖Lp(Rd) ≤ C(1 + t)− d+|α|

2 (1− 1
p ), with p ≥ 1,

and

‖Dα
x (m1,m2)‖Lp(Rd) ≤ C(1 + t)− d+1+|α|

2 (1− 1
p ), with p > 1.
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