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1. Introduction

In this paper, we study the following compressible Hall-magnetohydrodynamic (Hall-MHD) equations
(see [1]):

∂tρ + div (ρu) = 0, (1.1)

∂t(ρu) + div (ρu ⊗ u) + ∇P (ρ) = (∇ × H) × H + ν div
(∇u + (∇u)�) , (1.2)

∂tH + ∇ ×
(

H × u +
(∇ × H) × H

ρ

)
= −μ∇ × (∇ × H), div H = 0 (1.3)

with the initial data

(ρ, u,H)(x, 0) = (ρ0, u0,H0)(x), x ∈ Ω. (1.4)

Here the unknowns are ρ, u = (u1, u2, u3) ∈ R
3, H = (H1,H2,H3) ∈ R

3 denoting the density of the
fluid, the fluid velocity field and the magnetic field, respectively. The pressure P (ρ) := aργ with positive
constants a and γ ≥ 1 for simplicity. The spatial domain Ω = R

3 or T
3, a periodic domain in R

3. The
parameter ν > 0 denotes the viscous coefficient and μ > 0 the magnetic diffusivity acting as a magnetic
diffusion coefficient of the magnetic field. For simplicity, here we assume that both ν and μ are positive
constants, independent of the magnitude and direction of the magnetic field.

The Hall-MHD equtions can be used to describe many physical phenomena, for example, magnetic
reconnection in space plasmas, star formation, neutron stars, and geo-dynamo [24]. Recently, the existence
of local strong solutions with positive density, and the global existence and time decay rate of smooth
solutions to the system (1.1)–(1.3) were obtained in [11].

If the Hall effect term (∇×H)×H
ρ in (1.3) is neglected, then the system (1.1)–(1.3) reduces to the well-

known compressible isentropic MHD equations and there are a lot of results on it, see [6,13–17,21–23,25]
and the references cited therein. The local strong solution was established in [22], the global existence
of smooth solution was obtained in [21] and the global weak solution was given in [14] for large initial

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-015-0604-0&domain=pdf


1 Page 2 of 13 Y. Mu ZAMP

data and in [25] for small initial data. The zero Mach number limit to the compressible isentropic MHD
equations was studied in [6,13,15–17,23] under different situations.

To the author’s best knowledge, there are no results on the low Mach number limit of the compressible
Hall-MHD system (1.1)–(1.3). In this paper, we shall study this topic by applying the methods developed
in [18]. To begin with, we need to introduce some scaling transformations on the unknowns. Denoting ε
the (scaled) Mach number, introducing the scales

ρ(x, t) = ρε(x, εt), u(x, t) = εuε(x, εt), H(x, t) = εHε(x, εt),

and utilizing the identities

∇ (|H|2) = 2(H · ∇)H + 2H × (∇ × H),

∇ × (∇ × H) = ∇div H − ΔH,

∇ × (u × H) = u(div H) − H(div u) + (H · ∇)u − (u · ∇)H,

we can rewrite the system (1.1)–(1.3) as

∂tρ
ε + div (ρεuε) = 0, (1.5)

ρε (∂tu
ε + uε · ∇uε) +

a∇(ρε)γ

ε2
= (∇ × Hε) × Hε − ν∇ ·

(
∇uε + (∇uε)�

)
, (1.6)

∂tH
ε + ∇ ×

(
Hε × uε +

(∇ × Hε) × Hε

ρε

)
= −μ∇ × (∇ × Hε) , div Hε = 0. (1.7)

We shall study the limit of the solution to the system (1.5)–(1.7) as ε → 0. We restrict ourselves to the
small density variations, i.e.,

ρε := 1 + εqε. (1.8)

Putting (1.8) into the system (1.5)–(1.7), then we can rewrite it as

∂tq
ε + uε · ∇qε +

(1 + εqε)
ε

div uε = 0, (1.9)

∂tu
ε + uε · ∇uε +

aγ (1 + εqε)γ−1 ∇qε

ε (1 + εqε)
=

1
1 + εqε

(
(∇ × Hε) × Hε + ν∇ ·

(
∇uε + (∇uε)T

))
, (1.10)

∂tH
ε + ∇ ×

(
Hε × uε +

(∇ × Hε) × Hε

1 + εqε

)
= −μ∇ × (∇ × Hε) , div Hε = 0. (1.11)

The system (1.9)–(1.11) is equipped with the initial data

(qε, uε,Hε)|t=0 = (qε
0(x), uε

0(x),Hε
0(x)) , x ∈ Ω. (1.12)

Formally if we take the limit ε → 0 in (1.9)–(1.11), we then obtain the following incompressible
Hall-MHD equations [suppose that (uε,Hε) converges to (v,B) as ε → 0].

∂tv + v · ∇v + ∇π = (∇ × B) × B + νΔv, (1.13)

∂tB + ∇ × (B × v + (∇ × B) × B) = μΔB, (1.14)

div v = 0, div B = 0. (1.15)

The system (1.13)–(1.15) is supplemented with initial data

(v,B)|t=0 = (v0(x), B0(x)) , x ∈ Ω. (1.16)
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In this paper, we shall establish the above limit rigorously. Moreover we shall show that for sufficiently
small Mach number, the compressible Hall-MHD system (1.9)–(1.11) admits a smooth solution on the
time interval where the smooth solution of the incompressible Hall-MHD equations (1.13)–(1.15) exists.

Before stating our main results, we recall some known results on the incompressible Hall-MHD equa-
tions (1.13)–(1.15). The existence of global weak solutions was first obtained in [1], see also [8]. The local
existence of smooth solutions was established in [3]. The temporal decay estimates for weak solutions was
obtained in [4]. The well-posedness for the axisymmetric incompressible viscous Hall-MHD equations was
studied in [9]. Many authors studied the singularity formations [5,7] and the regularity criteria [2,10,12]
of the incompressible Hall-MHD equations.

Below we first recall the local existence result on the equations (1.13)–(1.16).

Proposition 1.1. (see [3]). Let s > 7/2 be an integer. Assume that the initial data (v0(x), B0(x)) satisfy
v0, B0 ∈ Hs(Ω), and div v0 = 0, div B0 = 0. Then there exist a T ∗ ∈ (0,∞] and a unique solution
(v,B) ∈ L∞([0, T ∗),Hs) to the incompressible Hall-MHD equations (1.13)–(1.16) satisfying, for any
0 < T < T ∗, div v = 0, div B = 0, and

sup
0≤t≤T

{‖(v,B)(t)‖Hs + ‖(∂tv, ∂tB)(t)‖Hs−2 + ‖∇π(t)‖Hs−2} ≤ CT . (1.17)

The main result of the present paper is the following.

Theorem 1.1. Let s > 7/2 be an integer. Let (v,B, π) be a smooth solution to the system (1.13)–(1.15)
with the initial data (v0, B0) obtained in Proposition 1.1. Suppose that the initial data (qε

0, u
ε
0,H

ε
0) belong

to Hs and satisfy

‖(qε
0, u

ε
0 − v0,H

ε
0 − B0)‖s = O(ε). (1.18)

Then there exists a constant ε0 > 0 such that, for all ε ∈ (0, ε0], the problem (1.9)–(1.12) has a unique
smooth solution (qε, uε,Hε) ∈ C([0, T ],Hs) for any 0 < T < T ∗. Moreover there exists a positive constant
K > 0, independent of ε, such that, for all ε ≤ ε0 and any 0 < T < T ∗,

sup
t∈[0,T ]

∥
∥
∥
∥

(
qε − ε

aγ
π, uε − v,Hε − B

)
(t)
∥
∥
∥
∥

s

≤ Kε. (1.19)

The proof of Theorem 1.1 is based on the methods developed in [18]. The key point is to obtain the
uniform estimates of the error system and apply convergence-stability lemma for general hyperbolic–
parabolic system [18] and Growall-type inequality. Compared with the compressible MHD equations,
the compressible Hall-MHD equations (1.9)–(1.12) are more complicated and more refined analysis are
needed in our arguments. The appearance of the Hall effect term ∇×H×H

ρ brings us a lot of trouble. For
example, in the error estimates, we need to finely divide Q3 into seven parts. We fortunately observe that
I5 = 0, which is critical in the uniform estimates. Meanwhile, we need to deal with I6 and I7 skillfully,
and the other terms also need to be treated very carefully. We shall explain these in detail later.

Before ending the introduction, we give the notations used throughout the current paper. We use the
letter C to denote various positive constants independent of ε. For convenience, we denote by H l ≡ H l(Ω)
(l ∈ R) the standard Sobolev spaces and write ‖ · ‖l for the standard norm of H l and ‖ · ‖ for ‖ · ‖0.

In next section, we reformulate our problem in vector form and a convergence-stability lemma. In
Sect. 3, we present the proof of Theorem 1.1.
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2. Reformulation of our problem

Now we begin our proof of Theorem 1.1. Setting U ε = (qε, uε,Hε)�, we can rewrite the system (1.9)–(1.11)
in the vector form:

A0 (U ε) ∂tU
ε +

3∑

j=1

Aj(U ε)∂jU
ε = Q (U ε) , (2.1)

where the matrices Aj(U ε) (0 ≤ j ≤ 3) are given by

A0 (U ε) = diag (1, 1 + εqε, 1 + εqε, 1 + εqε, 1, 1, 1) ,

A1 (U ε) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uε
1

1+εqε

ε 0 0 0 0 0
aγ(1+εqε)γ−1

ε uε
1 (1 + εqε) 0 0 0 Hε

2 Hε
3

0 0 uε
1 (1 + εqε) 0 0 −Hε

1 0
0 0 0 uε

1 (1 + εqε) 0 0 −Hε
1

0 0 0 0 uε
1 0 0

0 Hε
2 −Hε

1 0 0 uε
1 0

0 Hε
3 0 −Hε

1 0 0 uε
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A2(U ε) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uε
2 0 1+εqε

ε 0 0 0 0
0 uε

2 (1 + εqε) 0 0 −Hε
2 0 0

aγ(1+εqε)γ−1

ε 0 uε
2 (1 + εqε) 0 Hε

1 0 Hε
3

0 0 0 uε
2 (1 + εqε) 0 0 −Hε

2

0 −Hε
2 Hε

1 0 uε
2 0 0

0 0 0 0 0 uε
2 0

0 0 Hε
3 −Hε

2 0 0 uε
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A3(U ε) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uε
3 0 0 1+εqε

ε 0 0 0
0 uε

3 (1 + εqε) 0 0 −Hε
3 0 0

0 0 uε
3 (1 + εqε) 0 0 −Hε

3 0
aγ(1+εqε)γ−1

ε 0 0 uε
3 (1 + εqε) Hε

1 Hε
2 0

0 −Hε
3 0 Hε

1 uε
3 0 0

0 0 −Hε
3 Hε

2 0 uε
3 0

0 0 0 0 0 0 uε
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

Q (U ε) =
(

0, ν (Δuε + ∇div uε) , μΔHε − ∇ ×
(

(∇ × Hε) × Hε

1 + εqε

))�
.

It is easy to check that the matrices Aj(U ε) (0 ≤ j ≤ 3) can be symmetrized by choosing the symmetrizier

Â0 (U ε) = diag

(
aγ (1 + εφε)γ−1

1 + εqε
, 1, 1, 1, 1, 1, 1

)

.

Moreover for U ε ∈ Ḡ1 ⊂⊂ G with G being the state space for the system (2.1), Â0(U ε) is a positive
definite symmetric matrix for sufficiently small ε.
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Assume that the initial data

U ε(0, x) = U ε
0(x) := (qε

0(x), uε
0(x),Hε

0(x))� ∈ Hs

and U ε
0(x) ∈ G0, Ḡ0 ⊂⊂ G.

First, following the proof of the local existence theory for the initial value problem of symmetrizable
hyperbolic–parabolic systems by Volpert and Hudjaev [26], we obtain that there exists a time interval
[0, T ] with T > 0, so that the system (2.1) with the initial data U ε

0(x) has a unique classical solution
U ε(t, x) ∈ C([0, T ],Hs) and U ε(t, x) ∈ G2 with Ḡ2 ⊂⊂ G. We remark that the crucial step in the proof
of local existence result is to prove the uniform boundedness of the solutions.

Now we define

Tε = sup {T > 0 : U ε(t, x) ∈ C ([0, T ],Hs) , U ε(t, x) ∈ G2, ∀(t, x) ∈ [0, T ] × Ω} .

Note that Tε depends on ε and may tend to zero as ε goes to 0.
With the aid of the convergence-stability lemma for general hyperbolic–parabolic system [18], we shall

show that lim infε→0 Tε > 0. Similar to [18], for the (2.1), we have the following convergence-stability
lemma.

Lemma 2.1. Let s > 3/2 + 2. Suppose that U ε
0(x) ∈ G0, Ḡ0 ⊂⊂ G, and U ε

0(x) ∈ Hs, and the following
convergence assumption (A) holds.

(A) For each ε, there exists T� > 0 and Uε ∈ L∞(0, T�;Hs) satisfying
⋃

x,t,ε

{Uε(t, x)} ⊂⊂ G,

such that, for t ∈ [0,min{T�, Tε}),

sup
x,t

|U ε(t, x) − Uε(t, x)| = o(1), sup
t

‖U ε(t, x) − Uε(t, x)‖s = O(1), as ε → 0.

Then there exist an ε̄ > 0 such that, for all ε ∈ (0, ε̄], it holds that

Tε > T�.

In order to apply Lemma 2.1 to our problem (2.1), we need to structure the approximation Uε =
(qε, vε, Bε)� with qε = επ/aγ, vε = v,Bε = B, where (v,B, π) is the smooth solution to the system
(1.13)–(1.15). We easily verify that Uε satisfies

∂tqε + vε · ∇qε +
(1 + εqε)

ε
div vε =

ε

aγ
(πt + v · ∇π) , (2.2)

(1 + εqε) (∂tvε + vε · ∇vε) +
1
ε
aγ (1 + εqε)γ−1 ∇qε − (∇ × Bε) × Bε

= νΔvε +

[(
1 +

ε2

aγ
π

)γ−1

− 1

]

∇π +
ε2

aγ
π (∂tv + v · ∇v) , (2.3)

∂tBε + ∇ × (Bε × vε) = μΔBε − ∇ × ((∇ × Bε) × Bε) , div Bε = 0. (2.4)

Similar to the system (1.9)–(1.11), we can rewrite the system (2.2)–(2.4) in the following vector form

A0(Uε)∂tUε +
3∑

j=1

Aj(Uε)∂jUε = S(Uε) + R (2.5)

with

S(Uε) = (0, νΔvε, μΔBε − ∇ × ((∇ × Bε) × Bε))
�

,
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R =

⎛

⎜
⎜
⎜
⎝

ε
aγ (πt + v · ∇π)

ε2

aγ π (vt + v · ∇v) +
[(

1 + ε2

aγ π
)γ−1

− 1
]

∇π

0

⎞

⎟
⎟
⎟
⎠

.

With the help of the Moser-type calculus inequalities in Sobolev spaces [19] and the regularity as-
sumptions on (v, π) in Theorem 1.1, we can get that there exists some constant C such that, for any
t ∈ [0, T ∗],

∥
∥
∥
∥

ε

aγ
(πt + v · ∇π)

∥
∥
∥
∥

s

≤ Cε,

∥
∥
∥
∥

ε2

aγ
π (vt + v · ∇v)

∥
∥
∥
∥

s

≤ Cε,

∥
∥
∥
∥
∥

[(
1 +

ε2

aγ
π

)γ−1

− 1

]

∇π

∥
∥
∥
∥
∥

s

=
ε2

aγ

∥
∥
∥
∥f

′
(

1 + λ
ε2

aγ
π

)
π∇π

∥
∥
∥
∥

s

≤ Cε2
(‖∇π‖s−1 + ‖∇π‖s

s−1

) ‖π∇π‖s

≤ Cε,

where f(x) = xγ−1 and 0 ≤ λ ≤ 1. Thus we obtain that

max
t∈[0,T ∗]

‖R(t)‖s ≤ Cε. (2.6)

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Thanks to Lemma 2.1, it suffices to establish the
error estimate (1.7) for t ∈ [0,min{T ∗, Tε}). Introducing

E = U ε − Uε and Aj(U) = A−1
0 (U)Aj(U),

and using (2.1) and (2.5), we have

Et +
3∑

j=1

Aj (U ε) Exj
=

3∑

j=1

(Aj (Uε) − Aj (U ε)) Uεxj
+ A−1

0 (U ε) Q (U ε)

− A−1
0 (Uε) (S(Uε) + R) . (3.1)

Applying the operator Dα to (3.1) for any multi-index α (|α| ≤ s), we obtain that

∂tD
αE +

3∑

j=1

Aj (U ε) ∂xj
DαE = Pα

1 + Pα
2 + Qα + Rα (3.2)

with

Pα
1 =

3∑

j=1

{Aj (U ε) ∂xj
DαE − Dα

(Aj (U ε) ∂xj
E
)}

,

Pα
2 =

3∑

j=1

Dα
{
(Aj (Uε) − Aj (U ε)) Uεxj

}
,

Qα = Dα
{
A−1

0 (U ε) Q (U ε) − A−1
0 (Uε) S (Uε)

}
,

Y α = Dα
{
A−1

0 (Uε) R
}

.
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As in [18], we define the canonical energy by

‖E‖2e :=
∫ 〈

Ã0 (U ε) E,E
〉

dx,

where

Ã0 (U ε) = diag

(
aγ (1 + εqε)γ−1

(1 + εqε)2
, 1, 1, 1,

1
1 + εqε

,
1

1 + εqε
,

1
1 + εqε

)

.

We remark that Ã0(U ε) is a positive definite symmetric matrix and Ã0(U ε)Aj(U ε) is symmetric. Now,
multiplying (3.2) with Ã0(U ε) and taking the inner product between the resulting system and DαE, we
obtain that

d
dt

‖DαE‖2e =
∫

〈ΓDαE,DαE〉 dx

+ 2
∫

(DαE)T Ã0 (U ε) (Pα
1 + Pα

2 + Qα + Y α) dx, (3.3)

where Γ is defined as follows:

Γ := (∂t,∇) ·
(
Ã0, Ã0 (U ε) A1 (U ε) , Ã0 (U ε) A2 (U ε) , Ã0 (U ε) A3 (U ε)

)
.

Next, we estimate every term on the right-hand side of (3.3). We point that our estimates only need
to be done for t ∈ [0,min{T ∗, Tε}) where both U ε and Uε are regular enough and take values in a convex
compact subset of the state space. Thus we get

C−1

∫
|DαE|2dx ≤ ‖DαE‖2e ≤ C

∫
|DαE|2dx (3.4)

for some C > 0 and
∣
∣
∣(DαE)�

Ã0 (U ε) (Pα
1 + Pα

2 + Y α)
∣
∣
∣ ≤ C

(
|DαE|2 + |Pα

1 |2 + |Pα
2 |2 + |Y α|2

)
. (3.5)

We first estimate the term Γ . We can write Aj(U ε) = uε
jI7 + Āj(U ε). Noticing that Āj(U ε) depends

only on qε and Hε and thanks to (1.9), we have

Γ = ∂tÃ0 +
3∑

j=1

∂j

(
Ã0 (U ε) Aj (U ε)

)

= ∂tÃ0 +
3∑

j=1

∂j

(
Ã0 (U ε) uε

j

)
+

3∑

j=1

∂j

(
Ã0 (U ε) Āj (U ε)

)

= ∂tÃ0 + uε · ∇Ã0 + Ã0div uε +
3∑

j=1

∂j

(
Ã0 (U ε) Āj (U ε)

)

= −Ã′
0 (1 + εqε) div uε + Ã0div uε +

3∑

j=1

∂j

(
Ã0 (U ε) Āj (U ε)

)
.

Here the symbol Ã′
0 denotes the differentiation of Ã0 with respect to ρε. Therefore, using Sobolev’s

embedding theorem and the fact that s > 3/2 + 2, we have

|Γ | ≤ C + C
(
|∇qε| + |∇uε| + |∇Hε| + |∇qε|2 + |Hε|2

)

≤ C + C
(
|∇E| + |∇E|2 + |E|2 + |Uε|2 + |∇Uε| + |∇Uε|2

)

≤ C
(
1 + ‖E‖2s

)
. (3.6)
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For the term Pα
1 , we rewrite it as

Pα
1 =

3∑

j=1

Aj (U ε) ∂xj
DαE − Dα

(Aj (U ε) ∂xj
E
)

= −
3∑

j=1

∑

0<β≤α

(
α

β

)
∂βAj (U ε) ∂α−βExj

= −
3∑

j=1

∑

0<β≤α

(
α

β

)
∂β
[
uε

jI7 + Āj (U ε)
]
∂α−βExj

.

Thanks to the Moser-type calculus inequalities in Sobolev spaces [19], we obtain that

‖Pα
1 ‖ ≤ C

{
(1 + ‖(uε,Hε)‖s)

∥
∥Exj

∥
∥

|α|−1
+ ε−1

∥
∥∂βg (qε) ∂α−βExj

∥
∥
}

+ C
∥
∥
∥∂β

[
(1 + εqε)−1 (Hε − Bε) +

(
(1 + εqε)−1 − (1 + εqε)

−1
)

Bε

]
Exj

∥
∥
∥+

∥
∥
∥(1 + εqε)

−1
BεExj

∥
∥
∥

≤ C
(
1 + ‖E‖s+1

s

) ‖E‖α, (3.7)

where g(qε) := (1 + εqε) + aγ(1 + εqε)γ−1.
For the term Pα

2 , with the help of the uniform boundedness of ‖Uε‖s+1, we have

‖Pα
2 ‖ ≤ C

∥
∥Uεxj

∥
∥

s
‖Aj (Uε) − Aj (U ε)‖|α|

≤ C
∥
∥(uε

j − vεj

)∥∥
|α| +

∥
∥Āj (U ε) − Āj (Uε)

∥
∥

|α|

≤ C
(
1 + ‖uε − vε‖|α| + ‖Hε − Bε‖|α|

)
+ C

∥
∥ε−1 (g (qε) − g (qε))

∥
∥

|α|

+ C

∥
∥
∥
∥

1
1 + εqε

(Hε − Bε)
∥
∥
∥
∥

|α|
+ C

∥
∥
∥
∥

(
1

1 + εqε
− 1

1 + εqε

)
Bε

∥
∥
∥
∥

|α|
≤ C (1 + ‖qε + θ (qε − qε)‖s

s) ‖E‖|α|
≤ C (1 + ‖E‖s

s) ‖E‖|α|, (3.8)

where 0 ≤ θ ≤ 1 is constant.
Finally, we deal with the term

∫
(DαE)�Ã0(U ε)Qαdx. Since

Qα =

⎛

⎜
⎜
⎝

0

νDα
(

1
1+εqε (Δuε + ∇div uε) − 1

1+εqε
Δvε

)

μDα (ΔHε − ΔBε) − Dα∇ ×
[(

(∇×Hε)×Hε

1+εqε

)
− ((∇ × Bε) × Bε)

]

⎞

⎟
⎟
⎠ ,

we can rewrite
∫

(DαE)�Ã0(U ε)Qαdx as follows:
∫

(DαE)�
Ã0 (U ε) Qαdx

= ν

∫
Dα (uε − vε) Dα

(
Δuε + ∇div uε

1 + εqε
− Δvε

1 + εqε

)
dx

+ μ

∫
1

1 + εqε
Dα (Hε − Bε) DαΔ(Hε − Bε) dx

−
∫

1
1 + εqε

Dα (Hε − Bε) Dα∇ ×
[
(∇ × Hε) × Hε

1 + εqε
− (∇ × Bε) × Bε

]
dx

=: Q1 + Q2 + Q3.
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The terms Q1 and Q2 can be estimated in the same way as that in [20], so we state the following estimates
directly and omit their detailed arguments:

Q1 ≤ −Cν

∫
|Dα∇ (uε − vε)|2 dx − Cν

∫
|Dαdiv (uε − vε)|2 dx

+ Cε ‖Dα∇ (uε − vε)‖2 + C
(
‖E‖2|α| + ‖E‖4|s| + ‖E‖2|α|‖E‖s

|s|
)

, (3.9)

Q2 ≤ −Cμ

∫
|Dα∇ (Hε − Bε)|2 dx

+ Cε ‖Dα∇ (uε − vε)‖2 + C
(
‖E‖2|α| + ‖E‖4|s|

)
. (3.10)

Below we deal with Q3. By means of the following formulation:
∫

g · ∇ × h dx =
∫

h · ∇ × g dx,

∇ × (ϕF ) = ϕ∇ × F + ∇ϕ × F.

We can rewrite Q3 as follows:

Q3 = −
∫

1
1 + εqε

Dα (Hε − Bε) Dα∇ ×
[
(∇ × Hε) × Hε

1 + εqε
− (∇ × Bε) × Bε

]
dx

= −
∫

∇ 1
1 + εqε

× Dα (Hε − Bε) Dα

[
(∇ × Hε) × Hε

1 + εqε
− (∇ × Bε) × Bε

]
dx

−
∫

1
1 + εqε

Dα∇ × (Hε − Bε) Dα

[
(∇ × Hε) × Hε

1 + εqε
− (∇ × Bε) × Bε

]
dx

= ε

∫ ∇qε × Dα (Hε − Bε)
(1 + εqε)2

· Dα

[∇ × (Hε − Bε) × Hε

1 + εqε

]
dx

+ ε

∫ ∇qε × Dα (Hε − Bε)
(1 + εqε)2

· Dα

[
∇ × Bε ×

(
Hε

1 + εqε
− Bε

)]
dx

−
∫

1
1 + εqε

Dα∇ × (Hε − Bε) Dα

[∇ × (Hε − Bε) × Hε

1 + εqε

]
dx,

−
∫

1
1 + εqε

Dα∇ × (Hε − Bε) Dα

[
∇ × Bε ×

(
Hε

1 + εqε
− Bε

)]
dx

= ε

∫ ∇qε × Dα (Hε − Bε)
(1 + εqε)2

· Dα∇ × (Hε − Bε) × Hε

1 + εqε
dx

+ ε
∑

0<β≤α

∫ ∇qε × Dα (Hε − Bε)
(1 + εqε)2

· Dα−β∇ × (Hε − Bε) × Dβ

(
Hε

1 + εqε

)
dx

+ ε

∫ ∇qε × Dα (Hε − Bε)
(1 + εqε)2

· Dα

[
∇ × Bε ×

(
Hε

1 + εqε
− Bε

)]
dx

+ ε

∫
1

1 + εqε
Dα∇ × (Hε − Bε) · Dα

[
∇ × Bε × qε

1 + εqε
Bε

]
dx

−
∫

1
1 + εqε

Dα∇ × (Hε − Bε) · Dα∇ × (Hε − Bε) × Hε

1 + εqε
dx

−
∑

0<β≤α

∫
1

1 + εqε
Dα∇ × (Hε − Bε) · Dα−β∇ × (Hε − Bε) × Dβ Hε

1 + εqε
dx
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−
∫

1
1 + εqε

Dα∇ × (Hε − Bε) · Dα

[
∇ × Bε × Hε − Bε

1 + εqε

]
dx

=:
7∑

i=1

Ii.

By means of integration by parts, the Moser-type calculus inequalities, Sobolev’s embedding, Holder’s
inequality and the regularity of (qε, vε, Bε), the seven terms Ii(1 ≤ i ≤ 7) can be controlled as follows:

|I1| ≤ Cε ‖∇qε × Dα (Hε − Bε)‖ ‖Hε × Dα∇ × (Hε − Bε)‖
≤ Cε ‖∇qε‖L∞ ‖Dα (Hε − Bε)‖ ‖Hε‖L∞ ‖Dα∇ × (Hε − Bε)‖
≤ Cε (1 + ‖E‖s)

2 ‖E‖|α| ‖Dα∇ × (Hε − Bε)‖
≤ Cε (1 + ‖E‖s)

2 ‖E‖2|α| + Cε ‖Dα∇ × (Hε − Bε)‖2 ,

|I2| ≤ Cε ‖∇qε × Dα (Hε − Bε)‖
∥
∥
∥
∥D

β

(
Hε

1 + εqε
× Dα−β

)
∇ × (Hε − Bε)

∥
∥
∥
∥

≤ Cε (1 + ‖E‖s) ‖E‖|α|

∥
∥
∥
∥

Hε

1 + εqε

∥
∥
∥
∥

s

‖∇ × (Hε − Bε)‖|α|−1

≤ Cε (1 + ‖E‖s)
2 ‖E‖|α| (1 + ‖E‖s

s) ‖E‖|α|
≤ Cε

(
1 + ‖E‖s

s+2

) ‖E‖2|α|,

|I3| ≤ Cε ‖∇qε × Dα (Hε − Bε)‖
∥
∥
∥
∥D

α

[(
Hε

1 + εqε
− Bε

)
× (∇ × Bε)

]∥∥
∥
∥

≤ Cε ‖∇qε‖L∞ ‖E‖|α|

∥
∥
∥
∥

(
Hε

1 + εqε
− Bε

)
× (∇ × Bε)

∥
∥
∥
∥

|α|
≤ Cε (‖E‖s + ε) ‖E‖|α|

(
1 + ‖E‖s+1

s

)

≤ Cε
(
1 + ‖E‖2s+2

s

) ‖E‖2s + Cε2,

|I4| ≤ Cε‖Dα∇ × (Hε − Bε) ‖
∥
∥
∥
∥

qε

1 + εqε
Bε × (∇ × Bε)

∥
∥
∥
∥

|α|
≤ Cε ‖Dα∇ × (Hε − Bε)‖

(
(1 + ‖E‖s

s) ‖E‖|α| + ε (1 + ‖E‖s
s)
)

≤ Cε‖Dα∇ × (Hε − Bε) ‖2 + C
(
1 + ‖E‖2s

s

) ‖E‖2|α| + Cε2‖E‖2s
s + Cε2,

|I6| ≤ C ‖Dα∇ × (Hε − Bε)‖
∥
∥
∥
∥D

β

(
Hε

1 + εqε

)
× Dα−β∇ × (Hε − Bε)

∥
∥
∥
∥

≤ C ‖Dα∇ × (Hε − Bε)‖
∥
∥
∥
∥

Hε

1 + εqε

∥
∥
∥
∥

s

‖E‖|α|

≤ η ‖Dα∇ × (Hε − Bε)‖2 +
C

η

(
1 + ‖E‖2s+2

s

) ‖E‖2|α|,

|I7| ≤ C ‖Dα∇ × (Hε − Bε)‖
∥
∥
∥
∥

Hε − Bε

1 + εqε
× (∇ × Bε)

∥
∥
∥
∥

|α|
≤ C ‖Dα∇ × (Hε − Bε)‖ (1 + ‖E‖s

s) ‖E‖|α|

≤ η ‖Dα∇ × (Hε − Bε)‖2 +
C

η

(
1 + ‖E‖2s

s

) ‖E‖2|α|,
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where η will be decided below.
According to the equality F · (F × G) = 0 for any vectors F and G, we obtain that

I5 ≡ 0.

Collecting the above estimates, we have

Q3 ≤ Cε ‖Dα∇ × (Hε − Bε)‖2 + C
(
1 + ‖E‖2s+2

s

) ‖E‖2s + Cε2

+ 2η ‖Dα∇ × (Hε − Bε)‖2 +
2C

η

(
1 + ‖E‖2s+2

s

) ‖E‖2s,

Q2 + Q3 ≤ (−Cμ + 2η)
∫

|Dα∇ × (Hε − Bε) |2dx +
2C

η

(
1 + ‖E‖2s+2

s

) ‖E‖2s
+ Cε ‖Dα∇ × (Hε − Bε)‖2 + Cε ‖Dα∇ × (uε − vε)‖2

+ C
(
1 + ‖E‖2s+2

s

) ‖E‖2s + Cε2

≤ −C

2
μ

∫
|Dα∇ × (Hε − Bε)|2 dx + Cε ‖Dα∇ × (Hε − Bε)‖2

+ Cε ‖Dα∇ × (uε − vε)‖2 + C
(
1 + ‖E‖2s+2

s

) ‖E‖2s + Cε2.

Thus by choosing 2η = −C
2 μ, we obtain that

∫
(DαE)�

Ã0 (U ε) Qαdx ≤ −Cν

∫
|Dα∇ (uε − vε)|2 dx − Cν

∫
|Dαdiv (uε − vε)|2 dx

− C

2
μ

∫
|Dα∇ × (Hε − Bε)|2 dx + Cε ‖Dα∇ × (Hε − Bε)‖2

+ Cε ‖Dα∇ × (uε − vε)‖2 + C
(
1 + ‖E‖2s+2

s

) ‖E‖2s + Cε2. (3.11)

Putting the estimates (3.11) and (3.6)–(3.8) into (3.3) and taking ε small enough, we obtain that

d
dt

‖DαE‖2e + κ

∫ [
|Dα∇ (uε − vε)|2 + |Dα∇ (Hε − Bε)|2

]
dx

≤ C‖Y α‖2 + C
(
1 + ‖E‖2s+2

s

)‖E‖2s + Cε2, (3.12)

where we have used the following estimate

ν

∫
|Dα∇ (uε − vε)|2 + ν

∫
|Dαdiv (uε − vε)|2 ≥ κ

∫
|Dα∇ (uε − vε)|2

for some positive constant κ > 0.
Thanks to (3.4), we can integrate the inequality (3.12) over (0, t) with t < min{Tε, T

∗} to obtain that

‖DαE(t)‖2 ≤ C ‖DαE(0)‖2 + C

t∫

0

‖Y α(τ)‖2 dτ

+ C

t∫

0

{(
1 + ‖E‖2s+2

s

)‖E‖2s + Cε2
}

(τ)dτ.

Summing up the above inequality for all α with |α| ≤ s, we arrive at

‖E(t)‖2s ≤ C‖E(0)‖2s + C

T ∗∫

0

‖R(τ)‖2sdτ + C

t∫

0

{(
1 + ‖E‖2s+2

s

) ‖E‖2s
}

(τ)dτ.
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With the aid of Gronwall’s lemma and the fact that

‖E(0)‖2s +

T ∗∫

0

‖R(t)‖2s dt = O
(
ε2
)
,

we get

‖E(t)‖2s ≤ Cε2exp

⎧
⎨

⎩
C

t∫

0

(
1 + ‖E(τ)‖2s+2

s

)
dτ

⎫
⎬

⎭
≡ Φ(t).

It is easy to check that Φ(t) satisfies

Φ′(t) = C
(
1 + ‖E(t)‖2s+2

s

)
Φ(t) ≤ CΦ(t) + CΦs+2(t).

Thus by employing the nonlinear Gronwall-type inequality, we conclude that there exists a constant K,
independent of ε, such that

‖E(t)‖s ≤ Kε

for all t ∈ [0,min{Tε, T
∗}) provided Φ(0) = Cε2 < exp{−CT ∗}. Hence the proof of Theorem 1.1 is

completed. �
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