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The mass concentration phenomenon for L2-critical constrained problems related to
Kirchhoff equations
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Abstract. In this paper, we study the concentration behavior of critical points with a minimax characterization to the
following functional

I(u) =
a

2

∫

RN

|∇u|2 +
b

4

⎛
⎜⎝

∫

RN

|∇u|2
⎞
⎟⎠

2

− N

2N + 8

∫

RN

|u| 2N+8
N

constrain on Sc = {u ∈ H1(RN )| |u|2 = c, c > 0} when c → (c∗)+, where c∗ =

(
2−1b|Q|

8
N
2

) N
8−2N

, N = 1, 2, 3, and Q is up

to translations, the unique positive solution of −2ΔQ +
(

4
N

− 1
)
Q = |Q| 8

N Q in R
N .

As such constraint problem is L2-critical, it seems impossible to benefit from natural constraints Vc =⎧⎨
⎩u ∈ Sc| a

∫
RN

|∇u|2 + b

( ∫
RN

|∇u|2
)2

= 2N
N+4

∫
RN

|u| 2N+8
N

⎫⎬
⎭. We show that the mountain pass energy level γ(c) = inf

u∈Mc

I(u)

for some submanifold Mc ⊂ Vc and then prove the strict monotonicity of γ(c) on (c∗, +∞). We obtained that the critical
point uc behaves like

uc(x) ≈
⎛
⎝ a2

2b(c∗)2[( c
c∗ )

8−2N
N − 1]2
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b(c∗)2[( c
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1
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(x − yc)

⎞
⎟⎠

for some yc ∈ R
N as c approaches c∗ from above.
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1. Introduction and main result

The following nonlinear Kirchhoff equation

−
⎛
⎝a + b

∫

RN

|∇u|2
⎞
⎠Δu − |u|p−2u = λu, x ∈ R

N , λ ∈ R (1.1)

has attracted considerable attention, where N = 1, 2, 3, a, b > 0 are constants and p ∈ (2, 2∗), 2∗ = 6 if
N = 3 and 2∗ = +∞ if N = 1, 2.
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Equation (1.1) is a nonlocal one as the appearance of the term
∫
RN |∇u|2 implies that (1.1) is not a

pointwise identity. This causes some mathematical difficulties which make the study of (1.1) particularly
interesting, see [1,2,5–7,12,19,23] and the references therein. The first line to study (1.1) is to consider
the case where λ is a fixed and assigned parameter, see, e.g., [9,11,16–18,20,26,29,30]. In such direction,
the critical point theory is used to look for nontrivial solutions; however, nothing can be given a priori on
the L2-norm of the solutions. Recently, since the physicists are often interested in “normalized solutions,”
solutions with prescribed L2-norm are considered. To state the main results, for a > 0 fixed, we introduce
an equivalent norm on H1(RN ):

‖u‖ =

⎛
⎝
∫

RN

(a|∇u|2 + u2)

⎞
⎠

1
2

, ∀ u ∈ H1(RN ),

which is induced by the corresponding inner product on H1(RN ). Then such solutions are obtained by
looking for critical points of the following C1 functional

Ip(u) =
a

2

∫

RN

|∇u|2 +
b

4

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2

− 1
p

∫

RN

|u|p

constrained on the L2-spheres in H1(RN ):

Sc = {u ∈ H1(RN )| |u|2 = c, c > 0}.

The parameter λ is not fixed any longer but appears as an associated Lagrange multiplier. By the
L2-preserving scaling and the well-known Gagliardo–Nirenberg inequality with the best constant [27]:
Let p ∈ [2, 2N

N−2 ) if N ≥ 3 and p ≥ 2 if N = 1, 2, then

|u|pp ≤ p

2|Qp|p−2
2

|∇u|
N(p−2)

2
2 |u|p− N(p−2)

2
2 , (1.2)

with equality only for u = Qp, where Qp is, up to translations, the unique positive least energy solution
of

− N(p − 2)
4

ΔQ +
(

1 +
p − 2

4
(2 − N)

)
Q = |Q|p−2Q, x ∈ R

N , (1.3)

it is showed in [31] that p = 2N+8
N is the L2-critical exponent for constrained minimization problems

Ip,c2 = inf
u∈Sc

Ip(u), namely, for all c > 0, Ip(u) is bounded from below and coercive on Sc if p ∈ (
2, 2N+8

N

)
and is not bounded from below on Sc if p ∈ (

2N+8
N , 2∗). When p = 2N+8

N , there exists

c∗ =
(
2−1b|Q 2N+8

N
| 8
N
2

) N
8−2N

(1.4)

such that I 2N+8
N ,c2 =

{
0, 0 < c ≤ c∗

−∞, c > c∗ and I 2N+8
N ,c2 has no minimizer for all c > 0.

Thus for 2 < p < 2N+8
N , normalized solutions are obtained by using the concentration compactness

principle to prove that Ip,c2 is attained. For p ≥ 2N+8
N , the minimization problems cannot work. To

obtain normalized solutions, it is proved in [31,32] that Ip(u) has a critical point restricted to Sc with a
mountain pass geometry, i.e., there exists Kp(c) > 0 such that

γp(c) = inf
h∈Γp(c)

max
τ∈[0,1]

Ip(h(τ)) > max
h∈Γp(c)

{max{Ip(h(0)), Ip(h(1))}} (1.5)

holds in the set
Γp(c) = {h ∈ C([0, 1], Sc)| h(0) ∈ BKp(c), Ip(h(1)) < 0} (1.6)
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and BKp(c) =
{
u ∈ Sc| |∇u|22 ≤ Kp(c)

}
. In particular, for p = 2N+8

N , we have the following existing
results:

Lemma 1.1. ([31,32], Theorems 1.2 and 1.3)
(1) I 2N+8

N
(u) has no critical point on the constraint Sc for all 0 < c ≤ c∗.

(2) For any c > c∗, there exists at least one couple (uc, λc) ∈ Sc ×R− solution of the following problem:

−
⎛
⎝a + b

∫

RN

|∇u|2
⎞
⎠Δu − |u| 8

N u = λcu, x ∈ R
N (1.7)

with I 2N+8
N

(uc) = γ 2N+8
N

(c).

For the L2-supercritical case p > 2N+8
N , it is shown in [31] that the following two properties are

essential to get normalized solutions at the level γp(c):

the function c 	→ γp(c) is strictly decreasing on (0,+∞) (1.8)

and
γp(c) = inf

{u∈Sc|Gp(u)=0}
Ip(u), (1.9)

where

Gp(u) := a

∫

RN

|∇u|2 + b

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2

− N(p − 2)
2p

∫

RN

|u|p.

However, for p = 2N+8
N , as

(∫
RN |∇u|2)2 and

∫
RN |u| 2N+8

N behave at the same way under L2-preserving
scaling of u, it seems impossible to show that for any u ∈ Sc, there exists t = t(u) > 0 such that
G 2N+8

N
(ut) = 0, where ut(x) = t

N
2 u(tx). Then the property (1.9) no longer holds, which results in

that the strict monotonicity of the function c 	→ γ 2N+8
N

(c) is still a question. Indeed, properties (1.8)
and (1.9) are also necessary in looking for normalized solutions to other problems with L2-supercritical
nonlinearities, e.g., Schrödinger equations (see [10]), Schrödinger–Poisson system (see [3]).

In this paper, we try to study properties of the function c 	→ γ 2N+8
N

(c) and try to get some similar
properties to (1.8)(1.9). As far as we know, there is no paper on this aspect. For simplicity, in what follows,
we use I(u), Q, γ(c), Γ(c), K(c) and G(u) to denote I 2N+8

N
(u), Q 2N+8

N
, γ 2N+8

N
(c), Γ 2N+8

N
(c), K 2N+8

N
(c) and

G 2N+8
N

(u) given above, respectively.
We set

Ec =

⎧⎪⎨
⎪⎩u ∈ Sc| b

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2

<
2N

N + 4

∫

RN

|u| 2N+8
N

⎫⎪⎬
⎪⎭ ,

then Ec �= ∅ since uc ∈ Ec. Define

Mc = {u ∈ Ec| G(u) = 0},

then we have the following main results:

Theorem 1.2.

γ(c) = inf
u∈Mc

I(u) = inf
u∈Ec

max
t>0

I(ut),

where ut(x) = t
N
2 u(tx).
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Theorem 1.3. Let
mc = inf

u∈Mc

I(u),

then each minimizer of mc is a solution of problem (1.7).

Proposition 1.4. (1) The function c 	→ γ(c) is continuous on (c∗,+∞);
(2) The function c 	→ γ(c) is strictly decreasing on (c∗,+∞);
(3) limc→+∞ γ(c) = 0 and limc→(c∗)+ γ(c) = +∞.

We also concern the behavior of solutions uc obtained in Lemma 1.1 as c approaches the critical value
c∗ from above. Our main result is as follows:

Theorem 1.5. For any c > c∗, let (uc, λc) be the couple of solution obtained in Lemma 1.1. Then

(1)
{ |∇uc|2 → 0,

λc → 0,
as c → +∞.

(2)
{ |∇uc|2 → +∞,

λc → −∞,
as c → (c∗)+.

(3) For any sequence {ck} ⊂ (c∗,+∞) satisfying that ck → (c∗)+ as k → +∞, there exists a subsequence
of {ck} (still denoted by {ck}) and a sequence {yk} ⊂ R

N such that

(
4b

a2

)N
8
((ck

c∗
) 8−2N

N − 1
)N

4

uck

(
4

√
4b

a2

((ck

c∗
) 8−2N

N − 1
) 1

2

x + yk

)
→
(√

2
c∗

)N
4

Q

( √
2

b
1
4 c∗ x

)

in Lp(RN ) for all 2 ≤ p < 2∗.

Our mass concentration result Theorem 1.5 is new, which has not appeared in other autonomous
problems.

Let us underline the main idea in proving Theorems 1.2–1.5. As mentioned above, we cannot benefit
from the natural manifold {u ∈ Sc| G(u) = 0} since it may occur that I(ut) is strictly increasing with
respect to t on (0,+∞) for some u ∈ Sc. So we need to exclude the interference of the functions, satisfying
that b|∇u|42 ≥ 2N

N+4

∫
RN |u| 2N+8

N , which is the reason why the set Ec is introduced. We can show that for
any u ∈ Ec, there exists a unique t(u) > 0 such that

ut(u) ∈ Mc and γ(c) ≤ I(ut(u)) = max
t>0

I(ut). (1.10)

Then Mc can be viewed as a suitable submanifold, and hence, Theorems 1.2–1.3 and Proposition 1.4
(1) and (2) can be proved. Moreover, by using (1.10), we indeed show that

γ(c) =
a2

4b

1

( c
c∗ )

8−2N
N − 1

, (1.11)

which shows Proposition 1.3 (3) and Theorem 1.5 (1)(2). Our method to show the accurate value of γ(c)
can be also used to the classical nonlinear Schrödinger equation case −Δu − |u|p−2u = λu in R

N with
2N+4

N < p < 2∗, which will be discussed in Sect. 5.

To prove Theorem 1.5 (3), since G(uc) = 0, we see that
2N

N+4

∫
RN

|uc| 2N+8
N

b(
∫
RN

|∇uc|2)2
→ 1 as c → (c∗)+. We

succeeded in proving the theorem by choosing a suitable L2-preserving scaling and translation as follows:

vc(x) = ε
N
2

c uc(εcx + εcyc),

where εc = 4

√
4b
a2

(
( c

c∗ )
8−2N

N − 1
) 1

2
and {yc} is derived from the vanishing lemma. Indeed, since {vc} is

uniformly bounded in H1(RN ), vc ⇀ v in H1(RN ) for some v �= 0 as c → (c∗)+. Using the Euler–Lagrange
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equation satisfied by vc, we can show that v is a nontrivial solution of

− Δv +
4 − N

N
√

b(c∗)2
v =

1
2
√

b
|v| 8

N v, x ∈ R
N . (1.12)

If v is positive, then by a rescaling argument and the uniqueness of positive solutions (up to trans-
lations) of (1.3), the theorem is proved. Indeed, once Theorem 1.3 is proved, we can show that v is
positive.

We finally consider the relationship between γ(c) and the least energy among all solutions of problem
(1.7), i.e.,

dc = inf{Fc(u)| u ∈ H1(RN ) is a nontrivial solution of (1.7)},

where Fc : H1(RN ) → R is the functional corresponding to (1.7) defined as

Fc(u) =
1
2

∫

RN

(a|∇u|2 − λc|u|2) +
b

4

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2

− N

2N + 8

∫

RN

|u| 2N+8
N .

Recall that it has been proved in [9] that problem (1.7) has at least one positive least energy solution
w ∈ H1(RN ), satisfying that Fc(w) = dc.

Theorem 1.6.

dc =
4
N

γ(c) +
4(4 − N)b

Na2
γ2(c).

Moreover,
(1) uc is a positive least energy solution of problem (1.7);
(2) each least energy solution w of problem (1.7) is a critical point of I constrained on Sc with I(w) =

γ(c).

Throughout this paper, we use standard notations. For simplicity, we write
∫
Ω

h to mean the Lebesgue
integral of h(x) over a domain Ω ⊂ R

N . Lp := Lp(RN ) (1 ≤ p < +∞) is the usual Lebesgue space with
the standard norm | · |p. We use “ →” and “ ⇀” to denote the strong and weak convergence in the related
function space, respectively. C will denote a positive constant unless specified. We use “ :=” to denote
definitions and Br(x) := {y ∈ R

N | |x − y| < r}. We denote a subsequence of a sequence {un} as {un} to
simplify the notation unless specified.

The paper is organized as follows: In Sect. 2, we prove Theorems 1.2 and 1.3. In Sect. 3, we prove
Proposition 1.4 and Theorem 1.5. In Sect. 4, we prove Theorem 1.6. In Sect. 5, we discuss the nonlinear
Schrödinger equation case.

2. Proof of Theorems 1.2 and 1.3

In what follows, for any u ∈ Sc and t ≥ 0, we denote for simplicity

ut(x) := t
N
2 u(tx).

Then ut ∈ Sc.

Lemma 2.1. Suppose that u ∈ H1(RN ) is a weak solution of problem (1.7), then we have G(u) = 0, where

G(u) := a

∫

RN

|∇u|2 + b

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2

− 2N

N + 4

∫

RN

|u|p.
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Proof. Since u is a weak solution of (1.7), u satisfies the following Pohozaev identity (e.g., [16], Lemma 2.1):

Pc(u) :=
N − 2

2

⎛
⎝a + b

∫

RN

|∇u|2
⎞
⎠− N

2
λc

∫

RN

u2 − N2

2N + 8

∫

RN

|u| 2N+8
N = 0.

Then N
2 〈F ′

c(u), u〉 − Pc(u) = 0, i.e., G(u) = 0. �

We easily get the following lemma.

Lemma 2.2. Let (uc, λc) ∈ Sc × R− be the couple of solution to (1.7) obtained in Lemma 1.1. Then
(1) G(uc) = 0;
(2) γ(c) = I(uc) = a

4

∫
RN

|∇uc|2;

(3) λc = − 2(4−N)
Nc2 [γ(c) + 4b

a2 γ2(c)].

Set

Ec :=

⎧⎪⎨
⎪⎩u ∈ Sc

∣∣∣ b

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2

<
2N

N + 4

∫

RN

|u| 2N+8
N

⎫⎪⎬
⎪⎭ , (2.1)

then Ec �= ∅ since uc ∈ Ec.

Lemma 2.3. For any u ∈ Ec, there exists a unique t̃ = t(u) > 0 such that G(ut̃) = 0; moreover,
I(ut̃) = max

t>0
I(ut).

Proof. For any t > 0, we consider

h(t) := I(ut) =
at2

2

∫

RN

|∇u|2 − t4

4

⎡
⎢⎣ 2N

N + 4

∫

RN

|u| 2N+8
N − b

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2
⎤
⎥⎦ . (2.2)

Since u ∈ Ec, we easily see that h has a unique critical point t̃ > 0 corresponding to its maximum,
i.e., h′(t̃) = 0 and h(t̃) = max

t>0
h(t). So

at̃2
∫

RN

|∇u|2 + bt̃4

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2

= t̃4
2N

N + 4

∫
RN

|u| 2N+8
N ,

i.e., G(ut̃) = 0. �

Define

Mc = {u ∈ Ec| G(u) = 0},

then we see from Lemma 2.3 that Mc �= ∅. For any u ∈ Mc, we have I(u) = I(u)− 1
4G(u) = a

4

∫
RN |∇u|2 >

0, hence

mc := inf
u∈Mc

I(u)

is well defined.

Lemma 2.4. For any u ∈ Ec, we have

γ(c) ≤ 1
4

a2
(∫

RN |∇u|2)2
2N

N+4

∫
RN |u| 2N+8

N − b
(∫

RN |∇u|2)2 .
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Proof. For any u ∈ Ec, we consider the function h(t) given as in (2.2). Then there exists t0 > 0 large
such that h(t0) < 0. As |∇ut|2 → 0 as t → 0+, there exists t1 > 0 small such that ut1 ∈ BK(c), where
BK(c) was defined in (1.6). Then u(1−t)t1+tt0 |t∈[0,1] is a path in Γ(c). So by Lemma 2.3, we have

γ(c) ≤ max
t∈[0,1]

I(u(1−t)t1+tt0) ≤ max
t>0

I(ut) =
1
4

a2(
∫
RN |∇u|2)2

2N
N+4

∫
RN |u| 2N+8

N − b(
∫
RN |∇u|2)2

.

�

Corollary 2.5. If u ∈ Mc, then γ(c) ≤ a
4

∫
RN |∇u|2.

Recall it has been proved in Lemma 3.1 and Remark 3.2 of [32] that

0 < K(c) <
a

b

(
c∗

c

) 8−2N
N

(2.3)

and

sup
u∈BK(c)

I(u) <
γ(c)
2

, (2.4)

where BK(c) was defined as in (1.6).

Lemma 2.6. For any u ∈ BK(c), we have G(u) > 0.

Proof. For any u ∈ Sc, by (1.2) we see that

G(u) − b|∇u|42 ≥ a|∇u|22 −
( c

c∗
) 8−2N

N

b|∇u|42 ≥ 0 if |∇u|22 ≤ a

b

(
c∗

c

) 8−2N
N

,

i.e., G(u) > 0 for all 0 < |∇u|22 ≤ a
b

(
c∗
c

) 8−2N
N

. Then the lemma follows from (2.3). �

2.1. Proof of Theorem 1.2

Proof. By Lemma 2.3, we conclude that

inf
u∈Ec

max
t>0

I(ut) = inf
u∈Mc

I(u).

For any u ∈ Mc, we have u ∈ Ec and G(u) = 0. Hence I(u) = a
4

∫
RN |∇u|2. So by Corollary 2.5, we

see that

γ(c) ≤ a

4

∫

RN

|∇u|2 = I(u),

which implies that γ(c) ≤ mc.

On the other hand, for any g ∈ Γ(c), by Lemma 2.6 we see that G(g(0)) > 0. I(g(1)) < 0 implies that
G(g(1)) < 0. Then there exists t0 ∈ (0, 1) such that G(g(t0)) = 0. Moreover, G(g(t0)) = 0 implies that
g(t0) ∈ Ec, so g(t0) ∈ Mc. Then

mc ≤ I(g(t0)) ≤ max
t∈[0,1]

I(g(t)).

By the arbitrary of g, we see that mc ≤ γ(c). So we complete the proof. �
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We recall from [28] that for any c > 0, Sc is a submanifold of H1(RN ) with codimension 1 and the
tangent space at u ∈ Sc is defined as Tu = {v ∈ H1(RN )| ∫

RN uv = 0}. Let Φ ∈ C1(H1(RN ), R) and
u ∈ Sc. The norm of the derivative of Φ|Sc

is defined by

‖(Φ|Sc
)′(u)‖∗ = sup

v∈Tu,‖v‖=1

〈Φ′(u), v〉.

For any l ∈ R, set Φl = {u ∈ Sc| Φ(u) ≤ l}. The following lemma is a direct sequence of Lemma 5.15
in [28].

Lemma 2.7. Let Φ ∈ C1(H1(RN ), R), K ⊂ Sc and m ∈ R. If there exist ε, δ > 0 such that

∀ u ∈ Φ−1([m − 2ε,m + 2ε]) ∩ K2δ ⇒ ‖(Φ|Sc
)′(u)‖∗ ≥ 8ε

δ
,

then there exists η ∈ C([0, 1] × Sc, Sc) such that
(i) η(t, u) = u if t = 0 or u �∈ Φ−1([m − 2ε,m + 2ε]) ∩ K2δ,
(ii) η(1,Φm+ε ∩ K) ⊂ Φm−ε,
(iii) Φ(η(·, u)) is nonincreasing for all u ∈ Sc.

2.2. Proof of Theorem 1.3

Proof. The idea of the proof comes from that in [3], but with some changes.
Suppose that vc ∈ Mc is a minimizer of mc, then by the Lagrange multiplier theory, it is enough to

prove that vc is a critical point of I(u) constrained on Sc. In fact, if (I|Sc
)′(vc) = 0, then there exists

some μc such that I ′(uc) − μcvc = 0. Since G(vc) = 0 and I(vc) = mc = γ(c), by Lemmas 2.1 and 2.2 we
see that

μc = −2(4 − N)
Nc2

[γ(c) +
4b

a2
γ2(c)] = λc,

which implies that vc is a solution of (1.7).
By contradiction, we just assume that ‖(I|Sc

)′(vc)‖∗ �= 0. Then there exist δ, ε > 0 such that

‖(I|Sc
)′(u)‖∗ ≥ 8ε

δ

for all u ∈ {u ∈ Sc| ‖u − vc‖ ≤ 2δ} ∩ I−1([γ(c) − 2ε, γ(c) + 2ε]).
We may furthermore assume that ε < γ(c)

4 . Then by Lemma 2.7, there exists a deformation η :
Sc × [0, 1] → Sc such that

(i) η(1, u) = u if u �∈ I−1([γ(c) − 2ε, γ(c) + 2ε]) ∩ {u ∈ Sc| ‖u − vc‖ ≤ 2δ},
(ii) η(1, vc) ⊂ Iγ(c)−ε,
(iii) I(η(1, u)) ≤ I(u) for all u ∈ Sc.
Since vc ∈ Mc, similarly to the proof of Lemma 2.4, there exist t0 > 1 large, t1 > 0 small such that

g(t) := v
(1−t)t1+tt0
c |t∈[0,1] ∈ Γ(c). By (i)(iii) we have η(1, g(t))|t∈[0,1] ∈ Γ(c). Indeed, by (iii) we have

I(η(1, g(1)) ≤ I(g(1)) < 0. Since (2.4) implies that I(g(0)) < γ(c)
2 , then by (i) we see that η(1, g(0)) =

g(0) ∈ BK(c).
Then by (iii), Lemma 2.3 and Theorem 1.2, we see that

γ(c) ≤ max
t∈[0,1]

I(η(1, g(t)) ≤ max
t∈[0,1]

I(g(t)) ≤ max
t>0

I(vt
c) = I(vc) = mc = γ(c),

which implies that
γ(c) = max

t∈[0,1]
I(η(1, g(t))) = I(η(1, vc)), (2.5)

which is a contradiction with (ii). �
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3. Proof of Proposition 1.4 and Theorem 1.5

In this section, we study the properties of the function c 	→ γ(c).

Lemma 3.1. The function c 	→ γ(c) is strictly decreasing on (c∗,+∞).

Proof. For any c2 > c1 > c∗, by Lemmas 1.1 and 2.2, there exist uci ∈ Sci such that

I(uci) = γ(ci) =
a

4

∫

RN

|∇uci |2 and G(uci) = 0 (i = 1, 2). (3.1)

Moreover, uci ∈ Mci . Since c2 > c1, we see that c2
c1

uc1 ∈ Ec2 . Then by Lemma 2.4 and (3.1), we have

γ(c2) ≤ 1
4

a2
(∫

RN |∇uc1 |2
)2

2N
N+4

(
c2
c1

) 8−2N
N ∫

RN |uc1 |
2N+8

N − b
(∫

RN |∇uc1 |2
)2

<
1
4

a2
(∫

RN |∇uc1 |2
)2

2N
N+4

∫
RN |uc1 |

2N+8
N − b

(∫
RN |∇uc1 |2

)2

=
a

4

∫

RN

|∇uc1 |2 = γ(c1),

so the lemma is proved. �

Lemma 3.2. The function c 	→ γ(c) is continuous on (c∗,+∞).

Proof. By Lemma 3.1, to prove this lemma is equivalent to show that for any c > c∗ and any sequence
cn → c−, we have

lim
cn→c−

γ(cn) ≤ γ(c). (3.2)

By Lemmas 1.1 and 2.2, there exists uc ∈ Sc such that

γ(c) = I(uc) =
a

4

∫

RN

|∇uc|2 and G(uc) = 0. (3.3)

Since cn
c → 1−, for n large enough we see that

b

⎛
⎝
∫

RN

|∇uc|2
⎞
⎠

2

<
(cn

c

) 8−2N
N 2N

N + 4

∫

RN

|uc| 2N+8
N .

Set vn = cn
c uc, then vn ∈ Ecn . So by Lemma 2.4, we have

γ(cn) ≤ 1
4

a2
(∫

RN |∇uc|2
)2

(
cn
c

) 8−2N
N 2N

N+4

∫
RN |uc| 2N+8

N − b
(∫

RN |∇uc|2
)2 .

Then we conclude from (3.3) that (3.2) holds. �

To obtain the concentration behavior of uc as c → (c∗)+, we need the following lemmas:

Lemma 3.3. For each c > c∗ and let (uc, λc) ∈ Sc × R− be the couple of solution obtained in Lemma 1.1.
Then uc is positive.
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Proof. By Lemma 2.2, we see that uc ∈ Mc. Since |∇|uc||2 ≤ |∇uc|2, we have |uc| ∈ Ec and G(|uc|) ≤ 0.
By Lemma 2.3, there exists a unique t ∈ (0, 1] such that G(|uc|t) = 0, i.e., |uc|t ∈ Mc. Hence by
Corollary 2.5, we have

γ(c) ≤ at2

4

∫

RN

|∇|uc||2 ≤ a

4

∫

RN

|∇uc|2 = I(uc) = γ(c),

which implies that t = 1 and

|∇|uc||2 = |∇uc|2 and I(|uc|) = γ(c). (3.4)

Then |uc| is a minimizer of I(u) on Mc. So by (3.4) and Theorem 1.3, we know that (|uc|, λc) also
satisfies the Eq. (1.7). So we may assume that uc does not change sign, i.e., uc ≥ 0. By using the strong
maximum principle and standard arguments, see, e.g., [4,14,22,24,25], we obtain that uc(x) > 0 for all
x ∈ R

N . �

Lemma 3.4. ([28], Vanishing Lemma) Let r > 0 and 2 ≤ q < 2∗. If {un} is bounded in H1(RN ) and

sup
y∈RN

∫

Br(y)

|un|q → 0, n → +∞,

then un → 0 in Ls(RN ) for 2 < s < 2∗.

3.1. Proof of Proposition 1.4 and Theorem 1.5

Proof. The proof of Proposition 1.4 (i) (ii) has been given above. We complete the rest proof in three
steps.

Step 1.

⎧⎨
⎩

γ(c) → 0,
|∇uc|2 → 0,
λc → 0,

as c → +∞.

By Lemma 2.2, it is enough to prove that γ(c) → 0 as c → +∞. Recall that γ(c) > 0 for each c > c∗.
For Q given in (1.3), we have

∫

RN

|∇Q|2 =
∫

RN

|Q|2 =
N

N + 4

∫

RN

|Q| 2N+8
N

and c
|Q|2 Q ∈ Ec. Then by Lemma 2.4, we see that

γ(c) ≤ a2

4b

1

( c
c∗ )

8−2N
N − 1

→ 0

as c → +∞. So γ(c) → 0 as c → +∞.

Step 2.

⎧⎨
⎩

γ(c) → +∞,
|∇uc|2 → +∞,
λc → −∞,

as c → (c∗)+.

For any c > c∗ and any u ∈ Mc, by (1.2) we see that

a

∫
RN

|∇u|2 ≤
[
(

c

c∗ )
8−2N

N − 1
]
b

⎛
⎝
∫

RN

|∇u|2
⎞
⎠

2

,
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which implies that
∫
RN |∇u|2 ≥ a

b[( c
c∗ )

8−2N
N −1]

. Hence

I(u) = I(u) − 1
4
G(u) =

a

4

∫

RN

|∇u|2 ≥ a2

4b

1

( c
c∗ )

8−2N
N − 1

.

By the arbitrary of u ∈ Mc and Theorem 1.2, we see that lim
c→(c∗)+

γ(c) = +∞. Since uc ∈ Mc,

lim
c→(c∗)+

|∇uc|2 = +∞. By Lemma 2.2 again, we see that λc → −∞ as c → (c∗)+.

Step 3. The concentration of {uc} as c → (c∗)+.
For any sequence {ck} ⊂ (c∗,+∞) with ck → (c∗)+ as k → +∞, by Lemmas 1.1 and 2.2, there exists

a sequence {uck} ⊂ Sck such that γ(ck) = a
4

∫
RN |∇uck |2 and

G(uck) = 0, (3.5)

By Step 1 and Step 2, we see that

a

4

∫

RN

|∇uck |2 = γ(ck) =
a2

4b

1(
ck
c∗
) 8−2N

N − 1
→ +∞ as k → +∞.

Then (3.5) implies that

lim
k→+∞

N
2N+8

∫
R

N |uck | 2N+8
N

b
4

(∫
RN |∇uck |2)2 = 1.

Let

εck := 4

√
4b

a2

((ck

c∗
) 8−2N

N − 1
) 1

2

→ 0

as k → +∞. Set ṽck(x) := ε
N
2

ck uck(εckx), then ṽck ∈ Sck and∫

RN

|∇ṽck |2 =
2√
b

and
N

2N + 8

∫

RN

|ṽck | 2N+8
N → 1 as k → +∞. (3.6)

So {ṽck} is uniformly bounded in H1(RN ).
Let δ = lim

k→+∞
sup

y∈RN

∫
B1(y)

|ṽck |2. If δ = 0, then the Vanishing Lemma 3.4, ṽck → 0 in L
2N+8

N (RN ),

which is a contradiction with (3.6). So δ > 0. Then there exists a sequence {yck} ⊂ R
N such that∫

B1(yck
)
|ṽck |2 ≥ δ

2 > 0. Set

vck(x) = ṽck(x + yck) = ε
N
2

ck uck(εckx + εckyck),

then ‖vck‖ = ‖ṽck‖ and ∫

B1(0)

|vck |2 ≥ δ

2
.

So there exists v ∈ H1(RN )\{0} such that

vck ⇀ v in H1(RN ) and vck(x) → v(x) a.e. in R
N . (3.7)

Since uck satisfies the following equation:

−
(

a + b

∫
RN

|∇uck |2
)

Δuck − λckuck = |uck | 8
N uck , x ∈ R

N ,
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where by Lemma 2.2 λck = − 4−N
2Nc2k

[a
∫
RN |∇uck |2 + b(

∫
RN |∇uck |2)2], vck is a solution of the equation:

− aε2
ck

Δvck − 2
√

bΔvck − λckε4
ck

vck = |vck | 8
N vck , x ∈ R

N . (3.8)

By the definition of εck , we conclude that lim
k→+∞

λckε4
ck

= − 2(4−N)
N(c∗)2 . Let k → +∞ in (3.8), then v is a

nontrivial solution of

− Δv +
4 − N

N
√

b(c∗)2
v =

1
2
√

b
|v| 8

N v, x ∈ R
N . (3.9)

By Lemma 3.3, we have uck is positive, and then, by (3.7) we see that v(x) ≥ 0 for all x ∈ R
N . Then

by the maximum principle, v is a positive solution of (3.9). So by a rescaling together with the uniqueness
of positive solutions of (1.3) (up to translations), we conclude that

v(x) =

(√
2

c∗

)N
4

Q

( √
2

b
1
4 c∗ x

)
.

Then by the definition of c∗, we have |v|2 = (c∗)
N
4
(

b
2

)N
8 |Q|2 = c∗. So vck → v in L2(RN ). Hence by

the Gagliardo–Nirenberg inequality (1.2) we see that

ε
N
2

ck uck(εckx + εckyck) →
(√

2
c∗
)N

4
Q
( √

2
b

1
4 c∗ x

)

in Lp(RN ) for all 2 ≤ p < 2∗. �

4. Proof of Theorem 1.6

Proof. Suppose that w is a least energy solution of problem (1.7), by Lemma 2.1 we have G(w) = 0.
Hence

− λc

∫

RN

|w|2 =
4 − N

2N

⎡
⎢⎣a

∫

RN

|∇w|2 + b

⎛
⎝
∫

RN

|∇w|2
⎞
⎠

2
⎤
⎥⎦ . (4.1)

So

dc = Fc(w) =
a

N

∫

RN

|∇w|2 +
(4 − N)b

4N

⎛
⎝
∫

RN

|∇w|2
⎞
⎠

2

. (4.2)

For the couple (uc, λc) ∈ Sc × R− solution of (1.7) obtained in Lemma 1.1, then F ′
c(uc) = 0. Hence

by Lemma 2.2 (2)(3), we see that

dc ≤ Fc(uc) = I(uc) − λcc
2

2
=

4
N

γ(c) +
4(4 − N)b

Na2
γ2(c). (4.3)

Moreover, by Lemma 2.2 (2) again, we have

dc ≤ a

N

∫

RN

|∇uc|2 +
(4 − N)b

4N

⎛
⎝
∫

RN

|∇uc|2
⎞
⎠

2

,

which and (4.2) imply that ∫

RN

|∇w|2 ≤
∫

RN

|∇uc|2, (4.4)
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where we have used the fact that the function h(t) = a
N t + (4−N)b

4N t2 is increasing on [0,+∞). Then by
(4.1) and Lemma 2.2 (3), we conclude that |w|2 ≤ c. Furthermore, we conclude from Lemma 1.1 (1) that
it has to be |w|2 > c∗. So w ∈ M|w|2 . Therefore, it follows from Theorem 1.2 that

γ(|w|2) ≤ I(w) = I(w) − 1
4
G(w) =

a

4

∫

RN

|∇w|2.

By (4.4), we have

γ(|w|2) − λcc
2

2
≤ a

4

∫

RN

|∇w|2 − λcc
2

2

≤ a

4

∫

RN

|∇uc|2 − λcc
2

2
= γ(c) − λcc

2

2
,

(4.5)

i.e., γ(|w|2) ≤ γ(c), which implies that |w|2 ≥ c. So w ∈ Sc. By (4.5) and (4.2), we see that

γ(c) − λcc
2

2
≤ a

4

∫

RN

|∇w|2 − λc

2

∫

RN

|w|2 = Fc(w) = dc,

which and (4.3) imply

dc =
4
N

γ(c) +
4(4 − N)b

Na2
γ2(c) = Fc(uc)

and I(w) = γ(c). Therefore, the proof is completed. �

5. Comparison with the nonlinear Schrödinger case

In [10], it is proved that when 2N+4
N < p < 2N

N−2 if N ≥ 3 and 2N+4
N < p if N = 1, 2, for any c > 0,

Ĩ(u) =
1
2

∫

RN

|∇u|2 − 1
p

∫

RN

|u|p

has at least one critical point ũc restricted to Sc at the mountain pass level γ̃(c) with Ĩ(ũc) = γ̃(c), where

γ̃(c) = inf
g∈Γ̃(c)

max
t∈[0,1]

Ĩ(g(t)) > max
g∈Γ̃(c)

{max{Ĩ(g(0)), Ĩ(g(1))}}

and Γ̃(c) = {g ∈ C([0, 1], Sc)| g(0) ∈ B̃K(c), Ĩ(g(1)) < 0} for some B̃k(c) > 0. Moreover, there exists
λ̃c < 0 such that (ũc, λ̃c) satisfies the following equation:

− Δu − |u|p−2u = λ̃cu, x ∈ R
N . (5.1)

Since p > 2N+4
N , it is shown in [3] that

γ̃(c) = inf
u∈M̃c

Ĩ(u) = inf
u∈Sc

max
t>0

Ĩ(ut), (5.2)

where M̃c is a natural constraint defined as M̃c = {u ∈ Sc| G̃(u) = 0} with

G̃(u) =
∫

RN

|∇u|2 − N(p − 2)
2p

∫

RN

|u|p.

Based on the above results, we now prove

Lemma 5.1. (1) G̃(ũc) = 0;
(2) γ̃(c) = N(p−2)−4

2N(p−2)

∫
RN |∇ũc|2;
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(3) λ̃c = − 4N−2p(N−2)
[N(p−2)−4]c2 γ̃(c).

Proof. By using the Pohozaev identity, the proof of this lemma is similar to that of Lemma 2.2. So we
omit it. �
Lemma 5.2. For any c > 0,

γ̃(c) =
N(p − 2) − 4
2N(p − 2)

(
4

N(p − 2)

) 4
N(p−2)−4 |Qp|

4(p−2)
N(p−2)−4
2

c
4N−2p(N−2)
N(p−2)−4

.

Proof. The proof is similar to that of Theorem 1.5 but with more complicated calculations.
For any c > 0, let u := c

|Qp|2 Qp, where Qp was given in (1.3), then u ∈ Sc and by (1.2) we have
∫

RN

|∇u|2 = c2,

∫

RN

|u|p =
pcp|Qp|2−p

2

2
. (5.3)

Since p > 2N+4
N , there exists a unique t̃ = t̃(u) > 0 such that ut̃ ∈ M̃c, i.e.,

t̃
N(p−2)−4

2 =
4

N(p − 2)

( |Qp|2
c

)p−2

. (5.4)

Then we see from (1.2)(1.3) and (5.2)–(5.4) that

γ̃(c) ≤ Ĩ(ut̃) = Ĩ(ut̃) − 2
N(p − 2)

G̃(ut̃) =
N(p − 2) − 4
2N(p − 2)

(
4

N(p − 2)

) 4
N(p−2)−4 |Qp|

4(p−2)
N(p−2)−4
2

c
4N−2p(N−2)
N(p−2)−4

.

On the other hand, there exists ũc ∈ Sc such that Ĩ(ũc) = γ̃(c). Moreover, Lemma 5.1 shows that
ũc ∈ M̃c, hence by (1.2) we see that

|∇ũc|22 ≤ N(p − 2)
4

cp−N(p−2)
2

|Qp|p−2
2

|∇ũc|
N(p−2)

2
2 .

So

γ(c) =
N(p − 2) − 4
2N(p − 2)

∫

RN

|∇ũc|2 ≥ N(p − 2) − 4
2N(p − 2)

(
4

N(p − 2)

) 4
N(p−2)−4 |Qp|

4(p−2)
N(p−2)−4
2

c
4N−2p(N−2)
N(p−2)−4

.

Then the lemma is proved. �
Lemma 5.3. ũc is positive.

Proof. The proof is simpler than that of Lemma 3.3 since it is proved in [3] that each minimizer of Ĩ|
M̃c

is a critical point of Ĩ|Sc
. �

Lemma 5.4. Up to translations, ũc is the unique positive least energy solution of (5.1) and

ũc(x) =

(
−4λ̃c

2N − (N − 2)p

) 1
p−2

Qp

⎛
⎝
√

−N(p − 2)λ̃c

2N − (N − 2)p
x

⎞
⎠ ,

where λ̃c is given in (5.1).

Proof. By Lemma 5.3, ũc is positive. Then by [8,13,15,21], ũc is the unique (up to translations) positive
least energy solution of (5.1).

Let v(x) := θũc(ρx), where θ =
(

−4λ̃c

2N−(N−2)p

)− 1
p−2

and ρ = ( −N(p−2)λ̃c

2N−(N−2)p )− 1
2 , then by direct calculation,

we see that v is a positive solution of the Eq. (1.3). Hence up to translations, v = Qp. �
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