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Abstract. In this article, we study the rigidity of planar central configurations in the non-collinear n-body problem relative to
the change of masses. More precisely, we study central configurations for which it is possible to change the values of k masses
keeping fixed all the positions and the values of the masses of the other n − k bodies and still have central configurations.
Here, we consider the cases k = 1 and k = 2. The central configurations that have such properties are closely related to the
so-called stacked central configurations and super central configurations.
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1. Introduction and statement of the main results

The Newtonian n-body problem consists in the study of a system formed by n punctual bodies described
by the position vectors r1, . . . , rn in R

d, d = 2, 3 and positive masses m1, . . . , mn interacting between
themselves by their mutual gravitational attraction according to Newton’s gravitational law [19]. The
equations of the motion are given by

r̈i = −
n∑

j=1,j �=i

mj

r3ij
(ri − rj), (1.1)

for i = 1, . . . , n, where rij = |ri−rj | is the Euclidean distance between the bodies at ri and rj . In (1.1), we
consider the gravitational constant G = 1. In order to avoid the singular case, the space of configuration
is {(r1, r2, . . . , rn) ∈ R

dn : ri �= rj , i �= j}.
Some particular solutions of (1.1) appear in the literature, such as the homographic solutions in which

the initial shape of the configuration remains the same as time varies. The first homographic solutions
are due to Euler [5] and Lagrange [12].

At a given instant t = t0, the n bodies are in a central configuration if there exists λ �= 0 such that
r̈i = λ(ri − Cn), for all i = 1, . . . , n, where Cn is the center of mass of the system which is given by
Cn =

∑n
j=1 mjrj/Mn and Mn = m1 + . . . + mn is the total mass of the system. Such configurations are

closely related to homographic solutions. See [18,20,21] and [24].
From the definition of central configuration and using Eq. (1.1), in order to compute the planar, that

is d = 2, central configurations, it is necessary to solve the following set of algebraic equations

λ(ri − Cn) = −
n∑

j=1,j �=i

mj

r3ij
(ri − rj), (1.2)
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for i = 1, 2, . . . , n. For the planar case, simple computations allow us to write Eq. (1.2) in the following
form

fi,j =
n∑

k=1,k �=i,j

mk (Ri,k − Rj,k) Δi,j,k = 0, (1.3)

for 1 ≤ i < j ≤ n, where Ri,j = 1/r3ij and Δi,j,k = (ri − rj)∧ (ri − rk). In fact, Δi,j,k is twice the oriented
area of the triangle formed by the bodies at ri, rj and rk (see [8]). These n(n − 1)/2 equations are called
Dziobek–Laura–Andoyer equations or simply Andoyer equations.

A central configuration is invariant by mass scale, that is, if we have a central configuration with
position vectors r1, r2, . . . , rn and positive masses m1,m2, . . . , mn, then we still have a central configu-
ration with the same position vectors r1, r2, . . . , rn and masses αm1, αm2, . . . , αmn, for any positive real
constant α. In fact, the Andoyer equations for the new masses can be written as αfi,j = 0.

Two central configurations (r1, . . . , rn) and (r̄1, . . . , r̄n) of the n bodies are related if we can pass from
one to the other through a dilation or a rotation (centered at the center of mass). So we can study the
classes of central configurations defined by the above equivalence relation.

Taking into account this equivalence we have exactly five classes of central configurations in the 3-
body problem. The finiteness of the number of central configurations performed by n bodies with positive
masses is a question posed by Chazy in [2], Wintner in [24] and reformulated to the planar case by Smale
in [23]. For n = 4, this problem has an affirmative answer [10]. Alternatively, see [1] for a proof of the
finiteness when n = 4 and a partial answer when n = 5. This question is open when n > 5.

A stacked central configuration is a central configuration in which a proper subset of the n bodies is
already in a central configuration. This class of central configurations was introduced by Hampton in [9].
A central configuration is called (n, k)–stacked when the n bodies perform a central configuration, and
we can remove 0 < k < n bodies (the k with greater indices) such that the remaining n − k bodies are
already in a central configuration.

Some cases of (5, 2)–stacked central configurations were studied by Llibre and Mello in [13] and by
Llibre, Mello and Perez–Chavela in [14]. Stacked central configurations for the spatial 7–body problem
can be found in [11] and [17].

Fernandes and Mello in [6] studied (5, 1)–stacked planar central configurations. The authors conclude
that the only non-collinear (5, 1)–stacked planar central configuration is formed by four bodies in a
co-circular central configuration and one body of arbitrary mass at the center of the circle.

Recently, Fernandes and Mello [7] provided an extension of the above result to (n, 1)–stacked non-
collinear central configurations.

Theorem 1.1. [7] Consider the planar non-collinear n–body problem with n ≥ 4. Then, the only (n, 1)–
stacked central configurations are formed by n − 1 bodies in a co-circular central configuration and one
body (to be removed) of arbitrary mass at the center of the circle.

As a consequence of the above theorem, in an (n, 1)–stacked central configuration, it is possible to
change the value of the mass of the body at the center of the circle, keeping fixed all the positions and
the values of the other n − 1 masses, and still have a central configuration.

Another kind of central configuration related to the change of the values of some masses is a super
central configuration: a central configuration in which it is possible to make a non-trivial permutation
of the values of two or more different masses keeping fixed the position vectors and still have a central
configuration. See [25] for a more precise definition.

We have the following question concerning central configurations in the planar n–body problem.

Question 1.2. Consider n bodies with position vectors r1, r2, . . . , rn and positive masses m1,m2, . . . , mn

in a planar central configuration. Consider also 0 < k < n. Is it possible to change the values of the
masses

m̄n−k �= mn−k, m̄n−k+1 �= mn−k+1, . . . , m̄n �= mn
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keeping fixed all the position vectors r1, r2, . . . , rn and the values of the other masses m1,m2, . . . , mn−k−1

such that the n bodies are still in a central configuration?

An answer for Question 1.2 is given by the super central configurations [25] where the change of the
values of the masses is obtained in the original set of masses. Central configurations considered here can
be seen as generalizations of super central configurations.

Question 1.2 concerns on a type of rigidity of planar central configurations in the n–body problem
relative to the change of masses. This question is motivated by the instructive example of the central
configuration due to Lagrange: three bodies of arbitrary positive masses at the vertices of an equilateral
triangle. In this central configuration, the positive value of the mass of each body can be changed by any
other positive value or even can vary continuously assuming any positive value.

In Question 1.2, we do not consider the case in which some masses are changed to zero because this
can be seen like a stacked central configuration. In fact, there exist several examples of (n, k)–stacked
central configurations, see for example [9,13,14].

For the case k = 1, we have the following result.

Theorem 1.3. Consider the planar non-collinear n–body problem with n ≥ 4. Then, the central config-
urations for which it is possible to change the value of one mass keeping fixed all the positions and the
values of the other n − 1 masses and still have a central configuration are the central configurations with
n bodies such that n − 1 bodies are in a co-circular central configuration, and one body of arbitrary mass
is at the center of the circle. Moreover, the center of mass of the n − 1 co-circular bodies must be at the
center of the circle.

It is important to mention that Theorem 1.3 for n = 4 is contained in the following theorem due to
MacMillan and Bartky [15], page 872.

Theorem 1.4. [15] Associated with each admissible quadrilateral, there is one and only one set of mass
ratios, with the single exception of three equal masses at the vertices of an equilateral triangle and a fourth
arbitrary mass at the center of gravity of the other three.

We also study the case k = 2. We have the following result which can be seen as a type of rigidity of
central configurations.

Theorem 1.5. Consider the planar non-collinear n–body problem with n ≥ 4. There is not a central
configuration for which it is possible to change the values of the masses of two bodies keeping fixed all the
positions and the values of the masses of the other n − 2 bodies and still have a central configuration.

Theorem 1.3 is proved in Sect. 2. In Sect. 3, we prove Theorem 1.5. Concluding comments are presented
in Sect. 4.

2. The case k = 1

Without loss of generality, suppose that the mass to be change is mn. The proof of Theorem 1.3 is divided
into three lemmas.

Lemma 2.1. In order to have a central configuration in which the mass mn can be changed, it is necessary
that the other n − 1 bodies must be in a co-circular configuration with center at rn.

Proof. The planar Andoyer Eq. (1.3) must be satisfied for the n bodies. Consider the Andoyer equations
with i �= n and j �= n. These equations can be written as

fi,j =
∑

k �=i,j,n

mk (Ri,k − Rj,k) Δi,j,k + mn (Ri,n − Rj,n)Δi,j,n = 0, (2.1)
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for all indices i and j, such that 0 < i < j < n. Note that in Eq. (2.1), the part under summation does
not depend on the mass mn. So, the variation of the mass mn implies that the part under summation
and the coefficient of mn must vanish. Thus, we have

(Ri,n − Rj,n) Δi,j,n = 0, (2.2)

for all indices i and j, such that 0 < i < j < n.
By assumption, the configuration is non-collinear, so in Eq. (2.2), at least one Δi,j,n �= 0. Without loss
of generality, suppose Δ1,2,n �= 0. Thus, from

(R1,n − R2,n) Δ1,2,n = 0

we have

R1,n − R2,n = 0,

which implies that r1n = r2n = d > 0. Therefore, r1 and r2 belong to the circle of radius d and center at
rn.
We can classify the other indices into two sets

C1 = {j : Δ1,j,n = 0} , C2 = {j : Δ1,j,n �= 0} ,

that is, C1 contains the indices of the bodies whose position vectors are collinear with r1 and rn, while
C2 contains the indices of the bodies whose position vectors are not collinear with r1 and rn. For j ∈ C2

and from

(R1,n − Rj,n) Δ1,j,n = 0

we have

R1,n − Rj,n = 0.

Thus, rjn = r1n = d > 0, for all j ∈ C2. Then, r1, r2 and rj belong to the circle of radius d and center at
rn, for all j ∈ C2.
To complete the proof of the lemma, we need to show that C1 has at most one element. Suppose, by
contradiction, that there exist two indices b, c ∈ C1. So Δ1,b,n = 0, which implies that Δ2,b,n �= 0. From

(R2,n − Rb,n) Δ2,b,n = 0,

we have

R2,n − Rb,n = 0,

which implies that rbn = r2n = d > 0. Thus, rb belongs to the circle of radius d and center at rn. As the
central configurations are out of the collision set, rb must be diametrically opposite to r1. Now consider
the index c ∈ C1. So Δ1,c,n = 0, which implies that Δ2,c,n �= 0. From

(R2,n − Rc,n) Δ2,c,n = 0

we have

R2,n − Rc,n = 0,

which implies that rcn = r2n = d > 0. Here, we have a contradiction, since in this case rc coincides with
either r1 or rb. See Fig. 1. The lemma is proved. �

Note that with the assumptions of Lemma 2.1, the central configuration is independent of the value
of the mass mn, thus such a configuration will be a central configuration for all positive values of mn.

The next lemma says that the n − 1 bodies must perform a central configuration too.

Lemma 2.2. In order to have a planar central configuration in which the mass mn can be changed, it is
necessary that the other n − 1 co-circular bodies must be in a central configuration.
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Fig. 1. Only possible configuration with the continuous variation of mn

Proof. Note that the part under summation in Eq. (2.1) is exactly the Andoyer equation for the bodies
1, 2, . . . , n − 1. So, taking into account Eq. (2.2) for 1 ≤ i < j ≤ n − 1, Eq. (2.1) is already satisfied for
1 ≤ i < j ≤ n − 1. Thus, the n − 1 bodies are in a central configuration. �

Now we give information about the position of the center of mass of the n − 1 co-circular bodies.

Lemma 2.3. Consider a central configuration with n bodies, n ≥ 4, formed by n − 1 bodies on a circle
C and one body of arbitrary mass located at the center of the circle C. Then, the center of mass of the
co-circular bodies coincides with the center of the circle C.

Proof. Without loss of generality, assume that the position vectors ri of the co-circular bodies form a
polygon inscribed in a circle C of radius d and center at rn. Assume also that the indices 1, . . . , n − 1 are
disposed cyclically. As above denote by Mn the total mass of the n bodies and by Cn the center of mass
of the n bodies. Denote by Mn−1 the total mass of the n − 1 co-circular bodies and by Cn−1 the center
of mass of these bodies.
Its easy to see that

λ =
U

2I
,

where

U =
∑

i<j

mimj

rij
, I =

1
2Mn

∑

i<j

mimjr
2
ij

which are, respectively, the Newtonian potential function and the moment of inertia.
Consider the equation of central configuration for the body n. Under our hypotheses, we have

λ(rn − Cn) = −
n−1∑

j=1

mj

r3jn
(rn − rj) = −

n−1∑

j=1

mj

d3
(rn − rj). (2.3)

Equation (2.3) is equivalent to

d3λ(rn − Cn) =
n−1∑

j=1

mjrj − Mn−1rn = Mn−1Cn−1 − Mn−1rn, (2.4)
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which can be written as

d3λ(rn − Cn) = MnCn − Mnrn.

Thus, we have
(d3λ + Mn)(rn − Cn) = 0, (2.5)

which must be satisfied for all positive values of mn. Suppose, by contradiction, that rn − Cn �= 0. So,
from Eq. (2.5), d3λ + Mn = 0, for all positive values of mn. Thus,

Mn + d3λ = Mn − d3
(

U

I

)
= Mn − d3

[ ∑
i<j

mimj

rij
1

2Mn

∑
i<j mimjr2ij

]
= 0, (2.6)

which must be satisfied for all positive values of mn. Equation (2.6) is equivalent to

Mn
1

2Mn

∑

i<j

mimjr
2
ij − d3

∑

i<j

mimj

rij
= 0, (2.7)

which must be satisfied for all positive values of mn. On the other hand, Eq. (2.7) is equivalent to
1
2

∑

i<j

mimjr
2
ij − d3

∑

i<j

mimj

rij
= 0. (2.8)

Note that Eq. (2.8) is linear (or constant) in the mass mn, and this implies that it is satisfied for at most
one value of mn. It is easy to see that there exist positive values of mn such that Eq. (2.8) is not satisfied.
Hence, Eq. (2.5) is satisfied for all positive values of mn if and only if rn − Cn = 0. In this case, we have
Cn = rn, which implies that rn = Cn−1. The proof of the lemma is complete. �

Now the proof of Theorem 1.3 follows from Lemmas 2.1, 2.2 and 2.3. Theorem 1.3 gives a partial
answer to Question 1.2 for the case k = 1. A complete answer remains open and requires the study of
the co-circular central configurations, with center of mass at the center of the circle, which is a problem
proposed by Chenciner in [3]. See also [4] and [16].

3. The case k = 2

Without loss of generality, suppose that the masses to be changed are mn−1 and mn. The planar Andoyer
Eq. (1.3) must be satisfied for the n bodies. Consider the Andoyer equations for i = 1, 2, . . . , n − 2 and
j = n − 1. These equations can be written as

fi,n−1 =
∑

k �=i,n−1,n

mk (Ri,k − Rn−1,k) Δi,n−1,k + mn (Ri,n − Rn−1,n) Δi,n−1,n = 0.

In Eq. (3.1), the part under summation does not depend on mn. So, the change of the mass mn implies
that the coefficient of mn must vanish, that is

(Ri,n − Rn−1,n) Δi,n−1,n = 0, (3.1)

for all 0 < i < n − 1. With the same arguments for the mass mn−1, we have

(Ri,n−1 − Rn,n−1) Δi,n,n−1 = 0, (3.2)

for all 0 < i < n − 1. From Eqs. (3.1) and (3.2), the position vectors r1, . . . , rn−2 must be either collinear
with rn−1 and rn or belong to the intersection of C1 and C2, where C1 is the circle with center at
rn−1 and radius |rn − rn−1| and C2 is the circle with center at rn and radius |rn − rn−1|. Note that
C1 ∩ C2 determines two points in the plane. Since we consider non-collinear central configurations, these
two points must be position vectors of two bodies of the configuration; otherwise by the Perpendicular
Bisector Theorem (see [18]), there is no such a central configuration. Without loss of generality, suppose
that C1 ∩ C2 = {r1, r2}. See Fig. 2. We have proved the following lemma.
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Fig. 2. Positions of the bodies with fixed masses must be either collinear or belong to the intersection of two circles with
centers at rn−1 and rn and radius |rn−1 − rn|

Lemma 3.1. Consider the planar non-collinear n-body problem with n > 4. The following conditions are
necessary in order to have a central configuration for which it is possible to change the values of two
masses keeping fixed all the positions and the values of the other n − 2 masses and still have a central
configuration (see Fig. 2):

(a) r1, r2, rn−1 and rn are at the vertices of a rhombus with |r1 − rn−1| = |r1 − rn| = |r2 − rn−1| =
|r2 − rn| = |rn−1 − rn| �= 0.

(b) The other n − 4 bodies belong to the straight line containing rn−1 and rn.

In the following lemma is proved that the masses of the bodies at the intersections of C1 and C2 must
be equal, that is m1 = m2.

Lemma 3.2. Consider the planar n-body problem, n > 4. Suppose that r1, r2, rn−1 and rn are at the
vertices of a rhombus with |r1 − rn−1| = |r1 − rn| = |r2 − rn−1| = |r2 − rn| = |rn−1 − rn| �= 0 and the
other n − 4 bodies belong to the straight line containing rn−1 and rn according to Fig. 2. Then, in order
to have a central configuration, a necessary condition is m1 = m2.

Proof. Consider the Andoyer equations fi,n = 0, for i = 3, . . . , n − 2, which can be written as

fi,n = m1 (Ri,1 − Rn,1) Δi,n,1 + m2 (Ri,2 − Rn,2) Δi,n,2

+
∑

k �=1,2,i,n

mk (Ri,k − Rn,k) Δi,n,k = 0. (3.3)

In Eq. (3.3), the part under summation is zero, since Δi,n,k = 0. On the other hand, Δi,n,1 = −Δi,n,2 �= 0,
Ri,1 = Ri,2 and Rn,1 = Rn,2. Thus, Eq. (3.3) has the form

fi,n = (m1 − m2) (Ri,1 − Rn,1) Δi,n,1 = 0. (3.4)

As Ri,1 − Rn,1 �= 0, Eq. (3.4) is satisfied if and only if m1 = m2. This completes the proof of the
lemma. �

The next lemma gives some information about the relation between the masses to be changed. Fix
the following nomenclature: the masses to be changed are mn and mn−1; after the change, these masses
will be denoted by Mn = mn − μn and Mn−1 = mn−1 − μn−1.
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Lemma 3.3. Consider the planar n-body problem with n > 4. Suppose that r1, r2, rn−1 and rn form a
rhombus with |r1 − rn−1| = |r1 − rn| = |r2 − rn−1| = |r2 − rn| = |rn−1 − rn| �= 0 and the other n−4 bodies
belong to the straight line containing rn−1 and rn according to Fig. 2. Then, in order to have a central
configuration in which it is possible to change the values of the masses mn and mn−1 keeping fixed all the
positions and other n − 2 masses, the following equation must be satisfied

μn−1

μn
= − (R1,n − Ri,n) Δ1,i,n

(R1,n−1 − Ri,n−1) Δ1,i,n−1
, (3.5)

for 2 < i < n − 1. Moreover, the quotient μn−1/μn must be positive.

Proof. Consider the Andoyer equations f1,i = 0, with 2 < i < n − 1. These equations can be written as

f1,i =
∑

k �=1,i,n−1,n

mk (R1,k − Ri,k) Δ1,i,k (3.6)

+mn−1 (R1,n−1 − Ri,n−1) Δ1,i,n−1 + mn (R1,n − Ri,n) Δ1,i,n = 0,

for 2 < i < n − 1. Consider the same equation after the change of the values of mn−1 and mn

f1,i =
∑

k �=1,i,n−1,n

mk (R1,k − Ri,k) Δ1,i,k + (3.7)

+Mn−1 (R1,n−1 − Ri,n−1) Δ1,i,n−1 + Mn (R1,n − Ri,n) Δ1,i,n = 0.

Note that the parts under summation in Eqs. (3.6) and (3.7) are equal. Taking the difference of (3.6) and
(3.7), we have

mn−1 (R1,n−1 − Ri,n−1) Δ1,i,n−1 + mn (R1,n − Ri,n) Δ1,i,n

−Mn−1 (R1,n−1 − Ri,n−1) Δ1,i,n−1 − Mn (R1,n − Ri,n) Δ1,i,n = 0,

which implies Eq. (3.5). We need to prove that the quotient in Eq. (3.5) is positive. Consider Eq. (3.5)
written in the following form

μn−1 (R1,n−1 − Ri,n−1) Δ1,i,n−1 + μn (R1,n − Ri,n) Δ1,i,n = 0. (3.8)

Suppose, by contradiction, that μn−1μn < 0. So, in order to satisfy (3.8), the coefficients of μn−1 and μn

must have the same sign. Suppose that there exists a body of index i out of the rhombus and located to
the right of rn. This implies that the terms Δ1,i,n−1, Δ1,i,n are negative and the term R1,n−1 − Ri,n−1

is positive. So, the term R1,n − Ri,n must be positive. But this implies that |r1 − rn| < |ri − rn|. The
same assertion holds for all bodies out of the rhombus and located to the right of rn. All these cases
lead a contradiction with the Perpendicular Bisector Theorem [18]. The same argument can be used for
the bodies out of the rhombus and located to the left of rn−1. Thus, all collinear bodies must be in the
interior of the rhombus, but this also leads to a contradiction with the Perpendicular Bisector Theorem.
This part of the proof implies that all bodies in the configuration must belong to the interior of the union
of the sets bounded by the circles C1 and C2. �

An important consequence of this lemma is that in a central configuration in which it is possible to
change the values of two masses (mn and mn−1) keeping fixed all the positions and other n − 2 masses,
the position vectors of the collinear bodies must satisfy

(R1,n − Ri,n) Δ1,i,n

(R1,n−1 − Ri,n−1) Δ1,i,n−1
=

(R1,n − Rk,n) Δ1,k,n

(R1,n−1 − Rk,n−1) Δ1,k,n−1
< 0, (3.9)

for all i and k such that 2 < i, k < n − 1.
Consider a system of coordinates formed by two axes: one passing through r1 and r2 and the other

passing through the line containing the collinear bodies. See Fig. 3. Without loss of generality, we assume
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Fig. 3. System of coordinates formed by two axes: one passing through r1 and r2 and the other passing through rn−1, rn
and the other bodies ri, i = 3, . . . , n − 2. See Figure 2

the coordinates r1 = (0,
√

3), r2 = (0,−√
3), rn−1 = (−1, 0), rn = (1, 0) and ri = (ri, 0) (using ri as a

scalar variable) for i = 3, . . . , n − 2. We study the equation

(R1,n − Ri,n) Δ1,i,n

(R1,n−1 − Ri,n−1) Δ1,i,n−1
= −a,

with a > 0 or equivalently the equation

(R1,n − Ri,n) Δ1,i,n + a (R1,n−1 − Ri,n−1) Δ1,i,n−1 = 0. (3.10)

Since r1, r2, rn−1 and rn are fixed in our system of coordinates, Eq. (3.10) can be written as a polynomial
equation of degree five in the variable ri.

By the construction of the coordinates, the terms (R1,n − Ri,n) Δ1,i,n and (R1,n−1 − Ri,n−1) Δ1,i,n−1

always have the pure imaginary roots ı
√

3|r1−rn|/2 = ı
√

3 and −ı
√

3|r1−rn|/2 = −ı
√

3, where ı =
√−1.

Therefore, the polynomial Eq. (3.10) has at most three real roots, for every a > 0. An straightforward
computation shows that a as function of ri is strictly increasing in (−3,−1)∪(1, 3) and strictly decreasing
in (−1, 1), which are the intervals of interest in our problem, see Lemma 3.3.

Note that for each value of a, Eq. (3.9) is satisfied by an index i when ri is a root of (3.10). Since
(3.10) has at most three real roots, there are at most three possible positions to the collinear bodies.
Moreover, for each positive value of a, we have exactly one root in (−3, 1), one root in (−1, 1) and one
root in (1, 3). Thus, n must be less than 8, because in the cases n ≥ 8, collisions are always required in
order to satisfy Eq. (3.9), for all indices. We have proved the following lemma.

Lemma 3.4. Consider the planar non-collinear n-body problem with n ≥ 8. There are no central configu-
rations for which it is possible to change the values of two masses keeping fixed all the positions and the
values of the other n − 2 masses and still have a central configuration.

Now we prove that there are no such kind of central configurations for the remaining cases: n = 4,
n = 5, n = 6 and n = 7. We divide the proof into four lemmas.
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2r

1r

3r 4r

Fig. 4. This configuration cannot be a central configuration

Lemma 3.5. Consider the planar 4-body problem. Suppose that r1, r2, r3 and r4 form a rhombus with
r13 = r14 = r23 = r24 = r34 according to Fig. 4. Then, there are no positive masses for which this
configuration is a central configuration.

The proof is a direct corollary of the Perpendicular Bisector Theorem [18].

Lemma 3.6. Consider the planar 5-body problem. Suppose that r1, r2, r4 and r5 form a rhombus with
r14 = r15 = r24 = r25 = r45 and r3 belongs to the straight line containing r4 and r5 according to Fig. 5.
Then, there are no positive masses for which this configuration is a central configuration.

Proof. The position vector r3 cannot belong to the interior of the rhombus. This is a direct consequence
of the Perpendicular Bisector Theorem [18]. With r3 out of the convex hull of the rhombus, consider the
Andoyer equation f1,4 = 0. Taking into account the symmetries, it can be written as

f1,4 = m3 (R1,3 − R4,3) Δ1,4,3 = 0. (3.11)

Equation (3.11) is satisfied if and only if r3 coincides with either r4 or r5, but this is a contradiction. �

Lemma 3.7. Consider the planar 6-body problem. Suppose that r1, r2, r5 and r6 form a rhombus with
r16 = r15 = r26 = r25 = r56, the position vectors r3 and r4 belong to the straight line containing r5
and r6 according to Fig. 6. Suppose also m1 = m2. Then, there are no positive masses for which this
configuration form a central configuration satisfying: it is possible to change the values of m5 and m6

keeping fixed all the positions and other four masses and still have a central configuration.

Proof. From Lemma 3.3, we consider just the case when the position vectors r3 and r4 are in the interior
of the union of the sets bounded by the circles C1 and C2.
For six bodies, we have fifteen Andoyer Eq. (1.3). By our assumptions of symmetries, the following
equations are already verified

f1,2 = 0, f3,4 = 0, f3,5 = 0, f3,6 = 0, f4,5 = 0, f4,6 = 0, f5,6 = 0.

The remaining equations are f1,j = 0 and f2,j = 0, with 3 ≤ j ≤ 6. The assumption m1 = m2 and the
symmetries imply that f1,j = 0 if and only if f2,j = 0. So we just study the equations f1,j = 0. More
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Fig. 5. This configuration cannot be a central configuration

1r

2r

3r 4r5r 6r

Fig. 6. This configuration cannot be a central configuration

explicitly, we study the following equations

f1,3 = m2 (R1,2 − R3,2) Δ1,3,2 + m4 (R1,4 − R3,4) Δ1,3,4

+m5 (R1,5 − R3,5) Δ1,3,5 + m6 (R1,6 − R3,6) Δ1,3,6 = 0,

f1,4 = m2 (R1,2 − R4,2) Δ1,4,2 + m3 (R1,3 − R4,3) Δ1,4,3

+m5 (R1,5 − R4,5) Δ1,4,5 + m6 (R1,6 − R4,6) Δ1,4,6 = 0,
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f1,5 = m2 (R1,2 − R5,2) Δ1,5,2 + m3 (R1,3 − R5,3) Δ1,5,3

+m4 (R1,4 − R5,4) Δ1,5,4 + m6 (R1,6 − R5,6) Δ1,5,6 = 0,

f1,6 = m2 (R1,2 − R6,2) Δ1,6,2 + m3 (R1,3 − R6,3) Δ1,6,3

+m4 (R1,4 − R6,4) Δ1,6,4 + m5 (R1,5 − R6,5) Δ1,6,5 = 0.

Equivalently, the above equations can be written as

H �M = �0, (3.12)

where
�M = (m2,m3,m4,m5,m6)t, �0 = (0, 0, 0, 0, 0)t

and

H =

⎡

⎢⎢⎣

h11 0 h13 h14 h15

h21 h22 0 h24 h25

h31 h32 h33 0 0
h41 h42 h43 0 0

⎤

⎥⎥⎦ ,

with

h11 = (R1,2 − R3,2)Δ1,3,2, h13 = (R1,4 − R3,4) Δ1,3,4,

h14 = (R1,5 − R3,5)Δ1,3,5, h15 = (R1,6 − R3,6) Δ1,3,6,

h21 = (R1,2 − R4,2)Δ1,4,2, h22 = (R1,3 − R4,3) Δ1,4,3,

h24 = (R1,5 − R4,5)Δ1,4,5, h25 = (R1,6 − R4,6) Δ1,4,6,

h31 = (R1,2 − R5,2)Δ1,5,2, h32 = (R1,3 − R5,3) Δ1,5,3,

h33 = (R1,4 − R5,4)Δ1,5,4, h41 = (R1,2 − R6,2) Δ1,6,2,

h42 = (R1,3 − R6,3)Δ1,6,3, h43 = (R1,4 − R6,4) Δ1,6,4.

Note that h41 = −h31.
Equation (3.12) represents the intersection of four hyperplanes through the origin in the space
(m2,m3,m4,m5,m6) and always admits non-trivial solutions, since we have more variables than equa-
tions. In the case that the matrix H has maximum rank, the solutions of (3.12) are parallel to the vector
�T = (T1,−T2, T3,−T4, T5), where Tk is the determinant of the matrix obtained from H deleting the
column k. In the problem of computing central configurations, only the positive solutions are considered.
Even more, for the problem of this section, the position vectors must also satisfy other relations such as
Eq. (3.10).
Consider again Eq. (3.10) in the context of six bodies

(R1,6 − R3,6) Δ1,3,6

(R1,5 − R3,5) Δ1,3,5
=

(R1,6 − R4,6) Δ1,4,6

(R1,5 − R4,5) Δ1,4,5
= −a < 0.

Using this relation in the matrix H, we have

H =

⎡

⎢⎢⎣

h11 0 h13 −ah15 h15

h21 h22 0 −ah25 h25

h31 h32 h33 0 0
−h31 h42 h43 0 0

⎤

⎥⎥⎦ ,

which implies that �T = (T1,−T2, T3,−T4, T5) = (0, 0, 0, aT5, T5). But in this case, it is necessary that the
masses m2, m3 and m4 vanish, assuming that the rank of H is equal to four.
Now we show that the rank of matrix H is in fact four. If the first and second rows are linearly dependent,
the following equations must be satisfied

h13 = (R1,4 − R3,4)Δ1,3,4 = 0 (3.13)
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and
h22 = (R1,3 − R4,3)Δ1,4,3 = 0. (3.14)

But without collisions, Eqs. (3.13) and (3.14) are not satisfied simultaneously.
If the third and fourth rows are linearly dependent, since h41 = −h31, we must have h32 = −h42 and
h33 = −h43, or more explicitly

(R1,3 − R5,3)Δ1,5,3 = −(R1,4 − R5,4)Δ1,5,4 (3.15)

and
(R1,3 − R6,3)Δ1,6,3 = −(R1,4 − R6,4)Δ1,6,4 (3.16)

But without collisions, neither Eqs. (3.15) nor (3.16) are satisfied.
Thus, if the matrix H has rank two, the third and fourth rows can be combined linearly to write the first
and second rows. But it is not possible, because in this case, we must have h14 = 0, h15 = 0, h24 = 0 and
h25 = 0. Such equations are never satisfied simultaneously. See the above definitions of hij .
Now suppose that the matrix H has rank three, so the dimension of the kernel of H is equal to one.
Assume that the vector

�M1 = (m2,m3,m4,m5,m6)t

is a solution of (3.12). Thus, after the change of m5 to M5 and m6 to M6 the vector

�M2 = (m2,m3,m4,M5,M6)t

also is a solution of (3.12). Since the dimension of the kernel of H is one, we have �M1 = α �M2. But in this
case with the same m2, m3 and m4, we have α = 1, which implies that the masses m5 and m6 cannot
change. So, in order to have a central configuration with six bodies satisfying our assumptions, the rank
of H must be four. This completes the proof of the lemma. �

Our last case is n = 7. We have the following lemma.

Lemma 3.8. Consider the planar 7-body problem. Suppose that r1, r2, r6 and r7 form a rhombus with
r16 = r17 = r26 = r27 = r67, the position vectors r3, r4 and r5 belong to the straight line containing
r6 and r7 and m1 = m2. Then, there are no positive masses for which this configuration form a central
configuration satisfying: it is possible to change the values of m6 and m7 keeping fixed all the positions
and other five masses and still have a central configuration.

Proof. From Lemma 3.3, we consider just the case when the position vectors r3 and r4 are in the interior
of the union of the sets bounded by the circles C1 and C2.
For seven bodies, we have 21 Andoyer Eq. (1.3). By our assumptions of symmetries, the following equations
are already verified

f1,2 = 0, f3,4 = 0, f3,5 = 0, f3,6 = 0,

f3,7 = 0, f4,5 = 0, f4,6 = 0, f4,7 = 0.

The remaining equations are f1,j = 0 and f2,j = 0, with 3 ≤ j ≤ 7. The assumption m1 = m2 and the
symmetries imply that f1,j = 0 if and only if f2,j = 0. So we just study the equations f1,j = 0. Similar
to the proof of the previous lemma, equations can be written as

G �M = �0, (3.17)

where,

�M = (m2,m3,m4,m5,m6,m7)t, �0 = (0, 0, 0, 0, 0, 0)t
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and

G =

⎡

⎢⎢⎢⎢⎣

g11 0 g13 g14 g15 g16
g21 g22 0 g24 g25 g26
g31 g32 g33 0 g35 g36
g41 g42 g43 g44 0 0
g51 g52 g53 g54 0 0

⎤

⎥⎥⎥⎥⎦
,

with

g11 = (R1,2 − R3,2)Δ1,3,2, g13 = (R1,4 − R3,4) Δ1,3,4,

g14 = (R1,5 − R3,5)Δ1,3,5, g15 = (R1,6 − R3,6) Δ1,3,6,

g16 = (R1,7 − R3,7)Δ1,3,7, g21 = (R1,2 − R4,2) Δ1,4,2,

g22 = (R1,3 − R4,3)Δ1,4,3, g24 = (R1,5 − R4,5) Δ1,4,5,

g25 = (R1,6 − R4,6)Δ1,4,6, g26 = (R1,7 − R4,7) Δ1,4,7,

g31 = (R1,2 − R5,2)Δ1,5,2, g32 = (R1,3 − R5,3) Δ1,5,3,

g33 = (R1,4 − R5,4)Δ1,5,4, g35 = (R1,6 − R5,6) Δ1,5,6,

g36 = (R1,7 − R5,7)Δ1,5,7, g41 = (R1,2 − R6,2) Δ1,6,2,

g42 = (R1,3 − R6,3)Δ1,6,3, g43 = (R1,4 − R6,4) Δ1,6,4,

g44 = (R1,5 − R6,5)Δ1,6,5, g51 = (R1,2 − R7,2) Δ1,7,2,

g52 = (R1,3 − R7,3)Δ1,7,3, g53 = (R1,4 − R7,4) Δ1,7,4,

g54 = (R1,5 − R7,5)Δ1,7,5.

Equation (3.17) represents the intersection of five hyperplanes through the origin in the space
(m2,m3,m4,m5,m6,m7) and always admits non-trivial solutions, since we have more variables than
equations. In the case that the matrix G has maximum rank, the solutions of (3.17) are parallel to
the vector �T = (T1,−T2, T3,−T4, T5,−T6), where Tk is the determinant of the matrix obtained from G
deleting the column k. Again using the Eq. (3.10), we get

G =

⎡

⎢⎢⎢⎢⎣

g11 0 g13 g14 −ag16 g16
g21 g23 0 g24 −ag26 g26
g31 g32 g34 0 −ag36 g36
g41 g42 g43 g44 0 0
g51 g52 g53 g54 0 0

⎤

⎥⎥⎥⎥⎦
,

which implies that �T = (T1,−T2, T3,−T4, T5,−T6) = (0, 0, 0, 0, aT6,−T6). But in this case, it is necessary
that the masses m2, m3, m4 and m5 vanish, assuming that the rank of G is equal to five.
The proof of G has rank five which comes from the fact of H to be a sub-matrix of G, so the rank of G
is at least four. But in this case, the same argument at the end of the proof of Lemma 3.7 can be used;
thus, G has rank five. �

4. Concluding remarks

From the proofs of Theorems 1.3 and 1.5, it is possible to see that the variation of the values of some
masses implies several restrictions to the geometry of a central configuration.

The only central configuration of n bodies that is not rigid with respect to the changing of the value
of one mass is formed by n − 1 bodies in a co-circular central configuration and one body of arbitrary
mass at the center of the circle. See Theorem 1.3.
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The main result of Sect. 3 implies that all central configurations are rigid for the change of the values
of two masses. In particular, we have the following corollary associated with super central configurations.

Corollary 4.1. Consider the planar non-collinear n-body problem, n ≥ 4. Then, there are no super central
configurations that can be obtained permuting two different values of masses.

The study of the change of the values of three or more masses can be applied for a possible classification
and knowledge of super central configurations, for example. However, the extension of the results obtained
here to the case of the change of the values of three or more masses is still an open question and requires
a different kind of analysis. The approaches in the proof of Theorem 1.5 are more complicated than the
ones in the proof of Theorem 1.3.
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