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Abstract. In this paper, we determine numerically a large class of equilibrium configurations of an elastic two-dimensional
continuous pantographic sheet in three-dimensional deformation consisting of two families of fibers which are parabolic
prior to deformation. The fibers are assumed (1) to be continuously distributed over the sample, (2) to be endowed of
bending and torsional stiffnesses, and (3) tied together at their points of intersection to avoid relative slipping by means of
internal (elastic) pivots. This last condition characterizes the system as a pantographic lattice (Alibert and Della Corte in
Zeitschrift für angewandte Mathematik und Physik 66(5):2855–2870, 2015; Alibert et al. in Math Mech Solids 8(1):51–73,
2003; dell’Isola et al. in Int J Non-Linear Mech 80:200–208, 2016; Int J Solids Struct 81:1–12, 2016). The model that we
employ here, developed by Steigmann and dell’Isola (Acta Mech Sin 31(3):373–382, 2015) and first investigated in Giorgio
et al. (Comptes rendus Mecanique 2016, doi:10.1016/j.crme.2016.02.009), is applicable to fiber lattices in which three-
dimensional bending, twisting, and stretching are significant as well as a resistance to shear distortion, i.e., to the angle
change between the fibers. Some relevant numerical examples are exhibited in order to highlight the main features of the
model adopted: In particular, buckling and post-buckling behaviors of pantographic parabolic lattices are investigated. The
fabric of the metamaterial presented in this paper has been conceived to resist more effectively in the extensional bias tests
by storing more elastic bending energy and less energy in the deformation of elastic pivots: A comparison with a fabric
constituted by beams which are straight in the reference configuration shows that the proposed concept is promising.
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1. Introduction

Design and synthesis of new materials that satisfy some required specific characteristics is a very attractive
challenge that researchers have tackled since many years in different branches of physics as electromag-
netism, optics, or mechanics. Those assumptions which usually are accepted to be valid while modeling
“natural” materials lead to useful simplifications on which many engineering applications have been based
up to now. In particular, two-dimensional and three-dimensional continuum models have been formulated
based on so-called Cauchy assumptions, which lead to the classical definition of stress and strain states.
However, and based on purely logical considerations, already Gabrio Piola (see [33,39]) clearly proved
that not all conceivable materials can be modeled under the simplifying assumptions put forward by
Cauchy, Poisson, and Navier (for a discussion of this point, see, e.g., [33,40] and references there quoted).

1.1. Higher gradient continuum models for metamaterials

Already Piola considered the possibility to include in the deformation energy of three-dimensional con-
tinua together with the first gradient of placement also its second and possibly higher gradients, and
he bases his argument on the eventual need to include in these models the description of long range
interaction between the material particles. Piola’s point of view has been recovered, many years later,
for instance, by Mindlin and Toupin [73,111]. When dealing with two-dimensional continua, the classical
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models due to Love and Kirchhoff do include higher gradient of transverse displacements as independent
variables in the constitutive equation for deformation energy but, when considering tangential displace-
ments, they restrict the attention to the particular case of dependence on first gradient of aforementioned
tangential displacements. In the more recent papers [3–5,45] and [41,55,107–109], this last restriction
is removed and so-called geodesic bending is taken into account for the determination of deformation
energy. The more general models thus formulated allow for the theoretical framing of more sophisticated
models which are able to describe the behavior of a large class of metamaterials, as those considered in
the present paper.

Indeed, when fabrics are constituted at microlevel by highly inhomogeneous materials and are formed
by microscopically complex geometric patterns, then the modeling assumptions accepted after Cauchy
must be generalized if macroscopic homogenized models need to be introduced (see, e.g., [40]). More and
more often, such fabrics are attracting the attention of the researchers in material sciences: Indeed, so-
called tailored or architectured or optimized or smart materials are more and more often being conceived
and studied because of their specific and unconventional behavior (for more details on this subject, see,
e.g., [17,31,38] and the references there cited).

The word metamaterials is a neologism which was constructed from the Greek word meta-, (meaning
to go beyond) composed with the Latin root materia. Metamaterials are materials designed and engi-
neered in order to have properties which have not yet been observed in nature, which go beyond those
materials which are already known. One has to remark, however, that if a property was not observed
yet in nature may simply mean that nobody looked for it, due to the lack of suitable theoretical tools
of investigation and modeling and that with a careful search, one can find even natural materials having
such an exotic property.

It seems to us that, in the context of Mechanical Sciences, this new concept focused on the design and
synthesis of new materials, rather than on the analysis of common materials already employed, is quite
little exploited when compared with what is done in the other fields of physics already mentioned.

It also seems to us that the introduction of higher gradient models may be of help in the investigation
and design of a large class of metamaterials, although we are aware of the fact that more generally
microstructured continua [50,51] may be necessary: In this context, the results presented in [1,2,104]
prove rigorously that for a particular class of microfabrics, the macro-models must be second gradient
continua. The controversy about the relevance of higher gradient continua seems to have been solved
by several results proving that many systems showing microscopic complexity can be modeled, at a
suitably large scale, by higher gradient continua (see, e.g., [1,12,17,24,43,44,57,65,84,93]). Actually, an
exhaustive review on the conceptual bases of higher gradient continuum theories may be found in [40]
while interesting applications are found in [28,87,88,94,102,116,117]. Remark also that nonlinear higher
gradient elasticity is necessary also when the correct frame for continua having energetic boundaries is
looked for (see, e.g., [67]).

1.2. Range of applicability for generalized continuum models

In technological applications, many and different microfabrics are considered to form microarchitectured
metamaterials. The different mechanical parts constituting these fabrics may be fibers, microbeams,
microplates, or any other kinds of structural element. All considered structural elements may be con-
strained by suitable elastic or perfect constraints, and their mechanical properties may be extremely
different from each other. A possible way for assembling fibers could be to weave them: In this case,
the constraint is obtained by means of friction forces whose effectiveness may depend on the state of
stress at the contact interface between different fibers. In this case, a particular attention must be paid to
frictional slip (as done, for instance, in [75]) while other peculiar properties of several kinds of composite
materials [66,77,78,103] have also been taken into account.
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In the literature, many different generalized continuum models have been proposed for mechanical
systems including inextensible and extensible fibers: see, e.g., [35,37,55,107,109] and references there
cited. To our knowledge, however, it has not been addressed yet the problem of studying the deformation
of second gradient plates having two families of extensible material curves having nonvanishing referential
curvature and being capable of storing deformation energy when their curvature is changing. Some relevant
results in the formulation of the needed theories can be found in [46–48] where local symmetry properties
for elastic generalized shells are studied and in [3–5,45] where some theories of plates and shells with
microstructure are presented. Remark that the problems addressed in the present paper are static. A
dynamical analysis of second gradient plates needs to be developed, and for the first results in this
context presented the reader is referred, e.g., to [34,36,52,106]. Besides, considering that the system
under study is very light, applications in which there is a fluid–structure interaction could show an
unexpected behavior which seems worthy of study (see, e.g., [13,76,79,80,82] for more details on this
issue). It has also to be remarked that nonstandard and exotic dynamical behavior can be described in
some particular micromorphic continua [91] and in multi-physics metamaterials, as those conceived to
exploit piezoelectric transduction see, e.g., [29,81,92,98] and the references there cited.

Finally, it has to be remarked that microscopically complex systems are not designed by engineers
only: Indeed, nature, and in particular evolution, produced many tissues whose microscopic fabric is very
complex: Some efforts are being directed toward the formulation of generalized continuum models in this
context: Some relevant works are [11,49,54,58,63,64,69,90,102,110].

The presented method features also the possibility of describing buckling and post-buckling phenom-
ena, as in its deformation energy some nonquadratic terms depending on some deformation energies are
introduced. The buckling and post-buckling analysis performed here is purely numerical: We are aware
of the fact that only via suitable analytical or semi-analytical studies (those presented in [6,53,85,86,95–
97,101], [14,71,72] and [26,27,115] seem to us relevant in our context), it will become possible a complete
classification of such behaviors.

1.3. Experimental and numerical characterization of higher gradient constitutive parameters

In order to use the introduced second gradient model to get effective predictions of considered metama-
terials (as done in [38]), one has to identify macroscopic constitutive parameters in terms of the specific
microstructure under consideration. In this paper, we have used for obtaining such identification the semi-
analytical results presented in [89]. We are aware that this analysis needs to be improved and generalized.
We intend, in future investigations, to use to this aim several numerical and experimental methodologies:
The most relevant in this context seem to be, e.g., those presented in [105,112] where the problem of the
identification of macro-properties of structures is addressed or those in [42,70] where viscosity effects are
introduced in the picture. Remark that pantographic structures considered here include small elements
in which a relatively larger amount of deformation energy may be stored: Therefore, experimental non-
invasive detection of damage methods based on dynamic features as natural frequency, eigenmodes, may
be used (see, e.g., [30]) together with dynamic characterization and vibration absorption methods (see,
e.g., [15,16,18,99,100]) or even the more sophisticated impact analysis (see, e.g., [7–10]).

While experimental evidence is the ultimate check for every modeling effort, also in the context of
microscopically complex fabrics, it can be useful to get quantitative and qualitative results about their
behavior by resorting to micromodels and intensive numerical simulations, based on simpler mechanical
models valid at lower length scales. In this context, isogeometric numerical analysis (see, e.g., [21,22,60,
62,113]) or other numerical methods (see, e.g., [19,20,23,25,59,61,114]) have been successfully applied to
very similar mechanical problems. Remark that recently some alternative methods ( see, e.g., [32,68,74])
based on generalized cellular automata calculations have been proposed which seems suitable to describe
numerically the time evolution of higher gradient continua.
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1.4. Organization of the paper and the main result presented

In this paper, we want to explore the possibility of designing new fabric sheets with a particular arrange-
ment of the fibers to obtain specific and uncommon mechanical features different from the usual woven
fabrics in which the fibers are straight lines.

Herein, we focus on the following key idea: to use the fibers having a parabolic form in the reference
configuration and resisting to variations in curvature. In this way, we intend to exploit the benefit of
the greater resistance given by curved beams to improve the extensional strength of the designed meta-
material. The model used here in order to describe this class of fabrics employs two-dimensional second
gradient continuum theory of elastic surfaces to model three-dimensional placements and deformations of
fibered pantographic sheets: This model has been recently developed by Steigmann and dell’Isola [108].
The results which we present indicate that the same amount of the same material can be reorganized at
microlevel in order to form microstructures whose extensional resistance is nearly one order of magnitude
greater.

The paper is organized as follows:

• Section 2 describes the features of the model employed in this paper; more specifically, in Sect. 2.1,
the kinematics of the considered 2D continuum is specified, together with its material symmetry
class; in Sect. 2.2, the deformation measures are decomposed in order to take into account the
material symmetry properties of a parabolic pantographic sheet; in Sect. 2.3, a suitable deformation
energy is postulated. All equilibrium configurations will be determined by minimization methods.

• Section 3 shows the most relevant numerical simulations which we have obtained. In particular, we
show that (1) the force exerted in extensional bias test (in a suitably chosen optimal direction relative
to fiber orientation) in parabolic pantographic sheet is larger than in the case of microstructure
formed by straight lines; (2) interesting out-of-plane buckling and post-buckling phenomena may
occur beyond suitable thresholds in extension tests; (3) interesting wrinkling out-of-plane shapes are
formed in the case of imposed planar shear and compression boundary displacements. The numerical
integration scheme must be based on intensive application of Argyris planar finite element, as the
space in which the minimization problem for second gradient energies is formed by the set of functions
having integrable second-order weak derivatives. This is the reason for which isogeometric methods
(applied in very similar contexts in [21,60,62]) seem suitable to supply a very efficient numerical
tool.

• Section 4 concludes the paper by indicating the novel properties of considered parabolic panto-
graphic sheets. They include (1) higher extensional resistance in specific directions, (2) relatively
low mass/resistance ratio, (3) localized patterns of deformation energy, and (4) capability of pro-
ducing specific wrinkling out-of-plane patterns.

2. 2D pantographic sheets with initially parabolic fibers

2.1. Kinematics

We consider a plane sheet formed from two families of fibers that initially are curved and lie parallel to
the coordinate lines of a two-dimensional orthogonal coordinate system, i.e., confocal parabolas. We treat
the sheet as a 2D continuum, so that introducing the parabolic coordinates {ϕ,ψ} every line in which ϕ
or ψ are constant in the initial rectangular domain B is regarded as a fiber. Specifically, in a Cartesian
coordinate system {X1,X2}, the fibers are defined by the curves of constant ϕ

2X2 =
X2

1

ϕ2
− ϕ2 (1)
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and the curves of constant ψ

2X2 = −X2
1

ψ2
+ ψ2 (2)

When a deformation occurs, the material particle that initially is at the point X = (X1,X2) ∈ B goes
to the point in 3D space whose place is indicated by the map r(X1,X2) : B ⊂ R2 �→ R3. By introducing
the components of displacement ui along the three unit vectors of the Cartesian coordinate system {ei},
we can express the placement map as

r(Xα) = Xαeα + ui(Xα)ei (3)

with Latin indexes ranging from 1 to 3 and Greek indexes from 1 to 2. The derivatives of r are denoted
by

aα = r,α (4)

The deformation gradient F = ∇r thus can be written as

F = aα ⊗ eα (5)

Therefore, the Cauchy–Green deformation tensor is given by

C = F �F = Cαβ eα ⊗ eβ (6)

As a result, the strain tensor E, in terms of its components, becomes

Eαβ =
1
2

(Cαβ − δαβ) with Cαβ = ri,αri,β (7)

with δαβ the Kronecker delta. Here, we consider also the second gradient of the deformation, ∇F = ∇∇r,
i.e., the third-order tensor ∇F = F ,α ⊗ eα, in order to describe the fiber curvatures and twist [41,108].

2.2. Fiber decompositions

Let {L(X),M(X)} be orthogonal families of unit vectors in the plane of B defining the fiber directions
in the reference configuration. Assuming the fibers to be material curves with no relative slipping and
tied together at their points of intersection, we can represent the fibers’ directions after the deformation
with the families of unit vectors {l(X),m(X)} given by

λl = FL, μm = FM (8)

where λ and μ are the fiber stretches. As a result, we may use {l,m} spanning the deformed tangent
plane at the material point X to define the fiber shear angle γ by

sin γ = l · m (9)

For a parabolic net, from Eq. (1), we obtain

ϕ2 = 2 (‖X‖ − X2) (10)

choosing the root of Eq. (1) that is always positive, and then, we may evaluate its gradient

∇ϕ =
1
ϕ

(
X

‖X‖ − e2

)
(11)

and, therefore, the vectors L(X) and M(X) as

L(X) =
∇ϕ

‖∇ϕ‖ and M(X) = e3 × L(X) (12)

Employing the fiber decomposition proposed in [108], the gradient of deformation may be represented as

F = λl ⊗ L + μm ⊗ M (13)
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and thus, the Cauchy–Green deformation tensor is

C = λ2L ⊗ L + μ2M ⊗ M + λμ sin γ (L ⊗ M + M ⊗ L) (14)

while the second gradient of the deformation can be written as [108]

∇∇r = (gl + KLn) ⊗ L ⊗ L + (gm + KMn) ⊗ M ⊗ M + (Γ + Tn) ⊗ (L ⊗ M + M ⊗ L), (15)

with

gl = λ2ηl p + (L · ∇λ) l, gm = μ2ηm q + (M · ∇μ)m (16)

and

Γ = (L · ∇μ)m + λμφm q = (M · ∇λ) l + λμφl p, (17)

in which ηl and ηm are the geodesic curvatures of the deformed fibers, φl and φm are the so-called
Tchebychev curvatures, and

p = n × l, q = n × m and l × m = | cos γ|n (18)

define the orthogonal directions of the fibers on the deformed surface, while

KL = λ2κl, KM = μ2κm and T = λμτ, (19)

where κl and κm are the normal curvatures of the deformed fibers, and τ measures the twist of the
deformed surface. These are nonzeros if the deformation is such as to generate a curvature of the surface
in 3D space. Accordingly, they describe those parts of the fiber curvatures that can be attributed to
surface flexure, whereas the geodesic curvatures represent the components of fiber curvatures in the
tangent planes of the deformed surface.

2.3. Strain energy

In this paper, as done in [56], we postulate the first term of the elastic stored energy as follows:

W I(εL, εM , J) =
1
2
YLε2

L +
1
2
YMε2

M − GLM [ln(J) + 1 − J ] (20)

where YL, YM , and GLM are positive material constants, and suitable strain measures (see, e.g., [56,108])
are employed

εL = EαβLαLβ =
1
2

(
λ2 − 1

)

εM = EαβMαMβ =
1
2

(
μ2 − 1

)
J = ‖LαMβr,α × r,β‖ = ‖λl × μm‖

(21)

Indeed, εL and εM are measures of fiber extension along L and M directions, respectively, and J is the
area stretch. The second energy term may be assumed as follows:

W II = 1
2 (AL |gl|2 + AM |gm|2 + AΓ |Γ|2 + kLK2

L + kMK2
M + kT T 2), (22)

Therefore, a simple strain energy function incorporating the curvilinear orthotropic symmetry associated
with the initial fiber geometry is

W = W I(εL, εM , J) + W II(gl, gm,Γ,KL,KM , T ) (23)
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3. Numerical examples

In this section, we show some numerical examples employing the model sketched above and proposed
in [108], adopting a rectangular domain whose edges are in ratio 1:3 and consisting of a parabolic fiber
net; in all the cases analyzed, it is assumed that the samples have the same arrangement of the fibers
unless otherwise specified. The FE analysis is performed by using COMSOL Multiphysics, a software
flexible enough to allow us to insert any kind of nonstandard strain energies not necessarily included in
its libraries. Specifically, we utilize Eq. (23) which is characterized by a term depending on the second
gradient of displacement. For this reason, we adopt the Argyris element which is an element of class C1

and thus particularly suitable to approximate the solution of the problem under study.
In what follows, the above formulation is recast in a nondimensional form by normalizing the elastic

energy (23) with respect to a reference stiffness while the lengths are normalized with respect to the
shorter edge. Nondimensional quantities are denoted by a superimposed tilde.

The constitutive parameters assumed in the current analysis are listed below:

ỸL = 100, ỸM = 100, G̃LM = 0.2,

ÃL = k̃L = 0.01, ÃM = k̃M = 0.01, ÃΓ = k̃T = 0.1 (24)

In the first case, we examine the standard bias extension test in which one of the shorter side is fixed,
and on the other, a uniform displacement is imposed which is equal to 0.8 and orthogonal to the same
side. In particular, Fig. 1 displays the arrangement of the fibers in the reference configuration (Fig. 1a),
the equilibrium shape of the sample after the deformation and the new disposition of the net (Fig. 1b),
the measure of the shear strain γ (Fig. 1c), and the second gradient energy (Fig. 1d). The plot of γ in
Fig. 1c shows the presence of two distinct areas separated by a transition zone because of the presence of

Fig. 1. Bias extension test—case I, a reference fiber pattern, b actual fiber pattern, c fiber shear angle γ, d second gradient

energy
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Fig. 2. Bias extension test—case I: buckling shape related to the critical displacement

a second gradient energy term. This behavior is quite standard for a bias extension test of fabric sheets
(see, e.g., [56]). However, in the common bias test performed on sheets with straight fibers, three regions
characterized by a uniform fiber shear angle can be easily recognized. In our parabolic case, instead only
two areas with almost constant shear angle are detected, one with a fiber shear angle γ almost nil and
the other with an angle decrease of about 60◦. Besides, in Fig. 1d, a localization of a second gradient
energy in a narrow region along the largest parabolic fibers inscribed in the sample can be observed.

In the bias test considered, the displacement imposed on the sample under test along the direction of
X1-axis, due to the particular arrangement of the parabolic fibers, induces a compression of the straight
fibers parallel to the vector e2 and therefore a buckling phenomenon occurs in correspondence with a
critical displacement. This last mentioned has been evaluated as ũ1 = 0.8984. Figure 2 displays the
buckling mode related to this critical displacement; the colors indicate the out-of-plane component of
displacement, ũ3. To determine an equilibrium shape related to the buckling mode, we take geometrical
and mechanical imperfections into account by imposing on short sides the additional boundary condition
on the derivatives of the displacement out of plane of the pantographic sheet and, in particular, we set
ũ3,ανα = 2 × 10−4, where ν is the unit vector normal to the edge and on the plane determined by the
vectors e1 and e2.

In order to explore the features of the fiber arrangement considered, we compare two kinds of samples:
one constituted by a straight and orthogonal lattice of fibers, and the other characterized by a parabolic
net as it has been already analyzed. Specifically, we investigate the behavior of these two arrangements
in the cases of a bias extension test and a shear displacement imposed.

In the former case, we plot the equilibrium shapes for three imposed displacements along the direction
of the X1-axis, ũ1 = {0.31, 0.62, 0.85}; in Fig. 3, the colors indicate the distribution of the shear angle
γ, while in Fig. 4 they are related to the total strain energy density. We can observe that the maximum
value of the shear angle γ is almost the same for the two fiber dispositions, but the stored strain energy
is much greater in the case of parabolic fibers.

Similar considerations apply in the latter case when one short edge is fixed and a displacement is
imposed in the direction of the X2-axis on the opposite side (see Fig. 5). Finally, for a quantitative
comparison, we show the overall constraint reactions by varying the imposed displacement in the two
tests under examination (see Fig. 9), and once again, it is confirmed that the arrangement of the parabolic
net is much stiffer than the one with straight fibers.
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Fig. 3. Comparison between straight and parabolic fibers: bias extensional test with imposed displacement {0.31, 0.62,
0.85}. The colors indicate the shear angle γ (color figure online)

Afterward, the standard bias extension test is applied to a specimen with a different initial arrangement
of the fibers (see Fig. 6). The considered sheet is deformed by fixing it at one shorter edge and assigning
a uniform displacement of amplitude 1 at the opposite boundary so as to move away these two sides.
Figure 6 exhibits from left to right the fiber pattern prior to deformation, the equilibrium shape of the
sample after the deformation and the new disposition of the net, the measure of the shear strain γ, and
the second gradient energy. Similarly, to the previous case, two main zones kept separate from transition
regions can be noticed, i.e., one with a fiber shear angle γ close to zero and the other with an angle
increase of about 75◦ (see Fig. 6). This time, it is much more evident that the localization of the second
gradient energy occurs along the transition regions.
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Fig. 4. Comparison between straight and parabolic fibers: bias extensional test with imposed displacement {0.31, 0.62,
0.85}. The colors indicate the total strain energy density (color figure online)

In the next example, we impose a relative rotation and translation to the opposite shorter boundaries
in order to cause bending, stretching, and twisting in three dimensions. In more detail, we fix one edge
and assign the following displacement field on the other edge⎧⎪⎨

⎪⎩
ũ1 = 0.3
ũ2 =

(
s − 1

2

)
(cos ϑ − 1)

ũ3 =
(
s − 1

2

)
sin ϑ

(25)

where s is a parameter which varies from 0 to 1, and ϑ is a rotation angle with respect to the longitudinal
axis of rectangle, here assumed to be equal to π/3. Figure 7 shows the equilibrium shape (Fig. 7a), where
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Fig. 5. Test with shear displacement imposed: Equilibrium shapes related to straight fibers (left), parabolic fibers (right).
The colors indicate the total strain energy density (color figure online)

Fig. 6. Bias extension test—case II, in the given order: reference and actual fiber patterns; the fiber shear angle γ; second
gradient energy

colors indicate the out-of-plane component of displacement, ũ3, and the fiber pattern is highlighted;
the fiber shear angle γ (Fig. 7b); the first gradient energy (Fig. 7c); and the second gradient energy
(Fig. 7d).

Also in this case, we can observe a localization of both energies of first and second gradients near the
largest parabolic fibers.
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Fig. 7. Test with stretching (ũ1 = 0.3) and twist (ϑ = 60◦), a equilibrium shape and fiber pattern, b fiber shear angle γ, c
first gradient energy, d second gradient energy

We complete this gallery of examples with a case of buckling in which compressive and shear displace-
ments, respectively, ũ2 = −0.2 and ũ1 = 0.5, are imposed on one of the long sides; the opposite edge is
fixed, and the short sides are left free. In addition, on the moving long side, we assign the extra-constraint:
ũ3,βνβ =

(
1 × 10−4

)
s, where β = {1, 2}, s is a parameter which varies from 0 to 1, and ν is the unit

vector normal to the edge and on the plane determined by the vectors e1 and e2. Figure 8 exhibits the
fiber pattern and the equilibrium shape (Fig. 8a), where colors indicate the out-of-plane component of
displacement, ũ3; the fiber shear angle γ (Fig. 8b); the first gradient energy (Fig. 8c); and the second
gradient energy (Fig. 8c). It should be noted that at the central area of the sample, a geodesic buckling
appears in the plane of the fabric sheet.

4. Conclusions

In modern engineering, there are three features which are more and more frequently demanded to novel
materials: (1) the capability to resist in an elastic way in large deformation regimes, (2) the capability
to resist to applied load also when damage phenomena start to occur, (3) the capability of localizing
deformation energy so that the parts of the system to be checked in order to assess its integrity are
determined a priori.
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Fig. 8. Example of buckling with shear (ũ1 = 0.5) and compressive (ũ2 = −0.2) displacement imposed, a equilibrium shape
and fiber pattern, b fiber shear angle γ, c first gradient energy, d second gradient energy

In this paper, we try to prove the applicability and feasibility of the following concept: Given a mass of
an elastic material, it is possible to arrange it in order to form a network of beams connected by cylinders
(playing the role of elastic pivots) to get a fabric which is able to undergo large deformations remaining in
elastic regimes and is capable of sustaining externally applied loads even when some damage phenomenon
occurs.

The presented analysis did not consider any model for damage onset and evolution: However, we
could verify that in the most relevant deformation patterns, the conceived fabric actually shows high
concentration of deformation energy: It is therefore likely that damage onset will be localized in these
regions. Future investigations will address the relevant related modeling issues.

An aspect of the microstructure introduced here concerns the shape of the involved beams in the stress-
free reference configuration: We have assumed it is parabolic. Indeed, we assumed that a parabolic system
of coordinates in the reference configuration characterizes the material symmetries of the considered
fabric. The enhanced bending deformation of such fibers (when comparing the performances of the present
fabric with that constituted by straight lines) produces a greater stiffness in bias extension test without
changing the capability of undergoing large deformations in the elastic regime (see Fig. 9).

Indeed, to use interconnected fibers having a parabolic form in the reference configuration allows us
to exploit the benefit of the greater resistance to deformation given by pre-curved beams. The designed
metamaterial results to have an improved extensional strength.

The model used here in order to describe parabolic pantographic sheets is based on the second gra-
dient continuum theory of elastic surfaces which can undergo three-dimensional large placements and
deformations recently developed by Steigmann and dell’Isola [108].
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Fig. 9. Comparison between parabolic and straight fibers: bias extensional test (left), test with shear displacement imposed
(right)

As a by-product of performed numerical simulations, we prove that many wrinkling shapes of con-
sidered pantographic sheets are assumed in equilibrium conditions even when purely plane boundary
displacements are imposed. These buckling phenomena are expected but not yet described in the litera-
ture together with their post-buckling evolution. We intend to systematically investigate these phenomena
by means of the perturbative methods described in [83].

A more difficult problem consists in looking for optimized microstructures which are able to perform
some assigned tasks: We claim that it can be of use the introduction of generalized continuum models in
this kind of investigations.
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