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1. Introduction

The main purpose of this work is to study the interaction between two viscous incompressible fluids
which flow along a thin layer with random boundary. This problem has important applications in many
branches of science and engineering such as biology, chemical engineering, combustion and geophysics.

Surface tension gradients across a fluid–fluid interface provoke strong convective activity called
Marangoni flow. The Marangoni flow, which proceeds from regions of lower surface tension to those
of higher surface tension, is responsible for driving shear flow instabilities which take place within oscil-
latory boundary layers located near the interface between the two fluids. Within such layers, the fluid
velocity changes rapidly, which implies a steep gradient of the shearing stress.

The boundary layer theory was first developed by Prandtl in 1904 [9] for a fluid in the close vicinity
of a surrounding surface. The thickness of the boundary layers depends on Reynolds number, which
increases when the viscosity effects become smaller: the higher the Reynolds number is, the thinner is
the thickness of the boundary layers (see, for instance, [6] and [10]).

The interaction between two viscous incompressible fluids which flow along a thin viscous boundary
layer of higher Reynolds number whose surface boundaries are defined through locally Lipschitz continu-
ous functions, including periodic and self-similar cases, has been recently considered in [4]. In this paper,
a physical situation was considered in which random fluctuations occur within thin viscous boundary
layers of higher Reynolds number between two interacting viscous incompressible fluid flows. Indeed, a
boundary layer of higher Reynolds number or more specifically a turbulent boundary layer contains a
variety of coherent structures over a range of length scales, from small structures to larger structures,
which essentially form random locations over the surface (see [8]). In the present paper, we consider a
random microscopic cellular structure of the boundary layers. Each cell is supposed to have a random
behavior in the thickness direction. The mixing scale in the boundary layers is related to the so-called
turbulence viscosity or eddy viscosity, which has no precise expression, as far as we know. In the present
paper, we suppose that Reynolds number is in the boundary layer of order O (ε−γ), with γ > 0, where
ε > 0 is the layer thickness.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-015-0589-8&domain=pdf
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We consider a bounded open subset Ω ⊂ R
3 with Lipschitz continuous boundary ∂Ω, such that

Ω = Ω+ ∪ Σ ∪ Ω−, where Ω+ and Ω− are two nonempty open subsets separated by the smooth surface
Σ. For simplicity, we suppose that Σ is contained in the plane {x3 = 0}. We suppose that the boundary
∂Ω+\Σ (resp. ∂Ω−\Σ) can be represented by a smooth and positive (resp. negative) function x′ =
(x1, x2) �→ h+(x′) (resp. x′ �→ h−(x′)).

Let (Π,Υ, P ) be some probability space and (G (x, y))(x,y)∈R2 be a group of transformations on (Π,Υ )
that is satisfying for every (x, y), (x1, y1), (x2, y2) of R2

⎧
⎨

⎩

G (0, 0) = IdΠ ,
G ((x1, y1) + (x2, y2)) = G (x1, y1) ◦ G (x2, y2) ,
P
(
G−1 (x, y) A

)
= P (A) , ∀A ∈ Υ,

(1)

where IdΠ is the identity map on Π, and such that the set
{
(x, y, ω) ∈ R

2 × Π | G (x, y) ω ∈ A
}

is dx1dx2dP measurable for every A ∈ Υ . We suppose that G is ergodic (or metrically transitive) in the
sense that every set A ∈ Υ such that G (x, y) A = A, for every (x, y) ∈ R

2, has a probability P (A) equal
to 0 or 1.

For the construction of the boundary layer, we introduce two random processes q and r defined on
R

2 × Π and satisfying the following conditions:
1. q is a stationary random process, that is, for every positive integer n, for every couples

(x1, y1) , . . . , (xn, yn) ∈ R
2, and for every B ∈ B (R), where B (R) is the Borel σ-algebra on R,

one has

P ({ω | q ((x + x1, y + y2) , ω) , . . . , q ((x + xn, y + yn) , ω) ∈ B})
= P ({ω | q ((x1, y2) , G (x, y) ω) , . . . , q ((xn, yn) , G (x, y) ω) ∈ B}) . (2)

As G preserves the measure P (see (1)3) the above equality implies that the joint distribu-
tion of {ω | q ((x1, y2) , ω) , . . . , q ((xn, yn) , ω)} is the same as that of {q ((x + x1, y + y2) , ω) , . . . ,
q ((x + xn, y + yn) , ω)} for every (x, y) ∈ R

2.
2. The partial derivatives ∂q

∂xα
and ∂r

∂xα
, α = 1, 2, exist, and there exist nonrandom positive constants

c1, c2 and c3 such that the following bounds hold true with probability 1
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 < c1 ≤ q ((x, y) , ω) ≤ c2 < 1 ∀ (x, y) ∈ R
2,∀ω ∈ Π,

|r ((x, y) , ω)| ≤ q ((x, y) , ω) ∀ (x, y) ∈ R
2,∀ω ∈ Π,∣

∣
∣
∣

∂q

∂xα

∣
∣
∣
∣ ,
∣
∣
∣
∣

∂r

∂xα

∣
∣
∣
∣ ≤ c3 α = 1, 2,

∣
∣
∣
∣
∂ (r − q)

∂xα
((x, y) , ω)

∣
∣
∣
∣ ≤

C

‖(x, y)‖ ‖(x, y)‖ → ∞, α = 1, 2.

(3)

Notice that we do not assume that the random process r is a stationary one.
From the properties of G and q, we deduce the ergodic property (see [7])

〈q (0, 0)〉 = lim
T −→∞

1
T 2

T∫

−T

T∫

−T

q ((x, y) , ω) dxdy, (4)

almost surely, where the symbol 〈.〉 stands for the mathematical expectation with respect to the
measure P .

Let (α1i (ω))i∈Z
, (α2i (ω))i∈Z

, (β1i (ω))i∈Z
and (β2i (ω))i∈Z

be sequences of random variables satisfying

|αli (ω)| , |βli (ω)| ≤ c4, ∀i ∈ Z, and for l = 1, 2, (5)

with probability 1, where c4 is a nonrandom constant.
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Fig. 1. The domains Ω and Ωε

We define the 2D unit reference cell Y =
]
− 1

2 , 1
2

[2; then, for every ε ∈ ]0, 1[ the 2D ε-cell

Y ε
ij =

]
−ε

2
,
ε

2

[2
+ (iε, jε) , ∀i, j ∈ Z

and the set Iε ⊂ Z
2 as

Iε =
{
(i, j) ∈ Z

2 | Y ε
ij ⊂ Σ

}
.

For an arbitrary realization ω from a set of full measure on Π, for which the conditions (2)–(5) are
satisfied, we define the 3D random cell Zε

ij (ω), ∀ (i, j) ∈ Iε, through

Zε
ij (ω) =

{
(x1, x2, x3) | (x1, x2) ∈ Y ε

ij , x3 ∈
]
εa−

ij,ε, εa
+
ij,ε

[}
, (6)

where θ ∈
]
1, 3

2

[
is a given parameter and

a±
ij,ε =

1
2

(
r
((

ε−θ (x1 − iε) + α1i (ω) , ε−θ (x2 − jε) + α2j (ω)
)
, ω
)

±q
((

ε−θ (x1 − iε) + β1i (ω) , ε−θ (x2 − jε) + β2j (ω)
)
, ω
)

)

, (7)

(we here omit the dependence with respect to (x1, x2) and to the random parameter ω). We suppose
that, for every ε ∈ ]0, 1[, the layer Σε (ω) with random thinness which is the union of the cells Zε

ij (ω)

Σε (ω) =
⋃

(i,j)∈Iε

Zε
ij (ω) ,

is contained in Ω, and we set

Ω±
ε (ω) = Ω±\Σε (ω) , Γ±

ε (ω) = ∂Ω±
ε (ω) ∩ ∂Σε (ω) , (8)

according to Fig. 1.
Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions (2)–(5) are

satisfied, and f ∈ L∞ (Ω;R3
)
. We consider the following stationary Navier–Stokes problem posed in Ω

⎧
⎪⎪⎨

⎪⎪⎩

−ν+Δuε + (uε · ∇) uε + ∇pε = f in Ω+
ε (ω) ,

−ν−Δuε + (uε · ∇) uε + ∇pε = f in Ω−
ε (ω) ,

−εγν0Δuε + (uε · ∇) uε + ∇pε = f in Σε (ω) ,
div (uε) = 0 inΩ,

(9)

with the transmission and boundary conditions
⎧
⎪⎨

⎪⎩

[uε]Γ ±
ε (ω) = 0 on Γ±

ε (ω) ,

ν± ∂uε

∂n
− εγν0 ∂uε

∂n
− [pε] n = 0 on Γ±

ε (ω) ,

uε = 0 on ∂Ω,

(10)

where [u]Γ ±
ε (ω) is the jump of u across Γ±

ε , which is the difference of the two traces of u on the surface
Γ±

ε , and n is the unit normal on Γ±
ε outer to Σε (ω).
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The problem (9)–(10) has a unique solution (uε, pε) ∈ Vε (ω)
(
Ω;R3

)
× L2 (Ω) /R, see [11], where

Vε (ω)
(
Ω;R3

)
=
{

u ∈ H1
(
Ω;R3

)
| div (u) = 0 in Ω, [u]Γ ±

ε (ω) = 0,
u = 0on ∂Ω

}

. (11)

Our purpose is to describe the asymptotic behavior of the solution uε of (9)–(10) as ε tends to zero. We
will use Γ -convergence methods, referring to [1], [5], for instance, for the definition and the properties of
this variational convergence. In the case where γ = 1, we will prove that, with probability 1, the solution
uε of (9)–(10) converges in some topology which is precisely defined in Definition 1 to the solution u0 of
the following nonrandom Navier–Stokes limit problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ν±Δu0 + (u0 · ∇) u0 + ∇p±
0 = f in Ω±,

div (u0) = 0 inΩ±,
u0 = 0 on ∂Ω,
[(u0)3]Σ = 0 on Σ,

ν+

(
∂ (u0)3

∂x3

)+

|Σ −ν−
(

∂ (u0)3
∂x3

)−
|Σ= p+0 − p−

0 on Σ,

ν+

(
∂ (u0)β

∂x3

)+

|Σ= ν−
(

∂ (u0)β

∂x3

)−

|Σ=
ν0

〈q (0, 0)〉
[
(u0)β

]

Σ
on Σ, β = 1, 2

(12)

The boundary condition (12)4 represents the continuity of the normal velocity through the interface
Σ. The relation (12)5 means that the difference of the normal fluxes on the two sides of the interface Σ
is equal to the difference of the pressures. In the interfacial law (12)6, the tangential fluxes are equal and
are proportional to the jump of the tangential velocities across the interface Σ, through the coefficient of
proportionality ν0

〈q(0,0)〉 .
This convergence result shows the importance of the frictionless dynamics and of the random con-

figuration of the boundary layers when trying to control the exchange between the two interacting fluid
flows.

The description of the asymptotic behavior of a three-body system composed of a thin layer placed
between two pieces and given a different constitutive law in each domain has been treated by many
authors in different contexts: scalar case, elastic materials or fluid flows. In the scalar case, Bakhvalov
and Panasenko considered in [2, Chapter 9, section 4] the problem

s∑

i=1

∂

∂xi

(

Kε

(x

ε

) ∂u

∂xi

)

= f (x) ,

posed in the layer {x ∈ R
s | x1 ∈ (d1, d2)} where d1 < 0 < d2 are multiples of ε and

Kε (ξ) =

⎧
⎨

⎩

K1 (ξ) if ξ1 < 0,
K2 (ξ) if ξ1 > 1,
εγK3 (ξ) if ξ1 ∈ (0, 1) ,

the functions Ki being 1-periodic. The boundary condition

u |x1=d1= g (x2, . . . , xs)

was added with g periodic.
In the case where γ = 1 (called “poorly conductive interlayer”), the authors proved that the limit v0

of u satisfies
∂v0
∂ν1

(

:=
s∑

i=1

K̂1j
1

(x

ε

) ∂v0
∂xi

|x1=(−1)1·0

)

=
∂v0
∂ν2

= λ [v0] ,
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where λ =
〈
K3

∂N3

∂ξ1

〉
, N3 being the solution in H1 (0, 1)s and 1-periodic in ξ2, . . . , ξs of the auxiliary

problem
⎧
⎪⎪⎨

⎪⎪⎩

s∑

i=1

∂

∂ξi

(

K3 (ξ)
∂N3

∂ξi

)

= 0,

N3 |ξ1=0= 0,
N3 |ξ1=1= 1.

In our limit fluid flow problem (12), the difference between the normal derivatives of (u0)3 is not equal
to 0 but to the difference of the pressures. For the other components (u0)β , we get a comparable limit
problem than in the above-described scalar case.

In the last part of this work, we will discuss the case where Reynolds number in the boundary layer
is of order O (ε−γ), with γ > 1 or 0 < γ < 1.

2. A priori estimates in the case where γ = 1

Lemma 1. Let ω be a fixed realization from a set of full measure on Π, for which the conditions (2)–(5)
are satisfied. Then, the solution (uε, pε) of (9)–(10) satisfies the following estimates

sup
ε

⎛

⎜
⎝

∫

Ω+
ε (ω)∪Ω−

ε (ω)

|∇uε|2 dx + ε

∫

Σε(ω)

|∇uε|2 dx

⎞

⎟
⎠ < +∞,

sup
ε

⎛

⎜
⎝

∫

Ω+
ε (ω)∪Ω−

ε (ω)

|uε|2 dx

⎞

⎟
⎠ < +∞,

sup
ε

⎛

⎜
⎝

1
ε

∫

Σε(ω)

|uε|2 dx

⎞

⎟
⎠ < +∞. (13)

Proof. Let x′ = (x1, x2) ∈ Y ε
ij , for some (i, j) ∈ Iε. We write, for every x3 belonging to the interval

(
εa−

ij,ε, εa
+
ij,ε

)

uε (x′, x3) = uε

(
x′, εa−

ij,ε

)
+

x3∫

εa−
ij,ε

∂uε

∂x3
(x′, s) ds.

Using (3) and Cauchy–Schwarz’ inequality, we get

|uε (x′, x3)|2 ≤ 2

⎛

⎜
⎜
⎝

∣
∣uε

(
x′, εa−

ij,ε

)∣
∣2 + ε

εa+
ij,ε∫

εa−
ij,ε

∣
∣
∣
∣
∂uε

∂x3

∣
∣
∣
∣

2

ds

⎞

⎟
⎟
⎠ ,

from which we deduce, using (3) and (5),

∫

Zε
ij(ω)

|uε (x)|2 dx ≤ 2

⎛

⎜
⎝ε

∫

Y ε
ij

∣
∣uε

(
x′, εa−

ij,ε

)∣
∣2 dx′ + ε2

∫

Zε
ij(ω)

|∇uε (x)|2 dx

⎞

⎟
⎠
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and, summing over Iε,

∫

Σε(ω)

|uε (x)|2 dx ≤ C

⎛

⎜
⎝ε
∑

i,j

∫

Y ε
ij

∣
∣uε

(
x′, εa−

ij,ε

)∣
∣2 dx′ + ε2

∫

Σε(ω)

|∇uε (x)|2 dx

⎞

⎟
⎠ . (14)

Using a trace theorem in Ω±
ε (ω) and the homogeneous Dirichlet boundary condition uε = 0 on ∂Ω,

there exists a nonrandom positive constant C independent of ε such that
∑

i,j

∫

Y ε
ij

∣
∣uε

(
x′, εa±

ij,ε

)∣
∣2 dx′ ≤ C

∫

Ω±
ε (ω)

|∇uε (x)|2 dx. (15)

We deduce from (14)–(15) that

∫

Σε(ω)

|uε (x)|2 dx ≤ C

⎛

⎜
⎝ε

∫

Ω±
ε (ω)

|∇uε (x)|2 dx + ε2
∫

Σε(ω)

|∇uε (x)|2 dx

⎞

⎟
⎠ . (16)

Now multiplying (9)1,2,3 by uε and using Green’s formula and Cauchy–Schwarz’ inequality, we get,
thanks to the boundary conditions (10),

ν+

∫

Ω+
ε (ω)

|∇uε|2 dx + ν−
∫

Ω−
ε (ω)

|∇uε|2 dx + εν0

∫

Σε(ω)

|∇uε|2 dx

=
∫

Ω

f · uεdx ≤ C

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∫

Ω+
ε (ω)∪Ω−

ε (ω)

|uε|2 dx

⎞

⎟
⎠

1/2

+

⎛

⎜
⎝

∫

Σε(ω)

|uε|2 dx

⎞

⎟
⎠

1/2
⎞

⎟
⎟
⎠ .

Using Poincaré’s inequality in Ω+
ε (ω) and Ω−

ε (ω) and (16), we obtain

ν+

∫

Ω+
ε (ω)

|∇uε|2 dx + ν−
∫

Ω−
ε (ω)

|∇uε|2 dx + εν0

∫

Σε

|∇uε|2 dx

≤ C

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∫

Ω+
ε (ω)∪Ω−

ε (ω)

|∇uε|2 dx

⎞

⎟
⎠

1/2

+

⎛

⎝ε

∫

Σε

|∇uε (x)|2 dx

⎞

⎠

1/2
⎞

⎟
⎟
⎠ . (17)

Let now x, y and z be nonnegative real numbers satisfying

x2 + y2 + z2 ≤ c1 (x + y + z) , (18)

for some positive constant c1. We prove the existence of a positive constant c2 such that x2+y2+zr ≤ c2.
Otherwise, x2+y2+z2

x+y+z tends to ∞ when x, y or z tends to ∞, which contradicts (18). Thus, (17) implies
(13)1.

Using Poincaré’s inequality, we deduce (13)2. Using (16), we deduce (13)3, which ends the proof. �

Remark 1. When γ < 1, we deduce from the preceding computations that the estimates (13) are still
true and that we have

sup
ε>0

εγ

∫

Σε(ω)

|∇uε|2 dx < +∞.
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In order to get estimates on the pressure pε, let us first define the zero mean value pressure

p±
ε = pε − 1

∣
∣Ω±

ε (ω)
∣
∣

∫

Ω±
ε (ω)

pεdx.

We have the following uniform estimate.

Lemma 2. One has supε

∥
∥
∥p±

ε

∥
∥
∥

L2(Ω±
ε )

< ∞.

Proof. The problem
{

div (ψ±
ε ) = p±

ε in Ω±
ε (ω) ,

ψ±
ε = 0 on ∂Ω±

ε (ω) ,

has a unique solution ψ±
ε ∈ H1

0

(
Ω±

ε (ω) ;R3
)

satisfying
∥
∥∇ψ±

ε

∥
∥
L2(Ω±

ε (ω);R9) ≤ C (Ω)
∥
∥
∥p±

ε

∥
∥
∥

L2(Ω±
ε (ω))

,

for a constant C (Ω) only depending of Ω (see [11]).
Multiplying (9)1 (resp. (9)2) by ψ+

ε (resp. ψ−
ε ), using Green’s formula and summing, we obtain

ν+

∫

Ω+
ε (ω)

∇uε · ∇ψ±
ε dx + ν−

∫

Ω−
ε (ω)

∇uε · ∇ψ±
ε dx

+
∫

Ω+
ε (ω)

(uε · ∇) uε · ψ+
ε dx +

∫

Ω−
ε (ω)

(uε · ∇) uε · ψ−
ε dx

=
∫

Ω+
ε (ω)

f · ψ+
ε dx +

∫

Ω−
ε (ω)

f · ψ−
ε dx +

∫

Ω+
ε (ω)

(
p+ε
)2

dx +
∫

Ω−
ε (ω)

(
p−

ε

)2
dx,

thanks to the boundary conditions satisfied by ψ±
ε on ∂Ω±

ε (ω). We then compute, using Cauchy–Schwarz’
inequality,

∣
∣
∣
∣
∣
∣
∣

∫

Ω±
ε (ω)

f · ψ±
ε dx

∣
∣
∣
∣
∣
∣
∣

≤ C
∥
∥
∥p±

ε

∥
∥
∥

L2(Ω±
ε (ω))

,

∣
∣
∣
∣
∣
∣
∣

∫

Ω±
ε (ω)

(uε · ∇) uε · ψ±
ε dx

∣
∣
∣
∣
∣
∣
∣

≤ C
∥
∥∇ψ±

ε

∥
∥
L2(Ω±

ε (ω);R3) ‖∇uε‖2L2(Ω±
ε (ω);R9)

≤ C
∥
∥
∥p±

ε

∥
∥
∥

L2(Ω±
ε (ω))

‖∇uε‖2L2(Ω±
ε (ω);R9) ,

∣
∣
∣
∣
∣
∣
∣

∫

Ω±
ε (ω)

∇uε · ∇ψ±
ε dx

∣
∣
∣
∣
∣
∣
∣

≤ C
∥
∥
∥p±

ε

∥
∥
∥

L2(Ω±
ε (ω))

‖∇uε‖L2(Ω±
ε (ω);R3) ,

which leads to the desired estimate. �

From the conditions (3) and (5), we deduce the following construction of operators, which will allow
working in fixed domains.
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Lemma 3. Let ω be a fixed event, for which the conditions (2)–(5) are satisfied. Then, there exists an
invertible map T+

ε : Ω+ → Ω+
ε (ω) (resp. T−

ε : Ω− → Ω−
ε (ω)) such that for every u ∈ H1

0

(
Ωε (ω) ;R3

)

‖u ◦ T+
ε ‖H1(Ω+;R3) ≤ C ‖u‖H1(Ω+

ε (ω);R3) ,

‖u ◦ T−
ε ‖H1(Ω−;R3) ≤ C ‖u‖H1(Ω−

ε (ω);R3) ,
(19)

where C is a nonrandom positive constant independent of ε.
We define the transformation T ε from Ω\Σ into Ωε (ω) as

T ε (x) =
{

T+
ε (x) if x ∈ Ω+,

T−
ε (x) if x ∈ Ω−.

Proof. Referring to the construction (8) of Ωε (ω), we define

∀ (x′, x3) ∈ Ω± : T±
ε (x) =

{
x if x ∈ Ω±\Σε (ω) ,(
x′, L±

ij,ε (x)
)

if x ∈ Ω± ∩ Zε
ij (ω) , ∀ (i, j) ∈ Iε,

where L±
ij,ε (x) = εa±

ij,ε + x3
h±(x′)

(
h± (x′) − εa±

ij,ε

)
. We immediately observe that

T±
ε (x′, 0) =

(
x′, εa±

ij,ε

)
,

T±
ε (x′, h± (x′)) = (x′, h± (x′)) .

We compute the Jacobian of T±
ε , which is the determinant of its gradient: Jac (T±

ε ) (x) =
∂(T ±

ε )3
∂x3

(x) =
h±(x′)−εa±

ij,ε

h±(x′) , from which we deduce, according to the properties (3) of the random processes q and r,
that Jac (T±

ε ) = 1 + o (ε) →ε→0 1. This proves that T±
ε is invertible.

The estimate (19) is then a direct consequence of the definition of T±
ε . �

We have the following compactness result.

Proposition 1. Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions
(2)–(5) are satisfied. Let (uε)ε be a sequence such that uε ∈ Vε (ω)

(
Ω;R3

)
for every ε, which satisfies

the estimates (13). Then, with probability 1, there exists a subsequence of (uε)ε, still denoted in the same
way, such that:

1. one has the following convergences

uε ◦ T ε ⇀
ε→0

u0 inH1
(
Ω\Σ;R3

)
-weak,

uε →
ε→0

u0 inL2
(
Ω;R3

)
-strong.

2. u0 belongs to the space V0

(
Ω\Σ;R3

)
defined through

V0

(
Ω\Σ;R3

)
=
{

u ∈ H1
(
Ω\Σ;R3

)
| div (u) = 0 in Ω [u3]Σ = 0and u = 0on ∂Ω

}
. (20)

Proof. 1. From the estimates (13) and Lemma 3, we deduce that the sequence (uε ◦ T ε)ε is bounded in
H1
(
Ω\Σ;R3

)
. Up to some subsequence, this sequence (uε ◦ T ε)ε converges to some u0 in H1

(
Ω\Σ;R3

)
-

weak.
From (13)1,2, it follows that u0 belongs to L2

(
Ω;R3

)
and, up to some subsequence, we have

1Ω±∇ (uε ◦ T ε) ⇀
ε→0

∇u0 inL2
(
Ω±;R9

)
-weak,

where 1Ω± is the characteristic function of Ω±.
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We then write

∫

Ω

|uε − u0|2 dx =
∫

Ω+
ε (ω)∪Ω−

ε (ω)

|uε − u0|2 dx +
∫

Σε(ω)

|uε − u0|2 dx.

Using the above convergences, a Sobolev embedding and (13)3, we prove that (uε)ε converges to u0

in L2
(
Ω;R3

)
-strong.

2. Let (u0)
+ (resp. (u0)

−) be the trace of u0 ∈ H1
(
Ω+;R3

)
(resp. H1

(
Ω−;R3

)
) on Σ. Using a trace

theorem, we have, up to some subsequence,

lim
ε→0

∫

Γ ±
ε (ω)

∣
∣
∣uε −

(
(u0)

± ◦
(
T±

ε

)−1
)∣
∣
∣ds = lim

ε→0

∫

Σ

∣
∣
∣uε ◦ T±

ε − (u0)
+
∣
∣
∣ Jac

(
T±

ε

)
dx′ = 0. (21)

As div (uε) = 0 in Ω, we have, for every ϕ ∈ C∞
c (Σ) ,

0 =
∫

Σε(ω)

div (uε) ϕdx = −
∫

Σε(ω)

(uε)τ · ∇τϕdx +
∫

Γ+
ε (ω)

uε · nϕds −
∫

Γ −
ε (ω)

uε · nϕds,

where (uε)τ = ((uε)1 , (uε)2) and ∇τϕ =
(

∂ϕ
∂x1

, ∂ϕ
∂x2

)
. Then, passing to the limit using (13)3 and (21), we

deduce that [(u0)3]Σ = 0.

As div (uε) = 0 in Ω±
ε (ω), we easily deduce that div (u0) = 0 in Ω±. Thus, u0 belongs to V0

(
Ω\Σ;R3

)
.

�

We have the following result in the layer Σε (ω).

Lemma 4. Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions
(2)–(5) are satisfied.

1. For every ϕ ∈ C1
0

(
R

3
)
, we have

lim
ε→0

1
ε

∫

Σε(ω)

ϕ (x1, x2, x3) dx = 〈q (0, 0)〉
∫

Σ

ϕ (x1, x2, 0) dx1dx2.

2. Let (wε)ε be a sequence in L2 (Ω) such that supε
1
ε

∫

Σε(ω)
(wε (x))2 dx < +∞. There exists a subse-

quence, still denoted in the same way, and w ∈ L2
(
R

2
)
such that, for every ϕ ∈ C1

0

(
R

3
)
, we have

almost surely

lim
ε→0

1
ε

∫

Σε(ω)

wε (x)ϕ (x) dx = 〈q (0, 0)〉
∫

Σ

w (x1, x2) ϕ (x1, x2, 0) dx1dx2.

Proof. Let ω be a fixed event, for which the conditions (2)–(5) are satisfied.
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1. Assuming that the conditions (3) are satisfied, we compute

lim
ε→0

1
ε

∫

Σε(ω)

ϕ (x1, x2, x3) dx

= lim
ε→0

∑

(i,j)∈Iε

1
ε

∫

Zε
ij(ω)

ϕ (x1, x2, x3) dx

= lim
ε→0

∑

(i,j)∈Iε

1
ε

∫

Y ε
ij

εa+
ij,ε∫

εa−
ij,ε

ϕ (x1, x2, x3) dx

= lim
ε→0

∑

(i,j)∈Iε

∫

Y ε
ij

1
2∫

− 1
2

qε
ijϕ
(
x1, x2, εq

ε
ijz +

ε

2
rε
ij

)
dx1dx2dz

= lim
ε→0

∑

(i,j)∈Iε

ε2ϕ (iε, jε, 0)
∫

Y

qθ
ij,ε (y1, y2) dy1dy2,

where we have introduced the change in variables x3 = εqε
ijz + ε

2rε
ij with

qε
ij := q

((
ε−θ (x1 − iε) + β1i (ω) , ε−θ (x2 − jε) + β2j (ω)

)
, ω
)
,

rε
ij := r

((
ε−θ (x1 − iε) + α1i (ω) , ε−θ (x2 − jε) + α2j (ω)

)
, ω
)
,

qθ
ij,ε (y1, y2) := q

((
ε−(θ−1)y1 + β1i (ω) , ε−(θ−1)y2 + β2j (ω)

)
, ω
) (22)

(see the definition (7) of a±
ij,ε) and then the change in variables defined through

(

y1 =
x1 − iε

ε
, y2 =

x2 − jε

ε

)

in the cell Y ε
ij . Introducing z1 = ε−(θ−1)y1 and z2 = ε−(θ−1)y2, we finally obtain

lim
ε→0

1
ε

∫

Σε(ω)

ϕ (x1, x2, x3) dx

= lim
ε→0

∑

(i,j)∈Iε

ε2ϕ (iε, jε, 0)
1

εθ−1

εθ−1
2∫

− εθ−1
2

1
εθ−1

εθ−1
2∫

− εθ−1
2

q ((z1 + β1i (ω) , z2 + β2j (ω)) , ω) dz1dz2

= 〈q (0, 0)〉
∫

Σ

ϕ (x1, x2, 0) dx1dx2,

using the ergodicity property (4).
2. One can deduce from the preceding point that the sequence of measures (με)ε defined through

με = 1Σε(ω)(x)dx

ε , 1A being the characteristic function of the set A, converges in the weak sense of
measures to the measure μ = 〈q (0, 0)〉1Σ (x′) dx′, when ε goes to 0. Observing that

∫

R3

|wε| dμε ≤ 1
ε

∫

Σε(ω)

(wε (x))2 dx
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and using the hypothesis on (wε)ε, we deduce that the sequence (wενε)ε converges, up to some subse-
quence, to some measure χ, in the weak sense of measures. For every ϕ ∈ C1

0

(
R

3
)
, we have, thanks to

Fenchel’s inequality,

2
∫

R3

wεϕdμε −
∫

R3

(ϕ)2 dμε ≤
∫

R3

(wε)
2
dμε.

Then, passing to the limit, we get

2 〈χ,ϕ〉 −
∫

R2

ϕ2 (x′, 0) dμ ≤ lim inf
ε→0

∫

R3

(wε)
2
dμε < +∞.

This implies

sup

⎧
⎨

⎩
〈χ,ϕ〉 | ϕ ∈ C1

0

(
R

3
)
,
∫

R2

ϕ2 (x′, 0) dμ < +∞

⎫
⎬

⎭
.

Thus, using Riesz’ representation theorem, we can identify χ with wμ, for some w ∈ L2
(
R

2
)
. �

Lemma 5. Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions
(2)–(5) are satisfied. Let (uε)ε be a sequence such that uε ∈ Vε (ω)

(
Ω;R3

)
, for every ε > 0, and satisfying

the estimates (13). Then, with probability 1, there exists a subsequence of (uε)ε, still denoted in the same
way, such that

uε ◦ T ε ⇀
ε→0

u0 inH1
(
Ω\Σ;R3

)
-weak,

uε →
ε→0

u0 inL2
(
Ω;R3

)
-strong,

lim
ε→0

∫

Σε(ω)

∇ (uε)i (x) · ϕ (x) dx =
∫

Σ

[(u0)i]Σ ϕ3 (x1, x2, 0) dx1dx2,

lim inf
ε→0

∫

Σε(ω)

ε |∇uε (x)|2 dx ≥ 1
〈q (0, 0)〉

∫

Σ

([u0]Σ)2 dx1dx2,

for every ϕ ∈ C1
0

(
R

3;R3
)
and every i = 1, 2, 3.

Proof. The first and second convergences of Lemma 5 have already been proved in Proposition 1 1. Let
us now fix an event ω, for which the conditions (2)–(5) are satisfied. Then, as (uε)ε satisfies the estimate
(13)1, one has

sup
ε

1
ε

∫

Σε(ω)

|ε∇uε (x)|2 dx < +∞.

Thus, using Lemma 4 2., there exists χ ∈ L2
(
Σ;R2

)
, such that, for every ϕ ∈ C1

0

(
R

3;R3
)
,

lim
ε→0

1
ε

∫

Σε(ω)

ε∇ (uε)i (x) · ϕ (x) dx = 〈q (0, 0)〉
∫

Σ

χiϕ3 (x1, x2, 0) dx1dx2,

up to some subsequence of (ε∇uε)ε still denoted in the same way. On the other hand, using Green’s
formula, we still have for every ϕ ∈ C1

0

(
R

3;R3
)

and every i = 1, 2, 3
∫

Σε(ω)

∇ (uε)i (x) · ϕ (x) dx = −
∫

Σε(ω)

(uε)i (x) divϕ (x) dx +
∫

Γ+
ε

(uε)i ϕ · nds −
∫

Γ −
ε

(uε)i ϕ · nds,



3368 A. Brillard and M. El Jarroudi ZAMP

from which we deduce, using (13)3 and (21), that, up to some subsequence,

lim
ε→0

∫

Σε(ω)

∇ (uε)i (x) · ϕ (x) dx =
∫

Σ

[(u0)i]Σ ϕ3 (x1, x2, 0) dx1dx2.

Thus, χ = [u0]Σ
〈q(0,0)〉 , and using Fenchel’s inequality again, we get

lim inf
ε→0

∫

Σε(ω)

ε |∇uε (x)|2 dx ≥ 1
〈q (0, 0)〉

∫

Σ

([u0]Σ)2 dx1dx2,

which ends the proof. �

We deduce from the preceding convergences the topology τ which is adapted to the description of the
asymptotic behavior of the solution uε of (9)–(10).

Definition 1. Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions
(2)–(5) are satisfied. Then, with probability 1, a sequence (uε)ε, with uε ∈ Vε (ω)

(
Ω;R3

)
for every ε,

where Vε (ω)
(
Ω;R3

)
is the space defined in (11), converges to u0 ∈ V0

(
Ω\Σ;R3

)
(defined in (20)) in

the topology τ if it satisfies the estimates (13) and the convergences
{

uε →
ε→0

u0 inL2
(
Ω;R3

)
-strong,

uε ◦ T ε ⇀
ε→0

u0 inH1
(
Ω\Σ;R3

)
-weak.

3. Convergence

3.1. Case where γ = 1

Let us introduce the random sequence of functionals (Fε (ω))ε associated with the Stokes part of the
problem (9), which is defined on the space L2

(
Ω;R3

)
through

Fε (ω) (u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ν+

∫

Ω+
ε (ω)

|∇u|2 dx + ν−
∫

Ω−
ε (ω)

|∇u|2 dx

+ν0ε

∫

±ε(ωω)

|∇u|2 dx if u ∈ Vε (ω)
(
Ω;R3

)
,

+∞ otherwise

and the functional F0 defined on the space L2
(
Ω;R3

)
through

F0 (u) =

⎧
⎪⎨

⎪⎩

ν+

∫

Ω+

|∇u|2 dx + ν−
∫

Ω−

|∇u|2 dx +
ν0

〈q (0, 0)〉

∫

Σ

[u]2Σ dx′ if u ∈ V0

(
Ω\Σ;R3

)
,

+∞ otherwise.

Our main result reads as follows.

Theorem 1. Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions
(2)–(5) are satisfied. Then, with probability 1, we have:

1. (lim sup inequality) For every u ∈ V0

(
Ω\Σ;R3

)
, there exists a sequence

(
u0

ε

)

ε
with u0

ε ∈
Vε (ω)

(
Ω;R3

)
, for every ε > 0, and such that

(
u0

ε

)

ε
τ -converges to u and

lim sup
ε→0

Fε (ω)
(
u0

ε

)
≤ F0 (u) ,
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2. (lim inf inequality) For every sequence (uε)ε such that uε ∈ Vε (ω)
(
Ω;R3

)
, for every ε > 0, and

such that (uε)ε τ -converges to u, we have u ∈ V0

(
Ω\Σ;R3

)
and

lim inf
ε→0

Fε (ω) (uε) ≥ F0 (u) .

Proof. Let ω be a fixed event, for which the conditions (2)–(5) are satisfied. Let u : Ω → R
3 be such

that div (u) = 0 in Ω, u = 0 on ∂Ω, u |Ω±∈ C1
(
Ω±;R3

)
. Let u+ (resp. u−) be the trace of u |Ω+ (resp.

u |Ω−) on Σ, with (u+)3 = (u−)3.
We define the function zε in the cell Zε

ij (ω) ⊂ Σε (ω) , for every (i, j) ∈ Iε, through
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(zε)α (x′, x3) = uα

(
x′, εa+

ij,ε (x′)
)

+
x3 − εa+

ij,ε (x′)

εa+
ij,ε (x′) − εa−

ij,ε (x′)
×
(
uα

(
x′, εa+

ij,ε (x′)
)

− uα

(
x′, εa−

ij,ε (x′)
))

,

(zε)3 (x′, x3) = u3 (x′, x3) ,

where a±
ij,ε (now indicating its dependence with respect to x′ = (x1, x2)) has been defined in (7) and

for α = 1, 2. (zε)α connects in an affine way with respect to x3 the traces uα

(
x′, εa±

ij,ε (x′)
)

of uα on
the boundaries Γ±

ε (ω). The definition of (zε)3 makes sense, as u3 presents no jump across Σ, thus doing
zε ∈ H1

(
Ω\Σ;R3

)
.

We observe that zε is not divergence free in Σε (ω). But it satisfies
∫

∂Σε(ω)
zε · ndσ = 0, as zε = 0

on the boundary ∂Σε (ω) \ Γ±
ε (ω) and zε = u, a divergence-free function which vanishes on ∂Ω, on the

boundaries Γ±
ε (ω). Therefore, there exists a solution σε to the problem

{
div (σε) = −div (zε) in Σε (ω) ,
σε = 0 on ∂Σε (ω) .

Using direct computations on the expressions of (zε)α or (zε)3, we prove the following estimates on
zε, the details of the proof being postponed to the Appendix.

Lemma 6. There exists a nonrandom constant C independent of ε such that
∫

Σε(ω)

|zε|2 (x) dx ≤ Cε,

∫

Σε(ω)

|∇ (zε)3|
2 (x) dx ≤ C

ε
,

∫

Σε(ω)

|∇ (zε)α|2 (x) dx ≤ Cε3−2θ.

Concerning the function σε, we have the following estimate, whose proof is also postponed to the
Appendix.

Lemma 7. We have ∫

Σε(ω)

|∇σε|2 (x) dx →
ε→0

0.

We then define the test function u0
ε as

u0
ε =

{
u in Ω \ Σε (ω) ,
zε + σε in Σε (ω) .

(23)
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We deduce from its construction that u0
ε belongs to Vε (ω)

(
Ω;R3

)
for every ε > 0. Let us prove that

the sequence
(
u0

ε

)

ε
τ -converges to u. According to the construction of the sequence (zε)ε, the sequence

(
u0

ε

)

ε
satisfies the estimates (13) and the convergences

{
u0

ε →
ε→0

u inL2
(
Ω;R3

)
-strong,

u0
ε ◦ T ε ⇀

ε→0
u inH1

(
Ω\Σ;R3

)
-weak.

Let us prove that limε→0 Fε (ω)
(
u0

ε

)
= F0 (u). Observe that if ω is an arbitrary realization from a set

of full measure on Π, for which the conditions (2)–(5) are satisfied, we compute

lim
ε→0

ν0ε

∫

±ε(ω)

∣
∣∇u0

ε

∣
∣2 dx = lim

ε→0
ν0ε

∫

Σε(ω)

|∇zε|2 dx

= lim
ε→0

ν0ε
∑

(i,j)∈Iε
α=1,2

∫

Zε
ij(ω)

(
uα

(
x′, εa+

ij,ε (x′)
)

− uα

(
x′, εa−

ij,ε (x′)
)

ε
(
a+

ij,ε (x′) − a−
ij,ε (x′)

)

)2

dx

= lim
ε→0

ν0
∑

(i,j)∈Iε
α=1,2

∫

Y ε
ij

(
uα

(
iε, jε, εa+

ij,ε (x′)
)

− uα

(
iε, jε, εa−

ij,ε (x′)
))

εqε
ij (x′)

2

dx′

= lim
ε→0

ν0
∑

(i,j)∈Iε
α=1,2

ε2
(
uα

(
iε, jε, εa+

ij,ε (x′)
)

− uα

(
iε, jε, εa−

ij,ε (x′)
))2
∫

Y

dy1dy2
qθ
ij (y1, y2)

,

where qε
ij , rε

ij and qθ
ij are defined in (22). We deduce from this computation that

lim
ε→0

ν0ε

∫

±ε(ω)

∣
∣∇u0

ε

∣
∣2 dx =

∑

α=1,2

ν0

〈q (0, 0)〉

∫

±

[uα]2Σ dx′. (24)

On the other hand, one can easily see that

lim
ε→0

∫

Ω±
ε (ω)

∣
∣∇u0

ε

∣
∣2 dx = lim

ε→0

∫

Ω±
ε (ω)

|∇u|2 dx =
∫

Ω±

|∇u|2 dx. (25)

Thus, owing to (24) and (25), we get limε→0 Fε (ω)
(
u0

ε

)
= F0 (u).

Let us now verify the lim sup property of the Γ -convergence in the general case. For every
u ∈ V0

(
Ω\Σ;R3

)
, there exists a sequence (un)n such that div (un) = 0 in Ω, un = 0 on ∂Ω,

un |Ω±∈ C1
(
Ω±;R3

)
, (u+

n )3 = (u−
n )3, and (un)n converges to u in the strong topology of V0

(
Ω\Σ;R3

)
.

Using (23), we build (un)0ε ∈ Vε (ω)
(
Ω;R3

)
such that

(
(un)0ε

)

ε
converges to un in the topology τ and

limε→0 Fε (ω)
(
(un)0ε

)
= F0 (un). The continuity of the functional F0 with respect to the strong topology

of V0

(
Ω\Σ;R3

)
implies

lim
n→+∞

lim
ε→0

Fε (ω)
(
(un)0ε

)
= F0 (u) .

The topology τ being metrizable, the diagonalization argument of [1, Corollary 1.18] proves
the existence of a subsequence

((
un(ε)

)0
ε

)

ε
which converges to u in the topology τ and satisfies

lim supε→0 Fε (ω)
((

un(ε)

)0
ε

)
≤ F0 (u). This proves the lim sup property in the general case.
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2. Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions (2)–(5) are
satisfied. Let (uε)ε, with uε ∈ Vε (ω)

(
Ω;R3

)
for every ε > 0, be a sequence such that (uε)ε τ -converges

to u. According to Proposition 1 2., u belongs to V0

(
Ω\Σ;R3

)
, and, using Lemma 5, we get

lim inf
ε→0

∫

Σε(ω)

ε |∇uε (x)|2 dx ≥ 1
〈q (0, 0)〉

∫

Σ

([u]Σ)2 dx1dx2.

As (uε)ε τ -converges to u, we have

lim inf
ε→0

∫

Ω±
ε

|∇uε|2 dx ≥
∫

Ω±

|∇u|2 dx.

Thus, lim infε→0 Fε (ω) (uε) ≥ F0 (u). This completes the proof of the main convergence result. �

Let us now prove some convergence results for the solution uε of (9), for the zero mean value pressure
and for the associated energies.

Corollary 1. Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions
(2)–(5) are satisfied. Then, with probability 1, the sequence (uε, pε)ε, where (uε, pε) is the solution of
(9)–(10), is such that (uε)ε τ -converges to u0 and

∫

Ω±
ε (ω)

∣
∣
∣p±

ε

∣
∣
∣
2

dx →
ε→0

∫

Ω±

∣
∣p±

0

∣
∣2 dx,

where
(

u0, p0 =
{

p+0 in Ω+

p−
0 in Ω−

)

belongs to V0

(
Ω\Σ;R3

)
×L2 (Ω) /R and is the solution of the limit prob-

lem (12).
Moreover,

lim
ε→0

Fε (ω) (uε) = F0 (u0) = ν+

∫

Ω+

|∇u0|2 dx + ν−
∫

Ω−

|∇u0|2 dx +
ν0

〈q (0, 0)〉

∫

Σ

|[u0]Σ |2 dx′.

Proof. We first observe that, for every sequence (vε)ε τ -converging to v, we have

lim
ε→0

∫

Ω±
ε (ω)

f · vεdx =
∫

Ω±

f · vdx,

(26)
lim
ε→0

∫

Ω±
ε (ω)

(uε · ∇) uε · vεdx =
∫

Ω±

(u0 · ∇) u0 · vdx.

Take v : Ω → R
3 such that div (v) = 0 in Ω, v = 0 on ∂Ω, v |Ω+∈ C1

(
Ω+;R3

)
and v |Ω−∈

C1
(
Ω−;R3

)
. We then multiply (9)1,2 by v0

ε defined in (23) and use Green’s formula in order to get
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ν+

∫

Ω+
ε (ω)

∇uε · ∇v0
εdx + ν−

∫

Ω−
ε (ω)

∇uε · ∇v0
εdx

+
∫

Ω+
ε (ω)

(uε · ∇) uε · v0
εdx +

∫

Ω−
ε (ω)

(uε · ∇) uε · v0
εdx

+ν+

∫

Γ+
ε (ω)

∂uε

∂n
· v0

εdσ + ν−
∫

Γ −
ε (ω)

∂uε

∂n
· v0

εdσ

+
∫

Γ+
ε (ω)

pεn · v0
εdσ +

∫

Γ −
ε (ω)

pεn · v0
εdσ =

∫

Ω+
ε (ω)∪Ω−

ε (ω)

f · v0
εdx,

thanks to the boundary conditions (10). Taking into account the boundary conditions (10)2, the preceding
equality may be written as

ν+

∫

Ω+
ε (ω)

∇uε · ∇v0
εdx + ν−

∫

Ω−
ε (ω)

∇uε · ∇v0
εdx

+
∫

Ω+
ε (ω)

(uε · ∇) uε · v0
εdx +

∫

Ω−
ε (ω)

(uε · ∇) uε · v0
εdx

+εν0

∫

Γ+
ε (ω)

∂uε

∂n
· v0

εdσ + εν0

∫

Γ −
ε (ω)

∂uε

∂n
· v0

εdσ

+
∫

Γ+
ε (ω)

pεn · v0
εdσ +

∫

Γ −
ε (ω)

pεn · v0
εdσ =

∫

Ω+
ε (ω)∪Ω−

ε (ω)

f · v0
εdx;

hence,

ν+

∫

Ω+
ε (ω)

∇uε · ∇v0
εdx + ν−

∫

Ω−
ε (ω)

∇uε · ∇v0
εdx + εν0

∫

Σε(ω)

∇uε · v0
εdx

+
∫

Ω+
ε (ω)

(uε · ∇) uε · v0
εdx +

∫

Ω−
ε (ω)

(uε · ∇) uε · v0
εdx

+
∫

Σε(ω)

(uε · ∇) uε · v0
εdx =

∫

Ω+
ε (ω)∪Ω−

ε (ω)

f · v0
εdx.

We then take the limit when ε goes to 0 and get

ν+

∫

Ω+

∇u0 · ∇vdx + ν−
∫

Ω−

∇u0 · ∇vdx

+
∫

Ω+

(u0 · ∇) u0 · vdx +
∫

Ω−

(u0 · ∇) u0 · vdx

+ν0 〈q (0, 0)〉
∫

Σ

[(u0)α]Σ [vα]Σ dx′ =
∫

Ω

f · vdx,
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using the construction (23) of v0
ε and (26). Thus, u0 satisfies

∀v ∈ V0

(
Ω\Σ;R3

)
:
∫

Ω+

(
−ν+Δu0 + (u0 · ∇) u0 − f

)
· vdx

+
∫

Ω−

(
−ν−Δu0 + (u0 · ∇) u0 − f

)
· vdx

−ν+

∫

Σ

∂u0

∂x3
· v
(
x′, 0+

)
dx′ − ν−

∫

Σ

∂u0

∂x3
· v
(
x′, 0−)dx′

+ν0 〈q (0, 0)〉
∫

Σ

[(u0)α]Σ [vα]Σ dx′ = 0,

where the superscript + (resp. −) corresponds to the trace on Σ seen from Ω+ (resp. Ω−). This leads to
the limit problem (12).

The second assertion is a direct consequence of the properties of the Γ -convergence. �

Remark 2. Let us consider the case where the functions a±
ij,ε are defined through

a+
ij,ε =

q+
((

ε−θ (x1 − iε) + α1i (ω) , ε−θ (x2 − jε) + α2j (ω)
)
, ω
)

2
,

a−
ij,ε =

−q− ((ε−θ (x1 − iε) + β1i (ω) , ε−θ (x2 − jε) + β2j (ω)
)
, ω
)

2
,

the two positive random processes q± satisfying the conditions (2)–(5). We here obtain a limit problem
similar to (12) with

〈q (0, 0)〉 =
〈q+ (0, 0)〉 + 〈q− (0, 0)〉

2
.

3.2. Cases where 0 < γ < 1 or γ > 1

Let us introduce the random sequence of functionals (Fεγ (ω))ε associated with Reynolds number of
order O (ε−γ) and with the Stokes part of the problem (9), which is defined on the space L2

(
Ω;R3

)

through

Fεγ (ω) (u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ν+

∫

Ω+
ε (ω)

|∇u|2 dx + ν−
∫

Ω−
ε (ω)

|∇u|2 dx

+ν0εγ

∫

±ε(ωω)

|∇u|2 dx if u ∈ Vε (ω)
(
Ω;R3

)
,

+∞ otherwise

and the functional F0,λ, with λ > 0 , defined on the space L2
(
Ω;R3

)
through

F0,λ (u) =

⎧
⎪⎨

⎪⎩

ν+

∫

Ω+

|∇u|2 dx + ν−
∫

Ω−

|∇u|2 dx +
λν0

〈q (0, 0)〉

∫

Σ

[u]2Σ dx′ if u ∈ V0

(
Ω\Σ;R3

)
,

+∞ otherwise.

Using comparison principles, we can easily prove the following result.

Proposition 2. Let ω be an arbitrary realization from a set of full measure on Π, for which the conditions
(2)–(5) are satisfied. Then, with probability 1, we have:
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1. If γ < 1, (Fεγ )ε Γ -converges in the topology τ to the functional F0,∞ defined on the space L2
(
Ω;R3

)

through

F0,∞ (u) =

⎧
⎪⎨

⎪⎩

ν+

∫

Ω+

|∇u|2 dx + ν−
∫

Ω−

|∇u|2 dx if u ∈ V0

(
Ω\Σ;R3

)
, [u]Σ = 0,

+∞ otherwise.

2. If γ > 1, (Fεγ )ε Γ -converges in the topology τ to the functional F0,0 defined on the space L2
(
Ω;R3

)

through

F0,0 (u)=

⎧
⎪⎨

⎪⎩

ν+

∫

Ω+

|∇u|2 dx + ν−
∫

Ω−

|∇u|2 dx if u ∈ V0

(
Ω\Σ;R3

)
,

+∞ otherwise.

Proof. 1. We observe that, for every u ∈ L2
(
Ω;R3

)
and every λ > 0, we have

Fεγ (ω) (u) ≥ Fλε (ω) (u) ,

for ε sufficiently small. In Theorem 1, we proved that (Fεγ )ε Γ -converges in the topology τ to F0,λ and,
because of the properties of the Γ -convergence, we obtain

Γ - lim Fεγ (ω) (u) ≥ F0,λ (ω) (u) , ∀λ > 0,

which implies
Γ - lim Fεa (ω) (u) ≥ F0,∞ (ω) (u) .

As Γ -lim Fεγ (ω) (u) ≤ F0,∞ (ω) (u) we conclude with the equality.
2. We observe that, for every u ∈ L2

(
Ω;R3

)
and every λ > 0, we have

Fεγ (ω) (u) ≤ Fλε (ω) (u) ,

for ε sufficiently small. In Theorem 1, we proved that (Fεγ )ε Γ -converges in the topology τ to F0,λ and
because of the properties of the Γ -convergence, we obtain

Γ - lim Fεγ (ω) (u) ≤ F0,λ (ω) (u) , ∀λ > 0,

which implies
Γ - lim Fεγ (ω) (u) ≤ F0,0 (ω) (u) .

As Γ -lim Fεγ (ω) (u) ≤ F0,0 (ω) (u) we conclude with the equality. �

4. Appendix

We first prove Lemma 6.
Because (zε)α connects in an affine way with respect to x3 the traces on Γ±

ε (ω) of the smooth function
uα in Ω±, we get

∫

Σε(ω)

((zε)α)2 dx ≤ Cmeas (Σε (ω)) ≤ Cε.

Because (zε)3 = u3, in Σε (ω), where u3 is a smooth function in Ω, we immediately get
∫

Σε(ω)

((zε)3)
2 dx ≤ Cmeas (Σε (ω)) ≤ Cε.
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Because ∇ (zε)3 = ∇u3, we immediately get
∫

Σε(ω)

|∇ (zε)3|
2 dx ≤ Cmeas (Σε (ω)) ≤ Cε,

because u3 is a smooth function in Ω. We then compute

∂ (zε)α

∂x3
(x′, x3) =

uα

(
x′, εa+

ij,ε (x′)
)

− uα

(
x′, εa−

ij,ε (x′)
)

ε
(
a+

ij,ε (x′) − a−
ij,ε (x′)

) ,

which implies
∫

Σε(ω)

∣
∣
∣
∣
∂ (zε)α

∂x3

∣
∣
∣
∣

2

dx ≤ C

ε2

∑

ij

∫

Zε
ij(ω)

dx

q2 ((ε−θ (x1 − iε) + β1i (ω) , ε−θ (x2 − jε) + β2j (ω)) , ω)

≤ C

ε

∑

ij

∫

Y ε
ij

dx1dx2

q ((ε−θ (x1 − iε) + β1i (ω) , ε−θ (x2 − jε) + β2j (ω)) , ω)

≤ Cε
∑

ij

∫

Y

dy1dy2
q ((ε−θ+1y1 + β1i (ω) , ε−θ+1y2 + β2j (ω)) , ω)

,

where Zε
ij (ω) has been defined in (6) and taking y1 = x1−iε

ε and y2 = x2−jε
ε . Then, taking z1 = ε−(θ−1)y1

and z2 = ε−(θ−1)y2, we obtain

∫

Σε(ω)

∣
∣
∣
∣
∂ (zε)α

∂x3

∣
∣
∣
∣

2

dx ≤ Cε
meas (Σ)
ε2εθ−1

εθ−1
2∫

− εθ−1
2

1
εθ−1

εθ−1
2∫

− εθ−1
2

dz1dz2
q ((z1 + β1i (ω) , z2 + β2j (ω)) , ω)

≤ C

ε
,

using the ergodic result (4).
Finally, we compute, for β = 1, 2,

∂ (zε)α

∂xβ
(x′, x3) =

∂uα

∂xβ

(
x′, εa+

ij,ε (x′)
)

+
∂uα

∂x3

(
x′, εa+

ij,ε (x′)
)
εε−θ

∂a+
ij,ε

∂xβ
(x′)

+

−
(
a+

ij,ε (x′) − a−
ij,ε (x′)

)
εε−θ

∂a+
ij,ε

∂xβ
(x′)

−
(
x3 − εa+

ij,ε (x′)
)
εε−θ ∂q

∂xβ
(x′)

ε
(
a+

ij,ε (x′) − a−
ij,ε (x′)

)2

(
uα

(
x′, εa+

ij,ε (x′)
)

−uα

(
x′, εa−

ij,ε (x′)
)

)

+
x3 − εa+

ij,ε (x′)

ε
(
a+

ij,ε (x′) − a−
ij,ε (x′)

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂uα

∂xβ

(
x′, εa+

ij,ε (x′)
)

+
∂uα

∂x3

(
x′, εa+

ij,ε (x′)
)
εε−θ

∂a+
ij,ε

∂xβ
(x′)

−∂uα

∂xβ

(
x′, εa−

ij,ε (x′)
)

−∂uα

∂x3

(
x′, εa−

ij,ε (x′)
)
εε−θ

∂a−
ij,ε

∂xβ
(x′)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The preponderant terms surely are the first part of the second term and the second and fourth parts of
the third term. Thanks to the smoothness of uα in Ω± and of r and q, we can estimate this preponderant
term as
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|Aε (x′, x3)| ≤ Cεε−θ +
Cε−θ

∣
∣a+

ij,ε (x′) − a−
ij,ε (x′)

∣
∣

∣
∣
∣
∣
∣

∂a+
ij,ε

∂xβ
(x′)

∣
∣
∣
∣
∣

and we compute
∫

Σε(ω)

|Aε|2 dx ≤ Cε3−2θ + C
∑

ij

∫

Zε
ij(ω)

dx

q ((ε−θ (x1 − iε) + β1i (ω) , ε−θ (x2 − jε) + β2j (ω)) , ω)

≤ Cε3−2θ + Cε,

thanks to the hypotheses (3) on r and q.
For the proof of Lemma 7, we first observe that

∫

Σε(ω)
(div (zε))

2 dx → 0, when ε → 0, as we proved

in the preceding estimates that the third and the two first terms of div (zε) (x′, x3) = ∂(zε)1
∂x1

(x′, x3) +
∂(zε)2

∂x2
(x′, x3) + ∂(zε)3

∂x3
(x′, x3) have a L2 (Σε (ω)) -norm which goes to 0 when ε goes to 0. We then use

Bogovskii’s result in [3].
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