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Abstract. A susceptible–infected–susceptible almost periodic reaction–diffusion epidemic model is studied by means of estab-
lishing the theories and properties of the basic reproduction ratio R0. Particularly, the asymptotic behaviors of R0 with

respect to the diffusion rate DI of the infected individuals are obtained. Furthermore, the uniform persistence, extinction
and global attractivity are presented in terms of R0. Our results indicate that the interaction of spatial heterogeneity and
temporal almost periodicity tends to enhance the persistence of the disease.
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1. Introduction

Reaction–diffusion systems are frequently used to describe the random motion of populations and spatial
heterogeneity in epidemic transmissions (see e.g., [2,5,17,19–21,25,33,39]). In order to understand the
influence of spatial heterogeneity of environment and movement of individuals on the persistence and
extinction of a disease, Allen et al. [2] studied the susceptible–infected–susceptible (SIS) reaction–diffusion
epidemic model:

⎧
⎪⎨

⎪⎩

∂S
∂t − DSΔS = −β(x)SI

S+I + γ(x)I, x ∈ Ω, t > 0,
∂I
∂t − DIΔI = β(x)SI

S+I − γ(x)I, x ∈ Ω, t > 0,
∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0,

(1.1)

where the habitat Ω ⊂ R
n (n � 1) is a bounded domain with smooth boundary ∂Ω (n > 1), and ν is

the outward normal vector on ∂Ω and ∂
∂ν represents the normal derivative along ν on ∂Ω; S(x, t) and

I(x, t) denote the density of susceptible and infected individuals at location x and time t, respectively;
the constants DS and DI are positive diffusion coefficients of the susceptible and infected population;
β(x) and γ(x) are positive Hölder continuous on Ω which denote the rate of disease transmission and
disease recovery at location x, respectively. Under the assumption that the total population number is
a constant, the results in [2] showed that the disease-free equilibrium of (1.1) is unstable for high-risk
domains where the spatial average of the transmission rate of the disease is large than the spatial average
of the recovery rate. For low-risk domains, which defined in a reverse way, the disease-free equilibrium
is stable. Involving system (1.1), Peng et al. [23,24] studied the asymptotic behavior and global stability
of the endemic equilibrium, Allen et al. [1] considered the continuous-time cases, and Huang et al. [14]
investigated the global dynamics subject to the Dirichlet boundary conditions.

Mixed factors lead to the outbreak of a disease. As same as the spatial heterogeneity, the temporal
heterogeneity is also one of important factors which influences the transmission of a disease. The temporal
heterogeneity comes from the seasonality. As noted in [3], seasonal changes are cyclic, largely predictable
and arguably represent the strongest and most ubiquitous source of external variation influencing human
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and natural systems. Exploring the role of seasonality, Peng and Zhao [25] assumed that β and γ in (1.1)
are spatiotemporal heterogeneous and periodic in time, introduced the definition of the basic reproduction
ratio R0 and its properties and established threshold-type results on the global dynamics in terms of R0.
Particularly, the asymptotic behavior of R0 with respect to the diffusion rate of the infected individuals
was obtained. The results in [25] also suggested that the interaction of spatial heterogeneity and temporal
periodicity tends to enhance the persistence of the disease. From an applied perspective, though a periodic
epidemic model offers broad insights into understanding the mechanisms of a disease outbreak, the disease
transmission rate and recovery rate are not necessary to share a common period. In particular, if the
periods of these periodic coefficients have no common integer multiple, then the system is not a periodic
system. Mathematically, we can treat such a system as an almost periodic system. In order to describe
the transmission of a disease more reasonably, we consider almost periodic system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂S
∂t − DSΔS = −β(x,t)SI

S+I + γ(x, t)I, x ∈ Ω, t > 0,
∂I
∂t − DIΔI = β(x,t)SI

S+I − γ(x, t)I, x ∈ Ω, t > 0,
∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0,
S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω,

(1.2)

where β(x, t) and γ(x, t) denote the rate of disease transmission and the recovery rate at location x and
time t, respectively. In an almost periodic environment, we first make the following assumption:
(H1) β(x, t) and γ(x, t) are Hölder continuous and nonnegative nontrivial on Ω̄×R, and uniformly almost

periodic in t.
As noted in [25], since SI/(S + I) is Lipschitz continuous in S and I in the first open quadrant, we

can define S and I in the entire first quadrant by defining it to be zero when either S = 0 or I = 0. Refer
to [2] (see also [25]), we assume that
(H2)

∫

Ω
I(x, 0)dx > 0, with S0 � 0 and I0 � 0 for all x ∈ Ω, and S0, I0 are continuous on Ω̄,

which assures that there is a positive number of infected individuals at the initial time.
By the theory for parabolic equations (see [18]), system (1.2) admits a unique classical solution (S, I) ∈

C2,1(Ω̄ × (0,∞)). It follows from the strong maximum principle and the Hopf boundary lemma for
parabolic equations (see [26]) that both S(x, t) and I(x, t) are positive for all x ∈ Ω̄ and t > 0. As
following from [2], let

N :=
∫

Ω

[S0(x) + I0(x)]dx > 0

be the total number of individuals in Ω at t = 0. It then follows from (1.2) that
∂

∂t

∫

Ω

[S + I]dx =
∫

Ω

Δ(DSS + DII)dx = 0, t > 0.

Hence, the total population size is constant, i.e.,
∫

Ω

(S + I)dx = N, t � 0. (1.3)

Thus, ‖S(·, t)‖L1(Ω) and ‖I(·, t)‖L1(Ω) are bounded in [0,∞). Let I ≡ 0 on Ω̄ × R in (1.2), then we
obtain the unique disease-free almost periodic solution (S, 0) = (N/|Ω|, 0) (see [2, Lemma 2.1]), where
|Ω| denotes the volume of the domain Ω.

Our analysis in this paper will mainly focus on the persistence and extinction of almost periodic
reaction–diffusion system (1.2). Based on the theory of linear almost periodic parabolic equations, and
using the idea of the next-generation operator in [8,31] (see also [25,32,34]), we establish the definition
and the theories of the basic reproduction ratio R0 and its computation formulae for almost periodic
reaction–diffusion system (1.2). In particular, we present the asymptotic properties of R0 with respect to
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the diffusion rate DI of the infected individuals. Finally, we consider the uniform persistence, extinction
and global attractivity in terms of R0. Our results suggest that the interaction of spatial heterogeneity
and temporal almost periodicity tends to enhance the persistence of the disease. Since almost periodic
functions are a generalization (see [9]) of periodic functions, we would like to illustrate that, differing from
the autonomous case (see [2]) and periodic case (see [25]), the theory of the eigenvalue is not applicable
to almost periodic cases. Here, exponential growth bounds and skew-product semiflows are employed.

This paper is organized as follows. In Sect. 2, we present the theory of abstract linear almost periodic
parabolic equations. In Sect. 3, we introduce the basic reproduction ratio of (1.2) and obtain its com-
putation formulae and properties. In Sect. 4, we establish a threshold result on uniform persistence and
global extinction of (1.2). In Sect. 5, we give the description of the global attractivity for some special
cases. In Sect. 6, we discuss biological interpretations of our results briefly.

2. Almost periodic parabolic equations

A function f ∈ C(R,Rm) is said to be almost periodic if for any ε∗ > 0, there exists l = l(ε∗) > 0 such
that every interval of R of length l contains at least one point of the set

T (f, ε∗) = {s∗ ∈ R : |f(t + s∗) − f(t)| < ε∗,∀t ∈ R},

where | · | is the usual Euclidean norm in R
m. Let D ⊂ R

n. A function f ∈ C(D × R,Rm) is said to
be uniformly almost periodic in t if f(x, ·) is almost periodic for each x ∈ D, and for any compact
set E ⊂ D, f is uniformly continuous on E × R (see [6,9]). A special class of almost periodic functions
consists of quasi-periodic functions. A function f ∈ C(R,Rm) is said to be quasi-periodic if there exist
positive numbers �1, . . . , �p with their reciprocals T1, . . . , Tp being rationally linearly independent such
that f(t) = F (t, . . . , t) and for each 1 � i � p, F (t1, . . . , tp) is �i-periodic in ti.

It follows from [6,9] that if f is an almost periodic function, then there exists a Fourier series∑∞
j=1 Aje

iλjt associated with the function f , i.e., f(t) ∼ ∑∞
j=1 Aje

iλjt. We call λj , j = 1, 2, . . ., the
Fourier exponent of f(t), and Aj the Fourier coefficient of f(t). The module of f , mod(f), is defined as
the smallest additive group of real numbers that contains the Fourier exponent of f(t).

For each α ∈ (1/2+n/2p, 1), let X := Xα ⊂ Lp(Ω) (p > n) be the fractional power space with respect
to −Δ with homogeneous Neumann boundary condition (see [12]). Then X is an ordered Banach space
with the cone X+ defined by X+ = {ϕ ∈ X : ϕ(x) � 0,∀x ∈ Ω}. Note that the interior of X+ satisfies
IntX+ 	= ∅. Hence, the ordering on X can be defined as follows:

ϕ1 � ϕ2 ⇔ ϕ1(x) � ϕ2(x), ∀x ∈ Ω,

ϕ1 < ϕ2 ⇔ ϕ1 � ϕ2, ϕ1 	= ϕ2,

ϕ1 � ϕ2 ⇔ ϕ2 − ϕ1 ∈ IntX+.

We denote the norm in X by ‖ · ‖. Let AP be the ordered Banach space consisting of all almost periodic
and continuous functions from R to X with the maximum norm. Hence, the positive cone can be defined
by AP+ = {ψ ∈ AP : ψ(t)(x) � 0, ∀x ∈ Ω̄, t ∈ R}. Here, we use the notation ψ(t)(x) = ψ(x, t).

Consider the linear almost periodic parabolic problem
{

∂u
∂t − DuΔu = ξ(x, t)u, x ∈ Ω, t > 0,
∂u
∂ν = 0, x ∈ ∂Ω, t > 0,

(2.1)

where ξ is Hölder continuous and uniformly almost periodic in t. Define the hull of an almost periodic
function ξ(x, t) as

H(ξ) = cls{ξs : s ∈ R, ξs(·, t) = ξ(·, s + t)},

where the closure is taken in the compact open topology. It then follows that the translation σ : R×H(ξ) →
H(ξ), σ(t)(ζ) = ζs = ζ · s with ζ · s(t) = ζ(t + s), defines a continuous, compact, almost periodic minimal
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and distal flow (see [28, Lemma VI.C], which is denoted by (H(ξ), σ,R). Then (2.1) generates a skew-
product semiflow:

Πt : X × H(ξ) → X × H(ξ), t � 0,

(u0, ζ) �→ (u(·, t, u0, ζ), ζt), (2.2)

where u(x, t, u0, ζ) is the solution of
{

∂u
∂t − DuΔu = ζ(x, t)u, x ∈ Ω, t > 0,
∂u
∂ν = 0, x ∈ ∂Ω, t > 0

(2.3)

satisfying u(x, 0, u0, (ζ)) = u0(x) (ζ ∈ H(ξ)).
For any given η ∈ R, define the following linear skew-product semiflow

Πη
t : X × H(ξ) → X × H(ξ), t � 0,

(u0, ζ) �→ (Φη(t, ζ)u0, ζt), (2.4)

where Φη(t, ζ)u0 = e−ηtu(·, t, u0, ζ).
Let Q be a subset of H(ξ). According to [16, Definition 3.4], the linear skew-product semiflow (2.4)

admits an exponential dichotomy over Q if there exist σ1 > 0, K1 > 0 and continuous projections
P (ζ) : X → X (ζ ∈ Q) such that for any ζ ∈ Q, the following hold:
(1) Φη(t, ζ)P (ζ) = P (ζ · t)Φη(t, ζ), ∀t ∈ R+;
(2) Φη(t, ζ)|R(P (ζ)) : R(P (ζ)) → R(P (ζ · t)) is an isomorphism for t ∈ R+, where R(P ) denotes the range

of P (hence, Φη(−t, ζ) := Φ−1
η (t, ζ · (−t)) : R(P (ζ)) → R(P (ζ · (−t))) is well defined for t ∈ R+);

(3)

‖Φη(t, ζ)(I − P (ζ))‖ � K1e
−σ1t, ∀t ∈ R+,

and

‖Φη(t, ζ)P (ζ)‖ � K1e
σ1t, ∀t ∈ R−.

The set

Σ(Q) := {η ∈ R : (2.4) admits no exponential dichotomy overQ}
is called the dynamic (Sacker–Sell) spectrum of (2.1) or (2.2) over Q.

For any ζ ∈ H(ξ), we define the Lyapunov exponent λζ as

λζ = lim sup
t→∞

ln ‖Φ(t, ζ)‖
t

,

where Φ(t, ζ) = Φ0(t, ζ). The number λ∗ := supζ∈H(ξ) λζ is called the upper Lyapunov exponent of (2.1)
or (2.2).

Theorem 2.1. There exist an almost periodic function a(t, ζ) and a uniformly almost periodic function
ũ(·, t, ζ) ∈ IntX+ such that u(x, t, ζ) = e

∫ t
0 a(τ,ζ)dτ ũ(x, t, ζ) is a solution of (2.3). Furthermore,

λ∗ = lim
t→∞

ln ‖u(x, t, ζ)‖
t

= lim
t→∞

1
t

t∫

0

a(τ, ζ)dτ,

and it is a strictly monotone decreasing function of Du > 0 if ξ(·, t) changes sign for every t.

Proof. It follows from [16, Lemma 3.3] that the skew-product semiflow (2.2) is strongly monotone in the
sense that u(·, t, u0, ζ)) ∈ IntX+ for any t > 0, ζ ∈ H(ξ), and u0 ∈ X+ \ {0}. Hence, the skew-product
semiflow (2.2) admits a continuous separation ([16, Lemma 3.12]) in the sense that there exist subspaces
{X1(ζ)}ζ∈H(ξ), {X2(ζ)}ζ∈H(ξ) such that the following properties hold:
(1) X = X1(ζ) ⊕ X2(ζ) (ζ ∈ H(ξ)) and X1(ζ), X2(ζ) vary continuously in ζ ∈ H(ξ);
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(2) X1(ζ) = span{u(ζ)}, where u(ζ) ∈ IntX+ and ‖u(ζ)‖ = 1 for ζ ∈ H(ξ);
(3) X2(ζ) ∩ X+ = 0 for each ζ ∈ H(ξ);
(4) Φ(t, ζ)X1(ζ) = X1(ζ · t) and Φ(t, ζ)X2(ζ) ⊂ X2(ζ · t) for all t � 0, ζ ∈ H(ξ);
(5) There exist K2 > 0 and σ2 > 0 such that for any ζ ∈ H(ξ) and û(ζ) ∈ X2(ζ) with ‖û(ζ)‖ = 1, we

have

‖Φ(t, ζ)û(ζ)‖ � K2e
−σ2t‖Φ(t, ζ)u(ζ)‖

for all t > 0.
Let

ũ(·, t, ζ) =
u(ζ · t)

‖u(ζ · t)‖2
∈ IntX+, ζ ∈ H(ξ)

with ũ(ζ) = ũ(·, 0, ζ), where ‖ · ‖2 denotes the norm in L2(Ω), and r(t, ζ) = ‖u(·, t, ũ(ζ), ζ)‖2. Observe
that ũ(x, t, ζ) can also be expressed as

ũ(x, t, ζ) =
u(x, t, u(ζ), ζ)

‖u(x, t, u(ζ), ζ)‖2
.

Then we have u(x, t, ũ(ζ), ζ) = r(t, ζ)ũ(x, t, ζ) and r(t, ζ) are differentiable in t (see [16, Lemma 3.13]).
Hence,

rt(t, ζ)ũ(x, t, ζ) + r(t, ζ)
∂ũ

∂t
(x, t, ζ) − Dur(t, ζ)Δũ(x, t, ζ) = ζ(x, t)r(t, ζ)ũ(x, t, ζ). (2.5)

It then follows from
∫

Ω
ũ2(x, t, ζ)dx = 1 that

rt(t, ζ) = a(t, ζ)r(t, ζ), (2.6)

where

a(t, ζ) = −Du

∫

Ω

|∇ũ(x, t, ζ)|2dx +
∫

Ω

ζ(x, t)|ũ(x, t, ζ)|2dx, (2.7)

and it is almost periodic because Δũ(x, t, ζ), ũ(x, t, ζ) and ζ(x, t) are uniformly almost periodic in t
([16, Lemma 3.13 3)]). From (2.5) and (2.6), we see that ũ(x, t, ζ) satisfies

{
∂ũ
∂t − DuΔũ = ζ(x, t)ũ − a(t, ζ)ũ, x ∈ Ω, t > 0,
∂ũ
∂ν = 0, x ∈ ∂Ω, t > 0.

(2.8)

It is easy to verify that u(x, t, ζ) = e
∫ t
0 a(τ,ζ)dτ ũ(x, t, ζ) is a solution of (2.3) with the initial value u(·, 0, ζ) =

ũ(·, 0, ζ) = ũ(ζ), and hence,

Φ(t, ζ)ũ(ζ) = e

t∫

0
a(τ,ζ)dτ

ũ(·, t, ζ) = u(·, t, ũ(ζ), ζ) = r(t, ζ)ũ(·, t, ζ). (2.9)

The existence of the continuous separation of the linear skew-product semiflow shows that

λ∗ = sup
ζ∈H(ξ)

lim sup
t→∞

ln ‖Φ(t, ζ)ũ(ζ)‖
t

. (2.10)

Since a(t, ζ) is almost periodic, limt→∞ 1
t

∫ t

0
a(τ, ζ)dτ exists and is independent of ζ ∈ H(ξ) (see, e.g., [16,

Lemma 3.2]). Thus, limt→∞
ln ‖Φ(t,ζ)ũ(ζ)‖

t = limt→∞ 1
t

∫ t

0
a(τ, ζ)dτ exists and is independent of ζ ∈ H(ξ).

It then follows from (2.9) and (2.10) that

λ∗ = lim
t→∞

ln ‖u(x, t, ζ)‖
t

= lim
t→∞

1
t

t∫

0

a(τ, ζ)dτ.
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It remains to prove the monotonicity. In fact, it is obvious that λ∗ is nonincreasing by inspection of
(2.7). At the beginning, we differentiate both sides of (2.8) by Du to obtain

(ũt)′ − Δũ − DuΔ(ũ)′ = ζ(x, t)(ũ)′ − a′(t, ζ)ũ − a(t, ζ)(ũ)′, (2.11)

where the notation ()′ denotes differentiation by Du. Next, we multiply (2.8) by (ũ)′ and (2.11) by ũ,
subtract the resulting equations and then integrate by parts over (0, t) × Ω to obtain

lim
t→∞

1
t

t∫

0

a′(τ, ζ)dτ = − lim
t→∞

1
t

t∫

0

∫

Ω

|∇ũ(τ, ζ)|2dxdτ.

Since ũ(t, ζ) ∈ IntX+, we conclude that (λ∗)′ � 0. Finally, we prove that (λ∗)′ = 0 is impossible. On
the contrary, if (λ∗)′ = 0, then the uniform almost periodicity of ∇ũ(t, ζ) (see, e.g., [16, Lemma 3.13 2)])
implies that ũ(t, ζ) is a positive constant function with respect to x. Thus, we follows from (2.8) that
λ∗ = limt→∞ 1

t

∫ t

0
a(τ, ζ)dτ = limt→∞ 1

t

∫ t

0
ζ(x, τ)dτ . Since ζ(·, t) changes sign on Ω, it is a contradiction.

Hence, we have (λ∗)′ < 0. �

Let Ψζ(t, s) (t ≥ s, s ∈ R) be the evolution operator of (2.3). Obviously, Ψζ(t, 0) = Φ(t, ζ). For each
ζ ∈ H(ξ), we define the exponential growth bound of Ψζ(t, s) to be

ω(Ψζ) = inf{ω̃ ∈ R : ∃K0 � 1, ‖Ψζ(t + s, s)‖ � K0e
ω̃t, ∀s ∈ R, t � 0}. (2.12)

Lemma 2.2. ω(Ψζ) = ω(Ψξ) = λ∗ = sup Σ(H(ξ)) for all ζ ∈ H(ξ).

Proof. The conclusion of λ∗ = sup Σ(H(ξ)) can be obtained straight by [16, Lemma 3.10] (see also [29,
Proposition II. 4.1]).

By [27, Lemma 1], we see that the spectrum Σ(ζ) = Σ(H(ξ)) for each ζ ∈ H(ξ). Since Ψζ(t + s, s) =
Ψζ·s(t, 0) = Φ(t, ζ ·s), the similar arguments to those in the proof of [32, Lemma 2.4] (see also [27, Lemma
4 (A)]) and (2.12) imply that ω(Ψζ) � sup Σ(H(ξ)), ∀ζ ∈ H(ξ). For any ε > 0, let λ0 = sup Σ(H(ξ)) and
λ∗ = λ0 + ε. It then follows that from the properties of exponential dichotomy that there exists K3 � 1
such that

‖e−λ∗tΦ(t, ζ)‖ � K3, ∀t � 0, ζ ∈ H(ξ),

that is,

‖Φ(t, ζ)‖ � K3e
λ∗t, ∀t � 0, ζ ∈ H(ξ).

Hence, we conclude that ω(Ψζ) � λ∗ = λ0 + ε. Letting ε → 0, we have ω(Ψζ) � λ0 = sup Σ(H(ξ)). Thus,
ω(Ψζ) = sup Σ(H(ξ)), ∀ζ ∈ H(ξ). In particular, ω(Ψζ) = sup Σ(ζ). In view of λ∗ = sup Σ(H(ξ)), we have
ω(Ψζ) = ω(Ψξ) = λ∗ = sup Σ(H(ξ)). �

3. Basic reproduction ratios

In epidemiology, the basic reproduction ratio R0 (sometimes called basic reproductive rate, basic repro-
ductive number) of an infection is defined as the expected number of secondary cases produced by a single
(typical) infection in a completely susceptible population (see [8]). It is used to measure the transmission
potential of a disease, i.e., it helps determine whether or not an infectious disease can spread through a
population. Mathematically, R0 is a crucial threshold parameter in population models. In this section,
we will give the definition of the basic reproduction ratio of system (1.2) and analyze its properties.

Let Ψ−γ(t, s) (t � s, s ∈ R) be the evolution operator of reaction–diffusion equation
{

∂I
∂t − DIΔI = −γ(x, t)I, x ∈ Ω, t > 0,
∂I
∂ν = 0, x ∈ ∂Ω, t > 0.

(3.1)
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It then follows from the standard semigroup theory (see also [25]) that there exist K4 > 0 and σ4 > 0
such that

‖Ψ−γ(t, s)‖ � K4e
−σ4(t−s), ∀t ≥ s, s ∈ R. (3.2)

Let ω(Ψ−γ) be the exponential growth bound of Ψ−γ(t, s), then it is easy to see from the definition of
the exponential growth bound that ω(Ψ−γ) < 0.

Assume that the uniformly almost periodic function φ(x, s) is the initial distribution of infectious indi-
viduals at the location x ∈ Ω and time s, then β(x, s)φ(x, s) is the distribution of new infections produced
by the infected individuals who were introduced at time s. Given t � s, then Ψ−γ(t, s)β(x, s)φ(x, s) is
the distribution at location x of those infected individuals who were newly infected at time s and remains
infected at time t. It then follows that

t∫

−∞
Ψ−γ(t, s)β(·, s)φ(·, s)ds =

∞∫

0

Ψ−γ(t, t − a)β(·, t − a)φ(·, t − a)da

represents the distribution of accumulative new infections at location x and time t produced by all those
infected individuals φ(x, s) introduced at previous time to t.

Define AP(β,γ) := {φ : φ ∈ AP,mod(φ) ⊂ mod(β, γ)}. By [32, Lemma 2.1], AP(β,γ) is a Banach space
with the supremum norm, and the positive cone AP+

(β,γ) = {φ ∈ AP(β,γ) : φ(t)(x) � 0, ∀x ∈ Ω̄, t ∈ R}
has a nonempty interior Int(AP+

(β,γ)). Then we define a linear mapping L by

(Lφ)(t) =

∞∫

0

Ψ−γ(t, t − a)β(·, t − a)φ(·, t − a)da. (3.3)

Since ω(Ψ−γ) < 0, applying the similar arguments to those in [32, Lemma 3.1], we can verify that L is
continuous and positive operator from AP(β,γ) to AP(β,γ).

Using the ideas in [8,31] (see also [25,32,34]), we call L the next-generation operator and define the
spectral radius of L as the basic reproduction ratio

R0 := r(L)

for almost periodic reaction–diffusion epidemic model (1.2).
Consider the linear almost periodic parabolic equation

{
∂I
∂t − DIΔI = β(x, t)I − γ(x, t)I, x ∈ Ω, t > 0,
∂I
∂ν = 0, x ∈ ∂Ω, t > 0.

(3.4)

Let Ψ(β,−γ)(t, s) (t � s, s ∈ R) be the evolution operator of (3.4). Similarly, we can define the exponential
growth bound of Ψ(β,−γ)(t, s), denoted by ω(Ψ(β,−γ)).

Lemma 3.1. R0 − 1 and ω(Ψ(β,−γ)) have the same sign.

Proof. For simplicity, Let A := DIΔ + β − γ, B := DIΔ − γ and C := β. Here, we denote the evolution
operators Ψ(β,−γ)(t, s) and Ψ−γ(t, s) by ΨA(t, s) and ΨB(t, s), respectively.

Following the approach similar to that in [30], we define the evolution semigroup ΓA associated with
ΨA(t, s) as

[ΓA(t)φ](·, s) = ΨA(s, s − t)φ(·, s − t), φ ∈ AP (β, γ), ∀t ≥ 0, s ∈ R.

Then we define the exponential growth bound of ΓA as

ω(ΓA) = inf{ω̃ ∈ R : ∃K0 ≥ 1, ‖ΓA(t)‖ ≤ K0e
ω̃t, ∀t ≥ 0}.

Similarly, we can define the evolution semigroup ΓB associated with ΨB(t, s) and then define the exponen-
tial growth bound of ΓB , denoted by ω(ΓB). Let the generator A of ΓA be the part of the operator − d

dt +A
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on AP(β,γ), the generator B of ΓB be the part of the generator − d
dt +B, and define (Cφ)(·, t) = β(·, t)φ(·, t).

Then A is a positive perturbation of B, and A = B + C. Let σ(A) be the spectrum of A. Recall that the
spectral bound of A (see also [30]) is defined as

s(A) = sup{Re(λ) : λ ∈ σ(A)}.

Similarly, we can define the spectral bound of B, denoted by s(B). Since AP(β,γ) is an abstract M -space,
we follow from [32, Lemma 2.3] and [30, Theorem 3.14] that ω(ΨA) = ω(ΓA) = s(A) and ω(ΨB) =
ω(ΓB) = s(B).

Note that the positive cone AP+
(β,γ) is normal and generating. It then follows from [30, Theorem 3.12]

that A and B are resolvent-positive on AP(β,γ), and B−1 exists such that

(−B−1φ)(·, t) =

∞∫

0

ΨB(t, t − a)φ(·, t − a)da, ∀φ ∈ AP(β,γ).

Hence,

(−CB−1φ)(·, t) =

∞∫

0

β(·, t)ΨB(t, t − a)φ(·, t − a)da

= β(·, t)
∞∫

0

Ψ−γ(t, t − a)φ(·, t − a)da

=: (L̄φ)(t).

Let

I(φ)(t) =

∞∫

0

Ψ−γ(t, t − a)φ(·, t − a)da, J (φ)(t) = β(·, t)φ(·, t).

By the arguments similar to the above, we see that L̄, I and J are the linear operators from AP(β,γ)

to AP(β,γ). The spectral radius of L̄, r(L̄), can be defined as the basic reproduction ratio of (1.2) (see
[4,30]). Since L = IJ and L̄ = J I, it follows that r(L) = r(L̄). Thus, r(L) and r(L̄) give rise to the same
R0. Since ω(Ψ−γ) < 0, that is s(B) < 0, [30, Theorem 3.5] implies that s(A) and r(−CB−1) − 1 have the
same sign. Based on the above all, we conclude that R0 − 1 and ω(Ψ(β,−γ)) have the same sign. �

Let Ψ(β/ρ,−γ)(t, s) (t � s, s ∈ R) be the evolution operator of the linear almost periodic parabolic
equation

{
∂I
∂t − DIΔI = β(x,t)

ρ I − γ(x, t)I, x ∈ Ω, t > 0,
∂I
∂ν = 0, x ∈ ∂Ω, t > 0,

(3.5)

where ρ ∈ (0,∞) is a parameter. Let ω(Ψ(β/ρ,−γ)) be the exponential growth bound of Ψ(β/ρ,−γ)(t, s).
In order to computer R0, we make the following assumption:

(H3) Either (β(·, t), γ(·, t)) is quasi-periodic, or mod(β, γ) has no finite limit point.

Lemma 3.2. Let (H3) hold. Then ρ = R0 > 0 is the unique solution of ω(Ψ(β/ρ,−γ)) = 0.

Proof. Since the exponential growth bound associated with (3.5) is nonincreasing in ρ ∈ (0,∞) and
ω(Ψ−γ) < 0, without loss of generality, we assume that ω(Ψ(β/ρ,−γ)) = 0 for some ρ = ρ0 > 0. Let
(ρ0, ψ0) be the solution of (3.5). Since ω(Ψ(β/ρ0,−γ)) = 0, it follows from the definition of the exponential
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growth bound that ψ0(x, t) is a bounded solution of (3.5) with ρ = ρ0. By the constant variation formula,
we have

ψ0(x, t) = Ψ−γ(t, τ)ψ0(x, τ) +

t∫

τ

Ψ−γ(t, s)
β(x, s)

ρ0
ψ0(x, s)ds. (3.6)

In view of (3.2) and the boundedness of ψ0(x, t) on R, letting τ → −∞ in (3.6), we obtain

ψ0(x, t) =

t∫

−∞
Ψ−γ(t, s)

β(x, s)
ρ0

ψ0(x, s)ds, ∀t ∈ R.

It then follows from (3.3) that Lψ0 = ρ0ψ0. Since ρ0 ∈ σ(L) \ {0}, we have R0 := r(L) > 0.
For any sufficiently small ε > 0, let Ψ((β+ε)/ρ,−γ) be the evolution operator of the linear almost periodic

parabolic equation
{

∂I
∂t − DIΔI = β(x,t)+ε

ρ I − γ(x, t)I, x ∈ Ω, t > 0,
∂I
∂ν = 0, x ∈ ∂Ω, t > 0,

(3.7)

where ρ ∈ (0,∞) is a parameter. We use ω(Ψ((β+ε)/ρ,−γ)) to denote the exponential growth bound of
Ψ((β+ε)/ρ,−γ). Define

Lε(φ)(t) :=

∞∫

0

Ψ−γ(t, s)(β(·, t − a) + ε)φ(·, t − a)da,

and its spectral radius Rε
0 = r(Lε). By Theorem 2.1 and Lemma 2.2, we conclude that there exist almost

periodic functions Ĩ(·, t, (β + ε)/Rε
0, γ) ∈ IntX+ and a(t, (β + ε)/Rε

0, γ) such that

Iε(·, t) := e

t∫

0
a(t,(β+ε)/Rε

0,γ)dτ
Ĩ(·, t, (β + ε)/Rε

0, γ), ∀t ∈ R+

is a solution of (3.7) with ρ = Rε
0, and

ω̄ := ω(Ψ((β+ε)/Rε
0,−γ)) = lim

t→∞
ln ‖Iε(x, t)‖

t
. (3.8)

Since β(x, t) + ε > 0, Lε : AP(β,γ) → AP(β,γ) is strongly positive. Furthermore, the similar arguments
to those in the proof of [32, Lemma 3.3] imply that Lε is compact, and limε→0+ ω(Ψ(β+ε)/ρ0,−γ)) =
ω(Ψ(β/ρ0,−γ)), and limε→0+ Rε

0 = R0. By the Krein–Rutman theorem (see, e.g., [13, Theorem 7.1]), we
conclude that there exists ψε

0 ∈ Int(AP+
(β,γ)) such that Lεψ

ε
0 = Rε

0ψ
ε
0. Hence, ψε

0(x, t) is a uniformly almost
periodic solution of (3.7) with ρ = Rε

0. In the following, we prove that ω̄ = 0.
First, by contradiction, suppose that ω̄ > 0. Since Iε, ψε

0 ∈ Int(AP+
(β,γ)), there exists a sufficiently small

number ν1 > 0 such that ψε
0(x, 0) ≥ ν1Iε(x, 0). The comparison principle implies that ψε

0(x, t) ≥ ν1Iε(x, t),
∀t ≥ 0 and x ∈ Ω. Hence,

‖ψε
0(x, t)‖ ≥ ν1‖Iε(x, t)‖, ∀t ≥ 0, x ∈ Ω. (3.9)

In view of (3.8), we know that for any given ε∗ ∈ (0, ω̄), there exists t0 > 0 such that

ln ‖Iε(x, t)‖
t

≥ ω̄ − ε∗, ∀t > 0,

which implies

‖Iε(x, t)‖ ≥ e(ω̄−ε∗)t, ∀t > 0. (3.10)

Letting t → ∞, we see from (3.9) and (3.10) that ‖ψε
0(x, t)‖ → ∞, which contradicts the boundedness of

the uniformly almost periodic function ψε
0(x, t). Hence, ω̄ > 0 is impossible.
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Next, suppose that ω̄ < 0. For any given ε∗ ∈ (0,−ω̄), (3.8) implies that there exists t̄0 > 0 such that

ln ‖Iε(x, t)‖
t

≤ ω̄ + ε∗, ∀t > t̄0,

that is,

‖Iε(x, t)‖ ≤ e(ω̄+ε∗)t, ∀t > t̄0.

Similarly, there exists a sufficiently large number ν2 > 0 such that ψε
0(x, t̄0) ≤ ν2Iε(x, t̄0). By the com-

parison principle, we then have ψε
0(x, t) ≤ ν2Iε(x, t), and hence,

‖ψε
0(x, t)‖ ≤ ν2‖Iε(x, t)‖ ≤ ν2e

(ω̄+ε∗)t, ∀t > t̄0.

Letting t → ∞, we see that limt→∞ ‖ψε
0(x, t)‖ = 0. Let Aε(·, t) := DIΔ + (β(·, t)/Rε

0 − γ(·, t)). By
[9, Theorem 5.7] and its proof, we further see that the uniformly almost periodic solution ψε

0(x, t) of dI

dt
=

Aε(x, t)I satisfies either inf
t∈R

‖ψε
0(·, t)‖ > 0 or ψε

0(·, t) ≡ 0. Thus, we obtain ψε
0(·, t) ≡ 0, a contradiction.

Hence, ω̄ < 0 is impossible.
The arguments above imply that ω̄ = ω(Ψ((β+ε)/Rε

0,−γ)) = 0. Letting ε → 0+, we get ω(Ψ(β/R0,−γ)) =
0.

It remains to prove that ω(Ψ(β/ρ,−γ)) = 0 has at most one positive solution for ρ. By the stan-
dard comparison principle, since the exponential growth bound associated with (3.5) is nonincreasing in
ρ ∈ (0,∞), Lemma 2.2 tells us that ω(Ψ(β/ρ,−γ)) admits the same property. On the contrary, we assume
that ω(Ψ(β/ρ,−γ)) = 0 has two positive solutions ρ1 < ρ2. Then ω(Ψ(β/ρ,−γ)) = 0 for all ρ ∈ [ρ1, ρ2].
Hence, we see that any ρ ∈ [ρ1, ρ2] is an eigenvalue of L, which is impossible since the compact linear
operator L has countably many eigenvalues. �

Based on the above, we present the properties of the basic reproduction ratio of (1.2) for various rates
of disease transmission and disease recovery. At the beginning, we assume that β(x, t) − γ(x, t) or both
β(x, t) and γ(x, t) are spatially homogeneous. For an almost periodic function g(t), we denote the mean
value of g(t) by

[g] := lim
t→∞

1
t

t∫

0

g(τ)dτ.

Lemma 3.3. The following statements are valid:

(i) If β(x, t) ≡ β(t), γ(x, t) ≡ γ(t) and (H3) holds, then R0 = [β]/[γ].
(ii) If β(x, t) − γ(x, t) ≡ μ(t), then R0 > 1 if [μ] > 0, R0 = 1 if [μ] = 0 and R0 < 1 if [μ] < 0.

Proof. (i) By Theorem 2.1 and its proof, there exist almost periodic functions ϕ̃∗ := ϕ̃∗(·, t, β/ρ, γ) ∈
IntX+ and a(t, β/ρ, γ)) associated with (3.5) such that

{
∂ϕ̃∗

∂t − DIΔϕ̃∗ = β(x,t)
ρ ϕ̃∗ − γ(x, t)ϕ̃∗ − a(t, β/ρ, γ)ϕ̃∗, x ∈ Ω, t > 0,

∂ϕ̃∗

∂ν = 0, x ∈ ∂Ω, t > 0.
(3.11)

Multiply (3.11) by ϕ̃∗ and integrate by parts over Ω × (0, t) , then we get

−DI lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ̃∗|2dxdτ

+ lim
t→∞

1
t

t∫

0

∫

Ω

(
β(x, τ)

ρ
− γ(x, τ) − a(τ, β/ρ, γ)

)

(ϕ̃∗)2dxdτ = 0. (3.12)
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Since β(x, t) ≡ β(t), γ(x, t) ≡ γ(t), it follows from Theorem 2.1 and its proof that ϕ̃∗ is independent on
the spatial factor. Hence, we rewrite (3.12) as

lim
t→∞

1
t

t∫

0

(
β(τ)

ρ
− γ(τ) − a(τ, β/ρ, γ)

)

dτ = 0.

Thus, Theorem 2.1 and Lemma 2.2 imply that

ω(Ψ(β/ρ,−γ)) = lim
t→∞

t∫

0

a(τ, β/ρ, γ)dτ = lim
t→∞

1
t

t∫

0

(
β(τ)

ρ
− γ(τ)

)

dτ.

It then follows from Lemma 3.2 that R0 = [β]/[γ].
(ii) Applying the completely similar arguments to the above, we conclude that

ω(Ψ(β,−γ)) = lim
t→∞

1
t

t∫

0

(β(x, τ) − γ(x, τ))dτ = lim
t→∞

1
t

t∫

0

μ(τ)dτ = [μ].

By Theorem 3.1, we deduce that R0 − 1 and ω(Ψ(β,−γ)) have the same sign, that is, R0 > 1 if [μ] > 0,
R0 = 1 if [μ] = 0 and R0 < 1 if [μ] < 0. �

In the following, we investigate the property of R0 as β(x, t) − γ(x, t) or both β(x, t) and γ(x, t) are
only dependent on the spatial factor.

Lemma 3.4. Suppose that β(x, t) − γ(x, t) ≡ μ(x). Then we have the following statements:

(i) If
∫

Ω
μ(x)dx � 0 and μ(x) 	≡ 0 in Ω, then R0 > 1 for all DI .

(ii) If
∫

Ω
μ(x)dx < 0 and μ(x) � 0 on Ω̄, then R0 < 1 for all DI .

(iii) If
∫

Ω
μ(x)dx < 0 and max

x∈Ω̄
μ(x) > 0, then there exists a threshold value D∗

I > 0 such that R0 > 1 for

all DI < D∗
I , R0 < 1 for all DI > D∗

I , and R0 = 1 for all DI = D∗
I .

In particular, if β(x, t) ≡ β(x), γ(x, t) ≡ γ(x), then we have

R0 = sup
φ∈H1(Ω),φ�=0

{ ∫

Ω
βφ2dx

∫

Ω
(DI |∇φ|2 + γφ2)dx

}

,

and R0 is a nonincreasing function of DI with limDI→0 R0 = maxx∈Ω̄{β(x)
γ(x)}, and limDI→∞ R0 =

∫

Ω
βdx/

∫

Ω
γdx.

Proof. By Theorem 2.1 and Lemma 2.2, there exist almost periodic functions ϕ̃∗ := ϕ̃∗(·, t, β, γ) ∈ IntX+

and a(t, β, γ) associated with (3.4) such that

ω(Ψ(β,−γ)) = lim
t→∞

1
t

t∫

0

a(τ, β, γ))dτ

= −DI lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ̃∗|2dxdτ + lim
t→∞

1
t

t∫

0

∫

Ω

μ(x)|ϕ̃∗|2dxdτ, (3.13)

and
{

∂ϕ̃∗
∂t − DIΔϕ̃∗ = μ(x)ϕ̃∗ − a(t, β, γ)ϕ̃∗, x ∈ Ω, t > 0,

∂ϕ̃∗
∂ν = 0, x ∈ ∂Ω, t > 0.

(3.14)
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Since μ(x) is independent on t, Theorem 2.1 and its proof imply that ϕ̃∗ and a(t, β, γ) are independent
on the spatial factor. For simplicity, we denote a(t, β, γ) ≡ a(β, γ). Then we rewrite (3.13) and (3.14) as

ω(Ψ(β,−γ)) = a(β, γ) = −DI

∫

Ω

|∇ϕ̃∗|2dx +
∫

Ω

μ(x)|ϕ̃∗|2dx, (3.15)

and
{−DIΔϕ̃∗ = μ(x)ϕ̃∗ − a(β, γ)ϕ̃∗, x ∈ Ω,

∂ϕ̃∗
∂ν = 0, x ∈ ∂Ω,

(3.16)

respectively. Furthermore, we have the following two claims.
Claim 1: ω(Ψ(β,−γ)) → max

x∈Ω̄
μ(x) as DI → 0.

It is easy to see from (3.15) that it suffices to prove a(β, γ) → max
x∈Ω̄

μ(x) as DI → 0. Applying (3.15)

again, we have

ω(Ψ(β,−γ)) �
∫

Ω

μ(x)|ϕ̃∗|2dxdτ � max
x∈Ω̄

μ(x) := μ∗.

Hence, lim supDI→0 a(β, γ) � μ∗. Thus, it is sufficient to show that lim infDI→0 a(β, γ) � μ∗. Suppose
not, then there exists ε∗ > 0 such that lim infDI→0 a(β, γ) � μ∗ − ε∗. Passing to a sequence if necessary,
we assume that there exists D∗ > 0 such that if DI < D∗, then a(β, γ) � μ∗ − ε∗/2. By the continuity
of μ(x), there exist x∗ ∈ Ω and δ > 0 such that μ∗ � μ(x) + ε∗/4 for every x ∈ Bδ(x∗) ⊂ Ω, where
Bδ(x∗) = {x : dist(x, x∗) � δ}. Hence, a(β, γ) � μ(x) − ε∗/4 for 0 < DI < D∗ and x ∈ Bδ(x∗). It then
follows from (3.16) that

− DIΔϕ̃∗ = μ(x)ϕ̃∗ − a(β, γ)ϕ̃∗ � ε∗

4
ϕ̃∗, x ∈ Bδ(x∗). (3.17)

Since ϕ̃∗ ∈ IntX+, let DI → 0 in (3.17), then we get a contradiction. Claim 1 is proved.
Claim 2: ω(Ψ(β,−γ)) → 1

|Ω|
∫

Ω
μ(x)dx as DI → ∞.

Integrate (3.16) over Ω by parts, then we obtain
∫

Ω

(μ(x) − a(β, γ))ϕ̃∗dx = 0,

which is equivalent to

a(β, γ)
∫

Ω

ϕ̃∗dx =
∫

Ω

μ(x)ϕ̃∗dx. (3.18)

Hence, it is easy to see that ω(Ψ(β,−γ)) = a(β, γ) � minx∈Ω̄ μ(x). Since Theorem 2.1 and Lemma 2.2
imply that ω(Ψ(β,−γ)) is nonincreasing of DI , we conclude that it is uniformly bounded. Thus, it has a
finite limit ω̂. It then follows from [10] (see also [2]) that the elliptic equation (3.16) admits the property
that there exists some positive constant ϕ̂ such that ϕ̃∗ → ϕ̂ as DI → ∞. By Theorem 2.1 and Lemma 2.2
again, let DI → ∞ in (3.18), we conclude that ω̂ → 1

|Ω|
∫

Ω
μ(x)dx, and ω(Ψ(β,−γ)) is strictly decreasing

with respect to DI > 0 if μ(x) is not a constant in Ω. Hence, the conclusions (i)–(iii) can be obtained
from two claims above and Lemma 3.1.

In the case of β(x, t) ≡ β(x) and γ(x, t) ≡ γ(x), the conclusions can be obtained from [25]. �

For the general case of β and γ, motivated by [25, Theorem 2.5], we have the following assertions.

Theorem 3.5. Suppose that (H3) holds, then the following statements are valid:

(i) For all DI > 0, R0 � limt→∞ 1
t

∫ t

0

∫

Ω
β(x, τ)dxdτ/ limt→∞ 1

t

∫ t

0

∫

Ω
γ(x, τ)dxdτ , and the strict

inequality holds if and only if β(x, t) − γ(x, t) nontrivially depends on the spatial variable x.
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(ii) If limt→∞ 1
t

∫ t

0
maxx∈Ω̄(β(x, τ) − γ(x, τ))dτ � 0 and β(x, t) − γ(x, t) nontrivially depends on the

spatial variable x, then R0 < 1 for all DI > 0.
(iii) R0 → limt→∞ 1

t

∫ t

0

∫

Ω
β(x, τ)dxdτ/ limt→∞ 1

t

∫ t

0

∫

Ω
γ(x, τ)dxdτ as DI → ∞.

(iv) R0 � max
x∈Ω̄

{
limt→∞ 1

t

∫ t
0 β(x,τ)dτ

limt→∞ 1
t

∫ t
0 γ(x,τ)dτ

}
as DI → 0.

(v) In general, R0(DI) := R0 is not a nonincreasing function of DI ; in particular, if β(x, t) = a(x)b(t)
and γ(x, t) = a(x)c(t) with a > 0 on Ω̄, a is not identically equal to a constant, b, c ∈ AP(β,γ), b,
c > 0 on [0,∞) and b − c is not identically equal to a constant, then there exist D1

I and D2
I with

0 < D1
I < D2

I such that R0(D1
I ) = R0(D2

I ).

Proof. (i) Since ϕ̃∗ ∈ IntX+, we divide Eq. (3.11) by ϕ̃∗ and integrate the resulting equation over Ω×(0, t)
by parts to get

−DI lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ̃∗|2
(ϕ̃∗)2

dxdτ = lim
t→∞

1
t

t∫

0

∫

Ω

(
β

ρ
− γ

)

dxdτ − lim
t→∞

1
t

t∫

0

a(τ, β/ρ, γ))dτ.

By Lemmas 2.2 and 3.2, we get

ω(Ψ(β/R0,−γ)) = DI lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ̃∗|2
(ϕ̃∗)2

dxdτ + lim
t→∞

1
t

t∫

0

∫

Ω

(
β

R0
− γ

)

dxdτ = 0.

This implies that R0 � limt→∞ 1
t

∫ t

0

∫

Ω
β(x, τ)dxdτ/ limt→∞ 1

t

∫ t

0

∫

Ω
γ(x, τ)dxdτ . Furthermore, since the

condition that β(x, t) − γ(x, t) nontrivially depends on the spatial variable x is equivalent to

lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ̃∗|2
(ϕ̃∗)2

dxdτ > 0,

we obtain the conclusion.
(ii) For Eq. (3.4), it follows from (3.13) that

ω(Ψ(β,−γ)) = −DI lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ̃∗|2dxdτ + lim
t→∞

1
t

t∫

0

∫

Ω

(β − γ)|ϕ̃∗|2dxdτ

� lim
t→∞

1
t

t∫

0

max
x∈Ω̄

(β − γ)dτ.

If β(x, t) − γ(x, t) nontrivially depends on the spatial variable x, then the strict inequality holds. Hence,
the conclusion can be obtained by Lemma 3.1.

(iii) To obtain this assertion, we use similar arguments to those in the proof of [25, Theorem 2.5 (c)]
(see also [15, Lemma 2.4]). Since some necessary modifications are required, here we provide a detailed
proof.

Let ϕ be the solution of (3.5) with ρ = R0 and assume that γ > 0 on Ω̄×R. Integrating Eq.(3.5) with
ρ = R0 that ϕ satisfies over Ω × (0, t), then we conclude that

R0 =
limt→∞ 1

t

∫ t

0

∫

Ω
βϕdxdτ

limt→∞ 1
t

∫ t

0

∫

Ω
γϕdxdτ

�
maxΩ̄×(0,∞) β

minΩ̄×(0,∞) γ
. (3.19)
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Consequently, the above and (i) imply that R0 is bounded independent of DI . Furthermore, we assume
that

lim
t→∞

1
t

t∫

0

∫

Ω

ϕ2dxdτ = 1. (3.20)

Multiply (3.5) that ϕ satisfies by ϕ and then integrate to get

DI lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ|2dxdτ =
1

R0
lim

t→∞
1
t

t∫

0

∫

Ω

βϕ2dxdτ − lim
t→∞

1
t

t∫

0

∫

Ω

γϕ2dxdτ.

Thus, we can find a positive constant C such that

lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ|2dxdτ � C

DI
. (3.21)

It is obvious to see that the constant C does not depend on DI and may change from place to place (see
also [25]).

Let

ϕ̄(t) =
1

|Ω|
∫

Ω

ϕ(x, t)dx and Γ(x, t) = ϕ(x, t) − ϕ̄(t).

It is easy to see that
∫

Ω
Γ(x, t)dx = 0. It then follows from Poincaré inequality that

∫

Ω

Γ2dx � C

∫

Ω

|∇Γ|2dx for all t.

Since ∇Γ = ∇ϕ, the inequality (3.21) implies that

lim
t→∞

1
t

t∫

0

∫

Ω

Γ2dxdτ � C

DI
, and hence, lim

t→∞
1
t

t∫

0

∫

Ω

|Γ|dxdτ � C√
DI

. (3.22)

In the following, integrate (3.5) that ϕ satisfies over Ω, we have

dϕ̄

dt
=

∫

Ω

(
β

R0
− γ

)

dxϕ̄ +
∫

Ω

(
β

R0
− γ

)

Γdx. (3.23)

The assertion (i) implies that the zero solution of the homogeneous equation associated with (3.23) is
uniformly asymptotically stable (see also [32, Theorm 2.6]), and hence [9, Theorem 7.7 and Sect. XI.4]
shows that system (3.23) admits a unique positive almost periodic solution (see also the proof of [32,
Lemma 3.1]). Without loss of generality, we also denote the almost periodic solution by ϕ̄(t). Using the
result in (i), we follow from (3.19) and (3.22) that

lim
t→∞

1
t

t∫

0

∣
∣
∣
∣
∣
∣

∫

Ω

(
β

R0
− γ

)

Γdx

∣
∣
∣
∣
∣
∣
dτ = O

(
1√
DI

)

. (3.24)

�

By integrating (3.23) that ϕ̄(t) satisfies over (0, t), then we obtain that

0 = lim
t→∞

1
t

t∫

0

∫

Ω

(
β

R0
− γ

)

ϕ̄dxdτ + lim
t→∞

1
t

t∫

0

∫

Ω

(
β

R0
− γ

)

Γdxdτ. (3.25)
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It then follows from (3.24) and (3.25) that

lim
t→∞

1
t

t∫

0

∫

Ω

(
β

R0
− γ

)

ϕ̄dxdτ → 0 as DI → ∞. (3.26)

Furthermore, we claim that ϕ̄ → 0 is impossible as DI → ∞. On the contrary, if ϕ̄ → 0 as DI → ∞,
then together with (3.22), we conclude that limt→∞ 1

t

∫ t

0

∫

Ω
ϕ2dxdτ → 0. This contradicts (3.20). Hence,

the boundedness of ϕ̄ as an almost periodic function and (3.26) imply that

lim
t→∞

1
t

t∫

0

∫

Ω

(
β

R0
− γ

)

dxdτ → 0 as DI → ∞.

This leads to the assertion (iii).
In the general case of γ �, 	≡ 0 on Ω̄ × R, replace γ above by γ + ε for any give ε > 0, then we have

R0 → limt→∞ 1
t

∫ t

0

∫

Ω
βdxdτ

limt→∞ 1
t

∫ t

0

∫

Ω
(γ + ε)dxdτ

. (3.27)

Letting ε → 0 in (3.27), we get the desired result.
(iv) Without loss of generality, we assume that β > 0 and γ > 0 on Ω̄ × R. For the general case, as

above, we replace β > 0 and γ > 0 by β + ε and γ + ε, respectively, and then, the result can be obtained
by letting ε → 0. Let

χ =
limt→∞ 1

t

∫ t

0
β(x0, τ)dτ

limt→∞ 1
t

∫ t

0
γ(x0, τ)dτ

= max
x∈Ω̄

{
limt→∞ 1

t

∫ t

0
β(x, τ)dτ

limt→∞ 1
t

∫ t

0
γ(x, τ)dτ

}

for some x0 ∈ Ω̄.

In the following, we prove R0 � χ. On the contrary, we suppose that R0 > χ. Consider Eq.(3.5) with
ρ = R0 and rewrite (3.11) as

{
∂ϕ̃∗

∂t − DIΔϕ̃∗ = β(x,t)
R0

ϕ̃∗ − γ(x, t)ϕ̃∗ − a(t, β/R0, γ)ϕ̃∗, x ∈ Ω, t > 0,
∂ϕ̃∗

∂ν = 0, x ∈ ∂Ω, t > 0.
(3.28)

Multiply (3.28) by 1/ϕ̃∗ and then integrate over (0, t), it then follows from Theorem 2.1, Lemmas 2.2
and 3.2 that

0 = ω(Ψ(β/R0,−γ)) = lim
t→∞

1
t

t∫

0

a(τ, β/R0, γ))dτ

= DI lim
t→∞

1
t

t∫

0

Δϕ̃∗

ϕ̃∗ dτ + lim
t→∞

1
t

t∫

0

(
β

R0
− γ

)

dτ

� DI lim
t→∞

1
t

t∫

0

Δϕ̃∗

ϕ̃∗ dτ +
(

χ

R0
− 1

)

lim
t→∞

1
t

∫ t

0

γdτ

< 0

as DI → 0. It is a contradiction. Hence, we get R0 � χ.
(v) It is known that the exponential growth bound ω(Ψ(β/ρ,−γ)) associated with (3.5) is nonincreasing

in ρ ∈ (0,∞). Furthermore, Theorem 2.1 and Lemma 2.2 imply that ω(Ψ(β/ρ,−γ)) is not a nonincreasing
function of DI . Hence, by Lemma 3.2, we conclude that R0(DI) := R0 is not a nonincreasing function of
DI .
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By the forms of β and γ, it is easy from (i), (iii) and (iv) to see that

R0 >
limt→∞ 1

t

∫ t

0

∫

Ω
β(x, τ)dxdτ

limt→∞ 1
t

∫ t

0

∫

Ω
γ(x, τ)dxdτ

for all DI ,

and

lim
DI→0

R0(DI) = lim
DI→∞

R0(DI) =
limt→∞ 1

t

∫ t

0

∫

Ω
β(x, τ)dxdτ

limt→∞ 1
t

∫ t

0

∫

Ω
γ(x, τ)dxdτ

.

Obviously, there exist D1
I and D2

I with 0 < D1
I < D2

I such that R0(D1
I ) = R0(D2

I ).

4. Threshold dynamics

In this section, we consider the threshold dynamical behavior of (1.2) in terms of R0. At the beginning,
we introduce the result of the uniform boundedness of the solution of (1.2).

Lemma 4.1. [25, Lemma 3.2] There exists a positive constant C0 independent of the initial data (S0, I0)
satisfying (H2) such that for the corresponding unique solution (S, I) of (1.2), we have

‖S(x, t)‖L∞(Ω) + ‖I(x, t)‖L∞(Ω) � C0, ∀t ∈ [0,∞).

Theorem 4.2. The following two statements are valid:
(i) If R0 < 1, then (S, I) → (N/|Ω|, 0) uniformly on Ω̄ as t → ∞.
(ii) If R0 > 1, then for any solution of (1.2) with the initial value (S0, I0) satisfying (H2), there exists

� > 0 such that

lim inf
t→∞ S(x, t) � � and lim inf

t→∞ I(x, t) � �

uniformly on Ω̄.

Proof. (i) Let (S, I) be the solution of (1.2), then we have

∂I

∂t
− DIΔI � β(x, t)I − γ(x, t)I, x ∈ Ω, t > 0. (4.1)

Consider the comparison equation of (4.1):

∂Ī

∂t
− DIΔĪ = β(x, t)Ī − γ(x, t)Ī , x ∈ Ω, t > 0. (4.2)

which admits the same form with (3.4). Suppose that R0 < 1, then Lemma 3.1 implies that ω(Ψ(β,−γ))<0.
According to the arguments in the proof of Lemma 3.4, there exist almost periodic functions ϕ̃∗(·, t, β, γ) ∈

IntX+ and a(t, β, γ) such that Ī(x, t, β, γ) = e

t∫

0
a(τ,β,γ)dτ

ϕ̃∗(x, t, β, γ) is the solution of (4.2), and

lim
t→∞

1
t

t∫

0

a(τ, β, γ)dτ = ω(Ψ(β,−γ)) < 0. (4.3)

It then follows that Ī(x, t, β, γ) → 0 uniformly on Ω̄ as t → ∞. The comparison principle shows that
I(x, t) → 0 as t → ∞.

In the following, we prove S(x, t) → N/|Ω| as t → ∞. Some ideas come from the proof of [2,
Lemma 2.5]. Observe from (1.2) that

∂S

∂t
− DSΔS =

[

γ(x, t) − β(x, t)S
S + I

]

I, x ∈ Ω, t > 0.
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The preceding arguments about Ī and I imply that
∣
∣
∣
∣
∂S

∂t
− DSΔS

∣
∣
∣
∣ � C1e

∫ t
0 a(τ,β,γ)dτ , x ∈ Ω, t > 0, (4.4)

for some positive constant C1. It then follows from (4.3) that the right side of (4.4) tends to 0. Hence,
S(x, t) tends to a positive constant as t → ∞. Let S(x, t) = S1(t)+S2(x, t), where S1(t) = 1

|Ω|
∫

Ω
S(x, t)dx.

Thus, we have |∂S1/∂t| � C2e
∫ t
0 a(τ,β,γ)dτ for some positive constant C2. Hence, S2 satisfies

{
∂S2
∂t = DSΔS2 + h(x, t), x ∈ Ω, t > 0,

∂S2
∂ν = 0, x ∈ ∂Ω, t > 0,

where h(x, t) satisfies |h(x, t)| � C3e
∫ t
0 a(τ,β,γ)dτ for a constant C3 > 0, and

∫

Ω
S2(x, t)dx ≡ 0. It follows

from (1.3) and I → 0 as t → ∞ that S1(t) → N/|Ω| as t → ∞. Denote 0 = λ0 < λ1 � λ2 � · · · be the
eigenvalue of −Δ with zero Neumann boundary condition, and {ψk}∞

k=0 denote corresponding normalized
eigenfunctions. Let S2(x, t) =

∑∞
k=0 ak(t)ψk(x) and h(x, t) =

∑∞
k=0 hk(t)ψk(x). Since

∫

Ω
S2(x, t)dx ≡ 0,

we conclude that a0 = h0 = 0. Note that |hk(t)| � C4e
∫ t
0 a(τ,β,γ)dτ for every k � 1, we have |ak(t)| �

C5e
−λ∗t for every k � 1, where C4 and C5 are positive constants and λ∗ = min{− ∫ t

0
a(τ, β, γ)dτ, λ1} > 0.

Consequently, we deduce that S2(x, t) → 0 as t → ∞ for every x ∈ Ω. Thus, we follows that S(x, t) →
N/|Ω| as t → ∞.

(ii) In the case of where R0 > 1, we use the skew-product semiflows approach to prove the desired
uniform persistence (see, e.g., [36]). Define the hull of β(x, t) and γ(x, t) as

H = cls{(βs, γs) : s ∈ R, βs(·, t) = β(·, s + t), γs(·, t) = γ(·, s + t)},

where the closure is taken in the compact open topology. It then follows that the translation σ : R×H →
H, σ(t)(θ, ϑ) = (θt, ϑt), ∀(θ, ϑ) ∈ H, defines a continuous, compact, almost periodic minimal and distal
flow (see [28, Lemma VI.C], which is denoted by (H,σ,R). Let

X0 =

⎧
⎨

⎩
(w, z) ∈ Lp(Ω) × Lp(Ω) :

∫

Ω

(w + z)dx = N

⎫
⎬

⎭
and U = (X+ × X+) ∩ X0,

and

U0 := {(S0, I0) ∈ U : I0 	≡ 0}, ∂U0 := {(S0, I0) ∈ U : I0 ≡ 0},

P := U × H, P0 := U0 × H, ∂P0 := P \ P0, IntP := ((IntX+ × IntX+) ∩ X0) × H.

Then P0 and ∂P0 are relatively open and closed in P , respectively. By the standard regularity theory for
parabolic equation and (1.3), we conclude that for every (S0, I0, θ, ϑ) ∈ P , the reaction–diffusion equation

⎧
⎪⎨

⎪⎩

∂S
∂t − DSΔS = − θ(x,t)SI

S+I + ϑ(x, t)I, x ∈ Ω, t > 0,
∂I
∂t − DIΔI = θ(x,t)SI

S+I − ϑ(x, t)I, x ∈ Ω, t > 0,
∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0
(4.5)

admits a unique solution y(·, t, S0, I0, θ, ϑ) := (S(·, t, S0, I0, θ, ϑ)), I(·, t, S0, I0, θ, ϑ)) which exists for any
t ≥ 0, and satisfies (S(x, 0, S0, I0, θ, ϑ), I(x, 0, S0, I0, θ, ϑ)) = (S0(x), I0(x)), ∀(θ, ϑ) ∈ H. Then the solution
family of (4.5) generates a skew-product semiflow:

πt : P → P, t � 0
(S0, I0, θ, ϑ) �→ (y(·, t, S0, I0, θ, ϑ), σ(t)(θ, ϑ)).

It is easy to see that πt(P0) ⊂ P0 and πt(∂P0) ⊂ ∂P0 for all t � 0. In view of Lemma 4.1, we conclude
that πt is continuous and compact for any t > 0. Furthermore, Lemma 4.1 and the similar arguments to
those in [7, Theorem 23.3] imply that πt : P → P , ∀t � 0 is point dissipative. It then follows from [11,
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Theorem 2.4.7] that πt : P → P has a global attractor. Let ω(S0, I0, θ, ϑ) be the omega limit set for πt.
It is easy to see that for (S0, I0) ∈ ∂U0, I(x, t, S0, I0, θ, ϑ) ≡ 0 and S(x, t, S0, I0, θ, ϑ) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂S
∂t − DSΔS = 0, x ∈ Ω, t > 0,
∂S
∂ν = 0, x ∈ ∂Ω, t > 0,∫

Ω
Sdx = N, t � 0,

S(x, 0, S0, θ, ϑ) = S0(x) �, 	≡ 0, x ∈ Ω.

(4.6)

A similar argument to those in (i) implies that S → N/|Ω| uniformly on Ω̄ as t → ∞. It then fol-
lows that ∪(S0,I0,θ,ϑ)∈∂P0ω(S0, I0, θ, ϑ) = {(N/|Ω|, 0, θ, ϑ) : (θ, ϑ) ∈ H}. For simplicity, we denote
M = {(N/|Ω|, 0, θ, ϑ) : (θ, ϑ) ∈ H}. Let M∂ be the maximal positively invariant set for πt in ∂P0.
Then we conclude that M̃∂ = ∪(S0,I0,θ,ϑ)∈M∂

ω(S0, I0, θ, ϑ) = M, M is a compact and isolated invariant
set, and no subset of M forms a cycle for πt in ∂P0.

Since R0 > 1, Lemma 3.1 implies that ω(Ψ(β,−γ)) > 0. Hence, we can choose sufficiently small δ > 0
such that the exponential growth bound, ω(Ψ(δ,β,−γ)), associated with the equation

{
∂Î
∂t − DIΔÎ = β(x,t)(N/|Ω|−δ)

N/|Ω|+2δ Î − γ(x, t)Î , x ∈ Ω, t > 0,
∂Î
∂ν = 0, x ∈ ∂Ω, t > 0

(4.7)

satisfies ω(Ψ(δ,β,−γ)) > 0 (see e.g., [32, Lemma 3.3]), where Ψ(δ,β,−γ) is the evolution operator of (4.7).
Furthermore, we claim that

lim sup
t→∞

d(πt(S0, I0, θ, ϑ),M) � δ, ∀(S0, I0, θ, ϑ) ∈ P0.

On the contrary, we suppose that for some (S0, I0, θ, ϑ) ∈ P0, there holds

lim sup
t→∞

d(πt(S0, I0, θ, ϑ),M) < δ.

Hence, there exists t1 > 0 such that d(πt(S0, I0, θ, ϑ),M) < δ, ∀t � t1. Thus, we conclude that
‖I(x, t, S0, I0, θ, ϑ))‖ < δ, ∀t � t1. Applying the similar arguments to the proof of (i) above, we con-
clude that there exists t2 such that S � N/|Ω| − δ for all t > t2 and sufficiently small δ. It then follows
from (4.5) that

{
∂I
∂t − DIΔI � θ(x,t)(N/|Ω|−δ)

N/|Ω|+2δ I − ϑ(x, t)I, x ∈ Ω, t > t2,
∂I
∂ν = 0, x ∈ ∂Ω, t > t2.

(4.8)

By Theorem 2.1 and Lemma 2.2, there exist an almost periodic function â(t, δ, θ, ϑ) and a uniformly
almost periodic function Ĩ(t, δ, θ, ϑ) ∈ IntX+ such that Î(t, δ, θ, ϑ) = e

∫ t
0 â(τ,δ,θ,ϑ)dτ Ĩ(t, δ, θ, ϑ) is a solution

of (4.7). Furthermore,

lim
t→∞

1
t

t∫

0

â(τ, δ, θ, ϑ)dτ = ω(Ψ(δ,β,−γ)) > 0.

On the other hand, as (S0, I0, θ, ϑ) ∈ P0, the strong maximum principle for parabolic equations shows
(S(t, S0, I0, θ, ϑ)), I(t, S0, I0, θ, ϑ)) ∈ (IntX+) × (IntX+). Hence, there exist t3 and ε > 0 to be small
enough such that I(t3, S0, I0, θ, ϑ)) � εĨ(t3, δ, θ, ϑ). By the comparison principle, as applied to (4.8), we
obtain that

I(t, S0, I0, θ, ϑ) � εÎ(t, δ, θ, ϑ) = εe
∫ t
0 â(τ,δ,θ,ϑ)dτ Ĩ(t, δ, θ, ϑ), t � t4,

where t4 = max{t1, t2, t3}. Since Ĩ(t, δ, θ, ϑ) is almost periodic in t, and

lim
t→∞ e

∫ t
0 â(τ,δ,θ,ϑ)dτ = lim

t→∞

(
e

1
t

∫ t
0 â(τ,δ,θ,ϑ)dτ

)t

= ∞,

we get limt→∞ I(t, S0, I0, θ, ϑ) = ∞, a contradiction to Lemma 4.1.
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Since M is an isolated invariant set for πt in ∂P0, the claim above implies that M is also an isolated
invariant for πt in P . The claim above also implies that W s(M) ∩ P0 = ∅, where the set

W s(M) := {(S0, I0, θ, ϑ) ∈ P : ω(S0, I0, θ, ϑ) 	= ∅, ω(S0, I0, θ, ϑ) ⊂ M}
is the stable set of M for πt. By the continuous-time version of [38, Theorem 1.3.1 and Remark 1.3.1],
the skew-product semiflow πt : P → P is uniformly persistent with respect to (P0, ∂P0), and hence,
πt : P0 → P0 admits a global attractor A0.

It remains to prove the practical uniform persistence. Since A0 ⊂ P0 and πt(A0) = A0, ∀t � 0, we
follows that for any (S, I, θ, ϑ) ∈ A0, there exists (Ŝ, Î, θ̂, ϑ̂) ∈ A0 such that

(S, I, θ, ϑ) = π1(Ŝ, Î, θ̂, ϑ̂) ∈ IntP.

Then we conclude that A0 ⊂ IntP . Define a continuous function F : P → R+ by

F(S0, I0, θ, ϑ) = inf{υ ∈ R+ : S0(x) � υ, I0(x) � υ, x ∈ Ω̄}, ∀(S0, I0, θ, ϑ) ∈ P.

Obviously, F(S0, I0, θ, ϑ) > 0 if and only if (S0, I0, θ, ϑ) ∈ IntP . It then follows that F : P → R+ is
lower semicontinuous in the sense that for any (Š0, Ǐ0, θ̌, ϑ̌) ∈ P and ε∗ > 0, there exists ε∗ > 0 such
that F(S0, I0, θ, ϑ) > F(Š0, Ǐ0, θ̌, ϑ̌) − ε∗, for all (Š0, Ǐ0, θ̌, ϑ̌) ∈ P with ‖(S0, I0) − (Š0, Ǐ0)‖ < ε∗ and
d((θ, ϑ), (θ̌, ϑ̌)) < ε∗, where d is the metric on C(R,R2) equipped with the compact open topology. Since
F(S0, I0, θ, ϑ) > 0, ∀(S0, I0, θ, ϑ) ∈ A0, the compactness of A0 and the lower semicontinuity of F imply
that there exist an open neighborhood O of A0 in P and a number � > 0 such that

F(S0, I0, θ, ϑ) � �, ∀(S0, I0, θ, ϑ) ∈ O.

Thus, the global attractivity of A0 for πt : P0 → P0 completes the proof. �

Based on the conclusions in Lemmas 3.3 and 3.4, Theorems 3.5 and 4.2, the following assertions are
obtained straight.

Theorem 4.3. The following assertions are valid:
(i) The disease-free constant solution (N/|Ω|, 0) is globally attractive for (1.2) if one of the following

conditions holds:
(i-a) β(x, t) − γ(x, t) ≡ μ(t) and [μ] < 0;
(i-b) β(x, t) − γ(x, t) ≡ μ(x) and either μ �, 	≡ 0 on Ω̄ or max

x∈Ω̄
μ(x) > 0 and

∫

Ω
μ(x)dx < 0 but

DI > D∗
I , where D∗

I is given in Lemma 3.4;
(i-c) If limt→∞ 1

t

∫ t

0
max
x∈Ω̄

(β(x, τ) − γ(x, τ))dτ � 0 and β(x, t) − γ(x, t) nontrivially depends on the

spatial variable x;
(i-d) limt→∞ 1

t

∫ t

0

∫

Ω
β(x, τ)dxdτ − limt→∞ 1

t

∫ t

0

∫

Ω
γ(x, τ)dxdτ < 0 and DI is sufficiently large.

(ii) The uniform persistence for (1.2) holds if one of the following conditions holds:
(ii-a) β(x, t) − γ(x, t) ≡ μ(t) and [μ] > 0;
(ii-b) β(x, t) − γ(x, t) ≡ μ(x) and either μ 	≡ 0 on Ω̄ and

∫

Ω
μ(x)dx � 0 or max

x∈Ω̄
μ(x) > 0 and

∫

Ω
μ(x)dx < 0 but 0 < DI < D∗

I ;
(ii-c) limt→∞ 1

t

∫ t

0

∫

Ω
(β(x, τ) − γ(x, τ))dxdτ > 0;

5. Global attractivity

The uniqueness and global attractivity of the endemic almost periodic solution to almost periodic
reaction–diffusion system (1.2) is a hard work since the existence of an almost periodic positive solu-
tion is a challenging problem. Allen et al. [2] gave a conjecture about the global attractivity of endemic
equilibrium of the autonomous system (1.2). Since [24] answered the problem partially, Peng and Zhao
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[25] gave a complete description of the global attractivity of the disease-free constant solution and the
endemic ω-periodic solution in the periodic environment for two special cases. For the more generalized
case, i.e., almost periodic case, if β(x, t) ≡ β(t) and γ(x, t) ≡ γ(t) are almost periodic functions, the
global attractivity of the ODE system associated with system (1.2) can be obtained from the conclusions
developed in [32]. When it comes to the almost periodic reaction–diffusion system (1.2), we would present
the global attractivity of the endemic almost periodic solution for two special cases. At first, we consider
the case that the diffusion rate of the susceptible individuals and the infected individuals is equal, i.e.,
DS = DI . In order to obtain the existence of almost periodic positive solution, we consider

{
∂w
∂t − DΔw = ā(x, t)w − b̄(x, t)w2, x ∈ Ω, t > 0,
∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

(5.1)

where D is a positive constant, and ā(x, t) is Hölder continuous and uniformly almost periodic in t, b̄(x, t)
is uniformly almost periodic in t with b̄(x, t) > 0 on Ω̄×R. We denote that w(t, x) is the solution of (5.1)
satisfying w(0, x) = w0(x). Let Ψ(ā,b̄)(t, s) be the evolution operator of

{
∂w
∂t − DΔw = ā(x, t)w, x ∈ Ω, t > 0,
∂w
∂ν = 0, x ∈ ∂Ω, t > 0.

Hence, we can define the exponential growth bound of Ψ(ā,b̄)(t, s), denoted by ω(Ψ(ā,b̄)). Thanks to
[37, Theorem 3.1]( see also [35]), we have

Lemma 5.1. The following two statements are valid:
(i) If ω(Ψ(ā,b̄)) < 0, then limt→∞ ‖w(t, x)‖ = 0 for every w0 ∈ X+;
(ii) If ω(Ψ(ā,b̄)) > 0, then (5.1) admits a unique positive almost periodic solution w∗(t, x) and

limt→∞ ‖w(t, ·) − w∗(t, ·)‖ = 0 for every w0 ∈ X+ \ {0}.
By Lemmas 3.2 and 5.1, the similar arguments to those in [24, Theorem 1.1] imply the following result.

Theorem 5.2. Suppose that DS = DI and (H3) holds. If R0 � 1, then (N/|Ω|, 0) is globally attractive; if
R0 > 1 and β(x, t) > 0 on Ω̄×R, then (1.2) admits an endemic almost periodic solution, which is globally
attractive in X+ \ {0}.

Next, for the case of where β(x, t) = rγ(x, t) for some positive constant r ∈ (0,∞), as noted in [25],
we deduce that for r > 1,

(S∗, I∗) =
(

1
r

N

|Ω| ,
r − 1

r

N

|Ω|
)

is an endemic almost periodic solution of (1.2). In order to get the global attractivity of (S∗, I∗), we draw
support from the following lemma, which can be found in [25, Lemma 4.3] (see also [22, Lemma 1]). For
reader’s convenience, we present the lemma below.

Lemma 5.3. Let â and b̂ be the positive constants. Assume that φ, ψ ∈ C1([â,∞)), ψ � 0, and φ is
bounded from below in [â,∞). If φ′(t) � −b̂ψ(t) and ψ′(t) � K on [â,∞) for some positive constant K,
then limt→∞ ψ(t) = 0.

Theorem 5.4. Let (H3) hold and β(x, t) = rγ(x, t) on Ω̄×R for some constant r ∈ (0,∞) and γ(x, t) > 0
in Ω̄ × R+. If r � 1, then (N/|Ω|, 0) is globally attractive; if r > 1, then (S∗, I∗) is globally attractive for
(1.2).

Proof. Theorem 3.5 (i) tells us that R0 � r. For Eq. (3.5), we follow from (3.12) that

ω(Ψ(β/ρ,−γ)) = −DI lim
t→∞

1
t

t∫

0

∫

Ω

|∇ϕ̃∗|2dxdτ + lim
t→∞

1
t

t∫

0

∫

Ω

(
β

ρ
− γ

)

|ϕ̃∗|2dxdτ.



Vol. 66 (2015) A reaction–diffusion SIS epidemic model. . . 3105

Hence, Lemma 3.2 implies that R0 � r. Thus, we have R0 = r. It then follows that R0 < 1 if 0 < r < 1,
R0 = 1 if r = 1 and R0 > 1 if r > 1. As r < 1, the conclusion can be obtained from Theorem 4.2 (i). For
the case r = 1, the global attractivity of (N/|Ω|, 0) can be gotten by the similar arguments to those in
[24, Theorem 1.2].

In the case of where r > 1, we draw support from the idea of the Lyapunov functional which introduced
in [24,25]. Let

F (t) :=
∫

Ω

(

S(x, t) +
S2

∗
S(x, t)

+ I(x, t) +
I2
∗

I(x, t)

)

dx.

By carrying out the same computations as in the proof of [24, Theorem 1.2], we conclude that

dF

dt
= −

∫

Ω

[

DS
2S2

∗
S3

|∇S|2 + DI
2I2

∗
I3

|∇I|2 +
β(x, t)SI2

(S∗ + I∗)(S + I)

(
S∗
S

+
I∗
I

)(
S∗
S

− I∗
I

)]

dx. (5.2)

It is easy to see that

dF

dt
� −

∫

Ω

β(x, t)SI2

(S∗ + I∗)(S + I)

(
S∗
S

+
I∗
I

)(
S∗
S

− I∗
I

)2

dx.

We then follow from Lemma 4.1 and Theorem 4.2 (ii) that there exist positive constants C6 and T0

sufficiently large such that

dF

dt
� −C6

∫

Ω

(
S∗
S

− I∗
I

)2

dx =: −ψ(t), ∀t � T0.

Using Lemma 4.1 and Theorem 4.2 (ii) again, the similar arguments to those in the proof of [25, Theorem
4.4] show that ψ′(t) is bounded in [T0,∞) and F (t) is bounded from below in [T0,∞). Hence, Lemma
5.3 implies that limt→∞ ψ(t) = 0. Thus, we have

lim
t→∞

∫

Ω

|(r − 1)S(x, t) − I(x, t)|dx = 0.

This, together with (1.3), gives rise to

lim
t→∞

1
|Ω|

∫

Ω

S(x, t)dx = S∗, lim
t→∞

1
|Ω|

∫

Ω

I(x, t)dx = I∗. (5.3)

On the other hand, we follow from (5.2) that

dF

dt
� −

∫

Ω

[

DS
2S2

∗
S3

|∇S|2 + DI
2I2

∗
I3

|∇I|2
]

dx.

The similar arguments to those above imply that

lim
t→∞

∫

Ω

(|∇S|2 + |∇I|2)dx = 0

It then follows from Poincaré inequality that

lim
t→∞

∫

Ω

|S(x, t) − S∗(t)|2dx = 0, lim
t→∞

∫

Ω

|I(x, t) − I∗(t)|2dx = 0, (5.4)
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where S∗(t) = 1
|Ω|

∫

Ω
S(x, t)dx and I∗(t) = 1

|Ω|
∫

Ω
I(x, t)dx. In view of (5.3) and (5.4), we get

lim
t→∞

∫

Ω

(|S(x, t) − S∗| + |I(x, t) − I∗|)dx = 0. (5.5)

In the following, we use the tool of skew-product semiflows and inherit the notations in Theorem 4.2. Recall
that for any given (S̃, Ĩ, θ̃, ϑ̃) ∈ P0, ω(S̃, Ĩ, θ̃, ϑ̃) denotes its omega limit set. Then for any (Ŝ, Î, θ̂, ϑ̂) ∈
ω(S̃, Ĩ, θ̃, ϑ̃), there exists a sequence tk → ∞ such that limtk→∞ πtk

(S̃, Ĩ, θ̃, ϑ̃) = (Ŝ, Î, θ̂, ϑ̂). Letting
(S, I, θ, ϑ) = πt(S̃, Ĩ, θ̃, ϑ̃) and t = tk in (5.5), we conclude that

∫

Ω

(|Ŝ(x) − S∗| + |Î(x) − I∗|)dx = 0,

and hence (Ŝ, Î) = (S∗, I∗). Thus, we have ω(S̃, Ĩ, θ̃, ϑ̃) = {(S∗, I∗, θ∗, ϑ∗) : (θ∗, ϑ∗) ∈ H}. It then follows
that limt→∞ πt(S̃, Ĩ, θ̃, ϑ̃) = (S∗, I∗, θ∗, ϑ∗). The global attractivity of (S∗, I∗) is obtained. �

6. Discussion

In this paper, we have considered the basic reproduction ratio of almost periodic reaction–diffusion system
(1.2) and represent its properties. Applying the developed theory, we have obtained a threshold-type
result for the uniform persistence, the global extinction and the global attractivity of (1.2) by means of
the basic reproduction ratio R0. Since almost periodic functions are a generalization of periodic functions,
the study of almost periodic reaction–diffusion system (1.2) is more reasonable to reveal the mechanism
of the disease transmission.

Using the terminology similar to those in [25] (see also [2]), we present the biological inter-
pretations corresponding to our results. We call x is a high-risk site if limt→∞ 1

t

∫ t

0
β(x, τ)dτ >

limt→∞ 1
t

∫ t

0
γ(x, τ)dτ . A low-risk site is defined in a reversed mode. The habitat Ω is called to be high-

risk if limt→∞ 1
t

∫ t

0

∫

Ω
β(x, τ)dxdτ > limt→∞ 1

t

∫ t

0

∫

Ω
γ(x, τ)dxdτ and low-risk if limt→∞ 1

t

∫ t

0

∫

Ω
β(x, τ)

dxdτ < limt→∞ 1
t

∫ t

0

∫

Ω
γ(x, τ)dxdτ . A moderate-risk habitat is defined if limt→∞ 1

t

∫ t

0

∫

Ω
β(x, τ)dxdτ =

limt→∞ 1
t

∫ t

0

∫

Ω
γ(x, τ)dxdτ .

At the beginning, Theorem 4.3 (i-a) and (ii-a) shows that the extinction happens in a low-risk habitat,
while the persistence happens in a high-risk habitat when the disease transmission and recovery depend
on the temporal factor alone. For the case of where the disease transmission and recovery depend on the
spatial factor, we follows from Theorem 4.3 (ii-b) that the disease will be persistent once a high-risk
habitat exists. However, Theorem 4.3 (i-b) and (ii-b) also shows that the disease is not necessarily extinct
or persistent though the individuals live in a low-risk habitat where a high-risk site is contained at
least. In the case, the movement of the infected population by a quick way will be helpful for the disease
extinction, and in other words, there exists a threshold value D∗

I ∈ (0,∞) such that the disease is extinct
if DI > D∗

I ; otherwise, the disease will persist if DI < D∗
I .

For the general case of where the disease transmission and recovery depend on the spatiotemporal
variables, Theorem 4.3 (ii-c) implies that the disease will persist if the habitat is a high-risk type.
Conversely, Theorem 4.3 (i-d) tells us that the disease will die out if the habitat is a low-risk one and
the movement of the infected individuals is sufficiently quick.

Next, we investigate the affection of spatial heterogeneity and almost periodic environment for the
disease transmission. Assume that

β(x, t) = a(x)b(t), γ(x, t) = a(x)c(t),

where a(x) is a positive Hölder continuous function on Ω̄ and b, c are positive almost periodic Hölder
continuous functions on R. If b ≡ c, then the habitat is a moderate-risk one and we follow from
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Theorem 5.4 that the disease will eventually die out because of the diffusion rates. If a is not a constant,
b 	≡ c, and [b] = [c], and hence the habitat is still a moderate-risk one, then we see from Theorem 3.5 that
the basic reproduction ratio R0(DI) = R0 > 1 for all DI > 0 and R0(DI) → 1 as DI → 0 or DI → ∞.
Consequently, Theorem 4.2 tells us that the disease will persist in this moderate-risk habitat.

The above discussions show that the interaction of spatial heterogeneity and temporal almost peri-
odicity tends to enhance the persistence of the disease for the SIS model (1.2). In other words, if
we only consider the temporal almost periodicity or spatial heterogeneity in (1.2), then the infec-
tion risk would be underestimated. Furthermore, for the case of where a is not a constant, b 	≡ c,
and [b] = [c], when the infected individuals move at the speed DI = D̂I , where D̂I > 0 satisfying
R0(D̂I) = maxDI∈(0,∞) R0(DI) > 1, the risk of the outbreak of the disease in the population will be
enlarged; on the other hand, the small or large diffusion rate will weaken the persistence of the disease
since the basic reproduction ratio is close to unity in the case.

Remark 6.1. We only prove R0 � maxx∈Ω̄

{
limt→∞ 1

t

∫ t
0 β(x,τ)dτ

limt→∞ 1
t

∫ t
0 γ(x,τ)dτ

}
as DI → 0 in Theorem 3.5 (iv). Similar

to the periodic case in [25], we conjecture that R0 → maxx∈Ω̄

{
limt→∞ 1

t

∫ t
0 β(x,τ)dτ

limt→∞ 1
t

∫ t
0 γ(x,τ)dτ

}
as DI → 0. Thus, if

maxx∈Ω̄

{
limt→∞ 1

t

∫ t
0 β(x,τ)dτ

limt→∞ 1
t

∫ t
0 γ(x,τ)dτ

}
> 1 and DI is sufficiently small, which imply that if there exists at least

one high-risk site and the infected individuals are almost stationary, then the disease will persist.
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