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1. Introduction

The main purpose of this work is to study the interaction between two viscous incompressible fluids
which flow along a thin layer with random boundary. This problem has important applications in many
branches of science and engineering such as biology, chemical engineering, combustion and geophysics.

Surface tension gradients across a fluid—fluid interface provoke strong convective activity called
Marangoni flow. The Marangoni flow, which proceeds from regions of lower surface tension to those
of higher surface tension, is responsible for driving shear flow instabilities which take place within oscil-
latory boundary layers located near the interface between the two fluids. Within such layers, the fluid
velocity changes rapidly, which implies a steep gradient of the shearing stress.

The boundary layer theory was first developed by Prandtl in 1904 [9] for a fluid in the close vicinity
of a surrounding surface. The thickness of the boundary layers depends on Reynolds number, which
increases when the viscosity effects become smaller: the higher the Reynolds number is, the thinner is
the thickness of the boundary layers (see, for instance, [6] and [10]).

The interaction between two viscous incompressible fluids which flow along a thin viscous boundary
layer of higher Reynolds number whose surface boundaries are defined through locally Lipschitz continu-
ous functions, including periodic and self-similar cases, has been recently considered in [4]. In this paper,
a physical situation was considered in which random fluctuations occur within thin viscous boundary
layers of higher Reynolds number between two interacting viscous incompressible fluid flows. Indeed, a
boundary layer of higher Reynolds number or more specifically a turbulent boundary layer contains a
variety of coherent structures over a range of length scales, from small structures to larger structures,
which essentially form random locations over the surface (see [8]). In the present paper, we consider a
random microscopic cellular structure of the boundary layers. Each cell is supposed to have a random
behavior in the thickness direction. The mixing scale in the boundary layers is related to the so-called
turbulence viscosity or eddy viscosity, which has no precise expression, as far as we know. In the present
paper, we suppose that Reynolds number is in the boundary layer of order O (¢=7), with v > 0, where
€ > 0 is the layer thickness.
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We consider a bounded open subset 2 C R?® with Lipschitz continuous boundary 942, such that
N =0T"UXUN", where 27 and 2~ are two nonempty open subsets separated by the smooth surface
Y. For simplicity, we suppose that X' is contained in the plane {x3 = 0}. We suppose that the boundary
ONT\X (resp. 027 \X) can be represented by a smooth and positive (resp. negative) function 2’ =
(21,2) — h* () (resp. o' > b~ (a")).

Let (I1,7, P) be some probability space and (G (z, y))(x,y)eRz be a group of transformations on (I1,7")
that is satisfying for every (z,v), (x1,v1), (72,y2) of R?

G (0,0) = Idy,
G ((w1,y1) + (v2,92)) = G (z1,91) 0 G (22, 92), (1)
P (G_1 (z,y) A) =P(4), VAeT,

where Id is the identity map on II, and such that the set
{(z,y,w) € R? x IT | G (z,y)w € A}

is dz1daod P measurable for every A € 1. We suppose that G is ergodic (or metrically transitive) in the
sense that every set A € 1 such that G (z,y) A = A, for every (x,y) € R?, has a probability P (A) equal
to 0 or 1.

For the construction of the boundary layer, we introduce two random processes ¢ and r defined on
R? x IT and satisfying the following conditions:

1. ¢ is a stationary random process, that is, for every positive integer n, for every couples

(21,91) -+ (Tn,yn) € R% and for every B € B(R), where B (R) is the Borel o-algebra on R,
one has

P{wlq((z+z1,y+y2),w)s- s q((x+ 20,y +yn),w) € B})

= P({w ‘ Q(($17y2)aG(fan)w)w . v(J((xnvyn)aG(l'vy)w) € B}) . (2)

As G preserves the measure P (see (1)3) the above equality implies that the joint distribu-

tion of {w | ¢((z1,y2),w),...,q((Tn,yn),w)} is the same as that of {q((z + 21,y + y2),w),...,
q((z+xp,y+yn),w)} for every (z,y) € R%

2. The partial derivatives 88— and 8‘1’ , a = 1,2, exist, and there exist nonrandom positive constants

c1, c2 and c3 such that the following boundb hold true with probability 1
0<er <q((my),w)<ea<l  V(z,y) eREVwell

Iré(w,y),ué)l Sq((x,y),w) V($7y) ERQaVWEH»
q T
— < =
Ora | |0ra| = a=1,2, (3)

(r

A Gl ) S S O
bz, (@Y )‘Snu,y)n

Notice that we do not assume that the random process r is a stationary one.
From the properties of G and ¢, we deduce the ergodic property (see [7])

Iz, y)ll = o0, a=1,2.

(@ (0.0)) =l / / ((@.9) ) dady, (@)

almost surely, where the symbol (.) stands for the mathematical expectation with respect to the
measure P.

Let (o1 (W));ez, (Q2i (W));ez, (Bri (w));ez and (B2i (w)), ¢z be sequences of random variables satisfying
| ()|, B (w)] < ey, Vi € Z, and  for [ = 1,2, (5)

with probability 1, where ¢4 is a nonrandom constant.
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Fi1G. 1. The domains {2 and 2.

We define the 2D unit reference cell Y = ]—%, % [2; then, for every ¢ € 0, 1] the 2D e-cell
2
Yi:]—f,f[ + (i, je), Vi,jel
2°2
and the set I. C Z2 as
I ={(i,j) €2’ | Y5 C X}.

For an arbitrary realization w from a set of full measure on II, for which the conditions (2)—(5) are
satisfied, we define the 3D random cell Zf; (w), V (i, j) € I, through

Z5; (W) = {(x1, 22, 23) | (1, 12) € Y5, 23 € |eay; ., eaf; [}, (6)
where 0 € ]1, % [ is a given parameter and

. 1 (r ((e7? (1:19— ic) +on; (w),e™? (3:20— jé) +a; (w)),w) ) 7
£q ((e7% (w1 —ie) + Bui (W) &7 (22 = je) + foj (w)) \w) )

(we here omit the dependence with respect to (z1,z2) and to the random parameter w). We suppose

that, for every e € |0, 1|, the layer X (w) with random thinness which is the union of the cells Z¢; (w)

Sw= | Z W),

(i,5)€le

17,6 2

is contained in {2, and we set
0F (W) = T, (), I () = 002 (w) N D% (w), (8)

according to Fig. 1.
Let w be an arbitrary realization from a set of full measure on IT, for which the conditions (2)—(5) are
satisfied, and f € L*>° (.Q; R3). We consider the following stationary Navier—Stokes problem posed in {2

vt Aug + (ue - V)ue + Vpe = f in 2F (w),
v Aue + (ue - V)ue +Vp. = f  in2 (),

—eM%Aue + (ue - V)ue + Vp. = f in X, (w), (9)
div (u.) =0 in (2,
with the transmission and boundary conditions
[ue] pt (o) =0 onI'F (w),
0 0
Vi% —571/0% —[pn=0 onI¥(w), (10)
ue =0 on d{2,

where [u] = (w) 18 the jump of u across I = which is the difference of the two traces of u on the surface
I'*, and n is the unit normal on I’ outer to X, (w).
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The problem (9)—(10) has a unique solution (u®,p®) € V. (w) (2;R?) x L? (2) /R, see [11], where

u = 0ondf? (11)

1(0-13) | di —0; —
V. () (2:R%) = {u € H' (;R?) | div (u) = 0in £2, [ul ) =0, }
Our purpose is to describe the asymptotic behavior of the solution u. of (9)—(10) as ¢ tends to zero. We
will use I'-convergence methods, referring to [1], [5], for instance, for the definition and the properties of
this variational convergence. In the case where v = 1, we will prove that, with probability 1, the solution
ue of (9)—(10) converges in some topology which is precisely defined in Definition 1 to the solution wug of

the following nonrandom Navier—Stokes limit problem

—vE Aug + (ug - V) ug + VpéE =f in 2%,
div (up) =0 in 2%,
uy =0 on 042,
[(uo)s]y, =0 on XY,
- 12)
9 (uo)y\ "\ _ (0 (u) _ (
+ 3 _ 3 —pt _
v ( Ds ) |x —v s |==p5 — Do on Y,
A (ug) s\ A (uo) s\~ 0
v ( Oxs ) lo=v ( Ors > > {q(0,0)) [(uo)ﬁ}z onX, =12

The boundary condition (12), represents the continuity of the normal velocity through the interface
Y. The relation (12)5 means that the difference of the normal fluxes on the two sides of the interface X
is equal to the difference of the pressures. In the interfacial law (12)g, the tangential fluxes are equal and
are proportional to the jump of the tangential velocities across the interface X', through the coefficient of
proportionality ﬁ.

This convergence result shows the importance of the frictionless dynamics and of the random con-
figuration of the boundary layers when trying to control the exchange between the two interacting fluid
flows.

The description of the asymptotic behavior of a three-body system composed of a thin layer placed
between two pieces and given a different constitutive law in each domain has been treated by many
authors in different contexts: scalar case, elastic materials or fluid flows. In the scalar case, Bakhvalov
and Panasenko considered in [2, Chapter 9, section 4] the problem

> — /x\ Ou
w2 ) -
posed in the layer {x € R® | 21 € (dy,d2)} where d; < 0 < dy are multiples of € and

K (6)  if& <o,
Ko (§) = K2(6)  if&>1,
VK3 (€) if& €(0,1),

0
8561‘

the functions K; being 1-periodic. The boundary condition

u |931:d1: g (‘r27 s 71'5)

was added with g periodic.
In the case where v =1 (called “poorly conductive interlayer”), the authors proved that the limit v

of u satisfies
Ouo [ o1 7z Oug Ovg
o (': R () By lnmovrn ) = ir = Aol
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where A\ = <K3%—]§>, N? being the solution in H!(0,1)® and 1-periodic in &, ..., & of the auxiliary

problem
5.0 ON3
~“ K )=
z;lafi < 2(6) 98 ) 0
N3 |¢,=0=0,
N3 |€1:1: L.

In our limit fluid flow problem (12), the difference between the normal derivatives of (ug), is not equal
to 0 but to the difference of the pressures. For the other components (ug) 5, wWe get a comparable limit
problem than in the above-described scalar case.

In the last part of this work, we will discuss the case where Reynolds number in the boundary layer
is of order O (¢77), with v > 1or 0 <~y < 1.

2. A priori estimates in the case where v = 1

Lemma 1. Let w be a fized realization from a set of full measure on II, for which the conditions (2)—(5)
are satisfied. Then, the solution (uc,p.) of (9)—(10) satisfies the following estimates

sup / |Vue|* dz + & / [Vue|*dz | < +o0,
g
2F (W)U (w) Te(w)

sup / lue|® dz | < +o0,

Qg'(w)UQE_ (w)

1 2
sup | — lue|”dz | < 4o00. (13)
€ 1>
e (w)

Proof. Let o' = (x1,72) € Y}, for some (i,7) € I.. We write, for every x3 belonging to the interval
- +
(eaz; . caf.)

z3

Ue (xlvxS) = Ue (xlvsai_j,a) + / Oue (xlvs) ds.

83?3
Ea;jva
Using (3) and Cauchy—Schwarz’ inequality, we get
Eaj}vs 5
/ 2 S — 2 Oug
lue (2, 23)|” < 2 |u5 (m 75%]',5)’ +¢ T ds |,

€a;; .

from which we deduce, using (3) and (5),

/ ue (z)? da < 2 5/‘% (x’,eaiijs)Fdx’—i—EQ / Ve (z)|° dz

25 (w) Y35 Z5(w)
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and, summing over I,

/ lue (z)]* da < C EZ/‘uE(w’,Ea;j’E)lzdx’—l—&z / Vue (z)]>dz | . (14)

Yo (w) bad Y5 Te(w)

Using a trace theorem in Qgﬁ (w) and the homogeneous Dirichlet boundary condition u* = 0 on 9f2,
there exists a nonrandom positive constant C' independent of € such that

Z/’ua (m’,eaiijyg)‘zdx'gc / |Vue (z)]* dz. (15)
Y Ye 02F (w)

We deduce from (14)—(15) that

/\ug(x)\zdxgc c / IV () de + &2 / Ve (@) dz | - (16)

Ye(w) 2F (w) Te(w)

Now multiplying (9)1,2,3 by u. and using Green’s formula and Cauchy-Schwarz’ inequality, we get,
thanks to the boundary conditions (10),

vt / |Vue* dz + v~ / Vue|? dz + e” / Vue|? dz

2F (w) Q7 (W) 2o (w)
1/2 1/2

:/f-usdeC / |ue|? da + / luc|? da
2

2F (W)U () e (w)

Using Poincaré’s inequality in 2 (w) and 27 (w) and (16), we obtain

vt / |Vue|* da + v~ / |Vu6\2dx+£uo/|Vu5\2dx
e

2F () 2 (w)
1/2 1/2
<C / V| dz + E/ |Vue ()] da . (17)
24 (Wuns (W) 2.
Let now x, y and z be nonnegative real numbers satisfying
P4+ <c(z+y+2), (18)

for some positive constant ¢;. We prove the existence of a positive constant ¢y such that 2% +32 42" < c.
. 22 4yP 422

Othe]ﬁ'WlS@7 W

(13)1.

Using Poincaré’s inequality, we deduce (13)s. Using (16), we deduce (13)3, which ends the proof. O

tends to co when x, y or z tends to oo, which contradicts (18). Thus, (17) implies

Remark 1. When v < 1, we deduce from the preceding computations that the estimates (13) are still
true and that we have
supe” / |Vu€\2d:c < 4o00.

e>0
e (w)
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In order to get estimates on the pressure p., let us first define the zero mean value pressure

+
Pe =Pe— T peda.
) |22 ()]
2F (w)

We have the following uniform estimate.

Lemma 2. One has su pE < 0.
ps pE LQ(.QS:)

Proof. The problem

{div (WE) =p 0 (W),
YE =0 on 9NF (w),

has a unique solution 1+ € H} (()gE (w) ;Rg) satisfying

pE

+
vas HL2(QEi(w);R9) <C (Q) ‘ LQ(Qsi(w)) ’

for a constant C' (£2) only depending of {2 (see [11]).
Multiplying (9); (resp. (9)2) by ¥ (resp. 17 ), using Green’s formula and summing, we obtain

vt / V. - VpEde + v~ / V. - Vi dz

_Qg'(w) 2z (w)
+ / (ue - V) ue - T de + / (ue - V) ue - - dz
2F (w) 27 (W)
2 2
= / f-yrde+ / feob-da+ / (pj) dz + / (pg) dz,
28 (w) 2 (w) 2F (w) ¢ (w)

thanks to the boundary conditions satisfied by ¥= on 92F (w). We then compute, using Cauchy-Schwarz’
inequality,

pE

[ 1eutas <c|

QF (W)

L2(F W)’

(te - V) ue -@Dfdx <C HvngcHL?(QEi(@;Rs) HVUEHiQ(QEiW);RQ)

02F (w)
< CllpE 2
< O[] o 17l e
RvaTE= < ‘T
| Ve vuta <o et ) 1Y el (et wme)
QF (W)
which leads to the desired estimate. O

From the conditions (3) and (5), we deduce the following construction of operators, which will allow
working in fixed domains.
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Lemma 3. Let w be a fized event, for which the conditions (2)—(5) are satisfied. Then, there exists an
invertible map T2 : 27 — QF (w) (resp. T : 27 — 27 (w)) such that for every u € Hy (12, (w) ;R?)

|uo T;r||H1(Q+;R3) <C Hu”Hl(Qg'(w);RS) ) (19)
[|uo T57||H1(Q—;]R3) <C ”U”Hl(gs—(w);RLs) )

where C' is a nonrandom positive constant independent of €.
We define the transformation T¢ from 2\X into 2. (w) as

e [ TF(x) ifzent,
T (x)_{T(x) ifzen .

€

Proof. Referring to the construction (8) of {2, (w), we define

x ifz € NF\ X, (w),
(2, L5 () ifzeQFNZ(w),V(i,j) €L,

V(x' x3) € QF TF (z) = {
ij,e
+

where L} _ () = eaj; . + EeD) (h* (¢') — ea;; ). We immediately observe that

T+ (2,0) = (x’,aaiijﬁ) ,

TF (', h* (a') = (@', 1 (2')).

+
We compute the Jacobian of T, which is the determinant of its gradient: Jac (TF) (z) = o12), (z) =

R
hj: r_ j:‘ . . .
%, from which we deduce, according to the properties (3) of the random processes ¢ and r,
that Jac (TF) =1+ o0(g) —-_o 1. This proves that 7= is invertible.

The estimate (19) is then a direct consequence of the definition of T . O

We have the following compactness result.

Proposition 1. Let w be an arbitrary realization from a set of full measure on II, for which the conditions
(2)~(5) are satisfied. Let (u:). be a sequence such that u. € Ve (w) (2;R?) for every e, which satisfies
the estimates (13). Then, with probability 1, there erists a subsequence of (uc)_, still denoted in the same
way, such that:

g’

1. one has the following convergences
g 0 T¢ =, Uo in H! (Q\E;R3) -weak,
E—
u. — ug inL?2 (Q;R3) -strong.
e—0
2. ug belongs to the space Vg (Q\E;R3) defined through
Vo (2\Z;R?) = {ueH' (2\Z;R?) | div(u) =0in 2 [us]y, = 0andu =00ndf2 }. (20)
Proof. 1. From the estimates (13) and Lemma 3, we deduce that the sequence (u. o T¢)_ is bounded in
H' (2\X;R?). Up to some subsequence, this sequence (u. o T¢)_ converges to some ug in H' (2\2; R?)-

weak.
From (13)1 9, it follows that ug belongs to L2 (Q;R3) and, up to some subsequence, we have

10V (ue 0 T°9) - Vugin L2 (Qi; Rg) -weak,
E—

where 1+ is the characteristic function of 2%,
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We then write

/|u67u0|2dx: / lue — uo|® da + / ue — uo|® da.
[0}

2F (W)U (W) Ye(w)

Using the above convergences, a Sobolev embedding and (13)s, we prove that (u.). converges to ug
in L2 (Q; R3)—strong.

2. Let (uo) " (resp. (ug)”) be the trace of ug € H' (2+;R?) (resp. H' (27;R?)) on . Using a trace
theorem, we have, up to some subsequence,

lir% u. o TE — (u0)+‘ Jac (TF) da’ = 0. (21)
E—

Ugs — ((uo)i o (Tgi)_l) ds = lir%

£—

I'F(w) X

As div (u.) = 0 in £2, we have, for every ¢ € C° (X)),

0= / div (ue) pdz = — / (ue), - Vrpdz + / U - npds — / Ue - npds,
Ye(w) Ye(w) I (w) I's (w)

where (u.), = ((us)1 , (u )s) and V.o = (aafl , %)' Then, passing to the limit using (13)3 and (21), we
deduce that [(uo),] -

Asdiv (u:) = 0in ( ), we easily deduce that div (ug) = 0 in £2%. Thus, ug belongs to Vo (£2\2; R?).
O

We have the following result in the layer X (w).

Lemma 4. Let w be an arbitrary realization from a set of full measure on II, for which the conditions
(2)-(5) are satisfied.
1. For every ¢ € C} (RS), we have

1
lim — / ga(xl,zg,zg)dx:(q(0,0)>/(p(:cl,xg,())dzldxg.

e—0¢
Ze(w) )

2. Let (w.), be a sequence in L? (£2) such that sup, L [, (o) (We (z))? dz < +00. There exists a subse-

quence, still denoted in the same way, and w € L* (R?) such that, for every ¢ € C} (R?), we have
almost surely

lim1 / we (x) @ (x) dax = (g (0,0)}/w(xl,xg)@(ml,xQ,O)dxlde.
Te(w) z

Proof. Let w be a fixed event, for which the conditions (2)—(5) are satisfied.
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1. Assuming that the conditions (3) are satisfied, we compute

Jim & ( )d
sl—%s $\T1,T2,23)dT

e (w)

1
= lim = @ (21,2, w3) dz

_g% > / / (z1, 2, x3) dx

’] ela Y§ Eab_] €
1
:iii% Z //Qu<P $173327€q1]Z+2rU) dxidzedz
(i ,J)Glgys N
= lim Z Ezw(igngvo)/qu,s (y1,92) dy1dysz,
(i,4)€le v

where we have introduced the change in variables z3 = £¢;;2 + §rf; with

¢ = q((e77 (21 —ie) + i (w) e (w2 — je) + fo; (w)) ,w),

T =T (7% (z1 —ie) + o1; () 670 (z2 — je) + a2 (w)) ,w), (22)
@ - iy2) = q (7O Py + Bri (), e Oy + Boj (W) ,w)

(see the definition (7) of a5 _) and then the change in variables defined through

T — 1€ To — jE
Y1 = y Y2 =
€ €

in the cell }/5 Introducing z; = 6_(0_1)y1 and zo = 5‘_(0_1):1/27 we finally obtain

ij, s)

1
ili%g / ¢ (21,79, 73) dx
Yo (w)
c0—1 201
1 2 1 2
= ilﬂ% Z 20 (i, je, 0) = / ) / q((z1 + fri (W), 22 + faj (w)) ,w) dz1dzs
(i.5)€le 61 61
2 2
= <q (07 0)> /90 (:Ela x2, 0) de']dCEQ,
b

using the ergodicity property (4).
2. One can deduce from the preceding point that the sequence of measures (p.). defined through

e = 125("’6&, 14 being the characteristic function of the set A, converges in the weak sense of

measures to the measure p = (¢ (0,0)) 15 (2') da’, when £ goes to 0. Observing that

Jrwddn < [ @)

R3 . (w)
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and using the hypothesis on (w.)_, we deduce that the sequence (wcv.), converges, up to some subse-
quence, to some measure Y, in the weak sense of measures. For every ¢ € C} (R3), we have, thanks to

Fenchel’s inequality,
2/ws¢dﬂ€*/((p)2dﬂs < /(ws)2 dﬂs'

R3 R3 R3
Then, passing to the limit, we get

2{x,p) — /302 (2',0)dp < limiglf/ (we)? dpe < +o0.
E—
R2 R3
This implies

sup ¢ (x, %) | ¢ € Cj (R?), /902 (2/,0) dp < +00
R2

Thus, using Riesz’ representation theorem, we can identify y with wu, for some w € L? (Rg). O

Lemma 5. Let w be an arbitrary realization from a set of full measure on II, for which the conditions
(2)~(5) are satisfied. Let (u.). be a sequence such that u. € V. (w) (£2;R?), for every e > 0, and satisfying
the estimates (13). Then, with probability 1, there exists a subsequence of (uc)

., still denoted in the same
way, such that

ug o T° =, Uo inH' (Q\Z’; ]R3) -weak,

u. — ug inL? (Q;RS) -strong,
e—0

iy [ V@)@ e@d = [ (w0 ea or,02,0)doadas,
Yo (w) X
1
lim inf c(2)Pdz > ——— > dayd
125512(/)”“ @l dz = <q(0,0)>2/([u0]2) e

for every ¢ € C} (RB;RB) and every i =1,2,3.

Proof. The first and second convergences of Lemma 5 have already been proved in Proposition 1 1. Let

us now fix an event w, for which the conditions (2)—(5) are satisfied. Then, as (u.), satisfies the estimate
(13)4, one has

1
sup— / eV, ()] dz < 4o0.
€

Te(w)

Thus, using Lemma 4 2., there exists y € L? (Z; ]RQ)7 such that, for every ¢ € C} (R3; R3) ,

o1
i [ eV (), (@) (0)do = (0(0.0)) [ xpa (o1, 20,0 deads,
Z‘s(w) b

up to some subsequence of (eVu)_ still denoted in the same way. On the other hand, using Green’s
formula, we still have for every ¢ € C} (R*R?) and every i = 1,2,3

[ V@@= [ ) @dive@dot [ () 0ends— [ (), nds

Xe(w) Ye(w) & I
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from which we deduce, using (13)3 and (21), that, up to some subsequence,

lim V (ue); (z) - ¢ (z)de = / [(10);] 5 @3 (21, 22,0) doidas.

e—0
e (w) X

Thus, x = %, and using Fenchel’s inequality again, we get

i [l e,

Ea(w) X

lim inf / e [Vu ()2 de >

e—0

which ends the proof.

ZAMP

O

We deduce from the preceding convergences the topology 7 which is adapted to the description of the

asymptotic behavior of the solution u. of (9)—(10).

Definition 1. Let w be an arbitrary realization from a set of full measure on I, for which the conditions

(2)—(5) are satisfied. Then, with probability 1, a sequence (u.)

g

with ue € V. (w) (2;R?) for every e,

where V. (w) (£2;R?) is the space defined in (11), converges to up € Vo (2\X;R?) (defined in (20)) in

the topology 7 if it satisfies the estimates (13) and the convergences

Us 7 Uo in L2 (Q; R3) -strong,
E—
u. o T¢ =, o inH' (2\2; R?) -weak.
E—

3. Convergence

3.1. Case where v =1

Let us introduce the random sequence of functionals (F. (w)), associated with the Stokes part of the

problem (9), which is defined on the space L? (£2; R®) through

v [ wPderr [vuPds
0 () 2 (w)
Fe (w) (u) = +1% / V| dz ifu eV, (w) (2R3,
is(ww)
+00 otherwise

and the functional Fyy defined on the space L? ((2 RB) through

Fo (w) = / \Vu|® de+ v~ / Vu)? dz —|— 0 o)) / vda’ ifu € Vo (2\Z;R3)
o+ -
+00 otherwise.

Our main result reads as follows.

Theorem 1. Let w be an arbitrary realization from a set of full measure on II, for which the conditions

(2)—(5) are satisfied. Then, with probability 1, we have:

1. (limsup inequality) For every uw € Vj (Q\E;R3), there exists a sequence (u

V. (w) (Q;R?’), for every e > 0, and such that (ug)s T-converges to u and
limsupF; (w) (ul) < Fp (u),
e—0

with u? €
g
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. such that ue € V. (w) (Q;R?’), for every e > 0, and
T-converges to u, we have u € Vy (Q\E; R?’) and

lim i(r)lfF5 (w) (ue) > Fo (u).

2. (liminf inequality) For every sequence (uc)
such that (u.)

£

Proof. Let w be a fixed event, for which the conditions (2)—(5) are satisfied. Let u : 2 — R? be such
that div (u) =0in 2, u =0 on 812, u |5z C! (ﬁ; R3). Let u™ (resp. u™) be the trace of u |5+ (resp.
u5=) on X, with (ut); = (u7),.

We define the function 2. in the cell Zf; (w) C Y. (w) , for every (i,7) € I, through
T3 — 6&:;’5 (')

(22),, (7', 23) = uqn (m’ ca; (z')) + —
“ 7 7 e i Ea;;,e (CL”) - 6az’j,a (x,)

e (x’)) — Uq (x/,ea;m (x’))) ,

X (uq (2, ea
(Zs)g (’l}'/,l'g) = us (xl,l'g) ’
(now indicating its dependence with respect to &' = (x1,x2)) has been defined in (7) and
?;-A’E (J;’)) of u, on
the boundaries I’ (w). The definition of (22)5 makes sense, as ug presents no jump across X, thus doing
z. € H! (Q\E;R3).
We observe that z. is not divergence free in Y. (w). But it satisfies f@EE(w) ze +ndo =0, as z. =0

+
where a;; .

for = 1,2. (2.), connects in an affine way with respect to x3 the traces uq (x’,sa

on the boundary Y. (w) \ I'* (w) and z. = u, a divergence-free function which vanishes on 942, on the
boundaries I'* (w). Therefore, there exists a solution o. to the problem

{ div (o.) = —=div(z.) inX: (w),
0. =0 on0X; (w).

Using direct computations on the expressions of (z.), or (z:);, we prove the following estimates on
Ze, the details of the proof being postponed to the Appendix.

Lemma 6. There exists a nonrandom constant C independent of € such that

z|? (#) dz < Ce,

Ye(w)

/ IV (22)s? (2) da <

Te(w)

o|Q

)

IV (22), |7 (z) dz < 03720,
Ye(w)

Concerning the function o., we have the following estimate, whose proof is also postponed to the
Appendix.

Lemma 7. We have

/ |Vo.|* (z)dz — 0.

e—0
Ye(w)

We then define the test function u? as

_Ju in2\ X, (w),
ug = {zs +o. inX. (w). (23)
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We deduce from its construction that u? belongs to V. (w) (Q; R3) for every € > 0. Let us prove that

the sequence (uo)e T-converges to u. According to the construction of the sequence (2.)_, the sequence

€

(ug)s satisfies the estimates (13) and the convergences

u? =, U inL? (Q; R3) -strong,
£—
ul o T¢ —,u in H' (2\X;R?) -weak.
£—

Let us prove that lim._q F. (w) (u?) = Fy (u). Observe that if w is an arbitrary realization from a set
of full measure on II, for which the conditions (2)—(5) are satisfied, we compute

lim Y / |Vug|2 dz = lim1%e / |Vz|” dz
e—=0 e—0
+(w) Ye(w)

_ 2
— lim % Z (Ua (x',sa;;@ (I/)) — Ug, (x’,mij)E (x’))) e
e—0

€ (a:;',s (:E/) - a;j,s (x/))

. . _ 2
iy Z (ua (ZS,]E,SG;&E () — ua (ZE,]E,ECLM’E (z'))) &
e—0 ety £4;; (x)
a=1,2 2
. .. . _ 2 dy 1 d
— slg%yo Z &% (uq (zs,je,ga;rN (') — ua (ZE,]E,ECLM’E (z'))) /79 :(yl Y2 7
(ig)el. J q;5 \Y1, Y2
a=1,2

1)

where ¢;;, rj; and qu are defined in (22). We deduce from this computation that

s 0 0]2 _ 0 w2 da’
213%)1/5 / |Vul|” da = Z <‘1(070)>i/[ ol da’. (24)

=) o
On the other hand, one can easily see that

lim |Vug|2da:=1in(1) / |Vu|2dx:/\Vu|2dx. (25)
E—

e—0
02F (w) 2F (w) Q=

Thus, owing to (24) and (25), we get lim._g F. (w) (u2) = Fy (u).
Let us now verify the limsup property of the I'-convergence in the general case. For every
u € Vo (£2\Z;R?), there exists a sequence (uy), such that div(u,) = 0 in £, u, = 0 on 92,

Uy, |gre C (ﬁ; R3), (u})5 = (uy )3, and (u,),, converges to u in the strong topology of Vo (£2\X;R?).
Using (23), we build (un)g € V. (w) (£2;R?) such that ((un)g) converges to u, in the topology 7 and

lim. o F; (w) ((un)(;) = Fp (uy,). The continuity of the functional Fy with respect to the strong topology
of Vy (_Q\E; R3) implies

lim lim F; (w) ((un)g) = Fy(u).

n—-+o00 e—0
The topology 7 being metrizable, the diagonalization argument of [1, Corollary 1.18] proves
the existence of a subsequence ((un(s))D which converges to u in the topology 7 and satisfies
€

limsup,_,q F: (w) ((Un(s))(;) < Fp (u). This proves the lim sup property in the general case.
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2. Let w be an arbitrary realization from a set of full measure on IT, for which the conditions (2)—(5) are
satisfied. Let (u.)_, with u. € V. (w) (Q; R3) for every € > 0, be a sequence such that (u.)_ 7-converges
to u. According to Proposition 1 2., u belongs to Vg (Q\E; R3), and, using Lemma 5, we get

lim inf / e |Vue (2)]* do >

e—0

1 2
7@ 0.0)) /([u}z) dzidxs.

Ee(w) X
As (u.), T-converges to u, we have
limiélf / Vue|* dz > / \Vul® dz.
E—
o *

Thus, liminf. g F: (w) (ue) > Fp (u). This completes the proof of the main convergence result. O

Let us now prove some convergence results for the solution u. of (9), for the zero mean value pressure
and for the associated energies.

Corollary 1. Let w be an arbitrary realization from a set of full measure on II, for which the conditions
(2)—(5) are satisfied. Then, with probability 1, the sequence (u,p:)., where (uc,pe) is the solution of
(9)-(10), is such that (u.)_ T-converges to ug and

/

2F (w)

e’

S

pE

de — /|p0i|2dx,
e—0
Nt

+ O
where (uo,po = {59 E g_ ) belongs to Vg (Q\Z; R3) x L2 (£2) /R and is the solution of the limit prob-
0
lem (12).
Moreover,

0
: _ o+ 2 - 2 v 2
;%FE (W) (ue) = Fy (ug) = v / [Vuo|”dx + v / [Vuo|” dz + .0y /|[u0]2| dz’.

o+ - z
Proof. We first observe that, for every sequence (v.), T-converging to v, we have
lir% fvedx = / f-vda,
E—
2F (w) 2%

lim (ue - V) ug - veda = / (up - V) ug - vdz.

e—0
0F (w) 0+

Take v : 2 — R? such that div(v) = 0 in £, v = 0 on 92, v |5v€ C* (m;R?’) and v |g=€
Ct (W; R3). We then multiply (9)1,2 by v2 defined in (23) and use Green’s formula in order to get



3372 A. Brillard and M. El Jarroudi ZAMP

vt / Vue - Voldz + v~ / Vue - Voldz

2F () 2: (w)
+ / (ue - V) ue - v0dx + / (ue - V) ue - v0da

2 (w) 27 (W)

ou _ ou
+uT / 87715 . vgda +v / arf . vgda
F;r(w) I's (w)
0 0, _ 0

+ / pen - vodo + / Pen - vodo = / f-vida,

I (w) I~ (w) 2F (W)UNRZ (w)

thanks to the boundary conditions (10). Taking into account the boundary conditions (10)s, the preceding
equality may be written as

vt / Vu, - vada: + v / Vu, - vadm

2F (w) 02z (w)
+ / (ue - V) ue - v0dx + / (ue - V) ue - v0dx
2F (w) 27 (W)
0 0
+ev? / 61;; v2do + ev? / 81:16 vldo
I (w) I (w)
+ 09d 9o = o9
pen - vodo + Pen - vdo = f-voda;
S (w) I (w) 2F (w)us ()

hence,

vt / Vue - Voldz + v~ / Vue - Voldz + ev’ / Vue - vldx

23 (w) 2z (w) Te(w)
+ / (ue - V) ue - v2dx + / (ue - V) ue - v0da

04 () 2 (w)
+ / (ue - V) ue - v0de = / f-vlda.

Yo (w) nF (w)uns (v)

We then take the limit when ¢ goes to 0 and get

vt / Vug - Vode + v~ / Vug - Vodx
o+ -

+/(u0~V)u0~vdx—|—/(u0~V)u0~vdx
2+ 2-

0 (g(0,0)) / (o)) [l » d2” = / f-vde,

P 2
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using the construction (23) of v? and (26). Thus, u satisfies

Ve Vo (S s [ (<0 Auo+ (w0 ¥)uo - f) - oda

n+
+ / (—Z/7A’UJ0 + (uo - V) ug — f) -vdx
o
8u0 _ 8u0 —
_ + . / + /_ . / /
v s v(m,O )dx v D5 v(m,O )dx
x

402 g(0,0) [ [(u0), ][] da” =0
by
where the superscript T (resp. ~) corresponds to the trace on X' seen from 27 (resp. £27). This leads to
the limit problem (12).
The second assertion is a direct consequence of the properties of the I'-convergence. O

Remark 2. Let us consider the case where the functions a;:j’ . are defined through
o = gt ((e7% (w1 — i) + o1i (w) , 677 (w2 — je) + ag; (W) ,w)

o 0 (0 (o) 4 i (@) e (w2 — ) + iy (w)) )
ij,€ 5 ,

the two positive random processes ¢t satisfying the conditions (2)-(5). We here obtain a limit problem
similar to (12) with
{¢*(0,0)) + (¢~ (0,0))

(¢(0,0)) = 5 :

3.2. Cases where 0 < v < lor~v>1

Let us introduce the random sequence of functionals (F.+ (w)). associated with Reynolds number of
order O (¢77) and with the Stokes part of the problem (9), which is defined on the space L2 (Q;R?’)
through

vt / \Vul|® dz+ v~ / (Vul? dz
2F (w) 2 (w)
+10¢7 / \Vul? do ifue V. (w) (2R,
+e(ww)
+00 otherwise
and the functional Fy , with A > 0, defined on the space L2 (Q; R3) through
+ 2 — 2 A0 2 /s 3
v |Vu|"dx 4+ v \Vu|"dz + —— [ [u]y. da’ if u € Vo (2\Z;R3),
Foa(u) = S ) {¢(0,0))

3]
+00 otherwise.

Fr (w)(u) =

Using comparison principles, we can easily prove the following result.

Proposition 2. Let w be an arbitrary realization from a set of full measure on II, for which the conditions
(2)—(5) are satisfied. Then, with probability 1, we have:
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1. Ify <1, (Fev), I'-converges in the topology T to the functional Fy  defined on the space L2 ((2; R?’)
through

vt / \Vaul® da + v~ / |Vul>dz  ifu e Vg (2\XZ5R?) , [u] =0,
Fooo (u) = o+ o
+00 otherwise.

2. If vy > 1, (F.v). I'-converges in the topology T to the functional Fy o defined on the space L? (_Q;]R?’)
through

vt / |Vul® dz + v~ / |Vul*dz  ifu eV, (2\Z;R3),
Foo (u)= 0 o
400 otherwise.

Proof. 1. We observe that, for every u € L2 (Q; R3) and every A > 0, we have
For (w) (u) 2 Fie (w) (u),

for € sufficiently small. In Theorem 1, we proved that (F.~)_ I'-converges in the topology 7 to Fy » and,
because of the properties of the I" -convergence, we obtain

I-lim Fov (w) (u) > Fo ) (w) (u), YA>0,
which implies
I'-lim Foa (w) (u) > Fo oo (w) () .
As I-lim Fioy (w) (1) < Fo oo (w) (u) we conclude with the equality.
2. We observe that, for every u € L? (£2;R?) and every A > 0, we have
Fer (W) (0) < Fye () (u),

for e sufficiently small. In Theorem 1, we proved that (F.»), I'-converges in the topology 7 to Fy » and
because of the properties of the I'-convergence, we obtain

I-lim Foy (w) (u) < Fox (w) (w), YA >0,
which implies
I'-lim Foy (w) (u) < Foo (w) (w).
As I lim Fov (w) (u) < Fyo (w) (u) we conclude with the equality. O

4. Appendix

We first prove Lemma 6.
Because (z.), connects in an affine way with respect to x3 the traces on I': (w) of the smooth function
Uq in 2%, we get
((z),)? dz < Cmeas (2. (v)) < Ce.

Yo (w)

Because (z:); = us, in X (w), where ug is a smooth function in 2, we immediately get

/ ((25)3)2 dz < Cmeas (X; (w)) < Ce.

Ye(w)
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Because V (2.); = Vus, we immediately get
/ \% (25)3\2dm < Cmeas (X: (w)) < Ce,
Yo (w)

because ug is a smooth function in 2. We then compute

0(ze)a sy _ U (@0, @) —ua (& caj; ("))
T 9. (JZ ’xg) - + / — / ’
Oz € (aij,e (@) —az;. (z )
which implies
9 (z), | / dz
& dx < -
/ ‘ Ox3 _52; ((e=0 (x1 —ie) + Bri (w),e7 (z2 — je) + Po; (w)) ,w)
Ze(w) I z¢ ()
< gz/ dxldxg
TG q((e=? (x1 —ie) + Bui (w) , &7 (22 — je) + B2 (w)) ,w)
dy1dy2
<C )
) ny T 0 ¥ s (0) =015 + oy @), )
where Z;; (w) has been defined in (6) and taking y; = #*= i€ and y, = £2= JE . Then, taking z; = e~ 0=y,
and zo = 5_(9_1)y27 we obtain
E9—1 E9—1
2 2
CIEAME meas (X) 1 / dzydz C
al da < _ < —
/ Oz v e g2eb-1 / gf-1 q((21 4 Bri (W), 22 + Boj (W) ,w) ~ €’
J
Yo (w) _ 56;1 _59;1
using the ergodic result (4).
Finally, we compute, for § =1, 2,
9 (22), Dua + Dua + -0 8a;.;75
Tj‘ﬂ ( I, 3) 87 (x’ Eaijﬁ (.’E/)) + 87‘%3 (.T/,EG/Z] c (Z‘/)) ee % (iC/)
da;
e () = o () =0 G )
9q
_ + ! 60 Y4 /
+ (7 e (1) 525 ) (ua (', 20} . (2)) )
(o5 @)~ )’ ~ta (&', 205 ()
Uq
955 (2, e ("))
au& / / —0 3(12’5 /
zy—zaf (@) | g, (S () e 5 R @)
+
€ (au € (x ) - a’z] € ((El)) —gz; (l‘/, 5aij’€ (33/))
Oug, B —o 8&;’6
- 31)3 ((E/, Ea‘ij,e ({,C/)) e axﬂ ( /)

The preponderant terms surely are the first part of the second term and the second and fourth parts of
the third term. Thanks to the smoothness of u, in 2% and of r and ¢, we can estimate this preponderant
term as
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Cce? da}

at (z') — a;;

/ < -0 ij,e (1
|Ae (2',x3)| < Cee™ + o ($/)| Pz ()

and we compute
dx
AP dz < Cce?2 4 C / -
[ 2 | T m O e T m o T A @)
Ye(w) “ Z5;(w)
< Ce20 4 Ce,

thanks to the hypotheses (3) on r and gq.
For the proof of Lemma 7, we first observe that [, @) (div (z,g))2 dz — 0, when ¢ — 0, as we proved

in the preceding estimates that the third and the two first terms of div (z.) (z/,z3) = %;1)1 (a',23) +
% (@', x3) + (25)3 (2',x3) have a L? (X, (w)) -norm which goes to 0 when & goes to 0. We then use

Bogovsku s result in (3].
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