Z. Angew. Math. Phys. (2016) 67:29 C 2016 Springer International Publishing 0044-2275/16/020001-16 *published online* April 7, 2016 DOI 10.1007/s00033-016-0624-4

Zeitschrift für angewandte **Mathematik und Physik ZAMP**

The mass concentration phenomenon for *L*²**-critical constrained problems related to Kirchhoff equations**

Hongyu Ye

Abstract. In this paper, we study the concentration behavior of critical points with a minimax characterization to the following functional

$$
I(u) = \frac{a}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + \frac{b}{4} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 - \frac{N}{2N + 8} \int_{\mathbb{R}^N} |u|^{\frac{2N + 8}{N}}
$$

constrain on $S_c = \{u \in H^1(\mathbb{R}^N) | |u|_2 = c, c > 0\}$ when $c \to (c^*)^+$, where $c^* = \left(2^{-1}b|Q|_2^{\frac{8}{N}}\right)^{\frac{N}{8-2N}}$, $N = 1, 2, 3$, and Q is up

to translations, the unique positive solution of $-2\Delta Q + \left(\frac{4}{N} - 1\right)Q = |Q|\frac{8}{N}Q$ in \mathbb{R}^N .

As such constraint problem is L^2 -critical, it seems impossible to benefit from natural constraints V_c = $\left\{ u \in S_c \mid a \int_{\mathbb{R}^N} |\nabla u|^2 + b \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 = \frac{2N}{N+4} \int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}}$ \int We show that the mountain pass energy level $\gamma(c) = \inf_{u \in M_c} I(u)$

for some submanifold $M_c \subset V_c$ and then prove the strict monotonicity of $\gamma(c)$ on $(c^*, +\infty)$. We obtained that the critical point u_c behaves like

$$
u_c(x) \approx \left(\frac{a^2}{2b(c^*)^2[(\frac{c}{c^*})^{\frac{8-2N}{N}}-1]^2}\right)^{\frac{N}{8}} Q\left(\left(\frac{a}{b(c^*)^2[(\frac{c}{c^*})^{\frac{8-2N}{N}}-1]}\right)^{\frac{1}{2}}(x-y_c)\right)
$$

for some $y_c \in \mathbb{R}^N$ as c approaches c^* from above.

Mathematics Subject Classification. 35J60 · 35A15.

Keywords. L^2 -critical · Mass concentration · Normalized solutions · Mountain pass geometry · Kirchhoff equation.

1. Introduction and main result

The following nonlinear Kirchhoff equation

$$
-\left(a+b\int\limits_{\mathbb{R}^N}|\nabla u|^2\right)\Delta u-|u|^{p-2}u=\lambda u,\ x\in\mathbb{R}^N,\ \lambda\in\mathbb{R}
$$
 (1.1)

has attracted considerable attention, where $N = 1, 2, 3, a, b > 0$ are constants and $p \in (2, 2^*)$, $2^* = 6$ if $N = 3$ and $2^* = +\infty$ if $N = 1, 2$.

Partially supported by NSFC NO: 11501428, NSFC NO: 11371159.

29 Page 2 of [16](#page-15-0) **H.** Ye **H.** Ye **ZAMP**

Equation [\(1.1\)](#page-0-0) is a nonlocal one as the appearance of the term $\int_{\mathbb{R}^N} |\nabla u|^2$ implies that (1.1) is not a pointwise identity. This causes some mathematical difficulties which make the study of [\(1.1\)](#page-0-0) particularly interesting, see $[1,2,5-7,12,19,23]$ $[1,2,5-7,12,19,23]$ $[1,2,5-7,12,19,23]$ $[1,2,5-7,12,19,23]$ $[1,2,5-7,12,19,23]$ $[1,2,5-7,12,19,23]$ $[1,2,5-7,12,19,23]$ $[1,2,5-7,12,19,23]$ and the references therein. The first line to study (1.1) is to consider the case where λ is a fixed and assigned parameter, see, e.g., [\[9](#page-14-7),[11,](#page-14-8)[16](#page-14-9)[–18](#page-14-10)[,20](#page-14-11),[26,](#page-14-12)[29,](#page-14-13)[30](#page-14-14)]. In such direction, the critical point theory is used to look for nontrivial solutions; however, nothing can be given a priori on the L^2 -norm of the solutions. Recently, since the physicists are often interested in "normalized solutions," solutions with prescribed L^2 -norm are considered. To state the main results, for $a > 0$ fixed, we introduce an equivalent norm on $H^1(\mathbb{R}^N)$:

$$
||u|| = \left(\int_{\mathbb{R}^N} (a|\nabla u|^2 + u^2)\right)^{\frac{1}{2}}, \quad \forall u \in H^1(\mathbb{R}^N),
$$

which is induced by the corresponding inner product on $H^1(\mathbb{R}^N)$. Then such solutions are obtained by looking for critical points of the following $C¹$ functional

$$
I_p(u) = \frac{a}{2} \int\limits_{\mathbb{R}^N} |\nabla u|^2 + \frac{b}{4} \left(\int\limits_{\mathbb{R}^N} |\nabla u|^2 \right)^2 - \frac{1}{p} \int\limits_{\mathbb{R}^N} |u|^p
$$

constrained on the L^2 -spheres in $H^1(\mathbb{R}^N)$:

$$
S_c = \{ u \in H^1(\mathbb{R}^N) | |u|_2 = c, c > 0 \}.
$$

The parameter λ is not fixed any longer but appears as an associated Lagrange multiplier. By the L^2 -preserving scaling and the well-known Gagliardo–Nirenberg inequality with the best constant [\[27\]](#page-14-15): Let $p \in [2, \frac{2N}{N-2})$ if $N \ge 3$ and $p \ge 2$ if $N = 1, 2$, then

$$
|u|_p^p \le \frac{p}{2|Q_p|_2^{p-2}} |\nabla u|_2^{\frac{N(p-2)}{2}} |u|_2^{p - \frac{N(p-2)}{2}}, \tag{1.2}
$$

with equality only for $u = Q_p$, where Q_p is, up to translations, the unique positive least energy solution of

$$
-\frac{N(p-2)}{4}\Delta Q + \left(1 + \frac{p-2}{4}(2-N)\right)Q = |Q|^{p-2}Q, \quad x \in \mathbb{R}^N,
$$
\n(1.3)

it is showed in [\[31](#page-15-1)] that $p = \frac{2N+8}{N}$ is the L²-critical exponent for constrained minimization problems $I_{\infty} = \inf I(\omega)$ namely for all $\alpha > 0$, $I(\omega)$ is bounded from below and correive on S if $n \in (2, 2N+8)$ $I_{p,c^2} = \inf_{u \in S_c} I_p(u)$, namely, for all $c > 0$, $I_p(u)$ is bounded from below and coercive on S_c if $p \in \left(2, \frac{2N+8}{N}\right)$ \mathcal{E} and is not bounded from below on S_c if $p \in \left(\frac{2N+8}{N}, 2^*\right)$. When $p = \frac{2N+8}{N}$, there exists

$$
c^* = \left(2^{-1}b|Q_{\frac{2N+8}{N}}|^{\frac{8}{N}}\right)^{\frac{N}{8-2N}}
$$
(1.4)

such that $I_{\frac{2N+8}{N},c^2} = \begin{cases} 0, & 0 < c \leq c^* \\ -\infty, & c > c^* \end{cases}$ and $I_{\frac{2N+8}{N},c^2}$ has no minimizer for all $c > 0$.

Thus for $2 < p < \frac{2N+8}{N}$, normalized solutions are obtained by using the concentration compactness principle to prove that I_{p,c^2} is attained. For $p \geq \frac{2N+8}{N}$, the minimization problems cannot work. To obtain normalized solutions it is proved in [31, 32] that $I_n(u)$ has a critical point restricted to S, with a obtain normalized solutions, it is proved in [\[31,](#page-15-1)[32\]](#page-15-2) that $I_p(u)$ has a critical point restricted to S_c with a mountain page geometry i.e., there exists $K_a(s) > 0$ such that mountain pass geometry, i.e., there exists $K_p(c) > 0$ such that

$$
\gamma_p(c) = \inf_{h \in \Gamma_p(c)} \max_{\tau \in [0,1]} I_p(h(\tau)) > \max_{h \in \Gamma_p(c)} \{ \max \{ I_p(h(0)), I_p(h(1)) \} \} \tag{1.5}
$$

holds in the set

$$
\Gamma_p(c) = \{ h \in C([0, 1], S_c) | h(0) \in B_{K_p(c)}, I_p(h(1)) < 0 \} \tag{1.6}
$$

and $B_{K_p(c)} = \{u \in S_c | \nabla u|_2^2 \le K_p(c)\}\.$ In particular, for $p = \frac{2N+8}{N}$, we have the following existing results: results:

Lemma 1.1. ([\[31](#page-15-1)[,32\]](#page-15-2)*, Theorems* [1.2](#page-2-0) *and* [1.3\)](#page-2-1)

- (1) $I_{\frac{2N+8}{N}}(u)$ *has no critical point on the constraint* S_c *for all* $0 < c \le c^*$.
- (2) *For any* $c > c^*$ *, there exists at least one couple* $(u_c, \lambda_c) \in S_c \times \mathbb{R}_-$ *solution of the following problem:*

$$
-\left(a+b\int\limits_{\mathbb{R}^N}|\nabla u|^2\right)\Delta u-|u|^{\frac{8}{N}}u=\lambda_c u,\ x\in\mathbb{R}^N\tag{1.7}
$$

with $I_{\frac{2N+8}{N}}(u_c) = \gamma_{\frac{2N+8}{N}}(c)$. *N N*

For the L^2 -supercritical case $p > \frac{2N+8}{N}$, it is shown in [\[31\]](#page-15-1) that the following two properties are
ential to get normalized solutions at the level $\gamma_n(c)$. essential to get normalized solutions at the level $\gamma_p(c)$:

the function $c \mapsto \gamma_p(c)$ is strictly decreasing on $(0, +\infty)$ (1.8)

and

$$
\gamma_p(c) = \inf_{\{u \in S_c | G_p(u) = 0\}} I_p(u),\tag{1.9}
$$

where

$$
G_p(u) := a \int_{\mathbb{R}^N} |\nabla u|^2 + b \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 - \frac{N(p-2)}{2p} \int_{\mathbb{R}^N} |u|^p.
$$

However, for $p = \frac{2N+8}{N}$, as $\left(\int_{\mathbb{R}^N} |\nabla u|^2\right)^2$ and $\int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}}$ behave at the same way under L^2 -preserving line of u it seems impossible to show that for any $u \in S$, there exists $t = t(u) > 0$ scaling of u, it seems impossible to show that for any $u \in S_c$, there exists $t = t(u) > 0$ such that $G_{\frac{2N+8}{N}}(u^t) = 0$, where $u^t(x) = t^{\frac{N}{2}}u(tx)$. Then the property [\(1.9\)](#page-2-2) no longer holds, which results in that the strict monotonicity of the function $c \mapsto \gamma_{\frac{2N+8}{N}}(c)$ is still a question. Indeed, properties [\(1.8\)](#page-2-3) and (1.9) are also necessary in looking for normalized solutions to other problems with L^2 -supercritical nonlinearities, e.g., Schrödinger equations (see [\[10\]](#page-14-16)), Schrödinger–Poisson system (see [\[3\]](#page-14-17)).

In this paper, we try to study properties of the function $c \mapsto \gamma_{\frac{2N+8}{N}}(c)$ and try to get some similar properties to $(1.8)(1.9)$ $(1.8)(1.9)$. As far as we know, there is no paper on this aspect. For simplicity, in what follows, we use $I(u)$, Q , $\gamma(c)$, $\Gamma(c)$, $K(c)$ and $G(u)$ to denote $I_{\frac{2N+8}{N}}(u)$, $Q_{\frac{2N+8}{N}}\gamma_{\frac{2N+8}{N}}(c)$, $\Gamma_{\frac{2N+8}{N}}(c)$, $K_{\frac{2N+8}{N}}(c)$ and $G_{\frac{2N+8}{N}}(u)$ given above, respectively.

N We set

$$
E_c = \left\{ u \in S_c \mid b\left(\int_{\mathbb{R}^N} |\nabla u|^2\right)^2 < \frac{2N}{N+4} \int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}} \right\},
$$

then $E_c \neq \emptyset$ since $u_c \in E_c$. Define

$$
M_c = \{ u \in E_c | G(u) = 0 \},\
$$

then we have the following main results:

Theorem 1.2.

$$
\gamma(c) = \inf_{u \in M_c} I(u) = \inf_{u \in E_c} \max_{t > 0} I(u^t),
$$

where $u^t(x) = t^{\frac{N}{2}}u(tx)$.

Theorem 1.3. *Let*

$$
m_c = \inf_{u \in M_c} I(u),
$$

then each minimizer of m_c *is a solution of problem* [\(1.7\)](#page-2-4).

- **Proposition 1.4.** *(1)* The function $c \mapsto \gamma(c)$ is continuous on $(c^*, +\infty)$;
- *(2)* The function $c \mapsto \gamma(c)$ *is strictly decreasing on* $(c^*, +\infty)$ *;*
- *(3)* $\lim_{c \to +\infty} \gamma(c) = 0$ *and* $\lim_{c \to (c^*)^+} \gamma(c) = +\infty$.

We also concern the behavior of solutions u_c obtained in Lemma [1.1](#page-2-5) as c approaches the critical value $c[*]$ from above. Our main result is as follows:

Theorem 1.5. For any $c > c^*$, let (u_c, λ_c) be the couple of solution obtained in Lemma [1.1](#page-2-5). Then

- (1) $\begin{cases} |\nabla u_c|_2 \to 0, \\ \lambda_c \to 0, \end{cases}$ *as* $c \to +\infty$ *.*
- (2) $\begin{cases} |\nabla u_c|_2 \to +\infty, \\ \lambda_c \to -\infty, \end{cases}$ *as* $c \to (c^*)^+.$
- *(3) For any sequence* ${c_k} \subset (c^*, +\infty)$ *satisfying that* $c_k \to (c^*)^+$ *as* $k \to +\infty$ *, there exists a subsequence of* ${c_k}$ *(still denoted by* ${c_k}$ *) and a sequence* ${y_k}$ ⊂ \mathbb{R}^N *such that*

$$
\left(\frac{4b}{a^2}\right)^{\frac{N}{8}} \left(\left(\frac{c_k}{c^*}\right)^{\frac{8-2N}{N}} - 1\right)^{\frac{N}{4}} u_{c_k} \left(\sqrt[4]{\frac{4b}{a^2}} \left(\left(\frac{c_k}{c^*}\right)^{\frac{8-2N}{N}} - 1\right)^{\frac{1}{2}} x + y_k\right) \to \left(\frac{\sqrt{2}}{c^*}\right)^{\frac{N}{4}} Q\left(\frac{\sqrt{2}}{b^{\frac{1}{4}}c^*}x\right)
$$

in L^p(\mathbb{R}^N) for all $2 \le p < 2^*$.

Our mass concentration result Theorem [1.5](#page-3-0) is new, which has not appeared in other autonomous problems.

Let us underline the main idea in proving Theorems [1.2](#page-2-0)[–1.5.](#page-3-0) As mentioned above, we cannot benefit from the natural manifold $\{u \in S_c | G(u) = 0\}$ since it may occur that $I(u^t)$ is strictly increasing with respect to t on $(0, +\infty)$ for some $u \in S_c$. So we need to exclude the interference of the functions, satisfying that $b|\nabla u|_2^4 \geq \frac{2N}{N+4} \int_{\mathbb{R}^N} |u|^{2N+8 \over N}$, which is the reason why the set E_c is introduced. We can show that for any $u \in E_c$, there exists a unique $t(u) > 0$ such that

$$
u^{t(u)} \in M_c
$$
 and $\gamma(c) \le I(u^{t(u)}) = \max_{t>0} I(u^t).$ (1.10)

Then M_c can be viewed as a suitable submanifold, and hence, Theorems [1.2–](#page-2-0)[1.3](#page-2-1) and Proposition [1.4](#page-3-1) (1) and (2) can be proved. Moreover, by using [\(1.10\)](#page-3-2), we indeed show that

$$
\gamma(c) = \frac{a^2}{4b} \frac{1}{\left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} - 1},\tag{1.11}
$$

which shows Proposition [1.3](#page-1-0) (3) and Theorem [1.5](#page-3-0) (1)(2). Our method to show the accurate value of $\gamma(c)$ can be also used to the classical nonlinear Schrödinger equation case $-\Delta u - |u|^{p-2}u = \lambda u$ in \mathbb{R}^N with $\frac{2N+4}{N}$ < p < 2^* , which will be discussed in Sect. [5.](#page-12-0)

To prove Theorem [1.5](#page-3-0) (3), since $G(u_c) = 0$, we see that $\frac{\frac{2N}{N+4} \int_{\mathbb{R}^N} |u_c| \frac{2N+8}{N}}{b(\int_{\mathbb{R}^N} |\nabla u_c|^2)^2}$ $\frac{1}{k+4} \int_{\mathbb{R}^N} \frac{|u_c|}{|v_c|^2} \frac{v}{2}$ → 1 as $c \to (c^*)^+$. We succeeded in proving the theorem by choosing a suitable L^2 -preserving scaling and translation as follows:

$$
v_c(x) = \varepsilon_c^{\frac{N}{2}} u_c(\varepsilon_c x + \varepsilon_c y_c),
$$

where $\varepsilon_c = \sqrt[4]{\frac{4b}{a^2}}$ $\left(\left(\frac{c}{c^*} \right)^{\frac{8-2N}{N}} - 1 \right)^{\frac{1}{2}}$ and $\{y_c\}$ is derived from the vanishing lemma. Indeed, since $\{v_c\}$ is uniformly bounded in $H^1(\mathbb{R}^N)$, $v_c \rightharpoonup v$ in $H^1(\mathbb{R}^N)$ for some $v \neq 0$ as $c \to (c^*)^+$. Using the Euler–Lagrange equation satisfied by v_c , we can show that v is a nontrivial solution of

$$
-\Delta v + \frac{4-N}{N\sqrt{b}(c^*)^2}v = \frac{1}{2\sqrt{b}}|v|^{\frac{8}{N}}v, \quad x \in \mathbb{R}^N.
$$
 (1.12)

If v is positive, then by a rescaling argument and the uniqueness of positive solutions (up to translations) of (1.3) , the theorem is proved. Indeed, once Theorem [1.3](#page-2-1) is proved, we can show that v is positive.

We finally consider the relationship between $\gamma(c)$ and the least energy among all solutions of problem $(1.7),$ $(1.7),$ i.e.,

$$
d_c = \inf \{ F_c(u) | u \in H^1(\mathbb{R}^N) \text{ is a nontrivial solution of } (1.7) \},
$$

where $F_c: H^1(\mathbb{R}^N) \to \mathbb{R}$ is the functional corresponding to [\(1.7\)](#page-2-4) defined as

$$
F_c(u) = \frac{1}{2} \int_{\mathbb{R}^N} (a|\nabla u|^2 - \lambda_c |u|^2) + \frac{b}{4} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 - \frac{N}{2N + 8} \int_{\mathbb{R}^N} |u|^{\frac{2N + 8}{N}}.
$$

Recall that it has been proved in $[9]$ $[9]$ that problem (1.7) has at least one positive least energy solution $w \in H^1(\mathbb{R}^N)$, satisfying that $F_c(w) = d_c$.

Theorem 1.6.

$$
d_c = \frac{4}{N}\gamma(c) + \frac{4(4-N)b}{Na^2}\gamma^2(c).
$$

Moreover,

- *(1)* u_c *is a positive least energy solution of problem* [\(1.7\)](#page-2-4);
- (2) each least energy solution w of problem (1.7) is a critical point of I constrained on S_c with $I(w)$ $\gamma(c)$.

Throughout this paper, we use standard notations. For simplicity, we write $\int_{\Omega} h$ to mean the Lebesgue integral of $h(x)$ over a domain $\Omega \subset \mathbb{R}^N$. $L^p := L^p(\mathbb{R}^N)$ $(1 \leq p < +\infty)$ is the usual Lebesgue space with the standard norm $|\cdot|_p$. We use " \rightarrow " and " \rightarrow " to denote the strong and weak convergence in the related function space, respectively. C will denote a positive constant unless specified. We use " $:=$ " to denote definitions and $B_r(x) := \{y \in \mathbb{R}^N \mid |x - y| < r\}$. We denote a subsequence of a sequence $\{u_n\}$ as $\{u_n\}$ to simplify the notation unless specified.

The paper is organized as follows: In Sect. [2,](#page-4-0) we prove Theorems [1.2](#page-2-0) and [1.3.](#page-2-1) In Sect. [3,](#page-8-0) we prove Proposition [1.4](#page-3-1) and Theorem [1.5.](#page-3-0) In Sect. [4,](#page-11-0) we prove Theorem [1.6.](#page-4-1) In Sect. [5,](#page-12-0) we discuss the nonlinear Schrödinger equation case.

2. Proof of Theorems [1.2](#page-2-0) and [1.3](#page-2-1)

In what follows, for any $u \in S_c$ and $t \geq 0$, we denote for simplicity

$$
u^t(x) := t^{\frac{N}{2}}u(tx).
$$

Then $u^t \in S_c$.

Lemma 2.1. *Suppose that* $u \in H^1(\mathbb{R}^N)$ *is a weak solution of problem* [\(1.7\)](#page-2-4)*, then we have* $G(u) = 0$ *, where*

$$
G(u):=a\int\limits_{\mathbb{R}^N}|\nabla u|^2+b\left(\int\limits_{\mathbb{R}^N}|\nabla u|^2\right)^2-\frac{2N}{N+4}\int\limits_{\mathbb{R}^N}|u|^p.
$$

Proof. Since u is a weak solution of (1.7) , u satisfies the following Pohozaev identity $(e.g., [16]$ $(e.g., [16]$, Lemma [2.1\)](#page-4-2):

$$
P_c(u) := \frac{N-2}{2} \left(a + b \int_{\mathbb{R}^N} |\nabla u|^2 \right) - \frac{N}{2} \lambda_c \int_{\mathbb{R}^N} u^2 - \frac{N^2}{2N + 8} \int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}} = 0.
$$

$$
F'_c(u), u \rangle - P_c(u) = 0, \text{ i.e., } G(u) = 0.
$$

Then $\frac{N}{2} \langle F'_c \rangle$ We easily get the following lemma.

 $\overline{\mathcal{L}}$

Lemma 2.2. *Let* $(u_c, \lambda_c) \in S_c \times \mathbb{R}_+$ *be the couple of solution to* [\(1.7\)](#page-2-4) *obtained in Lemma* [1.1](#page-2-5)*. Then*

(1)
$$
G(u_c) = 0;
$$

\n(2) $\gamma(c) = I(u_c) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u_c|^2;$
\n(3) $\lambda_c = -\frac{2(4-N)}{Nc^2} [\gamma(c) + \frac{4b}{a^2} \gamma^2(c)].$
\nSet
\n
$$
E_c := \left\{ u \in S_c \middle| b \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 < \frac{2N}{N+4} \int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}} \right\},
$$
\n(2.1)

then $E_c \neq \emptyset$ since $u_c \in E_c$.

Lemma 2.3. For any $u \in E_c$, there exists a unique $\tilde{t} = t(u) > 0$ such that $G(u^{\tilde{t}}) = 0$; moreover, $I(u^{\tilde{t}}) = \max_{t>0}$ $t>0$ $I(u^t)$.

R*N*

Proof. For any $t > 0$, we consider

$$
h(t) := I(u^t) = \frac{at^2}{2} \int_{\mathbb{R}^N} |\nabla u|^2 - \frac{t^4}{4} \left[\frac{2N}{N+4} \int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}} - b \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 \right].
$$
 (2.2)

Since $u \in E_c$, we easily see that h has a unique critical point $\tilde{t} > 0$ corresponding to its maximum, i.e., $h'(\tilde{t}) = 0$ and $h(\tilde{t}) = \max$ $t>0$ $h(t)$. So

$$
at^2 \int_{\mathbb{R}^N} |\nabla u|^2 + b\tilde{t}^4 \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 = \tilde{t}^4 \frac{2N}{N+4} \int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}},
$$

$$
= 0.
$$

i.e., $G(u^{\tilde{t}})$

Define

 $M_c = \{u \in E_c | G(u) = 0\},\,$

then we see from Lemma [2.3](#page-5-0) that $M_c \neq \emptyset$. For any $u \in M_c$, we have $I(u) = I(u) - \frac{1}{4}G(u) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u|^2 > 0$ 0, hence

$$
m_c := \inf_{u \in M_c} I(u)
$$

is well defined.

Lemma 2.4. *For any* $u \in E_c$ *, we have*

$$
\gamma(c) \leq \frac{1}{4} \frac{a^2 \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2}{\frac{2N}{N+4} \int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}} - b \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2}.
$$

Proof. For any $u \in E_c$, we consider the function $h(t)$ given as in [\(2.2\)](#page-5-1). Then there exists $t_0 > 0$ large such that $h(t_0) < 0$. As $|\nabla u^t|_2 \to 0$ as $t \to 0^+$, there exists $t_1 > 0$ small such that $u^{t_1} \in B_{K(c)}$, where $B_{K(c)}$ was defined in [\(1.6\)](#page-1-1). Then $u^{(1-t)t_1+tt_0}|_{t\in[0,1]}$ is a path in $\Gamma(c)$. So by Lemma [2.3,](#page-5-0) we have

$$
\gamma(c) \leq \max_{t \in [0,1]} I(u^{(1-t)t_1 + tt_0}) \leq \max_{t > 0} I(u^t) = \frac{1}{4} \frac{a^2 (\int_{\mathbb{R}^N} |\nabla u|^2)^2}{\frac{2N}{N+4} \int_{\mathbb{R}^N} |u|^{\frac{2N+8}{N}} - b(\int_{\mathbb{R}^N} |\nabla u|^2)^2}.
$$

Corollary 2.5. *If* $u \in M_c$, *then* $\gamma(c) \leq \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u|^2$.

Recall it has been proved in Lemma [3.1](#page-8-1) and Remark 3.2 of [\[32\]](#page-15-2) that

$$
0 < K(c) < \frac{a}{b} \left(\frac{c^*}{c}\right)^{\frac{8-2N}{N}} \tag{2.3}
$$

and

$$
\sup_{u \in B_{K(c)}} I(u) < \frac{\gamma(c)}{2},\tag{2.4}
$$

where $B_{K(c)}$ was defined as in [\(1.6\)](#page-1-1).

Lemma 2.6. *For any* $u \in B_{K(c)}$, *we have* $G(u) > 0$.

Proof. For any $u \in S_c$, by (1.2) we see that

$$
G(u) - b|\nabla u|_2^4 \ge a|\nabla u|_2^2 - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} b|\nabla u|_2^4 \ge 0 \text{ if } |\nabla u|_2^2 \le \frac{a}{b} \left(\frac{c^*}{c}\right)^{\frac{8-2N}{N}},
$$

to for all $0 < |\nabla u|_2^2 < \frac{a}{t} \left(\frac{c^*}{c}\right)^{\frac{8-2N}{N}}$. Then the lemma follows from (2.3).

i.e., $G(u) > 0$ for all $0 < |\nabla u|_2^2 \leq \frac{a}{b} \left(\frac{c^*}{c} \right)$ $\bigg\{\frac{8-2N}{N}\bigg\}$. Then the lemma follows from (2.3) .

2.1. Proof of Theorem 1.2

Proof. By Lemma [2.3,](#page-5-0) we conclude that

$$
\inf_{u \in E_c} \max_{t>0} I(u^t) = \inf_{u \in M_c} I(u).
$$

For any $u \in M_c$, we have $u \in E_c$ and $G(u) = 0$. Hence $I(u) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u|^2$. So by Corollary [2.5,](#page-6-1) we see that

$$
\gamma(c) \le \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u|^2 = I(u),
$$

which implies that $\gamma(c) \leq m_c$.

On the other hand, for any $g \in \Gamma(c)$, by Lemma [2.6](#page-6-2) we see that $G(g(0)) > 0$. $I(g(1)) < 0$ implies that $G(g(1)) < 0$. Then there exists $t_0 \in (0,1)$ such that $G(g(t_0)) = 0$. Moreover, $G(g(t_0)) = 0$ implies that $g(t_0) \in E_c$, so $g(t_0) \in M_c$. Then

$$
m_c \leq I(g(t_0)) \leq \max_{t \in [0,1]} I(g(t)).
$$

By the arbitrary of g, we see that $m_c \leq \gamma(c)$. So we complete the proof.

We recall from [\[28](#page-14-18)] that for any $c > 0$, S_c is a submanifold of $H^1(\mathbb{R}^N)$ with codimension 1 and the tangent space at $u \in S_c$ is defined as $T_u = \{v \in H^1(\mathbb{R}^N) | \int_{\mathbb{R}^N} uv = 0\}$. Let $\Phi \in C^1(H^1(\mathbb{R}^N), \mathbb{R})$ and $u \in S$. The norm of the derivative of $\Phi|_{S_c}$ is defined by $u \in S_c$. The norm of the derivative of $\Phi|_{S_c}$ is defined by

$$
\|(\Phi|_{S_c})'(u)\|_{*} = \sup_{v \in T_u, ||v|| = 1} \langle \Phi'(u), v \rangle.
$$

For any $l \in \mathbb{R}$, set $\Phi^l = \{u \in S_c | \Phi(u) \leq l\}$. The following lemma is a direct sequence of Lemma 5.15 in [\[28](#page-14-18)].

Lemma 2.7. *Let* $\Phi \in C^1(H^1(\mathbb{R}^N), \mathbb{R})$ *,* $K \subset S_c$ *and* $m \in \mathbb{R}$ *. If there exist* $\varepsilon, \delta > 0$ *such that*

$$
\forall u \in \Phi^{-1}([m - 2\varepsilon, m + 2\varepsilon]) \cap K_{2\delta} \Rightarrow ||(\Phi|_{S_c})'(u)||_* \ge \frac{8\varepsilon}{\delta},
$$

then there exists $\eta \in C([0,1] \times S_c, S_c)$ *such that*

- *(i)* $\eta(t, u) = u$ *if* $t = 0$ *or* $u \notin \Phi^{-1}([m 2\varepsilon, m + 2\varepsilon]) \cap K_{2\delta}$,
- *(ii)* $\eta(1, \Phi^{m+\varepsilon} \cap K) \subset \Phi^{m-\varepsilon}$,
- *(iii)* $\Phi(\eta(\cdot, u))$ *is nonincreasing for all* $u \in S_c$ *.*

2.2. Proof of Theorem [1.3](#page-2-1)

Proof. The idea of the proof comes from that in [\[3\]](#page-14-17), but with some changes.

Suppose that $v_c \in M_c$ is a minimizer of m_c , then by the Lagrange multiplier theory, it is enough to prove that v_c is a critical point of $I(u)$ constrained on S_c . In fact, if $(I|_{S_c})'(v_c) = 0$, then there exists some μ_c such that $I'(u_c) - \mu_c v_c = 0$. Since $G(v_c) = 0$ and $I(v_c) = m_c = \gamma(c)$, by Lemmas [2.1](#page-4-2) and [2.2](#page-5-2) we see that

$$
\mu_c = -\frac{2(4-N)}{Nc^2} [\gamma(c) + \frac{4b}{a^2} \gamma^2(c)] = \lambda_c,
$$

which implies that v_c is a solution of (1.7) .

By contradiction, we just assume that $||(I|_{S_c})'(v_c)||_* \neq 0$. Then there exist $\delta, \varepsilon > 0$ such that

$$
||(I|_{S_c})'(u)||_* \ge \frac{8\varepsilon}{\delta}
$$

for all $u \in \{u \in S_c | ||u - v_c|| \leq 2\delta\} \cap I^{-1}([\gamma(c) - 2\varepsilon, \gamma(c) + 2\varepsilon]).$

We may furthermore assume that $\varepsilon < \frac{\gamma(c)}{4}$. Then by Lemma [2.7,](#page-7-0) there exists a deformation η : $S_c \times [0,1] \rightarrow S_c$ such that

- (i) $\eta(1, u) = u$ if $u \notin I^{-1}([\gamma(c) 2\varepsilon, \gamma(c) + 2\varepsilon]) \cap \{u \in S_c | ||u v_c|| \leq 2\delta\},\$
- (ii) $\eta(1, v_c) \subset I^{\gamma(c)-\varepsilon}$,
- (*iii*) $I(\eta(1, u)) \leq I(u)$ for all $u \in S_c$.

Since $v_c \in M_c$, similarly to the proof of Lemma [2.4,](#page-5-3) there exist $t_0 > 1$ large, $t_1 > 0$ small such that $g(t) := v_c^{(1-t)t_1+tt_0} |_{t \in [0,1]} \in \Gamma(c)$. By (i)(iii) we have $\eta(1,g(t))|_{t \in [0,1]} \in \Gamma(c)$. Indeed, by (iii) we have $I(\eta(1, g(1)) \leq I(g(1)) < 0$. Since (2.4) implies that $I(g(0)) < \frac{\gamma(c)}{2}$, then by (i) we see that $\eta(1, g(0)) =$ $g(0) \in B_{K(c)}$.

Then by (iii), Lemma [2.3](#page-5-0) and Theorem [1.2,](#page-2-0) we see that

$$
\gamma(c) \le \max_{t \in [0,1]} I(\eta(1,g(t)) \le \max_{t \in [0,1]} I(g(t)) \le \max_{t > 0} I(v_c^t) = I(v_c) = m_c = \gamma(c),
$$

which implies that

$$
\gamma(c) = \max_{t \in [0,1]} I(\eta(1, g(t))) = I(\eta(1, v_c)),\tag{2.5}
$$

which is a contradiction with (ii). \Box

3. Proof of Proposition [1.4](#page-3-1) and Theorem [1.5](#page-3-0)

In this section, we study the properties of the function $c \mapsto \gamma(c)$.

Lemma 3.1. *The function* $c \mapsto \gamma(c)$ *is strictly decreasing on* $(c^*, +\infty)$ *.*

Proof. For any $c_2 > c_1 > c^*$, by Lemmas [1.1](#page-2-5) and [2.2,](#page-5-2) there exist $u_{c_i} \in S_{c_i}$ such that

$$
I(u_{c_i}) = \gamma(c_i) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u_{c_i}|^2 \text{ and } G(u_{c_i}) = 0 \ (i = 1, 2).
$$
 (3.1)

Moreover, $u_{c_i} \in M_{c_i}$. Since $c_2 > c_1$, we see that $\frac{c_2}{c_1} u_{c_1} \in E_{c_2}$. Then by Lemma [2.4](#page-5-3) and [\(3.1\)](#page-8-2), we have

$$
\gamma(c_2) \leq \frac{1}{4} \frac{a^2 \left(\int_{\mathbb{R}^N} |\nabla u_{c_1}|^2\right)^2}{\frac{2N}{N+4} \left(\frac{c_2}{c_1}\right)^{\frac{8-2N}{N}} \int_{\mathbb{R}^N} |u_{c_1}|^{\frac{2N+8}{N}} - b \left(\int_{\mathbb{R}^N} |\nabla u_{c_1}|^2\right)^2} \n< \frac{1}{4} \frac{a^2 \left(\int_{\mathbb{R}^N} |\nabla u_{c_1}|^2\right)^2}{\frac{2N}{N+4} \int_{\mathbb{R}^N} |u_{c_1}|^{\frac{2N+8}{N}} - b \left(\int_{\mathbb{R}^N} |\nabla u_{c_1}|^2\right)^2} \n= \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u_{c_1}|^2 = \gamma(c_1),
$$

so the lemma is proved. \Box

Lemma 3.2. *The function* $c \mapsto \gamma(c)$ *is continuous on* $(c^*, +\infty)$ *.*

Proof. By Lemma [3.1,](#page-8-1) to prove this lemma is equivalent to show that for any $c > c^*$ and any sequence $c_n \to c^-$, we have

$$
\lim_{c_n \to c^-} \gamma(c_n) \le \gamma(c). \tag{3.2}
$$

By Lemmas [1.1](#page-2-5) and [2.2,](#page-5-2) there exists $u_c \in S_c$ such that

$$
\gamma(c) = I(u_c) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u_c|^2
$$
 and $G(u_c) = 0.$ (3.3)

Since $\frac{c_n}{c} \to 1^-$, for *n* large enough we see that

$$
b\left(\int\limits_{\mathbb{R}^N}|\nabla u_c|^2\right)^2 < \left(\frac{c_n}{c}\right)^{\frac{8-2N}{N}}\frac{2N}{N+4}\int\limits_{\mathbb{R}^N}|u_c|^{\frac{2N+8}{N}}.
$$

Set $v_n = \frac{c_n}{c} u_c$, then $v_n \in E_{c_n}$. So by Lemma [2.4,](#page-5-3) we have

$$
\gamma(c_n) \leq \frac{1}{4} \frac{a^2 \left(\int_{\mathbb{R}^N} |\nabla u_c|^2 \right)^2}{\left(\frac{c_n}{c} \right)^{\frac{8-2N}{N}} \frac{2N}{N+4} \int_{\mathbb{R}^N} |u_c|^{\frac{2N+8}{N}} - b \left(\int_{\mathbb{R}^N} |\nabla u_c|^2 \right)^2}.
$$

Then we conclude from (3.3) that (3.2) holds.

To obtain the concentration behavior of u_c as $c \to (c^*)^+$, we need the following lemmas:

Lemma 3.3. For each $c > c^*$ and let $(u_c, \lambda_c) \in S_c \times \mathbb{R}_+$ be the couple of solution obtained in Lemma [1.1](#page-2-5). *Then* ^uc *is positive.*

 \Box

Proof. By Lemma [2.2,](#page-5-2) we see that $u_c \in M_c$. Since $|\nabla |u_c||_2 \leq |\nabla u_c|_2$, we have $|u_c| \in E_c$ and $G(|u_c|) \leq 0$. By Lemma [2.3,](#page-5-0) there exists a unique $t \in (0,1]$ such that $G(|u_c|^t) = 0$, i.e., $|u_c|^t \in M_c$. Hence by Corollary 2.5, we have Corollary [2.5,](#page-6-1) we have

$$
\gamma(c) \le \frac{at^2}{4} \int_{\mathbb{R}^N} |\nabla |u_c||^2 \le \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u_c|^2 = I(u_c) = \gamma(c),
$$

which implies that $t = 1$ and

$$
|\nabla |u_c||_2 = |\nabla u_c|_2 \text{ and } I(|u_c|) = \gamma(c). \tag{3.4}
$$

Then $|u_c|$ is a minimizer of $I(u)$ on M_c . So by [\(3.4\)](#page-9-0) and Theorem [1.3,](#page-2-1) we know that $(|u_c|, \lambda_c)$ also satisfies the Eq. [\(1.7\)](#page-2-4). So we may assume that u_c does not change sign, i.e., $u_c \ge 0$. By using the strong maximum principle and standard arguments, see, e.g., [\[4](#page-14-19),[14,](#page-14-20)[22,](#page-14-21)[24](#page-14-22)[,25](#page-14-23)], we obtain that $u_c(x) > 0$ for all $x \in \mathbb{R}^N$. $x \in \mathbb{R}^N$.

Lemma 3.4. *([\[28\]](#page-14-18), Vanishing Lemma) Let* $r > 0$ *and* $2 \leq q < 2^*$ *. If* $\{u_n\}$ *is bounded in* $H^1(\mathbb{R}^N)$ *and*

$$
\sup_{y \in \mathbb{R}^N} \int_{B_r(y)} |u_n|^q \to 0, \ n \to +\infty,
$$

then $u_n \to 0$ *in* $L^s(\mathbb{R}^N)$ *for* $2 < s < 2^*$ *.*

3.1. Proof of Proposition [1.4](#page-3-1) and Theorem [1.5](#page-3-0)

Proof. The proof of Proposition [1.4](#page-3-1) (i) (ii) has been given above. We complete the rest proof in three steps.

Step 1.
$$
\begin{cases} \gamma(c) \to 0, \\ |\nabla u_c|_2 \to 0, \text{ as } c \to +\infty. \\ \lambda_c \to 0, \end{cases}
$$

By Lemma [2.2,](#page-5-2) it is enough to prove that $\gamma(c) \to 0$ as $c \to +\infty$. Recall that $\gamma(c) > 0$ for each $c > c^*$. For Q given in (1.3) , we have

$$
\int_{\mathbb{R}^N} |\nabla Q|^2 = \int_{\mathbb{R}^N} |Q|^2 = \frac{N}{N+4} \int_{\mathbb{R}^N} |Q|^{\frac{2N+8}{N}}
$$

and $\frac{c}{|Q|_2} Q \in E_c$. Then by Lemma [2.4,](#page-5-3) we see that

$$
\gamma(c) \le \frac{a^2}{4b} \frac{1}{\left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} - 1} \to 0
$$

as $c \to +\infty$. So $\gamma(c) \to 0$ as $c \to +\infty$. **Step 2.** $\sqrt{ }$ \overline{I} $\sqrt{2}$ $\gamma(c) \to +\infty,$ $|\nabla u_c|_2 \to +\infty,$ $\lambda_c \rightarrow -\infty,$ as $c \to (c^*)^+$.

For any $c > c^*$ and any $u \in M_c$, by (1.2) we see that

$$
a\int_{\mathbb{R}^N}|\nabla u|^2\leq \left[(\frac{c}{c^*})^{\frac{8-2N}{N}}-1\right]b\left(\int\limits_{\mathbb{R}^N}|\nabla u|^2\right)^2,
$$

which implies that $\int_{\mathbb{R}^N} |\nabla u|^2 \geq \frac{a}{\frac{b}{\sqrt{2}}\left(\frac{a}{\sqrt{2}}\right)}$ $b[(\frac{c}{c^*})^{\frac{8-2N}{N}}-1]$. Hence

$$
I(u) = I(u) - \frac{1}{4}G(u) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u|^2 \ge \frac{a^2}{4b} \frac{1}{(\frac{c}{c^*})^{\frac{8-2N}{N}} - 1}.
$$

By the arbitrary of $u \in M_c$ and Theorem [1.2,](#page-2-0) we see that $\lim_{c \to (c^*)^+} \gamma(c) = +\infty$. Since $u_c \in M_c$, lim $\lim_{c \to (c^*)^+} |\nabla u_c|_2 = +\infty$. By Lemma [2.2](#page-5-2) again, we see that $\lambda_c \to -\infty$ as $c \to (c^*)^+$.

Step 3. The concentration of $\{u_c\}$ as $c \to (c^*)^+$.

For any sequence ${c_k} \subset (c^*, +\infty)$ with $c_k \to (c^*)^+$ as $k \to +\infty$, by Lemmas [1.1](#page-2-5) and [2.2,](#page-5-2) there exists a sequence ${u_{c_k}} \subset S_{c_k}$ such that $\gamma(c_k) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u_{c_k}|^2$ and

$$
G(u_{c_k}) = 0,\t\t(3.5)
$$

By Step 1 and Step 2, we see that

$$
\frac{a}{4} \int\limits_{\mathbb{R}^N} |\nabla u_{c_k}|^2 = \gamma(c_k) = \frac{a^2}{4b} \frac{1}{\left(\frac{c_k}{c^*}\right)^{\frac{8-2N}{N}} - 1} \to +\infty \text{ as } k \to +\infty.
$$

Then [\(3.5\)](#page-10-0) implies that

$$
\lim_{k \to +\infty} \frac{\frac{N}{2N+8} \int \mathbb{R}^N |u_{c_k}|^{\frac{2N+8}{N}}}{\frac{b}{4} \left(\int_{\mathbb{R}^N} |\nabla u_{c_k}|^2 \right)^2} = 1.
$$

Let

$$
\varepsilon_{c_k} := \sqrt[4]{\frac{4b}{a^2}} \left(\left(\frac{c_k}{c^*} \right)^{\frac{8-2N}{N}} - 1 \right)^{\frac{1}{2}} \to 0
$$

as $k \to +\infty$. Set $\tilde{v}_{c_k}(x) := \varepsilon_{c_k}^{\frac{N}{2}} u_{c_k}(\varepsilon_{c_k} x)$, then $\tilde{v}_{c_k} \in S_{c_k}$ and

$$
\int_{\mathbb{R}^N} |\nabla \tilde{v}_{c_k}|^2 = \frac{2}{\sqrt{b}} \text{ and } \frac{N}{2N + 8} \int_{\mathbb{R}^N} |\tilde{v}_{c_k}|^{\frac{2N + 8}{N}} \to 1 \text{ as } k \to +\infty.
$$
 (3.6)

So $\{\tilde{v}_{c_k}\}\$ is uniformly bounded in $H^1(\mathbb{R}^N)$.

Let $\delta = \lim_{k \to +\infty} \sup_{y \in \mathbb{R}^N}$ $\int_{B_1(y)} |\tilde{v}_{c_k}|^2$. If $\delta = 0$, then the Vanishing Lemma [3.4,](#page-9-1) $\tilde{v}_{c_k} \to 0$ in $L^{\frac{2N+8}{N}}(\mathbb{R}^N)$, which is a contradiction with [\(3.6\)](#page-10-1). So $\delta > 0$. Then there exists a sequence $\{y_{c_k}\}\subset \mathbb{R}^N$ such that $\int_{B_1(y_{c_k})} |\tilde{v}_{c_k}|^2 \ge \frac{\delta}{2} > 0.$ Set

$$
v_{c_k}(x) = \tilde{v}_{c_k}(x + y_{c_k}) = \varepsilon_{c_k}^{\frac{N}{2}} u_{c_k}(\varepsilon_{c_k} x + \varepsilon_{c_k} y_{c_k}),
$$

then $||v_{c_k}|| = ||\tilde{v}_{c_k}||$ and

$$
\int\limits_{B_1(0)} |v_{c_k}|^2 \ge \frac{\delta}{2}.
$$

So there exists $v \in H^1(\mathbb{R}^N) \setminus \{0\}$ such that

$$
v_{c_k} \rightharpoonup v \text{ in } H^1(\mathbb{R}^N) \text{ and } v_{c_k}(x) \rightharpoonup v(x) \text{ a.e. in } \mathbb{R}^N. \tag{3.7}
$$

Since u_{c_k} satisfies the following equation:

$$
-\left(a+b\int_{\mathbb{R}^N}|\nabla u_{c_k}|^2\right)\Delta u_{c_k}-\lambda_{c_k}u_{c_k}=|u_{c_k}|^{\frac{8}{N}}u_{c_k},\ x\in\mathbb{R}^N,
$$

where by Lemma [2.2](#page-5-2) $\lambda_{c_k} = -\frac{4-N}{2Nc_k^2} [a \int_{\mathbb{R}^N} |\nabla u_{c_k}|^2 + b (\int_{\mathbb{R}^N} |\nabla u_{c_k}|^2)^2], v_{c_k}$ is a solution of the equation:

$$
-a\varepsilon_{c_k}^2 \Delta v_{c_k} - 2\sqrt{b}\Delta v_{c_k} - \lambda_{c_k}\varepsilon_{c_k}^4 v_{c_k} = |v_{c_k}|^{\frac{8}{N}} v_{c_k}, \ x \in \mathbb{R}^N. \tag{3.8}
$$

By the definition of ε_{c_k} , we conclude that $\lim_{k \to +\infty} \lambda_{c_k} \varepsilon_{c_k}^4 = -\frac{2(4-N)}{N(c^*)^2}$. Let $k \to +\infty$ in [\(3.8\)](#page-11-1), then v is a set of the nontrivial solution of

$$
-\Delta v + \frac{4-N}{N\sqrt{b}(c^*)^2}v = \frac{1}{2\sqrt{b}}|v|^{\frac{8}{N}}v, \ x \in \mathbb{R}^N.
$$
 (3.9)

By Lemma [3.3,](#page-8-5) we have u_{c_k} is positive, and then, by [\(3.7\)](#page-10-2) we see that $v(x) \ge 0$ for all $x \in \mathbb{R}^N$. Then by the maximum principle, v is a positive solution of (3.9) . So by a rescaling together with the uniqueness of positive solutions of (1.3) (up to translations), we conclude that

$$
v(x) = \left(\frac{\sqrt{2}}{c^*}\right)^{\frac{N}{4}} Q\left(\frac{\sqrt{2}}{b^{\frac{1}{4}}c^*}x\right).
$$

Then by the definition of c^* , we have $|v|_2 = (c^*)^{\frac{N}{4}} \left(\frac{b}{2}\right)^{\frac{N}{8}} |Q|_2 = c^*$. So $v_{c_k} \to v$ in $L^2(\mathbb{R}^N)$. Hence by the Gagliardo–Nirenberg inequality [\(1.2\)](#page-1-2) we see that

$$
\varepsilon_{c_k}^{\frac{N}{2}} u_{c_k}(\varepsilon_{c_k} x + \varepsilon_{c_k} y_{c_k}) \to \left(\frac{\sqrt{2}}{c^*}\right)^{\frac{N}{4}} Q\left(\frac{\sqrt{2}}{b^{\frac{1}{4}}c^*} x\right)
$$

in $L^p(\mathbb{R}^N)$ for all $2 \le p < 2^*$.

4. Proof of Theorem [1.6](#page-4-1)

Proof. Suppose that w is a least energy solution of problem [\(1.7\)](#page-2-4), by Lemma [2.1](#page-4-2) we have $G(w)=0$. Hence

$$
-\lambda_c \int_{\mathbb{R}^N} |w|^2 = \frac{4-N}{2N} \left[a \int_{\mathbb{R}^N} |\nabla w|^2 + b \left(\int_{\mathbb{R}^N} |\nabla w|^2 \right)^2 \right]. \tag{4.1}
$$

So

$$
d_c = F_c(w) = \frac{a}{N} \int_{\mathbb{R}^N} |\nabla w|^2 + \frac{(4 - N)b}{4N} \left(\int_{\mathbb{R}^N} |\nabla w|^2 \right)^2.
$$
 (4.2)

For the couple $(u_c, \lambda_c) \in S_c \times \mathbb{R}_-$ solution of [\(1.7\)](#page-2-4) obtained in Lemma [1.1,](#page-2-5) then $F'_c(u_c) = 0$. Hence by Lemma $2.2 \ (2)(3)$ $2.2 \ (2)(3)$, we see that

$$
d_c \le F_c(u_c) = I(u_c) - \frac{\lambda_c c^2}{2} = \frac{4}{N}\gamma(c) + \frac{4(4-N)b}{Na^2}\gamma^2(c). \tag{4.3}
$$

Moreover, by Lemma [2.2](#page-5-2) (2) again, we have

$$
d_c \leq \frac{a}{N} \int\limits_{\mathbb{R}^N} |\nabla u_c|^2 + \frac{(4-N)b}{4N} \left(\int\limits_{\mathbb{R}^N} |\nabla u_c|^2 \right)^2,
$$

which and [\(4.2\)](#page-11-3) imply that

$$
\int_{\mathbb{R}^N} |\nabla w|^2 \le \int_{\mathbb{R}^N} |\nabla u_c|^2,
$$
\n(4.4)

where we have used the fact that the function $h(t) = \frac{\alpha}{N}t + \frac{(4-N)b}{4N}t^2$ is increasing on $[0, +\infty)$. Then by (4.1) and Lemma 2.2 (3), we conclude that $|w|_2 \leq c$. Furthermore, we conclude from Lemma 1.1 (1) that [\(4.1\)](#page-11-4) and Lemma [2.2](#page-5-2) (3), we conclude that $|w|_2 \leq c$. Furthermore, we conclude from Lemma [1.1](#page-2-5) (1) that it has to be $|w|_2 > c^*$. So $w \in M_{|w|_2}$. Therefore, it follows from Theorem [1.2](#page-2-0) that

$$
\gamma(|w|_2) \le I(w) = I(w) - \frac{1}{4}G(w) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla w|^2.
$$

By (4.4) , we have

$$
\gamma(|w|_2) - \frac{\lambda_c c^2}{2} \le \frac{a}{4} \int_{\mathbb{R}^N} |\nabla w|^2 - \frac{\lambda_c c^2}{2}
$$

$$
\le \frac{a}{4} \int_{\mathbb{R}^N} |\nabla u_c|^2 - \frac{\lambda_c c^2}{2} = \gamma(c) - \frac{\lambda_c c^2}{2}, \tag{4.5}
$$

i.e., $\gamma(|w|_2) \leq \gamma(c)$, which implies that $|w|_2 \geq c$. So $w \in S_c$. By [\(4.5\)](#page-12-1) and [\(4.2\)](#page-11-3), we see that

$$
\gamma(c) - \frac{\lambda_c c^2}{2} \le \frac{a}{4} \int\limits_{\mathbb{R}^N} |\nabla w|^2 - \frac{\lambda_c}{2} \int\limits_{\mathbb{R}^N} |w|^2 = F_c(w) = d_c,
$$

which and (4.3) imply

$$
d_c = \frac{4}{N}\gamma(c) + \frac{4(4-N)b}{Na^2}\gamma^2(c) = F_c(u_c)
$$

and $I(w) = \gamma(c)$. Therefore, the proof is completed.

5. Comparison with the nonlinear Schrödinger case

In [\[10\]](#page-14-16), it is proved that when $\frac{2N+4}{N} < p < \frac{2N}{N-2}$ if $N \geq 3$ and $\frac{2N+4}{N} < p$ if $N = 1, 2$, for any $c > 0$, $\widetilde{I}(u) = \frac{1}{2}$ - R*N* $|\nabla u|^2 - \frac{1}{p}$ - R*N* $|u|^p$

has at least one critical point \tilde{u}_c restricted to S_c at the mountain pass level $\tilde{\gamma}(c)$ with $\tilde{I}(\tilde{u}_c) = \tilde{\gamma}(c)$, where

$$
\widetilde{\gamma}(c) = \inf_{g \in \widetilde{\Gamma}(c)} \max_{t \in [0,1]} \widetilde{I}(g(t)) > \max_{g \in \widetilde{\Gamma}(c)} \{ \max \{ \widetilde{I}(g(0)), \widetilde{I}(g(1)) \} \}
$$

and $\widetilde{\Gamma}(c) = \{g \in C([0,1], S_c) | g(0) \in \widetilde{B}_{K(c)}, \widetilde{I}(g(1)) < 0\}$ for some $\widetilde{B}_{k(c)} > 0$. Moreover, there exists $\tilde{\lambda}_c < 0$ such that $(\tilde{u}_c, \tilde{\lambda}_c)$ satisfies the following equation:

$$
-\Delta u - |u|^{p-2}u = \tilde{\lambda}_c u, \ x \in \mathbb{R}^N. \tag{5.1}
$$

Since $p > \frac{2N+4}{N}$, it is shown in [\[3](#page-14-17)] that

$$
\widetilde{\gamma}(c) = \inf_{u \in \widetilde{M}_c} \widetilde{I}(u) = \inf_{u \in S_c} \max_{t > 0} \widetilde{I}(u^t),\tag{5.2}
$$

where \widetilde{M}_c is a natural constraint defined as $\widetilde{M}_c = \{u \in S_c | \widetilde{G}(u) = 0\}$ with

$$
\widetilde{G}(u) = \int_{\mathbb{R}^N} |\nabla u|^2 - \frac{N(p-2)}{2p} \int_{\mathbb{R}^N} |u|^p.
$$

Based on the above results, we now prove

Lemma 5.1. *(1)* $\widetilde{G}(\widetilde{u}_c) = 0$;
 (2) $\widetilde{\gamma}(c) = \frac{N(p-2)-4}{2N(p-2)} \int_{\mathbb{R}^N} |\nabla$ $\frac{\sqrt{(p-2)-4}}{2N(p-2)} \int_{\mathbb{R}^N} |\nabla \widetilde{u}_c|^2;$

$$
(3) \ \widetilde{\lambda}_c = -\frac{4N-2p(N-2)}{[N(p-2)-4]c^2} \widetilde{\gamma}(c).
$$

Proof. By using the Pohozaev identity, the proof of this lemma is similar to that of Lemma [2.2.](#page-5-2) So we omit it. \Box

Lemma 5.2. *For any* $c > 0$ *,*

$$
\widetilde{\gamma}(c) = \frac{N(p-2) - 4}{2N(p-2)} \left(\frac{4}{N(p-2)}\right)^{\frac{4}{N(p-2)-4}} \frac{|Q_p|_2^{\frac{4(p-2)}{N(p-2)-4}}}{c^{\frac{4N-2p(N-2)}{N(p-2)-4}}}.
$$

Proof. The proof is similar to that of Theorem [1.5](#page-3-0) but with more complicated calculations.

For any $c > 0$, let $u := \frac{c}{|Q_p|_2} Q_p$, where Q_p was given in [\(1.3\)](#page-1-0), then $u \in S_c$ and by [\(1.2\)](#page-1-2) we have

$$
\int_{\mathbb{R}^N} |\nabla u|^2 = c^2, \int_{\mathbb{R}^N} |u|^p = \frac{pc^p |Q_p|_2^{2-p}}{2}.
$$
\n(5.3)

Since $p > \frac{2N+4}{N}$, there exists a unique $\tilde{t} = \tilde{t}(u) > 0$ such that $u^t \in M_c$, i.e.,

$$
\widetilde{t}^{\frac{N(p-2)-4}{2}} = \frac{4}{N(p-2)} \left(\frac{|Q_p|_2}{c}\right)^{p-2}.\tag{5.4}
$$

Then we see from $(1.2)(1.3)$ $(1.2)(1.3)$ and $(5.2)-(5.4)$ $(5.2)-(5.4)$ $(5.2)-(5.4)$ that

$$
\widetilde{\gamma}(c) \leq \widetilde{I}(u^{\widetilde{t}}) = \widetilde{I}(u^{\widetilde{t}}) - \frac{2}{N(p-2)}\widetilde{G}(u^{\widetilde{t}}) = \frac{N(p-2)-4}{2N(p-2)}\left(\frac{4}{N(p-2)}\right)^{\frac{4}{N(p-2)-4}}\frac{|Q_p|_2^{\frac{4(p-2)}{N(p-2)-4}}}{c^{\frac{4N-2p(N-2)}{N(p-2)-4}}}.
$$

On the other hand, there exists $\tilde{u}_c \in S_c$ such that $\tilde{I}(\tilde{u}_c) = \tilde{\gamma}(c)$. Moreover, Lemma [5.1](#page-12-3) shows that $\widetilde{u}_c \in M_c$, hence by (1.2) we see that

$$
|\nabla \widetilde{u}_c|_2^2 \le \frac{N(p-2)}{4} \frac{c^{p-\frac{N(p-2)}{2}}}{|Q_p|_2^{p-2}} |\nabla \widetilde{u}_c|_2^{\frac{N(p-2)}{2}}.
$$

So

$$
\gamma(c) = \frac{N(p-2)-4}{2N(p-2)} \int_{\mathbb{R}^N} |\nabla \widetilde{u}_c|^2 \ge \frac{N(p-2)-4}{2N(p-2)} \left(\frac{4}{N(p-2)}\right)^{\frac{4}{N(p-2)-4}} \frac{|Q_p|_2^{\frac{4(p-2)}{N(p-2)-4}}}{c^{\frac{4N-2p(N-2)}{N(p-2)-4}}}.
$$

Then the lemma is proved.

Lemma 5.3. \widetilde{u}_c *is positive.*

Proof. The proof is simpler than that of Lemma [3.3](#page-8-5) since it is proved in [\[3\]](#page-14-17) that each minimizer of \tilde{I} \Box is a critical point of \widetilde{I} $|S_c$.

Lemma 5.4. *Up to translations,* \tilde{u}_c *is the unique positive least energy solution of* [\(5.1\)](#page-12-4) *and*

$$
\widetilde{u}_c(x) = \left(\frac{-4\widetilde{\lambda}_c}{2N - (N-2)p}\right)^{\frac{1}{p-2}} Q_p \left(\sqrt{\frac{-N(p-2)\widetilde{\lambda}_c}{2N - (N-2)p}}x\right),\,
$$

where $\tilde{\lambda}_c$ *is given in* [\(5.1\)](#page-12-4).

Proof. By Lemma [5.3,](#page-13-1) \tilde{u}_c is positive. Then by [\[8,](#page-14-24)[13,](#page-14-25)[15](#page-14-26)[,21](#page-14-27)], \tilde{u}_c is the unique (up to translations) positive least energy solution of [\(5.1\)](#page-12-4).

Let $v(x) := \theta \widetilde{u}_c(\rho x)$, where $\theta = \begin{pmatrix} -4\widetilde{\lambda}_c \\ \frac{2N-(N-2)p}{p} \end{pmatrix}$ \int_{-b}^{-b-2} and $\rho = \left(\frac{-N(p-2)\tilde{\lambda}_c}{2N-(N-2)p}\right)^{-\frac{1}{2}}$, then by direct calculation, we see that v is a positive solution of the Eq. [\(1.3\)](#page-1-0). Hence up to translations, $v = Q_p$.

$$
\Box
$$

References

- 1. Alves, C.O., Correa, F.J.S.A.: On existence of solutions for a class of problem involving a nonlinear operator. Comm. Appl. Nonlinear Anal. **8**, 43–56 (2001)
- 2. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc. **348**(1), 305–330 (1996)
- 3. Bellazzini, J., Jeanjean, L., Luo, T.J.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proc. Lond. Math. Soc. **107**(3), 303-339 (2013)
- 4. Benedetto, E.D.: $C^{1+\alpha}$ local regularity of weak solutions of degenerate results for elliptic equations. Nonlinear Anal. **7**, 827–850 (1983)
- 5. Bernstein, S.: Sur une classe d'´equations fonctionelles aux d´eriv´ees partielles. Bull. Acad. Sci. URSS. S´er. **4**, 17–26 (1940)
- 6. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Differ. E. **6**(6), 701–730 (2001)
- 7. D'Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. **108**(2), 247–262 (1992)
- 8. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^N . Mathematical analysis and applications Part A. Adv. in Math. Suppl. Stud. vol. 7, Academic Press, New York, pp. 369–402 (1981)
- 9. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \mathbb{R}^3 . J. Differ. Eq. **252**, 1813–1834 (2012)
- 10. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. Theory T. M. & A. **28**, 1633–1659 (1997)
- 11. Jin, J.H., Wu, X.: Infinitely many radial solutions for Kirchhoff-type problems in \mathbb{R}^N . J. Math. Anal. Appl. **369**, 564– 574 (2010)
- 12. Kirchhoff, G.: Mechanik, Teubner, Leipzig (1883)
- 13. Kwong, M.K.: Uniqueness of positive solutions of $\Delta u - u + u^p = 0$ in \mathbb{R}^N . Arch. Ration. Mech. Anal. 105, 243–266 (1989)
- 14. Li, G.B.: Some properties of weak solutions of nonlinear scalar fields equation. Ann. Acad. Sci. Fenn. Math. **14**, 27– 36 (1989)
- 15. Li, Y., Ni, W.M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^N . Comm. Partial. Differ. Eq. **18**, 1043–1054 (1993)
- 16. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^3 . J. Differ. Eq. **257**, 566–600 (2014)
- 17. Li, G.B., Ye, H.Y.: Existence of positive solutions for nonlinear Kirchhoff type problems in \mathbb{R}^3 with critical Sobolev exponent. Math. Methods Appl. Sci. **37**, 2570–2584 (2014)
- 18. Li, Y. et al.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Eq. **253**, 2285–2294 (2012)
- 19. Lions, J.L.: On some questions in boundary value problems of mathematical physics in Contemporary Development in Continuum Mechanics and Partial Differential Equations. In: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, pp. 284–346 (1978)
- 20. Liu, W., He, X.M.: Multiplicity of high energy solutions for superlinear Kirchhoff equations. J. Appl. Math. Comput. **39**, 473–487 (2012)
- 21. Mcleod, K., Serrin, J.: Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in \mathbb{R}^N . Arch. Rational Mech. Anal. **99**, 115– 145 (1987)
- 22. Moser, J.: A New proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. **13**, 457–468 (1960)
- 23. Pohozaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (NS) **96**, 152–166 (1975) 168 (in Russian)
- 24. Tolksdorf, P.: Regularity for some general class of quasilinear elliptic equations. J. Differ. Eq. **51**, 126–150 (1984)
- 25. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. **XX**, 721–747 (1967)
- 26. Wang, J. et al.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Eq. **253**, 2314–2351 (2012)
- 27. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567– 576 (1983)
- 28. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications. 24. Birkhäuser Boston, Inc., Boston, MA (1996)
- 29. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \mathbb{R}^N . Nonlinear Anal. Real World Appl. **12**, 1278–1287 (2011)
- 30. Ye, H.Y.: Positive high energy solution for Kirchhoff equation in \mathbb{R}^3 with superlinear nonlinearities via Nehari-Pohozaev manifold. Discret. Contin. Dyn. Syst. **35**, 3857–3877 (2015)
- 31. Ye, H.Y.: The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Math. Methods Appl. Sci. **38**, 2663–2679 (2015)
- 32. Ye, H.Y.: The existence of normalized solutions for L^2 -critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. **66**, 1483–1497 (2015)

Hongyu Ye College of Science Wuhan University of Science and Technology Wuhan 430065, People's Republic of China e-mail: yyeehongyu@163.com

(Received: September 6, 2015; revised: January 11, 2016)