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1. Introduction

Interaction between singularities, cracks and interfaces is always an intriguing, whereas challenging prob-
lem in micromechanics [21,22]. The solution to the singularity–interface problem (a singularity in an
elastically isotropic or anisotropic bimaterial) can be obtained by using the method of analytical contin-
uation [21,22] or the method of image [4,23]. The singularity–crack interaction problem can be solved
by means of the complex variable method [17,21,22,31,32]. The crack–interface interaction problem (a
crack in one phase of a bimaterial) can be reduced to the solution of singular integral equations by simu-
lating the crack by a distribution of dislocations [5,7,30]. Very recently, there has been a growing interest
in augmenting the classical linear elastic fracture mechanics (LEFM) with the Gurtin–Murdoch surface
mechanics with a goal to study the mechanical behaviors of cracked structures at the nanoscale (see, for
example, [1,11–16,25–29]). Roughly speaking, the Gurtin–Murdoch surface model is equivalent to the
assumption of a surface as a thin and stiff solid film of separate elasticity perfectly bonded to the bulk
[3,18,20]. When the Gurtin–Murdoch surface elasticity is incorporated into the mechanics of crack faces,
an array of both dislocations and line forces is required to simulate the crack [25–27,29].

Analytically studied in this work is the interaction problem of a screw dislocation near a finite crack
with surface elasticity, which is perpendicular to a bimaterial interface. The crack is simulated by a
distribution of screw dislocations and anti-plane line forces. From the Green’s function solution for a
bimaterial subjected to a screw dislocation and a line force not located at the interface [4,24], we know that
the screw dislocation and line force are under the stress field of their own images caused by the bimaterial
interface. The interaction problem is finally reduced to two decoupled first-order Cauchy singular integro-
differential equations that are numerically solved by means of the Gauss–Chebyshev integration formula
[6], the Chebyshev polynomials and the collocation method. Detailed numerical results are presented to
demonstrate the elastic mismatch of the bimaterial, the surface elasticity and the positions of the screw
dislocation and the crack on the dislocation and line force densities over the crack, and on the material
force acting on the screw dislocation.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-015-0576-0&domain=pdf
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2. Basic formulation

In this section, the basic formulations for the coupled bulk and surface elasticity will be briefly reviewed
for the completeness of the paper.

2.1. The bulk elasticity

In the absence of body forces, the equations of equilibrium and the stress–strain law for a linearly elastic,
homogeneous and isotropic bulk solid in a Cartesian coordinate system xi(i = 1, 2, 3) are

σij,j = 0, σij = 2μεij + λεkkδij , εij =
1
2
(ui,j + uj,i), (1)

where λ and μ are Lame constants, σij and εij are, respectively, the stress and strain tensors in the bulk
material, ui is the i-th component of the displacement vector u, δij is the Kronecker delta.

For the anti-plane shear deformations of an isotropic elastic material, the two shear stress components
σ31 and σ32, the out-of-plane displacement w = u3(x1, x2) can be expressed in terms of a single analytic
function h (z) of the complex variable z = x1 + ix2 as

σ32 + iσ31 = μh′(z), w = Im {h(z)} . (2)

2.2. The surface elasticity

The equilibrium conditions on the surface incorporating interface/surface elasticity can be expressed as
[8–10,19]

[σαjnjeα] + σs
αβ,βeα = 0, (tangential direction)

[σijninj ] = σs
αβκαβ , (normal direction)

(3)

where α, β = 1, 3;ni is the unit normal vector to the surface, [∗] denotes the jump of the quantities across
the surface, σs

αβ is the surface stress tensor and καβ is the curvature tensor of the surface. In addition,
the constitutive equations on the isotropic surface are given by

σs
αβ = σ0δαβ + 2(μs − σ0)εs

αβ + (λs + σ0)εs
γγδαβ + σ0∇su, (4)

where εs
αβ is the surface strain tensor, σ0 is the surface tension, λs and μs are the two surface Lame

parameters, ∇s is the surface gradient.

3. The interface–dislocation–crack interaction problem

As shown in Fig. 1, we consider a bimaterial composed of two perfectly bonded half-planes: S1 : x1 >
0,−∞ < x2 < +∞ and S2 : x1 < 0,−∞ < x2 < +∞. The right half-plane S1 is weakened by a finite
crack [d − a ≤ x1 ≤ d + a], (x2 = 0) perpendicular to the bimaterial interface and is subjected to a screw
dislocation with Burgers vector bz located at z = z0,Re {z0} > 0 outside the crack. As shown in Fig. 1,
z0−d = r exp(iθ) where θ is the dislocation angle and r is the dislocation distance. Throughout the paper,
the subscripts 1 and 2 or the superscripts (1) and (2) are used to denote the quantities in S1 and S2.

From Eq. (3), the boundary conditions on the crack surface can be written as

σs
13,1 + (σ23)+ − (σ23)− = 0, on the upper crack face, (5a)

σs
13,1 + (σ23)+ − (σ23)− = 0, on the lower crack face, (5b)

where (σ23)− in Eq. (5a) and (σ23)+ in Eq. (5b) are zero. By using the constitutive relations in Eq. (4)
and assuming a coherent interface (εs

αβ = εαβ), the following can be further obtained from Eqs.(5a,b)
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Fig. 1. A screw dislocation interacting with a bimaterial interface and a finite crack with surface elasticity perpendicular
to the interface

(σ23)+ = −(μs − σ0)u+
3,11, on the upper crack face, (6)

(σ23)− = +(μs − σ0)u−
3,11, on the lower crack face, (7)

which are equivalent to

(σ23)+ + (σ23)− = −(μs − σ0)(u+
3,11 − u−

3,11),

(σ23)+ − (σ23)− = −(μs − σ0)(u+
3,11 + u−

3,11). (8)

Below, the interface–dislocation–crack interaction problem will be formulated by considering a distribu-
tion of screw dislocations with density b(x1), and line forces with density f(x1) on the crack. The two
analytic functions h1(z) defined in the right half-plane and h2(z) defined in the left half-plane then take
the following form

h1(z) =
1
2π

d+a∫

d−a

[
b(ξ) − iμ−1

1 f(ξ)
]
ln(z − ξ)dξ +

K

2π

d+a∫

d−a

[
b(ξ) + iμ−1

1 f(ξ)
]
ln(z + ξ)dξ

+
bz

2π
ln(z − z0) +

Kbz

2π
ln(z + z̄0), Re {z} > 0;

h2(z) =
1 − K

2π

d+a∫

d−a

[
b(ξ) − iμ−1

1 f(ξ)
]
ln(z − ξ)dξ +

(1 − K)bz

2π
ln(z − z0), Re {z} < 0; (9)

where K = (μ2 − μ1)/(μ1 + μ2),−1 ≤ K ≤ 1 is the mismatch parameter for the bimaterial. A positive
value of K means that material 2 is harder than material 1, whereas a negative value of K implies that
material 2 is softer than material 1. K = 1 when material 2 is rigid, K = −1 when material 2 is void,
K = 0 when the two phases are identical.

It is then deduced from the above expression that

h′+
1 (x1) = − ib(x1) + μ−1f(x1)

2
+

1
2π

d+a∫

d−a

b(ξ) − iμ−1f(ξ)
x1 − ξ

dξ +
K

2π

d+a∫

d−a

b(ξ) + iμ−1f(ξ)
x1 + ξ

dξ

+
bz

2π

1
x1 − z0

+
Kbz

2π

1
x1 + z̄0

, (10)
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h′−
1 (x1) =

ib(x1) + μ−1f(x1)
2

+
1
2π

d+a∫

d−a

b(ξ) − iμ−1f(ξ)
x1 − ξ

dξ +
K

2π

d+a∫

d−a

b(ξ) + iμ−1f(ξ)
x1 + ξ

dξ

+
bz

2π

1
x1 − z0

+
Kbz

2π

1
x1 + z̄0

, (11)

where d − a < x1 < d + a; the superscript “+”’ means the limiting value by approaching the crack from
the upper half-plane, the superscript “−” means the limiting value by approaching the crack from the
lower half-plane. Through satisfaction of the boundary conditions in Eq. (8), we can obtain the following
two decoupled hyper-singular integro-differential equations

−μ1

π

d+a∫

d−a

b(ξ)
ξ − x1

dξ +
Kμ1

π

d+a∫

d−a

b(ξ)
ξ + x1

dξ +
μ1bz

π
Re
{

1
x1 − z0

}
+

Kμ1bz

π
Re
{

1
x1 + z0

}

= (μs − σ0)b′(x1), d − a < x1 < d + a, (12)

f(x1) = (μs − σ0)

[
1

πμ1

d+a∫

d−a

f(ξ)
(x1 − ξ)2

dξ − K

πμ1

d+a∫

d−a

f(ξ)
(x1 + ξ)2

dξ

−bz

π
Im
{

1
(x1 − z0)2

}
+

Kbz

π
Im
{

1
(x1 + z0)2

}]
, d − a < x1 < d + a. (13)

Equation (13) can be recast into the following equivalent form
x1∫

d−a

f(ξ)dξ = (μs − σ0)

[
1

πμ1

d+a∫

d−a

f(ξ)
ξ − x1

dξ +
K

πμ1

d+a∫

d−a

f(ξ)
ξ + x1

dξ +
bz

π
Im
{

1
x1 − z0

}

−Kbz

π
Im
{

1
x1 + z0

}]
, d − a < x1 < d + a. (14)

It is deduced from Eqs. (10) and (11) that

Δw = w+ − w− = −
x1∫

d−a

b(ξ)dξ, σ+
32 − σ−

32 = −f(x1), d − a < x1 < d + a. (15)

The requirements of the single valuedness of the displacement and the balance of force for a contour
surrounding the crack surface lead to

d+a∫

d−a

b(ξ)dξ = 0,

d+a∫

d−a

f(ξ)dξ = 0. (16)

The original interaction problem has been reduced to two decoupled first-order Cauchy singular integro-
differential Eqs. (12) and (14) together with the two auxiliary conditions in Eq. (16).

We set x = (x1 − d)/a and t = (ξ − d)/a in Eqs. (12), (14) and (16). For convenience, we write
b(x) = b(x1) and f(x) = f(x1). Consequently, Eqs. (12), (14) and (16) can be written into the following
normalized form

− 1
π

1∫

−1

b̂(t)
t − x

dt +
K

π

1∫

−1

b̂(t)

x + t + 2d̂
dt +

1
π

Re
{

1
x − ẑ0

}
+

K

π
Re
{

1

x + ẑ0 + 2d̂

}

= Seb̂′(x), −1 < x < 1, (17)
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1
π

1∫

−1

f̂(t)
t − x

dt +
K

π

1∫

−1

f̂(t)

x + t + 2d̂
dt − 1

Se

x∫

−1

f̂(t)dt

= − 1
π

Im
{

1
x − ẑ0

}
+

K

π
Im
{

1

x + ẑ0 + 2d̂

}
, −1 < x < 1, (18)

1∫

−1

b̂(t)dt = 0,

1∫

−1

f̂(t)dt = 0, (19)

where

b̂(x) =
ab(x)

bz
, f̂(x) =

af(x)
μ1bz

, Se =
μs − σ0

aμ1
, ẑ0 =

z0 − d

a
, d̂ =

d

a
. (20)

A comparison of Eqs. (17) and (18) with the corresponding results by Wang and Fan [26] reveals that
additional regular integrals and additional loading terms are present due to the elastic mismatch of
the two phases (K �= 0). The appearance of the regular integrals will make the two integro-differential
equations more difficult to be solved.

4. Solution of the singular integro-differential equations

By using the Gauss–Chebyshev integration formula [6], Eq. (17) can be approximately written into

− 1
π

1∫

−1

b̂(t)
t − x

dt +
K

M

M∑
j=1

√
1 − (tj)2b̂(tj)

x + tj + 2d̂
+

1
π

Re
{

1
x − ẑ0

}
+

K

π
Re
{

1

x + ẑ0 + 2d̂

}
= Seb̂′(x), (21)

where

tj = cos
(

π(2j − 1)
2M

)
, j = 1, 2, . . . , M. (22)

By applying the following inverse operator to Eq. (21) [2,12]

T−1ψ(x) =
1

π
√

1 − x2

1∫

−1

ψ(t)dt − 1
π2

√
1 − x2

1∫

−1

√
1 − t2ψ(t)

t − x
dt, −1 < x < 1, (23)

we obtain

b̂(x) =
1

π
√

1 − x2

1∫

−1

b̂(t)dt

− 1
π
√

1 − x2

×
1∫

−1

√
1 − t2

[
−Seb̂′(t)+ K

M

∑M
j=1

√
1−(tj)2b̂(tj)

t+tj+2d̂
+ 1

π Re
{

1
t−ẑ0

}
+ K

π Re
{

1
t+ẑ0+2d̂

}]

t − x
dt,−1 < x < 1.

(24)
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In view of the first condition in Eq. (19), the above can be simplified to

b̂(x) = − 1
π
√

1 − x2

×
1∫

−1

√
1 − t2

[
−Seb̂′(t) + K

M

∑M
j=1

√
1−(tj)2b̂(tj)

t+tj+2d̂
+ 1

π Re
{

1
t−ẑ0

}
+ K

π Re
{

1
t+ẑ0+2d̂

}]

t − x
dt, −1<x<1.

(25)

The unknown density function b̂(x) is approximated as

b̂(x) =
N∑

m=0

cmTm(x), (26)

where Tm(x) represents the mth Chebyshev polynomial of the first kind, and cm,m = 0, 1, 2, . . . , N are
N + 1 unknown coefficients.

Inserting Eq. (26) into Eq. (25), and utilizing the following identities

dTm(x)
dx

= mUm−1(x),

1∫

−1

Um(t)
√

1 − t2

t − x
dt = −πTm+1(x), (27)

1∫

−1

√
1 − t2

(t − x)(t − ẑ0)
dt = −π

(
1 +

√
ẑ20 − 1

x − ẑ0

)
, (28)

with Um(x) being the mth Chebyshev polynomial of the second kind, we can finally arrive at

N∑
m=0

cmTm(x)
(√

1 − x2 + Sem
)

− K

M

N∑
m=0

M∑
j=1

cmTm(tj)
√

1 − (tj)2

⎡
⎣1 −

√
(tj + 2d̂)2 − 1

x + tj + 2d̂

⎤
⎦

=
1
π

⎛
⎝1 + K + Re

{√
ẑ20 − 1

x − ẑ0

}
+ KRe

⎧⎨
⎩

√
(ẑ0 + 2d̂)2 − 1

x + ẑ0 + 2d̂

⎫⎬
⎭
⎞
⎠ . (29)

The multi-valued functions
√

ẑ20 − 1 and
√

(ẑ0 + 2d̂)2 − 1 in Eq. (29) should be judiciously chosen

in the following manner: Re
{√

ẑ20 − 1
}

> 0 if Re {ẑ0} > 0, Re
{√

ẑ20 − 1
}

< 0 if Re {ẑ0} < 0;

Re
{√

(ẑ0 + 2d̂)2 − 1
}

< 0.

Meanwhile, the other unknown density function f̂(x) is approximated as

f̂(x) =
1√

1 − x2

N∑
m=0

dmTm(x), (30)

where dm,m = 0, 1, 2, . . . , N are N + 1 unknown coefficients.
Substituting the above expression into Eq. (18), performing the complete and incomplete integrals

and also considering the Gauss–Chebyshev integration formula, we finally arrive at
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1
Se

d0(cos−1 x − π) +
N∑

m=1

dm

[
Um−1(x) +

1
Sem

sin(m cos−1 x)
]

+
K

M

N∑
m=0

M∑
j=1

dmTm(tj)

x + tj + 2d̂
= − 1

π
Im
{

1
x − ẑ0

}
+

K

π
Im
{

1

x + ẑ0 + 2d̂

}
, (31)

where tj has been defined in Eq. (22).
If we select the collocation points given by x = − cos

(
iπ
N

)
for i = 1, 2, . . . , N , Eqs. (29) and (31)

together with Eq. (19) are further reduced to the following two sets of algebraic equations
N∑

m=0

(−1)m cos
(

miπ

N

)[
sin
(

iπ

N

)
+ Sem

]
cm

− K

M

N∑
m=0

M∑
j=1

cos
(

πm(2j − 1)
2M

)
sin
(

π(2j − 1)
2M

)

×

⎡
⎢⎢⎣1 +

√[
cos
(

π(2j−1)
2M

)
+ 2d̂

]2
− 1

cos
(

iπ
N

)− cos
(

π(2j−1)
2M

)
− 2d̂

⎤
⎥⎥⎦ cm

=
1
π

⎛
⎝1 + K − Re

{ √
ẑ20 − 1

cos
(

iπ
N

)
+ ẑ0

}
− KRe

⎧⎨
⎩

√
(ẑ0 + 2d̂)2 − 1

cos
(

iπ
N

)− ẑ0 − 2d̂

⎫⎬
⎭
⎞
⎠ , i = 1, 2, . . . , N,

N∑
m=0,m �=1

1 + (−1)m

1 − m2
cm = 0, (32)

− d0
Se

iπ

N
+

N∑
m=1

(−1)m−1 sin
(

miπ

N

)[
1

sin
(

iπ
N

) +
1

Sem

]
dm

− K

M

N∑
m=0

M∑
j=1

cos
(

πm(2j−1)
2M

)

cos
(

iπ
N

)− cos
(

π(2j−1)
2M

)
− 2d̂

dm

=
1
π

Im

{
1

cos
(

iπ
N

)
+ ẑ0

}
− K

π
Im

{
1

cos
(

iπ
N

)− ẑ0 − 2d̂

}
, i = 1, 2, . . . , N − 1,

− d0
Se

π +
N∑

m=1

mdm +
K

M

N∑
m=0

M∑
j=1

cos
(

πm(2j−1)
2M

)

1 + cos
(

π(2j−1)
2M

)
+ 2d̂

dm

=
1
π

Im
{

1
−1 + ẑ0

}
+

K

π
Im
{

1

1 + ẑ0 + 2d̂

}
, d0 = 0. (33)

The Cauchy singular integro-differential equations in Eqs. (17)–(19) have been reduced to the linear
algebraic equations in Eqs. (32) and (33). The N + 1 coefficients cm,m = 0, 1, 2, . . . , N can be uniquely
determined by solving Eq. (32), whilst the other N +1 coefficients dm,m = 0, 1, 2, . . . , N can be uniquely
determined by solving Eq. (33).

5. The stress field and image force

By substituting the two analytic functions in Eq. (9) into Eq. (2), we obtain the stress field in the
bimaterial as follows
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σ
(1)
32 + iσ(1)

31 =
1
2π

d+a∫

d−a

μ1b(ξ) − if(ξ)
z − ξ

dξ +
K

2π

d+a∫

d−a

μ1b(ξ) + if(ξ)
z + ξ

dξ

+
μ1bz

2π(z − z0)
+

μ1Kbz

2π(z + z̄0)
, Re {z} > 0,

σ
(2)
32 + iσ(2)

31 =
μ2(1 − K)

2π

d+a∫

d−a

b(ξ) − iμ−1
1 f(ξ)

z − ξ
dξ +

μ2(1 − K)bz

2π(z − z0)
, Re {z} < 0, (34)

or equivalently in the following normalized form

σ
(1)
32 + iσ(1)

31 =
μ1bz

2πa

1∫

−1

b̂(t) − if̂(t)
ẑ − t

dt +
μ1bzK

2πa

1∫

−1

b̂(t) + if̂(t)

ẑ + t + 2d̂
dt

+
μ1bz

2πa(ẑ − ẑ0)
+

μ1Kbz

2πa(ẑ + ¯̂z0 + 2d̂)
, Re {ẑ} > −d̂,

σ
(2)
32 + iσ(2)

31 =
μ2bz(1 − K)

2πa

1∫

−1

b̂(t) − if̂(t)
ẑ − t

dt +
μ2bz(1 − K)
2πa(ẑ − ẑ0)

, Re {ẑ} < −d̂, (35)

where ẑ = z/a − d̂. It is seen in Eq. (35) that once the integrals in Eq. (35) are computed, the stresses
can be arrived at. It can be deduced from Eqs. (17), (18) and (35) that the stresses exhibit both the weak
logarithmic and the strong square root singularities at the two crack tips if Im {ẑ0} �= 0, they exhibit
only the weak logarithmic singularity at the two crack tips if Im {ẑ0} = 0. The integrals in Eq. (35) can
also be computed by the Gauss–Chebyshev integration formula.

By using the Peach–Koehler formula [4], the image force acting on the screw dislocation is given by

F1 − iF2 =
μ1b

2
z

2πa

⎡
⎣

1∫

−1

b̂(t) − if̂(t)
ẑ0 − t

dt + K

1∫

−1

b̂(t) + if̂(t)

ẑ0 + t + 2d̂
dt +

K

ẑ0 + ¯̂z0 + 2d̂

⎤
⎦ , (36)

where F1 and F2 are the force components along the x1 and x2 axes.
If |ẑ0| = r/a = r̂ → ∞ for the long-range interaction between the dislocation and the crack, the image

force becomes

F1 − iF2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ1b2z
πa

[
K

2(ẑ0+¯̂z0)
− Kd̂

(ẑ0+¯̂z0)2
+ χ

ẑ2
0
¯̂z0

+ γ
ẑ3
0

]
, θ �= π

2 , 3π
2 ,

μ1b2z
πa

[
K
4d̂

+ i(γ−χ)
r̂3

]
, θ = π

2 ,

μ1b2z
πa

[
K

4d̂
− i(γ−χ)

r̂3

]
, θ = 3π

2 ,

(37)

where the two real coefficients ξ and γ are defined by

χ = − 1
4π

1∫

−1

t
[
(K − 1)2b̃(t) − (K + 1)2f̃(t)

]
dt,

γ = − 1
4π

1∫

−1

t
[
(K − 1)2b̃(t) + (K + 1)2f̃(t)

]
dt. (38)
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In Eq. (38), the two functions b̃(x) and f̃(x) are determined by solving the following Cauchy singular
integro-differential equations:

− 1
π

1∫

−1

b̃(t)
t − x

dt +
K

π

1∫

−1

b̃(t)

x + t + 2d̂
dt + 1 = Seb̃′(x), −1 < x < 1,

1∫

−1

b̃(t)dt = 0,

(39)

1
π

1∫

−1

f̃(t)
t − x

dt +
K

π

1∫

−1

f̃(t)

x + t + 2d̂
dt − 1

Se

x∫

−1

f̃(t)dt = 1, −1 < x < 1,

1∫

−1

f̃(t)dt = 0.

(40)

6. A Zener–Stroh crack perpendicular to the interface

In the above discussions, we have in fact assumed that the finite crack is a Griffith one which satisfies
Eq. (16)1. In this section, we will first consider a Zener–Stroh crack loaded by the net screw dislocation
Burgers vector bT (see [7] and the references cited therein). The problem configuration is very similar
to that discussed in Sect. 3 now with the assumption that bz = 0. In this loading case, it is found that
the line force density is zero, i.e., f(x1) = 0. The dislocation density b(x1) should satisfy the following
Cauchy singular integro-differential equation

− μ1

π

d+a∫

d−a

b(ξ)
ξ − x1

dξ +
Kμ1

π

d+a∫

d−a

b(ξ)
ξ + x1

dξ = (μs − σ0)b′(x1), d − a < x1 < d + a, (41)

and the auxiliary condition
d+a∫

d−a

b(ξ)dξ = bT . (42)

By introducing x = (x1 − d)/a and t = (ξ − d)/a, Eqs. (41) and (42) can be rewritten into the following
normalized form

− 1
π

1∫

−1

b̂(t)
t − x

dt +
K

π

1∫

−1

b̂(t)

x + t + 2d̂
dt = Seb̂′(x), −1 < x < 1, (43)

1∫

−1

b̂(t)dt = 1, (44)

where d̂ and Se have been defined in Eq. (20), whereas b̂(x) is redefined as follows

b̂(x) =
ab(x)
bT

. (45)

We can also expand b̂(x) into Eq. (26). Consequently, the N + 1 coefficients cm,m = 0, 1, 2, . . . , N in the
expansion can be uniquely determined by solving the following se of algebraic equations
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N∑
m=0

(−1)m cos
(

miπ

N

)[
sin
(

iπ

N

)
+ Sem

]
cm

− K

M

N∑
m=0

M∑
j=1

cos
(

πm(2j − 1)
2M

)
sin
(

π(2j − 1)
2M

)
⎡
⎢⎢⎣1 +

√[
cos
(

π(2j−1)
2M

)
+ 2d̂

]2
− 1

cos
(

iπ
N

)− cos
(

π(2j−1)
2M

)
− 2d̂

⎤
⎥⎥⎦ cm

=
1
π

, i = 1, 2, . . . , N,

N∑
m=0,m �=1

1 + (−1)m

1 − m2
cm = 1.

(46)

In the case of a Zener–Stroh crack, the stresses exhibit only the weak logarithmic singularity at the
two crack tips.

According to the classification of dislocation–crack interaction by [31,32], the screw dislocation can
be emitted from the finite crack or originated from elsewhere. It is apparent that the analyses in Sects. 3
and 4 are valid for the latter case in which the screw dislocation is originated from a source other than the
crack. If the screw dislocation is emitted from the crack, its solution can be obtained as the superposition
of that obtained in Sects. 3 and 4 and that for a Zener–Stroh crack solved in this section. Now bT = −bz

in order to ensure that a Burger circuit enclosing both the crack and the dislocation will be closed [31,32].
In particular, if |ẑ0| → ∞ for the long-range interaction, the image force on the dislocation becomes

F1 − iF2 =
μ1b

2
z

πa

(
−K + 1

2ẑ0
+

η

ẑ20

)
+ F1g − iF2g, (47)

where F1g − iF2g is just the expression of F1 − iF2 in Eq. (37) for a dislocation originated from elsewhere,
and the real coefficient η is defined by

η =
K − 1

2

1∫

−1

tb̂(t)dt, (48)
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Fig. 2. Dislocation density b(x) for different values of K = −1, −0.5, 0, 0.5, 1 with Se = 1, d̂ = 1.05, ẑ0 = i. The crack is a
Griffith crack
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Fig. 3. The crack opening displacement Δw = −a
∫ x
−1 b(t)dt for different values of K = −1, −0.5, 0, 0.5, 1 with Se = 1, d̂ =

1.05, ẑ0 = i. The crack is a Griffith crack
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Fig. 4. Line force density f(x) for different values of K = −1, −0.5, 0, 0.5, 1 with Se = 1, d̂ = 1.05, ẑ0 = i. The crack is a
Griffith crack

with the function b̂(x) being determined by solving the Cauchy singular integro-differential equation in
Eqs (43) and (44).

7. Numerical results and discussions

During the calculation, we choose N = 300 and M = 15. When the screw dislocation is extremely close
to the crack faces, a sufficiently large number of points on the segment [−1, 1] is required to compute the
first integral in Eq. (36) by using the Gauss–Chebyshev integration formula. As a check, when K = 0, the
current numerical result just recovers that in [26] for a screw dislocation interacting with a Griffith crack
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Fig. 6. Image force component F1 versus the dislocation angle θ for five different values of K = −1, −0.5, 0, 0.5, 1 with

Se = 1, d̂ = 1.05, |ẑ0| = 0.5. The dislocation is originated from a source other than the crack

in a homogeneous solid. Illustrated in Figs. 2, 3 and 4 are the dislocation density b(x), the crack opening
displacement Δw = −a

∫ x

−1
b(t)dt and the line force density f(x) for different values of the mismatch

parameter K with Se = 1, d̂ = 1.05 and ẑ0 = i. The results in the three figures are obtained from Eqs.
(32) and (33) for a dislocation originated from a source other than the crack. As clearly seen in Fig. 2,
b(x) is finite at x = ±1 due to the incorporation of surface elasticity. As a result, the crack-tip opening
angles in Fig. 3 are always strictly less than π/2. The mismatch parameter K exerts a significant influence
on both b(x) and Δw. Our detailed results show that b(−1) = 0 when K = 0.56. In this case, the opening
angle at the left crack tip is zero and the stresses only exhibit the square root singularity at the left
crack tip. Similarly, it is found that b(+1) = 0 when K = −0.65. In this case, the opening angle at the



Vol. 66 (2015) Interaction of a screw dislocation 3657

0 20 40 60 80 100 120 140 160 180
-0.1

-0.05

0

0.05

0.1

0.15

0.2

Dislocation Angle θ (deg)

F 1πa
/( μ

1b
z2 )

Se=1,  d=1.05a,  |z0-d|=0.5a

K=-1

K=-0.5

K=0

K=0.5

K=1

Fig. 7. Image force component F1 versus the dislocation angle θ for five different values of K = −1, −0.5, 0, 0.5, 1 with

Se = 1, d̂ = 1.05, |ẑ0| = 0.5. The dislocation is emitted from the crack
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Fig. 8. Image force component F2 versus the dislocation angle θ for five different values of K = −1, −0.5, 0, 0.5, 1 with

Se = 1, d̂ = 1.05, |ẑ0| = 0.5. The dislocation is emitted from the crack

right crack tip is zero and the stresses only exhibit the square root singularity at the right crack tip. It
is observed from Fig. 3 that Δw at a fixed position x is an increasing function of K.

We show in Fig. 5 the dislocation density b(x) distributed on a Zener–Stroh crack by solving Eq. (46)
for different values of the mismatch parameter K with Se = 1 and d̂ = 1.05. Different from the result in
Fig. 2 for a Griffith crack, b̂(x) in Fig. 5 is always positive. When K = 0, b̂(x) is symmetric with respect
to x = 0. When K > 0, b̂(x) is suppressed in the left portion and is enlarged in the right portion. When
K < 0, b̂(x) is enlarged in the left portion and is suppressed in the right portion.

Figure 6 illustrates the image force component F1 as a function of the dislocation angle for different
values of the mismatch parameter K with Se = 1, d̂ = 1.05 and |ẑ0| = 0.5. The dislocation is originated
from a source other than the crack. It is observed from Fig. 6 that the value of F1 at a fixed dislocation
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Fig. 10. Values of γ defined in Eq. (38) for different combinations of K and Se with d̂ = 1.05

angle monotonically increases with the increase in K. The dislocation is repelled from the interface (i.e.,
F1 > 0) for the whole range of the dislocation angle when K = 0.5, 1. The dislocation is attracted to the
interface (i.e., F1 < 0) for the majority of the dislocation angle (20◦ < θ < 180◦) when K = −1 for a
free surface. The influence of K on F2 is not as apparent as that on F1. Our results indicate that with
this set of parameters, the dislocation is always repelled from the crack (F2 > 0) for the whole range of
the dislocation angle. The dislocation–crack repulsion is solely caused by the incorporation of the surface
elasticity on the crack surface because the dislocation will be attracted to the crack without surface effect.

We show in Figs. 7 and 8 the image force components F1 and F2 on a dislocation emitted from
the crack as functions of the dislocation angle for different values of the mismatch parameter K with
Se = 1, d̂ = 1.05 and |ẑ0| = 0.5. A comparison of Fig. 6 with Fig. 7 reveals that the results for the two
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cases are quite different. The magnitude of F1 on a dislocation emitted from the crack is much lower
than that on a dislocation originated from elsewhere. As shown in Fig. 8, the influence of K on F2 is
also significant when the dislocation is emitted from the crack, a phenomenon different from the case
when the dislocation is originated from elsewhere. It is also observed from Fig. 8 that the dislocation is
repelled from the crack (F2 > 0) when it is close enough to the crack incorporating surface elasticity, and
the dislocation is attracted to the crack (F2 < 0) when it is far enough from the crack. A stiffer phase 2
(K > 0) will enlarge the attraction region and suppress the repulsion region. On the other hand, a softer
phase 2 (K < 0) will suppress the attraction region and enlarge the repulsion region.

Finally, we present the results for the long-range interaction between the dislocation and the crack.
We show in Figs. 9 and 10 the values of the two real coefficients ξ and γ defined in Eq. (38) for different
combinations of K and Se with d̂ = 1.05. It is observed that γ is always negative, whereas the sign of
χ is dependent on the specific combination of K and Se. For example, χ < 0 for any value of K when
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Se = 0.001, χ > 0 for any value of K when Se = 1000. We show in Fig. 11 the variation of η defined in
Eq. (48) as a function of K and Se with d̂ = 1.05. When K = 0 or K = 1, η is always zero for any value
of Se. When K = −1, the influence of Se on η is most significant. Figure 12 further shows the variation
of η as a function of d̂ and Se with K = −1. It is seen that η is a decreasing function of both d̂ and Se,
η decays to zero as d̂ → ∞ and η ≈ 0 when Se = 1000.

8. Conclusions

In this paper, we have investigated the interaction problem associated with a screw dislocation near a
mode III finite crack with surface elasticity perpendicular to a bimaterial interface. In our discussion, the
screw dislocation can be originated from a source other than the crack (Sects. 3, 4), or it can be emitted
from the crack (Sect. 5). The problem of a Zener–Stroh crack perpendicular to a bimaterial interface is also
solved in Sect. 5. By using the Green’s function method, the interaction problem is finally reduced to two
decoupled first-order Cauchy singular integro-differential equations. Consequently, a complete solution
has been derived. The image force acting on the screw dislocation is also obtained. Detailed numerical
results are presented to demonstrate the effects of the mismatch parameter and surface elasticity on the
screw dislocation density and line force density on the crack, and on the material force acting on the
screw dislocation.
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