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Abstract. In this paper, we show that smooth solutions to the Dirichlet problem for the parabolic equation

vt(x, t) =
N∑

i,j=1

aij(x)
∂2v(x, t)

∂xi∂xj
+

N∑

i=1

bi(x)
∂v(x, t)

∂xi
x ∈ Ω,

with v(x, t) = g(x, t), x ∈ ∂Ω, can be approximated uniformly by solutions of nonlocal problems of the form

uε
t (x, t) =

∫

Rn

Kε(x, y)(uε(y, t) − uε(x, t))dy, x ∈ Ω,

with uε(x, t) = g(x, t), x /∈ Ω, as ε → 0, for an appropriate rescaled kernel Kε. In this way, we show that the usual local
evolution problems with spatial dependence can be approximated by nonlocal ones. In the case of an equation in divergence
form, we can obtain an approximation with symmetric kernels, that is, Kε(x, y) = Kε(y, x).

Mathematics Subject Classification. 45L05 · 45A05 · 35K10.
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1. Introduction

Nonlocal diffusion problems of the form

ut(x, t) =
∫

Rn

K(x, y)(u(y, t) − u(x, t))dy (1)

and variations of it have been extensively studied in recent years (see [1,5,6] and references therein).
Here, the kernel K : RN × R

N → R is a nonnegative, smooth function such that
∫
RN K(x, y)dx = 1. A

physical interpretation of (1) is the following: If K(x, y) is the probability distribution that individuals
jump from y to x and u(x, t) is the density at position x at time t, then

∫
RN K(x, y)u(y, t)dy is the rate at

which individuals are arriving to position x from all other locations y. Further, with the same reasoning,∫
RN K(x, y)u(x, t)dy is interpreted as the rate at which they are leaving position x to all other places.

Hence, in the absence of external or internal sources, the density u(x, t) satisfies (1) (see [1,11,13,17]).
This kind of nonlocal diffusion equation is relevant in applications, for example, in the study of biological
dispersal of species, image processing, particle systems, elasticity and coagulation models, [2–4,11–13].

In this work, we consider the following nonlocal diffusion problem: Given a bounded domain Ω ⊂ R
N ,

g ∈ L1
((
R

N\Ω
)

× (0,∞)
)

and u0 ∈ L1(Ω), find u(x, t) such that
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut(x, t) =
∫

RN

K(x, y)(u(y, t) − u(x, t))dy, x ∈ Ω, t > 0,

u(x, t) = g(x, t), x /∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(PK)

where the kernel K(x, y) is a positive function with compact support contained in Ω×B(0, d) ⊂ R
N ×R

N

with
0 < sup

y∈B(0,d)

K(x, y) = R(x) ∈ L∞(Ω). (2)

As we mentioned before, the integral term in the problem takes into account the individuals arriving or
leaving position x ∈ Ω from or to other places. In this model, imposing u(x, t) = g(x, t) for x /∈ Ω, we are
prescribing the values of u outside Ω. In the particular case g = 0, we mean that individuals that leave
Ω die (and therefore the density outside Ω is zero).

Existence and uniqueness of solutions of (PK) are proved in Proposition 2.1 using a fixed point
argument (see also Appendix A, for an alternative proof). In Proposition 2.2, we obtain an appropriate
comparison principle.

As a local counterpart to our nonlocal evolution problem, we have the following second-order local
parabolic differential equation with Dirichlet boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt(x, t) =
N∑

i,j=1

aij(x)
∂2v(x, t)
∂xi∂xj

+
N∑

i

bi(x)
∂v(x, t)

∂xi
, x ∈ Ω, t > 0,

v(x, t) = g(x, t), x ∈ ∂Ω, t > 0,

v(x, 0) = u0(x), x ∈ Ω,

(Q)

where the coefficients aij(x), bi(x) are smooth in Ω and (aij(x)) is a symmetric positive definite matrix,
i.e., aij = aji and

∑
ij aij(x)ξiξj ≥ α|ξ|2 for every real vector ξ = (ξ1, . . . , ξN ) �= 0 and for some α > 0.

It is important to stress that here we will use that (Q) has smooth solutions. In fact, under regularity
assumptions on the boundary data g, the domain Ω and the initial condition u0, we have that the solutions
of (Q) are C2+α,1+α/2

(
Ω × [0, T ]

)
. For such a regularity result, we refer to [14].

Our main goal in this work is to show that the Dirichlet problem for the parabolic equation (Q) can be
approximated by nonlocal problems of the form (PK). More precisely, given J : RN → R a nonnegative,
radial and continuous function with compact support and finite second-order momentum, we consider
the rescaled kernel

Kε(x, y) =
C(x)
εN+2

a
(
x − E(x)(x − y)

)
J

(
L−1(x)

x − y

ε

)
(3)

Here a is given by a(s) =
∑

i(si + M), with M large enough to ensure a(x) ≥ β > 0. The matrix L(x) is
the Cholesky’s factor of A(x), that is, A(x) = L(x)Lt(x), the matrix E(x) is related with the coefficients
(aij(x)) and bi(x) and C(x) is a normalizing function (see Section 3 for a precise definition). Then, we
prove that uε, solutions of rescaled nonlocal problems (PKε

), approximate uniformly the solution of the
corresponding Dirichlet problem for the parabolic equation. We can now formulate our main result.

Theorem 1.1. Let v ∈ C2+α,1+α/2
(
Ω × [0, T ]

)
be the solution to (Q). Let, for a given ε > 0, uε be the

solution to (PKε
), with initial condition u0(x) and external datum g(x, t). Then, we have

‖v − uε‖L∞(Ω×[0,T ]) → 0, as ε → 0.

To deal with an equation in divergence form

vt(x, t) =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂v(x, t)
∂xj

)
,
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we can just take

bi(x) :=
N∑

j=1

∂aij(x)
∂xj

and the previous approach works. However, in this case the resulting family of nonlocal approximating
problems have nonsymmetric kernels. Note that for symmetric kernels, i.e., K(x, y) = K(y, x), one has
the desirable property of an “integration by parts formula”, that is,

∫∫
K(x, y)(u(y) − u(x))ϕ(x)dydx = −1

2

∫∫
K(x, y)(u(y) − u(x))(ϕ(y) − ϕ(x))dydx.

This is similar to the usual integration by parts formula for divergence form operators,
∫

div(A(x)∇v(x))ϕ(x)dx = −
∫

A(x)∇v(x)∇ϕ(x)dx.

To obtain a family of symmetric kernels Kε(x, y) = Kε(y, x) such that the corresponding solutions to
the nonlocal problems converge as ε → 0 to the solution to the Dirichlet problem in divergence form we
consider

Kε(x, y) =
2

C(J)εN+2
G

(
B−1(x)

x − y

ε

)
G

(
B−1(y)

x − y

ε

)
, (4)

where G2(s) = J(s) (J is a radially symmetric, compactly supported and smooth kernel) and B(x) =
(bij(x)) is a N × N matrix such that

det(B(x))B(x)Bt(x) = A(x).

Note that B(x) is invertible since A(x) is. In this way, we obtain a family of nonlocal symmetric kernels
such that the approximation result given in Theorem 1.1 holds.

For constant matrices A and bi(x) = 0 in problem (Q), the rescaled kernels (3) and (4) coincide.
We finish the introduction with a brief description of previous results. When one considers a convo-

lution kernel J (as before, radially symmetric, compactly supported and smooth) and rescale it, that is,
for

Kε(x, y) =
C

εN+2
J

(
y − x

ε

)
(5)

one finds in the limit as ε → 0 solutions to the classical heat equation, vt = Δv. This fact was proved
in [8] for Dirichlet boundary conditions and in [7] for Newmann boundary conditions. For an evolution
problem with the same kernel but with an inhomogeneous term a(y) in front in the whole R

N we refer to
[16] (see also [5]). In this case, the limit equation is given by vt = Δ(a(x)v). For approximations of models
from elasticity (peridynamics), we refer to [2]. Concerning nonlinear nonlocal problems (approximating,
e.g., the p−Laplacian or the porous medium equation), we refer to the book [1] and the survey [18]. We
remark that in the previously mentioned references the case of matrix-dependent problems (like the ones
included in this paper) was not treated (only scalar coefficients appear).

The rest of this paper is organized as follows: In Sect. 2, we prove existence and uniqueness for solutions
to problem (PK) using a fixed point theorem (Proposition 2.1). In addition, we show a comparison
principle (Proposition 2.2). In Sect. 3, using Cholesky’s decomposition of the matrix A(x) = (aij(x)),
we prove the uniform convergence of uε to v, the solution of the local parabolic equation (Theorem 1.1).
In Sect. 4, we deal with the divergence form equation proving the convergence result for a symmetric
family of kernels. Finally, the Appendix is devoted to give an alternative proof of existence of solutions
(Appendix A), and additionally, a technical computation using in the proof of Theorem 1.1 is postponed
to the second part of the Appendix (Appendix B).
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2. Existence, uniqueness and comparison principle

By a solution of problem (PK), we mean a function u ∈ C([0,∞);L1(Ω)) which satisfies

u(x, t) =

t∫

0

∫

RN

K(x, y)(u(y, s) − u(x, s))dyds + u0(x), x ∈ Ω, t ≥ 0,

here we understand that u(y, s) = g(y, s) when y ∈ R
N\Ω, s > 0. Consequently, due to the previous

integral expression, we notice that u ∈ C1([0,∞);L1(Ω)).

Proposition 2.1. If u0 ∈ L1(Ω), there exists a unique solution of problem (PK).

Proof. Fixed t0 > 0, we set the Banach space Xt0 = C
(
[0, t0];L1(Ω)

)
with norm

|||v||| = max
0≤t≤t0

‖v(·, t)‖L1(Ω).

Let T : Xt0 −→ Xt0 be the operator defined by

T (v)(x, t) =

t∫

0

∫

RN

K(x, y)(v(y, s) − v(x, s))dyds + u0(x),

with v(x, t) = g(x, t) if x /∈ Ω.
Note that in the definition of the operator T we include the fact that we are taking v(y, s) = g(y, s)

when y /∈ Ω.
In this way, using Fubini’s theorem we obtain

‖T (v)(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω)

+

t∫

0

⎛

⎝
∫

Ω

∫

RN

K(x, y)|v(y, s)|dydx +
∫

Ω

∫

RN

K(x, y)|v(x, s)|dydx

⎞

⎠ ds.

Recalling hypothesis (2), let us denote by R = ‖R(x)‖∞. We get
∫

Ω

K(x, y)|v(y, s)|dy ≤ R(x)‖v(·, s)‖L1(Ω) ≤ R‖v(·, s)‖L1(Ω),

∫

RN \Ω

K(x, y)|v(y, s)|dy =
∫

RN \Ω

K(x, y)|g(y, s)|dy

≤ R‖g(·, s)‖L1((RN \Ω)∩B(0,d))

and ∫

RN

K(x, y)|v(x, s)|dy ≤ R|B(0, d)||v(x, s)|.

Hence,

‖T (v)(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω) + C̃

t∫

0

‖v(·, s)‖L1(Ω)ds

+ C̃

t∫

0

‖g(·, s)‖L1((RN \Ω)∩B(0,d)), (6)
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where C̃ = C(|Ω|, |B(0, d)|). Since ‖v(·, s)‖L1(Ω) ≤ |||v||| it follows that

‖T (v)(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω) + tC̃|||v||| + C̃

t∫

0

‖g(·, s)‖L1((RN \Ω)∩B(0,d)),

thus operator T is well defined and

|||T (v)||| ≤ ‖u0‖L1(Ω) + t0C̃|||v||| + C̃

t0∫

0

‖g(·, s)‖L1((RN \Ω)∩B(0,d)).

Now, choosing t0 < C̃−1, and noticing that the term involving g cancels when computing T (w − z) for
every w, z ∈ Xt0 we get

|||T (w − z)||| < |||w − z|||.
Hence, T is a contraction on Xt0 which maps Xt0 into itself, and then, by the Banach contraction
principle there exists a unique u ∈ Xt0 such that T (u) = u, i.e., we get local existence and uniqueness of
problem (PK) for 0 ≤ t ≤ t0. Moreover, taking the Banach space X2t0 = C

(
[t0, 2t0];L1(Ω)

)
with norm

|||v||| = maxt0≤t≤2t0 ‖v(·, t)‖L1(Ω), T : X2t0 −→ X2t0 defined by

T (v)(x, t) =

t∫

t0

∫

RN

K(x, y)(v(y, s) − v(x, s))dyds + u(x, t0),

and arguing as above, there exists a unique solution in [t0, 2t0] and consequently in [0, 2t0]. By an iteration
argument, we obtain a unique solution u ∈ C([0,∞);L1(Ω)) of problem (PK). �

For an alternative proof, we refer the reader to Appendix A.
By a subsolution (respectively supersolution) of problem (PK), we mean a function u∈C1([0, T ];L1(Ω))

which satisfies the following inequalities
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t)
(≥)

≤
∫

RN

K(x, y)(u(y, s) − u(x, s))dy, x ∈ Ω, t > 0,

u(x, t)
(≥)

≤ g(x, t), x /∈ Ω, t > 0.

u(x, 0)
(≥)

≤ u0(x), x ∈ Ω.

Clearly, a solution is both a subsolution and a supersolution.

Proposition 2.2. Let u, v ∈ C1(Ω × [0, T ]) be a subsolution and supersolution, respectively, of problem
(PK). Then u ≤ v.

Proof. We will denote by w = v − u. Obviously w ∈ C1(Ω × [0, T ]) and it satisfies
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wt(x, t) ≥
∫

RN

K(x, y)(w(y, t) − w(x, t))dy, x ∈ Ω, t > 0,

w(x, t) ≥ 0, x /∈ Ω, t > 0.

w(x, 0) ≥ 0, x ∈ Ω.

Now, we assume that w(x, t) is not a nonnegative function, that is, there exists some point (x̃, t̃) ∈
Ω × (0, T ] such that w(x̃, t̃) < 0. Then, by the continuity of w, there exists ε > 0 such that w(x̃, t̃) + εt̃ is
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also negative. Consider the function w(x, t) + εt ∈ C(Ω × [0, T ]), and let (x0, t0) be its minimum; thus,

wt(x0, t0) + ε ≤ 0.

Conversely,

wt(x0, t0) + ε >

∫

RN

K(x0, y)(w(y, t0) − w(x0, t0))dy ≥ 0,

this leads to a contradiction and we conclude that w(x, t) is a nonnegative function. �

3. Proof of Theorem 1.1

It is well known that given A(x) = (aij(x)) a symmetric and positive definite matrix there exists a unique
lower triangular matrix L(x) = (lij(x)) with real and positive diagonal entries such that

A(x) = L(x)Lt(x), (7)

where Lt(x) denotes the transpose of L(x) which is known as the Cholesky factor and (7) is known as
the Cholesky factorization (see for instance [10]).

Let J : Rn → R be a nonnegative, radially symmetric, continuous function with
∫
Rn J(z)dz = 1 and

finite second- order momentum. Assume also that J is strictly positive in B(0, r) for some r > 0 and
vanishes in R

n\B(0, r).
Now, we introduce some notations. Given a matrix A(x) = (aij(x)) with C1(Ω̄) coefficients, we consider:

Ai(x) :=
N∑

j=1

aij(x),

W (x) :=

⎛

⎜⎜⎜⎝

b1(x) 0 . . . 0
0 b2(x) . . . 0

0 0
. . . 0

0 . . . 0 bN (x)

⎞

⎟⎟⎟⎠

We consider the rescaled kernel

Kε(x, y) =
C(x)
εN+2

a (x − E(x)(x − y)) J

(
L−1(x)

x − y

ε

)
. (8)

Here a is defined as

a(s) =
N∑

i=1

(si + M),

for some constant M > 0 large enough to ensure a(x) ≥ β > 0. The matrix L(x) is given by (7) (note
that we can take any N × N matrix (lij(x)), such that A(x) = L(x)Lt(x)), the function C(x) is given by

C(x) =
2

C(J)a(x)(detA(x))1/2

being C(J) =
∫

J(z)z2
1dz and the matrix E(x) by

E(x) =
a(x)

2
W (x)A−1(x).

We remark that for this kernel, Proposition 2.1 and Proposition 2.2 can be used, since J is smooth, a(x)
is strictly positive and the coefficients of the involved matrices are bounded. Therefore, for every ε > 0
we have existence, uniqueness and the comparison principle for the nonlocal problem.
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Lemma 3.1. Let u be a C2+α,1+α/2
(
R

N × [0, T ]
)
function and

Lε(u) :=
∫

RN

Kε(x, y)(u(y, t) − u(x, t))dy.

Then ∥∥∥∥∥∥
Lε(u) −

⎛

⎝
N∑

i,j=1

aij(x)
∂2u(x)
∂xi∂xj

+
N∑

i=1

bi(x)
∂u(x)
∂xi

⎞

⎠

∥∥∥∥∥∥
L∞(Ω×[0,T ])

≤ θ(ε),

for some function θ(ε) that goes to zero as ε → 0.

Proof. Under the change variables y = x − εL(x)z, Lε(u) becomes

C(x) (detA(x))1/2

ε2

∫

RN

a (x − εD(x)z) J(z)(u(x − εL(x)z, t) − u(x, t))dz

where D(x) = a(x)
2 W (x) (Lt(x))−1. By a simple Taylor expansion, we obtain

Lε(u) =
−C(x) (detA(x))1/2

ε

N∑

i=1

∂u

∂xi

N∑

j=1

lij(x)
∫

RN

a (x − εD(x)z) J(z)zjdz

+
1
2
C(x) (detA(x))1/2

N∑

i,j=1

∂2u

∂xi∂xj

N∑

k,m=1

lik(x)ljm(x)

×
∫

Rn

a (x − εD(x)z) J(z)zkzmdz + O(εα)

= L1
ε(u) + L2

ε(u) + O(εα).

For the first expression, L1
ε(u), having in mind the definition of the function a(s) and that J is a radial

function, more specifically, we use that
∫

J(z)zjdz = 0 and
∫

J(z)zmzjdz = 0 if m �= j, we get

lim
ε→0

L1
ε(u) = C(x) (detA(x))1/2

N∑

i=1

∂u

∂xi

N∑

j=1

lij(x)
N∑

k,m=1

dkm(x)
∫

RN

J(z)zmzjdz

= C(x) (detA(x))1/2
C(J)

N∑

i=1

∂u

∂xi

N∑

j=1

lij(x)
N∑

k=1

d t
jk(x),

here d t
jk(x) denotes the (j, k)-term of the matrix Dt(x). Finally, since

N∑

j=1

lij(x)
N∑

k=1

d t
jk(x) =

N∑

k=1

(L(x)Dt(x))ik =
a(x)

2
bi(x),

it follows that

lim
ε→0

L1
ε(u) =

N∑

i=1

∂u(x, t)
∂xi

bi(x).

On the other hand, letting ε → 0 in L2
ε(u) taking into account the choice of the matrix L(x) we have

lim
ε→0

L2
ε(u) =

N∑

i,j=1

∂2u(x, t)
∂xi∂xj

N∑

k=1

lik(x)l t
kj(x) =

N∑

i,j=1

aij(x)
∂2u(x, t)
∂xi∂xj

,

which concludes the proof. �
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Remark 3.1. We want to point out that the use of Cholesky’s decomposition is not necessary for the
proof. In fact, any matrix L(x) satisfying (7) is also allowed. The reason to choose Cholesky’s factor is
to ensure the uniqueness of the rescaled kernel Kε defined in (8).

In order to prove our main result, let ṽ be a C2+α,1+α/2
(
R

N × [0, T ]
)

extension of v, the solution of
the parabolic problem (Q). Therefore, ṽ verifies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṽt(x, t) = Λ(ṽ(x, t)), x ∈ Ω, t ∈ (0, T ],

ṽ(x, t) = G(x, t), x /∈ Ω, t ∈ (0, T ],

ṽ(x, 0) = u0(x), x ∈ Ω,

where G(x, t) = g(x, t) if x ∈ ∂Ω and

Λ(ṽ(x, t)) =
N∑

i,j=1

aij(x)
∂2ṽ(x, t)
∂xi∂xj

+
N∑

i=1

bi(x)
∂ṽ(x, t)

∂xi
.

Moreover, as G is smooth we get

G(x, t) = g(x, t) + O(ε), if dist(x, ∂Ω) ≤ aε, (9)

where a = r
√

λmin. Here λmin denotes the maxx∈Ω λmin(A(x)) > 0. For more details, we refer the reader
to Appendix B.

Proof of Theorem 1.1. Set wε := ṽ − uε which satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wt(x, t) = Λ(ṽ) − Lε(ṽ) + Lε(wε), x ∈ Ω, t ∈ (0, T ],

wε(x, t) = G(x, t) − g(x, t), x /∈ Ω, t ∈ (0, T ],

wε(x, 0) = 0, x ∈ Ω.

(10)

First, we claim that w̄(x, t) = K1θ(ε)t + K2ε is a supersolution with K1,K2 > 0 sufficiently large but
independent of ε. Indeed, taking into account Lemma 3.1 and that Lε(w̄) = 0 we have

w̄t(x, t) = K1θ(ε) ≥ Λ(ṽ) − Lε(ṽ) + Lε(w̄).

Moreover, w̄(x, 0) > 0 and by (9) we obtain that w̄(x, t) ≥ K2ε ≥ O(ε), for t ∈ (0, T ] and x /∈ Ω such
that dist(x, ∂Ω) ≤ aε, which is our claim. From the comparison result, we get

ṽ − uε ≤ w̄(x, t) = K1θ(ε)t + K2ε.

Similar arguments applied to the case w(x, t) = −w̄(x, t) leads us to assert that w(x, t) is a subsolution
of problem (10). We conclude, using again the comparison principle stated in Proposition 2.2, that

−K1θ(ε)t − K2ε ≤ ṽ − uε ≤ K1θ(ε)t + K2ε,

and hence,

‖v − uε‖L∞(Ω×[0,T ]) ≤ K1Tθ(ε) + K2ε → 0.

�

Remark 3.2. It is worth pointing out that the particular case A(x) = I and bi(x) = 0, which corresponds
to the heat equation, and the rescaled kernel (5) considered by Cortázar et al. in [8] is the same Kε

considered here.
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4. Divergence form operators

In this section, we consider the following rescaled kernel

Kε(x, y) =
2

C(J)εN+2
G

(
B−1(x)

x − y

ε

)
G

(
B−1(y)

x − y

ε

)
, (11)

where G2(s) = J(s) and B(x) = (bij(x)) is a N × N matrix such that

det(B(x))B(x)Bt(x) = A(x).

Note that the kernels given in (11) are symmetric, that is, they verify

Kε(x, y) = Kε(y, x).

For this family of symmetric kernels Proposition 2.1 and Proposition 2.2 can be used. Therefore, we
have that the approximation result stated in Theorem 1.1 holds for the divergence form equation

vt(x, t) =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂v(x, t)
∂xj

)
.

This can be proved exactly as before as soon as one has the following result.

Lemma 4.1. Let u be a C2+α
(
R

N
)
function and

Lε(u) :=
∫

RN

Kε(x, y)(u(y) − u(x))dy.

Then ∥∥∥∥∥Lε(u) −
N∑

i=1

∂

∂xi

(
aij(x)

∂u(x)
∂xj

)∥∥∥∥∥
L∞(Ω×[0,T ])

≤ θ(ε),

for some function θ(ε) that goes to zero as ε → 0.

Proof. In this proof, we will use the following notations for partial derivatives and for the coefficients of
the inverse and the adjoint of a matrix,

(f(s))′
i =

∂f(s)
∂si

, B−1(x) = (b−1
ij (x)), B∗(x) = (b∗

ij(x)).

Using the change in variable z = x−y
ε and Taylor’s expansions, we get

Lε(u)(x) = F1,ε(x) + F2,ε(x) + O(ε2+α)

with

F1,ε(x) =
−2

C(J)ε

N∑

i=1

∂u(x)
∂xi

∫

RN

G(B−1(x − εz)z)G(B−1(x)z)zi dz

and

F2,ε(x) =
1

C(J)

N∑

i,j=1

∂2u(x)
∂xi∂xj

∫

RN

G(B−1(x − εz)z)G(B−1(x)z)zizj dz.
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Let us first analyze the limit as ε → 0 of F1,ε(x). As
∫

J(B−1(x)z)zidz = 0 (this follows changing z
by −z), we can use L’Hopital’s rule to obtain

lim
ε→0

F1,ε(x) =
2

C(J)

N∑

i=1

∂u(x)
∂xi

×
∫

RN

N∑

j=1

G′
j(B

−1(x)z)
N∑

k,m=1

(b−1
jk )′

m(x)zkzmG(B−1(x)z)zi dz.

Now we observe that

G′
j(s)G(s) =

1
2
J ′

j(s),

and hence,

lim
ε→0

F1,ε(x) =
1

C(J)

N∑

i,j,k,m=1

∂u(x)
∂xi

(b−1
jk )′

m(x)
∫

RN

J ′
j(B

−1(x)z)zkzmzi dz.

Changing variables as w = B−1(x)z, we have

lim
ε→0

F1,ε(x) =
det(B(x))

C(J)

N∑

i,j,k,m,p,q,r=1

∂u(x)
∂xi

(b−1
jk )′

m(x)bip(x)bkq(x)bmr(x)

×
∫

RN

J ′
j(w)wpwqwr dw.

To continue, we have to find the value of the last integral. We have that
∫

RN

J ′
j(w)wpwqwr dw = 0,

except for the following cases:
Case 1. p = q = r = j. In this case, we have

∫

RN

J ′
j(w)(wj)3 dw = −3

∫

RN

J(w)(wj)2 dw = −3C(J).

Case 2. (p = j and q = r �= j) or (q = j and p = r �= j) or (r = j and p = q �= j). In any of these
cases, one index is equal to j and the other two indexes are the same but different from j. Hence, in this
case we get

∫

RN

J ′
j(w)wj(wq)2 dw = −

∫

RN

J(w)(wq)2 dw = −C(J).

Collecting these cases, we obtain

lim
ε→0

F1,ε(x) =
N∑

i=1

∂u(x)
∂xi

Hi(x).
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with

Hi(x) = −det(B(x))

⎧
⎨

⎩

N∑

j,k,m=1

3(b−1
jk )′

m(x)bij(x)bkj(x)bmj(x)

+
N∑

j,k,m p
=j

(b−1
jk )′

m(x)
[
bij(x)bkp(x)bmp(x)

]

+
N∑

j,k,m,p
=j

(b−1
jk )′

m(x)
[
bip(x)bkj(x)bmp(x)

]

+
N∑

j,k,m p
=j

(b−1
jk )′

m(x)
[
bip(x)bkp(x)bmj(x)

]
⎫
⎬

⎭

= −det(B(x))

⎧
⎨

⎩

N∑

j,k,m,p=1

(b−1
jk )′

m(x)
[
bij(x)bkp(x)bmp(x)

]

+
N∑

j,k,m,p=1

(b−1
jk )′

m(x)
[
bip(x)bkj(x)bmp(x)

]

+
N∑

j,k,m,p=1

(b−1
jk )′

m(x)
[
bip(x)bkp(x)bmj(x)

]
⎫
⎬

⎭ = A1 + A2 + A3.

Let us compute each one of the last three terms A1, A2 and A3. First, using that
N∑

k=1

b−1
ik (x)bkj(x) =

{
1 i = j,
0 i �= j,

we obtain
N∑

k=1

(b−1
ik )′

m(x)bkj(x) = −
N∑

k=1

b−1
ik (x)(bkj)′

m(x). (12)

Using this property, we get

A1 = −det(B(x))
N∑

j,k,m,p=1

(b−1
jk )′

m(x)
[
bij(x)bkp(x)bmp(x)

]

= det(B(x))
N∑

j,k,m,p=1

[
bij(x)b−1

jk (x)(bkp)′
m(x)bmp(x)

]

= det(B(x))
N∑

m,p=1

[
(bkp)′

m(x)bmp(x)
]
.

Now, for A2, using again (12) we have

A2 = −det(B(x))
N∑

j,k,m,p=1

(b−1
jk )′

m(x)
[
bip(x)bkj(x)bmp(x)

]

= det(B(x))
N∑

j,k,m,p=1

[
b−1
jk (x)(bkj)′

m(x)bip(x)bmp(x)
]
.



41 Page 12 of 14 A. Molino and J. D. Rossi ZAMP

As

b−1
jk (x) =

1
det(B(x))

(b∗
jk(x))t =

1
det(B(x))

b∗
kj(x)

we get

A2 =
N∑

m,p=1

bip(x)bmp(x)
N∑

k,j=1

b∗
kj(x)(bkj)′

m(x).

Now, we use the formula for the derivative of the determinant (see [9] for a simple proof),

(det(B(x)))′
m =

N∑

k,j=1

b∗
kj(x)(bkj)′

m(x),

to obtain

A2 =
N∑

m,p=1

bip(x)bmp(x)(det(B(x)))′
m.

Finally, for A3, using (12) one more time, we have

A3 = −det(B(x))
N∑

j,k,m,p=1

(b−1
jk )′

m(x)
[
bip(x)bkp(x)bmj(x)

]

= det(B(x))
N∑

j,k,m,p=1

[
bip(x)(bkp)′

m(x)bmj(x)b−1
jk (x)

]

= det(B(x))
N∑

m,p=1

[
(bmp)′

m(x)bip(x)
]
.

Hence, collecting these expressions for Ai we obtain

Hi(x) =
N∑

j=1

[
det(B(x))(B′

j(x)Bt(x))ij

+ (det(B(x)))′
j(B(x)Bt(x))ij

+ det(B(x))(B(x)(Bt)′
j(x))ij

]
=

N∑

j=1

∂aij(x)
∂xj

.

Therefore, we have obtained

lim
ε→0

F1,ε(x) =
N∑

i=1

∂u(x)
∂xi

N∑

j=1

∂aij(x)
∂xj

. (13)

Next, we deal with the limit as ε → 0 of F2,ε(x). It holds that

lim
ε→0

F2,ε(x) =
1

C(J)

N∑

i,j=1

∂2u(x)
∂xi∂xj

∫

RN

G2(B−1(x)z)zizj dz.

Changing variables as w = B−1(x)z, we get

lim
ε→0

F2,ε(x) =
det(B(x))

C(J)

N∑

i,j=1

∂2u(x)
∂xi∂xj

∫

RN

J(w)
N∑

k=1

bik(x)wk

N∑

m=1

bjm(x)wm dw.
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Now we only have to observe that
∫

RN

J(w)wkwm dw =
{

C(J) k = m,
0 k �= m,

to obtain

lim
ε→0

F2,ε(x) =
N∑

i,j=1

∂2u(x)
∂xi∂xj

det(B(x))
N∑

k=1

bik(x)bjk(x) =
N∑

i,j=1

∂2u(x)
∂xi∂xj

aij(x). (14)

Finally, from (13) and (14), we conclude that

lim
ε→0

Lε(u)(x) =
N∑

i,j=1

∂2u(x)
∂xi∂xj

aij(x) +
N∑

i=1

∂u(x)
∂xi

N∑

j=1

∂aij(x)
∂xj

=
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u(x)
∂xj

)

as we wanted to show. �
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Appendix

Appendix A

For any arbitrary T > 0 we claim that T is a contraction on C
(
[0, T ];L1(Ω)

)
with norm

|||v||| = max
0≤t≤T

e−Mt‖v(·, t)‖L1(Ω)

being M some constant greater than C̃ = C(|Ω| + |B(0, d)|). Indeed, from (6)

‖T (v)(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω) +
C̃

M

(
eMt − 1

)
|||v|||,

therefore

|||T (v)||| ≤ max
0≤t≤T

(
e−Mt‖u0‖L1(Ω) +

C̃

M

(
1 − e−Mt

)
|||v|||

)
≤ ‖u0‖L1(Ω) +

C̃

M
|||v|||,

and the claim is proved. The rest of the proof is similar in spirit to the proof of Proposition 2.1.

Appendix B

Given B(x), matrix n × n defined for each x ∈ Ω, we wish to recall that the induced matrix norm to the
euclidian matrix norm

‖B(x)‖2 = sup
y 
=0

‖B(x)y‖2

‖y‖2
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is the spectral norm, i.e., ‖B(x)‖2 =
√

λMax(Bt(x)B(x)). Thus

‖L−1(x)‖2 =
√

λMax(A−1(x)) = (λmin(A(x)))−1/2
,

and hence, L−1(x)
x − y

ε
∈ B(0, r) if y ∈ B(x, rε

‖L−1(x)‖2
) ⊂ B(x, aε).
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