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Abstract. We discuss heteroclinic bifurcation in a class of periodically excited planar piecewise smooth systems with discon-

tinuities on finitely many smooth curves intersecting at the origin. Assume that the unperturbed system has a hyperbolic

saddle in each subregion, and those saddles are connected by a heteroclinic cycle that crosses every switching curve transver-

sally exactly once. We present a method of Melnikov type to derive sufficient conditions under which the perturbed stable

and unstable manifolds intersect transversally. Such transversal intersections imply that the corresponding Poincaré map
has a transverse heteroclinic cycle. As applications, we present examples with 2 and 4 switching curves respectively. Our nu-
merical simulations suggest that such transversal intersections result in the appearance of chaotic motions in those example
systems.
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1. Introduction

An important topic in the theory of nonlinear dynamical systems is to investigate the appearance of chaos.
For many smooth systems, a typical route to chaos is via homoclinic bifurcation. The Smale–Birkhoff
Homoclinic Theorem and the Melnikov method are two powerful tools for studying the occurrence of chaos
in an autonomous system with a homoclinic orbit under periodic perturbation [4,16,22,26,27,37,42]. In
real applications, such as organized vortex structures in planar fluid flows, there are also systems with
multiple heteroclinic saddle connections. In 1988, Bertozzi [11] extended the Smale–Birkhoff Homoclinic
Theorem and the Melnikov method to the case of heteroclinic bifurcations, enabling us to study chaos
arising from such saddle connections, e.g., [3,43].

In recent years, the study of bifurcation phenomena in piecewise smooth (PWS) dynamical systems
has become a hotspot subject of research in scientific community because those systems can be used to
model many problems from mechanics, control theory and electrical engineering. It is well known that
PWS systems often undergo chaotic motions through discontinuity-induced bifurcations, such as grazing,
sliding, border collision and chattering. See, for example, [2,10,18,21,22,32,34,36,41] and the references
therein.

Earlier works on piecewise linear systems [17,39] suggest that, like for smooth systems, homoclinic
bifurcation is also an important route to chaos for PWS systems. Naturally we ask whether the Melnikov
method established for smooth systems can be extended to PWS systems. This problem has been widely
studied. Many works focused on the case when the unperturbed homoclinic or periodic orbit intersects
the discontinuity surface transversally [2,5,9,14,20,31–33,40]. The more interesting and difficult cases are
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bifurcations of sliding and grazing homoclinic orbits. In [1,6–8,22], Battelli, Fečkan, Awrejcewicz et al.
extended the Melnikov method to bifurcation of sliding homoclinic orbits of general n-dimensional PWS
systems. Furthermore, they show, for the first time, rigorously the existence of Smale horseshoe-type
chaos in these systems. Grazing homoclinic bifurcation in a nonlinear impact inverted pendulum under
external periodic excitation was studied in [19]. Calamai and Franca [13] presented the Melnikov method
to homoclinic bifurcations in discontinuous systems with the critical point lies on the discontinuity set.
Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum was considered in [23].
As pointed out by Kunze [32], to extend known bifurcation methods such as the Melnikov method for
smooth systems to PWS systems is by no means a trivial task.

Although big progress has been made in the study of homoclinic bifurcation and chaos in PWS
systems, few attentions have been paid to heteroclinic bifurcations in these systems. Bruhn and Koch [12]
investigated heteroclinic bifurcations in a simple model of rigid block motion under external perturbations.
Hogan [29] considered heteroclinic bifurcations in a piecewise linear system modeling the rocking motion
of a slender rigid block with damping. Due to the piecewise linear nature of the system, he was able to
compute the gap between the perturbed stable and unstable manifolds exactly without using perturbation
methods. A more general nonlinear model of slender rigid block was studied by Lenci and Rega [35].
Granados et al. [24] developed the Melnikov method for heteroclinic and subharmonic bifurcations in
a periodically excited piecewise Hamiltonian system defined in two zones separated by a straight line.
Then in [25], they extended the results to a non-autonomous system formed by coupling two planar PWS
systems of the form considered in [24].

In real applications, discontinuities may occur on multiple lines or even on nonlinear curves or surfaces
and the system is not necessarily piecewise Hamiltonian. Motivated by the works [12,24,29,35], in this
paper we study heteroclinic bifurcation in a class of periodically excited planar PWS systems with dis-
continuities on finitely many smooth curves intersecting at the origin. We assume that the unperturbed
system has a hyperbolic saddle in each subregion and those saddles are connected by a heteroclinic
cycle that crosses every switching curve transversally exactly once. We present a method of Melnikov
type to derive sufficient conditions under which the perturbed stable and unstable manifolds intersect
transversally. Such transversal intersections imply that the corresponding Poincaré map has a transverse
heteroclinic cycle. As applications, we present examples with 2 and 4 switching curves respectively.

It is worth mentioning that the Heteroclinic Theorem of Berttozzi requires the corresponding Poincaré
map to be differentiable [11], which in general is not satisfied by PWS systems. Thus it is not applicable
to the PWS system studied in this paper. Nevertheless, our numerical simulations on concrete examples
suggest that the transversal intersections of the perturbed stable and unstable manifolds of a heteroclinic
orbit of PWS systems may also result in the appearance of chaotic motions. Thus we think that it is very
important to investigate if Berttozzi’s theorem can be extended to PWS systems.

Our presentation is organized as follows. Basic assumptions and the main results are given in Sect. 2.
In Sect. 3 we prove the main results by deriving formulae for the computations of the first-order Melnikov
functions. In Sect. 4 we present two examples of piecewise smooth systems with two zones. A concrete
nonlinear piecewise smooth system with four zones is presented in Sect. 5.

2. Preliminaries and main results

We first introduce some notations. For any a = (a1, a2)T , b = (b1, b2)T ∈ R
2, 〈a, b〉, ‖a‖, a ∧ b and a⊥

are defined by 〈a, b〉 = aT b, ‖a‖ =
√〈a, a〉, a ∧ b = a1b2 − a2b1 and a⊥ = (−a2, a1)T respectively. For

x ∈ R
2, the gradient of a smooth scalar function f(x) is denoted by ∇f , and the divergence and the

Jacobian matrix of a smooth map X : R2 → R
2 are denoted by divX and DX, respectively. Clearly, for

any a, b, c ∈ R
2, we have

〈a, b〉c − 〈a, c〉b = det[b, c]a⊥. (2.1)
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Let K > 0 be a constant and Ω := {x ∈ R
2 : ‖x‖ < K} ⊆ R

2 be an open disk. Let m ≥ 2 be an
integer and J = {1, 2, . . . ,m}. Assume that Ω is split into m disjoint regions by m disjoint smooth curves
C1, C2, . . . , Cm, where for each k ∈ J , Ck starts at the origin and is given by the equation hk(x) = 0 for
x ∈ Ω, and C1, C2, . . . , Cm are numbered in the order of their appearance when counted counterclockwise.
The open subregion of Ω between Ck and Ck+1(modm) is denoted by Ωk and let Ω̄k be its closure. Suppose
that
(H1) For each k ∈ J , hk ∈ C2(Ω,R) with hk(0) = 0, ∇hk(x) �= (0, 0)T , |hk(x)| is strictly increasing as

‖x‖ increases for x ∈ Ω.
Now consider the following PWS system defined on Ω:

ẋ = fk(x) + εgk(x, t), x ∈ Ωk, k ∈ J , (2.2)

where |ε| ≤ ε0  1 for some ε0 > 0, fk ∈ C2(Ω̄k,R2), gk ∈ C2(Ω̄k ×R,R2) and are T -periodic in t. When
ε = 0, the unperturbed system of (2.2) has the following form:

ẋ = fk(x), x ∈ Ωk, k ∈ J . (2.3)

Let the following assumptions hold:
(H2) For each k ∈ J , the unperturbed system (2.3) has a hyperbolic saddle Pk ∈ Ωk. System (2.3)

has a heteroclinic cycle Γ which consists of 2m branches Γs
k := {γs

k(t) : t ∈ [τs
k ,+∞)} ⊂ Ω̄k,

Γu
k := {γu

k (t) : t ∈ (−∞,−τu
k ]} ⊂ Ω̄k (k ∈ J ) such that

Γ =
m⋃

k=1

(
Γu

k

⋃
{Pk}

⋃
Γs

k

)
,

where for each k ∈ J , τu,s
k > 0 are constants, γu,s

k (t) are solutions of (2.3) in Ωk, and γu
k (−τu

k ) =
γs

k+1(modm)(τ
s
k+1(modm)) := Qk+1(modm) ∈ Ck+1(modm). Furthermore,

lim
t→+∞ γs

k(t) = lim
t→−∞ γu

k (t) = Pk.

(H3) The heteroclinic cycle Γ crosses C1, C2, . . . , Cm counterclockwise and intersects Ck transversally at
exactly one point Qk ∈ Ck for each k ∈ J .

Here the assumption that Γ crosses C1, C2, . . . , Cm counterclockwise in (H3) is not essential because if
Γ crosses C1, C2, . . . , Cm clockwise, one can reverse the time to satisfy (H3). A heteroclinic cycle Γ of the
unperturbed system (2.3) with m = 4 is shown in Fig. 1. By (H3), for k ∈ J , we have

〈∇hk(Qk), fk(Qk)〉 �= 0. (2.4)

System (2.2) is equivalent to the following suspended system
{

ẋ = fk(x) + εgk(x, θ), x ∈ Ωk, k ∈ J ,

θ̇ = 1,
(2.5)

where θ = t(mod T ). Let S1 = R(mod T ) be the unit circle of period T . For θ ∈ S1, let

Σθ := {(x, t) : x ∈ R
2, t = θ} ⊂ R

2 × S1

be the global cross section at time θ for the suspended system (2.5). The time-T Poincaré return map
Πθ

ε : Σθ → Σθ is given by the flow of system (2.5). By Lemma 4.5.1 in [27], for sufficiently small |ε| and
for each k ∈ J , the map Πθ

ε has a unique hyperbolic saddle point in Σθ ∩ (Ωk × S1), which corresponds
to a unique hyperbolic periodic orbit γk,ε(t) = Pk + O(ε) of the subsystem of (2.5) in Ωk. By the
hyperbolicity, each γk,ε(t) (k ∈ J ) has a stable manifold W s

k,ε := W s(γk,ε(t)) and an unstable manifold
Wu

k,ε := Wu(γk,ε(t)).
We are interested in the question: under what conditions, Wu

k,ε and W s
k+1(modm),ε intersect transver-

sally for k ∈ J ? Clearly, if this condition is satisfied, then the Poincaré map Πθ
ε : Σθ → Σθ possesses a
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Fig. 1. A heteroclinic cycle Γ of the unperturbed system (2.3) with m = 4

transverse heteroclinic cycle. In order to overcome the discontinuities at Ck, by contrast to the classical
approach, we proceed as in [12,14,24,29] and study heteroclinic connections at the sections Ck for k ∈ J .

Let θ ∈ S1 be fixed and Wu
0,ε = Wu

m,ε. For k ∈ J , let (Au
k,ε(θ), θ) and (As

k,ε(θ), θ) be the intersections
of Wu

k−1,ε and W s
k,ε with Ck × {θ} respectively. As θ varies in S1, (Au

k,ε(θ), θ) and (As
k,ε(θ), θ) draw two

curves in the cylinder Ck × S1. The distance between these two curves are given by

Δk,ε(θ) = Au
k,ε(θ) − As

k,ε(θ), θ ∈ S1, k ∈ J . (2.6)

By definition, if all of Δ1,ε(θ), . . . ,Δm,ε(θ) have simple zeros in S1 (these simple zeros may be different),
then Wu

k,ε and W s
k+1(modm),ε intersect transversally for k ∈ J .

Usually it is impossible to find a closed form of Δk,ε(θ) for k ∈ J . It has to be approximated by
perturbation methods. By our assumptions, for k ∈ J , Wu

k,ε and W s
k,ε are C2 in ε, implying that both

Au
k,ε(θ) and As

k,ε(θ) are all C2 in ε from the way they are defined. Consequently, Δk,ε(θ) are all C2 in ε.
In fact, we have the following result:

Theorem 2.1. Suppose that the assumptions (H1–H3) hold and let the notations be given above. Let k ∈ J
be fixed. For θ ∈ S1, define

bu
k(t) = exp

⎛

⎜
⎝−

t∫

−τu
k

divfk(γu
k (s))ds

⎞

⎟
⎠ ,

bs
k(t) = exp

⎛

⎜
⎝−

t∫

τs
k

divfk(γs
k(s))ds

⎞

⎟
⎠ ,

Mu
k,1(θ) =

−τu
k∫

−∞
(fk(γu

k (s)) ∧ gk(γu
k (s), s + θ)) bu

k(s)ds,

Ms
k,1(θ) =

+∞∫

τs
k

(fk(γs
k(s)) ∧ gk(γs

k(s), s + θ)) bs
k(s)ds.
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Then for θ ∈ S1, we have

Δk,ε(θ) = ε
Mk,1(θ)

〈∇hk(Qk), fk(Qk)〉 {∇hk(Qk)}⊥ + O(ε2),

where

Mk,1(θ) =
〈∇hk(Qk), fk(Qk)〉

〈∇hk(Qk), fk−1(Qk)〉Mu
k−1,1(θ) + Ms

k,1(θ),

where we set f0(Q1) = fm(Q1) and Mu
0,1(θ) = Mu

m,1(θ).

By (2.4), for each k ∈ J , Mk,1(θ) and Δk,ε(θ) are well-defined for θ ∈ S1. We call M1,1(θ), . . . , Mm,1(θ)
the first-order Melnikov functions. We have the following result.

Theorem 2.2. Suppose that the assumptions (H1–H3) hold and let the notations be given above. If for
k ∈ J , Mk,1(θk) = 0 and M

′
k,1(θk) �= 0 for some θk ∈ S1, then for sufficiently small |ε| > 0 the manifolds

Wu
k,ε and W s

k+1(modm),ε intersect transversally. Consequently, the Poincaré map Πθ
ε : Σθ �→ Σθ possesses

a transverse heteroclinic cycle.

Remark. If each subsystem of system (2.3) is Hamiltonian, then divf1 ≡ 0, . . . ,divfm ≡ 0. Thus for
k ∈ J , Mu

k,1(θ) and Ms
k,1(θ) in Theorem 2.1 are simplified to

Mu
k,1(θ) =

−τu
k∫

−∞
fk(γu

k (s)) ∧ gk(γu
k (s), s + θ)ds,

Ms
k,1(θ) =

+∞∫

τs
k

fk(γs
k(s)) ∧ gk(γs

k(s), s + θ)ds.

Assume that each subsystem of system (2.3) is Hamiltonian. It is easy to see that when m = 2, Ω1 =
{(x1, x2)T ∈ R

2 : x1 > 0} and Ω2 = {(x1, x2)T ∈ R
2 : x1 < 0}, one recovers the results given in Theorem

4.1 for the case r = 1 of [24].

3. Computation of the Melnikov functions

To apply Theorem 2.2, it is important to compute the first-order Melnikov functions M1,1(θ), . . . , Mm,1(θ)
for θ ∈ S1. In this section we prove Theorem 2.1 by deriving the formulae for the calculations of these
functions in terms of given functions. In this section we fix k ∈ J and compute Mk,1(θ).

From the last section, it is clear that to compute Mk,1(θ), we must estimate Au
k,ε(θ) and As

k,ε(θ)
respectively. Hence we need to discuss the perturbation of the heteroclinic cycle Γ and estimate the
intersections of Wu

k−1,ε and W s
k,ε with Ck × {θ}, where we set Wu

0,ε = Wu
m,ε. During the computations,

for each j ∈ J , we need to extend the domain of the subsystem of (2.2) (resp. (2.3)) in the region Ωj to
include part of its neighboring regions Ωj−1 and Ωj+1(modm), where we set Ω0 = Ωm. Thus for technical
reasons, we extend fj and gj such that fj ∈ C2(Ω̄j−1 ∪ Ω̄j ∪ Ω̄j+1(modm),R

2), gj ∈ C2(Ω̄j−1 ∪ Ω̄j ∪
Ω̄j+1(modm) × R,R2) and are T -periodic in t. We also C2-smoothly extend Γs

j to Ω̄j−1 ∪ Ω̄j and Γu
j to

Ω̄j ∪ Ω̄j+1(modm).
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For any fixed θ ∈ S1, define

βu
k (t) = exp

⎛

⎜
⎝−

t∫

−τu
k +θ

divfk(γu
k (s − θ))ds

⎞

⎟
⎠ , t ∈ (−∞,−τu

k + θ],

βs
k(t) = exp

⎛

⎜
⎝−

t∫

τs
k+θ

divfk(γs
k(s − θ))ds

⎞

⎟
⎠ , t ∈ [τs

k + θ, +∞),

Hu
k (θ) =

−τu
k +θ∫

−∞
(fk(γu

k (s − θ)) ∧ gk(γu
k (s − θ), s)) βu

k (s)ds,

Hs
k(θ) =

∫ +∞

τs
k+θ

(fk(γs
k(s − θ)) ∧ gk(γs

k(s − θ), s)) βs
k(s)ds.

In what follows, we set Hu
0 (θ) = Hu

m(θ), γu
0 (−τu

0 ) = γu
m(−τu

m) = Q1 and γ̇u
0 (−τu

0 ) = γ̇u
m(−τu

m) = fm(Q1).
We first compute As

k,ε(θ). We have the following result:

Lemma 3.1. Let the notations be given above. Then for sufficiently small |ε|, we have

As
k,ε(θ) = Qk − ε

Hs
k(θ)

〈∇hk(γs
k(τs

k)), γ̇s
k(τs

k)〉 {∇hk(Qk)}⊥ + O(ε2).

Proof. Let Ls
k be the normal line of Γs

k at γs
k(τs

k) = Qk ∈ Ck. For any fixed θ ∈ S1, consider the trajectory
of (2.5) starting from a point Qθ

k,ε ∈ Ls
k at the time t = τs

k + θ, denoted by xs
k,ε(t; τ

s
k + θ,Qθ

k,ε) such that
(xs

k,ε(t; τ
s
k + θ,Qθ

k,ε), t + τs
k + θ) lies in the perturbed stable manifold W s

k,ε. Without loss of generality,
we assume that Qθ

k,ε ∈ Ωk. By Melnikov’s result in [37], for each θ ∈ S1 the following expansion is valid
uniformly with respect to t ∈ [τs

k + θ,+∞):

xs
k,ε(t; τ

s
k + θ,Qθ

k,ε) = γs
k(t − θ) + εxs

k,1(t; τ
s
k + θ,Qθ

k,ε) + O(ε2). (3.1)

Moreover, there is a constant G2 > 0 such that the inequality

‖xs
k,ε(t; τ

s
k + θ,Qθ

k,ε)‖ ≤ G2 (3.2)

holds for all t ∈ [τs
k + θ,+∞).

By the continuous dependency [15, p. 89], for sufficiently small |ε|, there is a unique tsk,ε(θ) ∈ R such
that the trajectory xs

k,ε(t; τ
s
k + θ,Qθ

k,ε) reaches the discontinuity set Ck at the time τs
k + θ + tsk,ε(θ), where

tsk,ε(θ) is C2 in (ε, θ) and when ε = 0, tsk,ε(θ) = 0 for all θ ∈ S1.
From (3.1) it is easy to see that xs

k,1(t; τ
s
k + θ,Qθ

k,ε) satisfies the following variational equation:

ẋs
k,1(t; τ

s
k + θ,Qθ

k,ε) = Dfk(γs
k(t − θ))xs

k,1(t; τ
s
k + θ,Qθ

k,ε) + gk(γs
k(t − θ), t). (3.3)

Let ζs
k(t − θ) (t ∈ [τs

k + θ,+∞)) be a solution of ẋ = Dfk(γs
k(t − θ))x such that det [γ̇s

k(τs
k), ζs

k(τs
k)] = 1.

As shown in [15, p. 381], we have

xs
k,1(t; τ

s
k + θ,Qθ

k,ε)

=

⎛

⎜
⎝Bs

k −
t∫

τs
k+θ

βs
k(s) (ζs

k(s − θ) ∧ gk(γs
k(s − θ), s)) ds

⎞

⎟
⎠ γ̇s

k(t − θ)

+

⎛

⎝
t∫

+∞
βs

k(s) (γ̇s
k(s − θ) ∧ gk(γs

k(s − θ), s)) ds

⎞

⎠ ζs
k(t − θ), (3.4)
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where

Bs
k =

〈γ̇s
k(τs

k), ζs
k(τs

k)〉
‖γ̇s

k(τs
k)‖2 Hs

k(θ). (3.5)

On the other hand, tsk,ε(θ) is determined by the equation

hk(xs
k,ε(τ

s
k + θ + tsk,ε(θ); τ

s
k + θ,Qθ

k,ε)) = 0.

By (3.1), we have

hk

(
γs

k(τs
k + tsk,ε(θ)) + εxs

k,1(τ
s
k + θ + tsk,ε(θ); τ

s
k + θ,Qθ

k,ε) + O(ε2)
)

= 0. (3.6)

Note that hk(γs
k(τs

k)) = 0 and by (3.4), we have

xs
k,1(τ

s
k + θ + tsk,ε(θ); τ

s
k + θ,Qθ

k,ε) = Bs
kγ̇s

k(τs
k) − Hs

k(θ)ζs
k(τs

k) + O(|ε|). (3.7)

Thus from (3.6), we have

ε

{
〈∇hk(γs

k(τs
k)), γ̇s

k(τs
k)〉 ∂tsk,ε(θ)

∂ε

∣∣
∣∣
ε=0

+ 〈∇hk(γs
k(τs

k)), γ̇s
k(τs

k)〉Bs
k

−〈∇hk(γs
k(τs

k)), ζs
k(τs

k)〉Hs
k(θ)

}
+ O(ε2) = 0. (3.8)

Since tsk,ε(θ) is C2 in (ε, θ) and when ε = 0, tsk,ε(θ) = 0 for all θ ∈ S1, by (3.5) and (3.8), we have

tsk,ε(θ) = ε

(
∂tsk,ε(θ)

∂ε

∣∣
∣∣
ε=0

)
+ O(ε2) = H̃s

k(θ)ε + O(ε2), (3.9)

where

H̃s
k(θ) = −Bs

k +
〈∇hk(γs

k(τs
k)), ζs

k(τs
k)〉

〈∇hk(γs
k(τs

k)), γ̇s
k(τs

k)〉Hs
k(θ).

Since (As
k,ε(θ), θ) is the intersection point of the perturbed stable manifold W s

k,ε with Ck × {θ}, it is
obvious that As

k,ε(θ) = xs
k,ε(τ

s
k + θ + tsk,ε(θ); τ

s
k + θ,Qθ

k,ε). Note that γs
k(τs

k) = Qk, from (3.1), (3.7) and
(3.9), we have

As
k,ε(θ) = γs

k(τs
k + tsk,ε(θ)) + εxs

k,1(τ
s
k + θ + tsk,ε(θ); τ

s
k + θ,Qθ

k,ε) + O(ε2) (3.10)

= Qk + ε
{[

H̃s
k(θ) + Bs

k

]
γ̇s

k(τs
k) − Hs

k(θ)ζs
k(τs

k)
}

+ O(ε2).

By the identity (2.1) and the fact that det [γ̇s
k(τs

k), ζs
k(τs

k)] = 1, we get
[
H̃s

k(θ) + Bs
k

]
γ̇s

k(τs
k) − Hs

k(θ)ζs
k(τs

k) (3.11)

= −
{

ζs
k(τs

k) − 〈∇hk(γs
k(τs

k)), ζs
k(τs

k)〉
〈∇hk(γs

k(τs
k)), γ̇s

k(τs
k)〉 γ̇s

k(τs
k)
}

Hs
k(θ)

= − Hs
k(θ)

〈∇hk(γs
k(τs

k)), γ̇s
k(τs

k)〉 {∇hk(Qk)}⊥
.

The proof is completed by substituting (3.11) into (3.10). �

By exactly the same method we can compute Au
k,ε(θ). The result is as following:

Lemma 3.2. Let the notations be given above. Then for sufficiently small |ε|, we have

Au
k,ε(θ) = Qk + ε

Hu
k−1(θ)

〈∇hk(γu
k−1(−τu

k−1)), γ̇
u
k−1(−τu

k−1)〉
{∇hk(Qk)}⊥ + O(ε2).

Now we are ready to prove Theorem 2.1.
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Proof of Theorem 2.1. By Lemmas 3.1 and 3.2, we have

Δk,ε(θ) = Au
k,ε(θ) − As

k,ε(θ)

= ε
Mk,1(θ)

〈∇hk(γs
k(τs

k)), γ̇s
k(τs

k)〉 {∇hk(Qk)}⊥ + O(ε2),

where

Mk,1(θ) =
〈∇hk(γs

k(τs
k)), γ̇s

k(τs
k)〉

〈∇hk(γu
k−1(−τu

k−1)), γ̇
u
k−1(−τu

k−1)〉
Hu

k−1(θ) + Hs
k(θ).

Note that γu
k−1(−τu

k−1) = γs
k(τs

k) = Qk, γ̇s
k(τs

k) = fk(Qk), γ̇u
k−1(−τu

k−1) = fk−1(Qk). By a simple change
of variables in the integrations, we can obtain the expressions for Δk,ε(θ) and Mk,1(θ) as given in Theorem
2.1. The proof is complete. �

4. Applications to systems with two zones

In this section we apply our result to two concrete piecewise smooth systems with two zones.

4.1. The linearized slender rocking block model

The slender rocking block model was first proposed by Housner [30] to analyze the effect of an earthquake
on a free-standing tall, slender structure. Its dynamics have been extensively studied, see, for example
[12,24,28–30]. In particular, by directly computing the gap between the perturbed stable and unstable
manifolds exactly, heteroclinic bifurcations of the linearized slender rocking block model with damping
was studied by Hogan [29].

To show the effectiveness of our method, we consider the linearized slender rocking block model
without damping given by

ẍ − x + sign(x) = −ε cos ωt, (4.1)
ẋ �−→ rẋ as x = 0, (4.2)

where (4.2) is the impact rule, r ∈ [0, 1] is the coefficient of restitution. Let r = 1 be fixed. Let x1 = x,
x2 = ẋ. We further reverse the time of (4.1) by t = −τ so that its flows cross the discontinuity line
counterclockwise. Then we replace τ by t, (4.1–4.2) is transformed to the following piecewise smooth
system with two zones:

(
ẋ1

ẋ2

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( −x2

−x1 + 1

)
+ ε

(
0

cos ωt

)
, if x1 > 0,

( −x2

−x1 − 1

)
+ ε

(
0

cos ωt

)
, if x1 < 0.

(4.3)

When ε = 0, the unperturbed system of (4.3) has two hyperbolic saddles P1 = (1, 0)T ∈ Ω1 and P2 =
(−1, 0)T ∈ Ω2, where Ω1 = {(x1, x2)T ∈ R

2 : x1 > 0}, Ω2 = {(x1, x2)T ∈ R
2 : x1 < 0}. Furthermore, the

unperturbed system of (4.3) has a heteroclinic cycle Γ which consists of 4 branches Γu,s
k ⊂ Ω̄k (k = 1, 2)

such that
Γ =

2⋃

k=1

(
Γu

k

⋃
{Pk}

⋃
Γs

k

)
.

Here for each k = 1, 2, Γu,s
k are given by γu,s

k (t), where γu,s
k (t) are solutions of the unperturbed system

of (4.3) in Ωk given by



ZAMP Heteroclinic bifurcation in planar piecewise smooth systems Page 9 of 17 42

Fig. 2. The heteroclinic cycle of the unperturbed system of (4.3) (i.e. ε = 0)

γu
1 (t) =

(−et+1 + 1, et+1
)
, t ∈ (−∞,−1],

γs
1(t) =

(−e−t+1 + 1,−e−t+1
)
, t ∈ [1,+∞),

γu
2 (t) =

(
et+1 − 1,−et+1

)
, t ∈ (−∞,−1],

γs
2(t) =

(
e−t+1 − 1, e−t+1

)
, t ∈ [1,+∞).

See Fig. 2 for the heteroclinic cycle Γ. Clearly assumptions (H1–H3) are all satisfied.
Let T = 2π

ω . By Theorem 2.1, we have M1,1(θ) = −M2,1(θ) for θ ∈ S1, where

M1,1(θ) =
2

1 + ω2
(cos ω − ω sin ω) cos ωθ.

It can be shown that M1,1(θ) and M2,1(θ) are equivalent to the gap function Δ(t0) given by formula (3.15)
in [29], only differ by a constant factor due to the time reversing and the time shifting of the heteroclinic
orbit. It is worth noting that the result we obtained here is only applicable to the case of r = 1. For the
more general case of r < 1, please see [24,29].

Clearly, for each ω > 0, both M1,1(θ) and M2,1(θ) have two simple zeros θ∗
1 = π

2ω and θ∗
2 = 3π

2ω in S1.
By Theorem 2.2, the corresponding Poincaré map has a transverse heteroclinic cycle for sufficiently small
|ε|. Let ε = 0.1 be fixed. In Figs. 3 and 4 we show the stroboscopic Poincaré maps of system (4.3) with
ω = 4.8 and ω = 7.8, respectively, suggesting that system (4.3) is chaotic in both cases.

4.2. A nonlinear compliant oscillator

A class of the most studied PWS systems is impact systems. See, for example, [10,32] for many interesting
examples of impact systems. Many examples for rigid impacts assume instantaneous jump in velocity.
However, as pointed out in [10, p. 26], this is unrealistic in practice as it would require an infinite force.
It is natural to replace the rigid impact by a highly stiff, elastic deformation that takes a short but finite
time which leads to models of compliant oscillators. The simplest type of compliant oscillators is bilinear
oscillators, which has been extensively studied [38]. In what follows we consider a nonlinear compliant
oscillator with positive linear stiffness and sinusoidal forcing given by
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Fig. 3. The stroboscopic Poincaré map of (4.3) with ε = 0.1 and ω = 4.8

Fig. 4. The stroboscopic Poincaré map of (4.3) with ε = 0.1 and ω = 7.8

ẍ + εδẋ + 2x − 2x3 = εγ sin ωt, x < 0, (4.4a)

ẍ + εδẋ + 8x − 32x3 = εγ sin ωt, x > 0, (4.4b)

where ε, δ ≥ 0 and γ, ω > 0. System (4.4) is a piecewise smooth Duffing equation. Let x1 = x, x2 = ẋ. We
further reverse the time of (4.4) by t = −τ so that its flows cross the discontinuity line counterclockwise.
Then we replace τ by t, (4.4) is transformed to the following piecewise smooth system with two zones:

(
ẋ1

ẋ2

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( −x2

2x1 − 2x3
1

)
+ ε

(
0

δx2 + γ sin ωt

)
, if x1 < 0,

( −x2

8x1 − 32x3
1

)
+ ε

(
0

δx2 + γ sin ωt

)
, if x1 > 0.

(4.5)

When ε = 0, the unperturbed system of (4.5) has two hyperbolic saddles P1 = (−1, 0)T ∈ Ω1 :=
{(x1, x2)T ∈ R

2 : x1 < 0} and P2 = (12 , 0)T ∈ Ω2 := {(x1, x2)T ∈ R
2 : x1 > 0}. Furthermore, the

unperturbed system of (4.5) has a heteroclinic cycle Γ which consists of 4 branches Γu,s
k ⊂ Ω̄k (k = 1, 2)

such that

Γ =
2⋃

k=1

(
Γu

k

⋃
{Pk}

⋃
Γs

k

)
.

Here for each k = 1, 2, Γu,s
k are given by γu,s

k (t), where γu,s
k (t) are solutions of the unperturbed system

of (4.5) in Ωk given by
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Fig. 5. The heteroclinic cycle of the unperturbed system of (4.5) (i.e. ε = 0)

γu
1 (t) =

(
tanh(t + 1),−sech2(t + 1)

)
, t ∈ (−∞,−1],

γs
1(t) =

(− tanh(t − 1), sech2(t − 1)
)
, t ∈ [1,+∞),

γu
2 (t) =

(
−1

2
tanh (2(t + 1)) , sech2 (2(t + 1))

)
, t ∈ (−∞,−1],

γs
2(t) =

(
1
2

tanh (2(t − 1)) ,−sech2 (2(t − 1))
)

, t ∈ [1,+∞).

The heteroclinic cycle Γ is shown in Fig. 5.
Let T = 2π

ω , Λ±
c (ω) = Ic(ω) ± 1

2Ic(ω
2 ) and Λ±

s (ω) = Is(ω) ± 1
2Is(ω

2 ), where

Ic(ω) =

+∞∫

0

sech2(t) cos ωtdt, Is(ω) =

+∞∫

0

sech2(t) sin ωtdt.

Then by Theorem 2.2, for θ ∈ S1, we have

M1,1(θ) = −δ − γ [Π1(ω) cos ωθ + Π2(ω) sin ωθ] ,
M2,1(θ) = −δ − γ [Π1(ω) cos ωθ − Π2(ω) sin ωθ] ,

where Π1(ω) = Λ−
s (ω) cos ω + Λ−

c (ω) sin ω, Π2(ω) = Λ+
c (ω) cos ω − Λ+

s (ω) sin ω. Hence when

δ < γ

√
[Π1(ω)]2 + [Π2(ω)]2, both M1,1(θ) and M2,1(θ) have two distinct simple zeros for θ ∈ S1. For

example, when ω = 4.8, γ = 3.6, δ = 0.001, M1,1(θ) has two simple zeros θ11,1 ≈ 0.6214352661 and
θ21,1 ≈ 1.275697866 in S1, M2,1(θ) has two simple zeros θ12,1 ≈ 0.03329907324 and θ22,1 ≈ 0.6875616729
in S1. When ω = 5.8, γ = 2.8, δ = 0.001, M1,1(θ) has two simple zeros θ11,1 ≈ 0.5405536845 and
θ21,1 ≈ 1.081666741 in S1, M2,1(θ) has two simple zeros θ12,1 ≈ 0.001641070902 and θ22,1 ≈ 0.5427541271 in
S1. By Theorem 2.2, the corresponding Poincaré map has a transverse heteroclinic cycle for sufficiently
small |ε|. Let ε = 0.1 be fixed. In Fig. 6 and 7 we show the stroboscopic Poincaré maps of system (4.5)
with ω = 4.8, γ = 3.6, δ = 0.001 and ω = 5.8, γ = 2.8, δ = 0.001 respectively, suggesting that system (4.5)
is chaotic in both cases.
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Fig. 6. The stroboscopic Poincaré map of (4.5) with ε = 0.1, ω = 4.8, γ = 3.6, δ = 0.001

Fig. 7. The stroboscopic Poincaré map of (4.5) with ε = 0.1, ω = 5.8, γ = 2.8, δ = 0.001

5. Application to a conewise switching system with four zones

To further show the effectiveness of our results, in this section we consider a conewise switching system
with four zones.

For each A > 0, it is easy to see that the equation

ξ

2
= A cos

(
ξ

2

)

has a unique solution ξ∗(A) ∈ [0, π]. Let τ∗(A) = 1
Aarcosh

(
2A

ξ∗(A)

)
. Assume that R2 is split into 4 disjoint

regions Ωk by straight lines Ck starting from the origin for k = 1, . . . , 4, where

C1 =
{
(x1, x2)T ∈ R

2 : x2 = x1, x1 > 0
}

,

C2 =
{
(x1, x2)T ∈ R

2 : x2 = −x1, x1 < 0
}

,

C3 =
{
(x1, x2)T ∈ R

2 : x2 = x1, x1 < 0
}

,

C4 =
{
(x1, x2)T ∈ R

2 : x2 = −x1, x1 > 0
}

.

Let A1, A2 > 0, α = ξ∗(A1), β = ξ∗(A2), x = (x1, x2)T ∈ R
2. Consider the following piecewise smooth

system with four zones:
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ẋ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(β2 − α2)x1 + 2αβ(x2 − α − β)

2αβx1 + (α2 − β2)(x2 − α − β)

)

+ ε

(
0

sin ωt

)

, if x ∈ Ω1,

⎛

⎝
−x2

A2
2 sin x1

⎞

⎠+ ε

⎛

⎝
0

sin ωt

⎞

⎠ , if x ∈ Ω2,

(
(α2 − β2)x1 + 2αβ(x2 + α + β)

2αβx1 + (β2 − α2)(x2 + α + β)

)

+ ε

⎛

⎝
0

sin ωt

⎞

⎠ , if x ∈ Ω3,

(−x2

A2
1 sin x1

)

+ ε

(
0

sin ωt

)

, if x ∈ Ω4.

(5.1)

When ε = 0, the unperturbed system of (5.1) has four hyperbolic saddles P1 = (0, α + β)T ∈ Ω1,
P2 = (−π, 0)T ∈ Ω2, P3 = (0,−α − β)T ∈ Ω3 and P4 = (π, 0)T ∈ Ω4. Furthermore, the unperturbed
system of (5.1) has a heteroclinic cycle Γ which consists of 8 branches Γu,s

k ⊂ Ω̄k (k = 1, . . . , 4) such that

Γ =
4⋃

k=1

(
Γu

k

⋃
{Pk}

⋃
Γs

k

)
.

Here for each k = 1, . . . , 4, Γu,s
k are given by γu,s

k (t), where γu,s
k (t) are solutions of the unperturbed system

of (5.1) in Ωk given by

γu
1 (t) =

(
−βe(α

2+β2)(t+1), α + β − αe(α
2+β2)(t+1)

)
, t ∈ (−∞,−1],

γs
1(t) =

(
αe−(α2+β2)(t−1), α + β − βe−(α2+β2)(t−1)

)
, t ∈ [1,+∞),

γu
2 (t) = (2 arcsin(tanh(A2t)),−2A2sech(A2t)) , t ∈ (−∞,−τ∗(A2)],

γs
2(t) = (−2 arcsin(tanh(A2t)), 2A2sech(A2t)) , t ∈ [τ∗(A2),+∞),

γu
3 (t) =

(
αe(α

2+β2)(t+1),−α − β + βe(α
2+β2)(t+1)

)
, t ∈ (−∞,−1],

γs
3(t) =

(
−βe−(α2+β2)(t−1),−α − β + αe−(α2+β2)(t−1)

)
, t ∈ [1,+∞),

γu
4 (t) = (−2 arcsin(tanh(A1t)), 2A1sech(A1t)) , t ∈ (−∞,−τ∗(A1)],

γs
4(t) = (2 arcsin (tanh(A1t)) ,−2A1sech(A1t)) , t ∈ [τ∗(A1),+∞).

Let T = 2π
ω . By Theorem 2.2, for θ ∈ S1, we obtain

M1,1(θ) = −(α2 + β2)

⎧
⎪⎨

⎪⎩

2A1(α + β)
α + A2

1 sin α

−τ∗(A1)∫

−∞
sech(A1s) sin ω(s + θ)ds

+α

+∞∫

1

e−(α2+β2)(s−1) sin ω(s + θ)ds

⎫
⎬

⎭
,

M2,1(θ) = −β(β + A2
2 sin β)

α + β

−1∫

−∞
e(α

2+β2)(s+1) sin ω(s + θ)ds

−2A2

+∞∫

τ∗(A2)

sech(A2s) sin ω(s + θ)ds,
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Fig. 8. The heteroclinic cycle of the unperturbed system of (5.1) (i.e. ε = 0) with A1 = 0.6 and A2 = 0.4

M3,1(θ) = (α2 + β2)

⎧
⎪⎨

⎪⎩

2A2(α + β)
β + A2

2 sin β

−τ∗(A2)∫

−∞
sech(A2s) sin ω(s + θ)ds

+β

+∞∫

1

e−(α2+β2)(s−1) sin ω(s + θ)ds

⎫
⎬

⎭
,

M4,1(θ) =
α(α + A2

1 sin α)
α + β

−1∫

−∞
e(α

2+β2)(s+1) sin ω(s + θ)ds

+2A1

+∞∫

τ∗(A1)

sech(A1s) sin ω(s + θ)ds.

(1) Take ω = 2.5, A1 = 0.6 and A2 = 0.4. Then we get α ≈ 1.041065278, β ≈ 0.745118992, τ∗(A1) ≈
0.909614667 and τ∗(A2) ≈ 0.953724379. The corresponding heteroclinic cycle Γ is shown in Fig. 8. By
direct computation, we find that in S1, M1,1(θ) has two simple zeros θ11 ≈ 0.08850095558 and θ21 ≈
1.345138017, M2,1(θ) has two simple zeros θ12 ≈ 1.072200042 and θ22 ≈ 2.328837103, M3,1(θ) has two
simple zeros θ13 ≈ 0.1844370194 and θ23 ≈ 1.441074081, M4,1(θ) has two simple zeros θ14 ≈ 1.168136106
and θ24 ≈ 2.424773167. By Theorem 2.2, the corresponding Poincaré map has a transverse heteroclinic
cycle for sufficiently small |ε|. Let ε = 0.1 be fixed. In Fig. 9 we show the stroboscopic Poincaré map of
system (5.1), suggesting that system (5.1) is chaotic in this case.

(2) Take ω = 4.5, A1 = 0.8 and A2 = 0.4. Then we get that α ≈ 1.282268566, β ≈ 0.7451189917,
τ∗(A1) ≈ 0.8627390845 and τ∗(A2) ≈ 0.9537243791. The corresponding heteroclinic cycle Γ is shown in
Fig. 10. We find that in S1, M1,1(θ) has two simple zeros θ11 ≈ 0.6457341386 and θ21 ≈ 1.343865839,
M2,1(θ) has two simple zeros θ12 ≈ 0.03796567756 and θ22 ≈ 0.7360973784, M3,1(θ) has two simple
zeros θ13 ≈ 0.6601660232 and θ23 ≈ 1.358297724, M4,1(θ) has two simple zeros θ14 ≈ 0.05239756225 and
θ24 ≈ 0.7505292630. By Theorem 2.2, the corresponding Poincaré map has a transverse heteroclinic cycle
for sufficiently small |ε|. Let ε = 0.1 be fixed. In Fig. 11 we show the stroboscopic Poincaré map of system
(5.1), suggesting that system (5.1) is chaotic in this case.
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Fig. 9. The stroboscopic Poincaré map of (5.1) with ε = 0.1, A1 = 0.6, A2 = 0.4 and ω = 2.5

Fig. 10. The heteroclinic cycle of the unperturbed of (5.1) (i.e. ε = 0) with A1 = 0.8 and A2 = 0.4

Fig. 11. The stroboscopic Poincaré map of (5.1) with ε = 0.1, A1 = 0.8, A2 = 0.4 and ω = 4.5
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8. Battelli, F., Fečkan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Phys.

D 241, 1962–1975 (2012)
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22. Fečkan, M.: Bifurcation and Chaos in Discontinuous and Continuous Systems. Higher Education Press, Beijing (2011)
23. Gao, J., Du, Z.: Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum. Nonlinear

Dyn. 79, 1061–1074 (2015)
24. Granados, A., Hogan, S.J., Seara, T.M.: The Melnikov method and subharmonic orbits in a piecewise-smooth sys-

tem. SIAM J. Appl. Dyn. Syst. 11, 801–830 (2012)
25. Granados, A., Hogan, S.J., Seara, T.M.: The scattering map in two coupled piecewise-smooth systems, with numerical

application to rocking blocks. Phys. D 269, 1–20 (2014)
26. Gruendler, J.: Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturba-

tions. J. Differ. Equ. 122, 1–26 (1995)
27. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector

Fields. Springer, New York (1983)
28. Hogan, S.J.: On the dynamics of rigid-block motion under harmonic forcing. Proc. R. Soc. Lond. Ser. A 425, 441–

476 (1989)
29. Hogan, S.J.: Heteroclinic bifurcations in damped rigid block motion. R. Soc. Lond. Ser. A 439, 155–162 (1992)

http://dx.doi.org/10.1155/MPE/2006/85349


ZAMP Heteroclinic bifurcation in planar piecewise smooth systems Page 17 of 17 42

30. Housner, G.W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53, 403–
417 (1963)
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