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Abstract. Based on the Weierstrass representation of second variation, we develop a non-spectral theory of stability for

isoperimetric problem with minimized and constrained two-dimensional functionals of general type and free endpoints

allowed to move along two given planar curves. We establish the stability criterion and apply this theory to the axisymmetric

liquid bridge between two axisymmetric solid bodies without gravity to determine the stability of menisci with free contact

lines. For catenoid and cylinder menisci and different solid shapes, we determine the stability domain. The other menisci

(unduloid, nodoid and sphere) are considered in a simple setup between two plates. We find the existence conditions of

stable unduloid menisci with and without inflection points.
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1. Introduction

A capillary surface is an interface separating two non-mixing fluids adjacent to each other. Its shape
depends on liquid volume and on boundary conditions (BC) specified at the contact line (CL) where the
liquids touch the solid. A liqud bridge (LB) is one of the well studied among different types of drops
(sessile, pendant [28], etc.). It emerges when a small amount of fluid forms an axisymmetric LB with
interface (meniscus) between two axisymmetric solids. A history of the LB problem in the absence of
gravity shows a remarkable interaction between theoretical physics and pure mathematics and can be
traced in two directions: evolution of menisci shapes (including their volume V , surface area S and surface
curvature H) and study of their stability.

Delaunay [5] was the first who classified all surfaces of revolution with constant mean curvature (CMC)
in his study of the Young–Laplace equation (YLE). These are cylinder (Cyl), sphere (Sph), catenoid (Cat),
nodoid (Nod) and unduloid (Und). Later Beer [2] gave analytical solutions of YLE in elliptic integrals,
and Plateau [17] supported the theory by experimental observations. For a whole century, almost no
rigorous results were reported on the computation of H, V and S of LB. In the 1970s, Orr et al. [16] gave
such formulas for all menisci types in case of a solid sphere contacting a solid plate. A new insight into
the problem was presented recently in [19] for the case of separated solid sphere and plate as a nonlinear
eigenvalue equation with a discrete spectrum of menisci and their curvature. The existence of multiple
solutions of YLE for given LB volume reported in [19] poses a question of local stability of menisci.

The first step toward the modern theory of LB stability was made by Sturm [22] in appendix to [5],
characterizing CMC surfaces as the solutions to isoperimetric problem (IP). Such relationship between a
second-order differential equation and a functional E reaching its extremal value was known at the time.
The main tool for this problem is a calculus of variations whose basis was laid in the 1870s by Weierstrass
in his unpublished lectures [27] and extended by Bolza [3] and others. The difficult part of the theory
deals with the second variation δ2E in vicinity of solutions of the Euler–Lagrange equations (ELE) where
a perturbation w acts.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-015-0555-5&domain=pdf


3448 L. G. Fel and B. Y. Rubinstein ZAMP

The IP with fixed endpoints t1, t2 was studied first by Weierstrass who derived a determinant equation
[27], p. 275, which defines an existence of conjugate points. Later Howe [11] applied Weierstrass’ theory
to study the LB problem with fixed CL. This approach continued to be used in different setups (see, e.g.,
[6,9]). Another type of variational IP with free endpoints allowed to move along two given planar curves
S1, S2 is important for stability of axisymmetric LB with free CL. An expression for δ2E for IP with
fixed endpoints was derived by Weierstrass, while a similar expression for IP with free endpoints is still
awaiting its derivation (see [8] for a comprehensive introduction).

The IP providing Ξ0[w] = min with an integrand quadratic in w,w′, linear constraint Ξ1[w] = 0 and
fixed BC w(tj)=0 is related to an eigenvalue problem associated with a linear operator (see [4], Chap. 6).
This is true even if the fixed BC is replaced by any other linear homogeneous BC (Dirichlet, Neumann
or mixed) and also is consistent with normalization Ξ2[w]=

∫ t1
t2

w2dt=1. Thus, the IP for the functional
Ξ0[w] + μΞ1[w] − λΞ2[w] with two Lagrange multipliers μ, λ and constraints Ξ1,Ξ2 leads to the Sturm–
Liouville equation (SLE) with real spectrum {λn} and stability criterion: min{λn} > 0. A study of the
SLE spectrum is a complicated task for generic curves S1, S2. Such approach was implemented [15] to
study the stability of LB with fixed CL.

In the 1980s, Th. Vogel suggested another approach to the LB problem with free CL constructing an
associated SLE with Neumann BC instead of Dirichlet BC and established the stability criterion valid
for LB between plates [23,24]. This method requires to solve the eigenvalue problem and to consider the
behavior of the two first minimal eigenvalues λ1, λ2. Implementation of this step is a difficult task in
the case of Und and Nod menisci. That is why only some exact results for Cat [29], Sph [21] and Und
[7] menisci between two plates are known. Study of LB stability between other surfaces encounters even
more difficulties. This was done only for Cyl [25] and (qualitatively) for convex Und and Nod [26] between
equal solid spheres. This method [26] allows to consider also a stability with respect to asymmetric
perturbations. No results on stability of menisci between other solids (similar or different) are reported.
There exists another class of problems dealing with stability of LB inside containers [18,20].

Based on the Weierstrass representation of second variation, we develop a non-spectral theory of
stability for IP with the minimized E[x, y] and constrained V [x, y] functionals of general type and with
free endpoints belonging to generic curves. We derive the expression for δ2E and find when it is positive
definite; we apply this theory to Delaunay surfaces and axisymmetric solid bodies to determine the
stability of meniscus with free CL under axisymmetric perturbations.

In Sects. 2, 3 and 4, we recall a setup of IP with fixed endpoints and Weierstrass’ formula for δ2E
with stability criterion based on which we derive the stability criterion for free endpoints in closed form
(Theorem 4.1). In Sect. 2, we derive two ELE supplemented with transversality BC and find its extremal
solution x̄(t), ȳ(t) which serves as a functional parameter in formulation of IP for the second variation
Ξ0[w] = δ2E[x, y] with constraint Ξ1[w] = δV [x, y] = 0. In Sect. 3, this leads to the Jacobi equation
with homogeneous BC w(tj)= 0 for perturbation w(t). Its solutions produce the necessary condition of
stability (the criterion of conjugate points absence) that generate the stability domain Stab1(t2, t1) for
extremal solution in the {t1, t2}-plane. In Sect. 4 we derive the expression for δ2E[x, y] as a quadratic
form in small perturbations δτj of the meniscus free endpoints along the curves Sj(τj) and find a domain
Q(t2, t1) where δ2E[x, y] is positive definite. Finally, we find the stability domain Stab2(t2, t1) for extremal
solution with free endpoints as intersection of Stab1 and Q that exhibits a new method to analyze the
stability of LB between solid bodies under axisymmetric perturbations.

In Sects. 5 and 6, this approach is applied to study the stability of axisymmetric LB between solid
bodies in absence of gravity. For Cat and Cyl menisci, we consider different solid shapes and calculate
Stab2. Among new results, we verify the solutions for Cat menisci between two plates [29] and Cyl menisci
between two spheres [25] obtained in the framework of Vogel’s theory. The other menisci are treated in
Sect. 6.2 in a simple setup between two plates. We find the existence conditions of stable Und menisci with
and without inflection point and verify conclusions formulated in [1,7,23,24] on their stability for special
contact angles. The coincidence of stability conditions of axisymmetric LB under generic (axisymmetric
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and asymmetric) disturbances considered in [1,7,23–25,29] and under only axisymmetric disturbances
presented in this work shows that the latter are the most dangerous of generic disturbances destroying
these LBs. Stability of Und, Nod and Sph menisci between non-planar bodies will be considered in the
separate paper.

2. Stability as an isoperimetric problem with free endpoints

Let a planar curve C with parametrization {x(t), y(t)}, t2 ≤ t ≤ t1, be given with its endpoints
{x(tj), y(tj)}, j = 1, 2 allowed to move (see Fig. 1) along two given curves Sj parametrized as
{Xj(τj), Yj(τj)}, 0 ≤ τj ≤ τ∗

j (variable τj runs along Sj).
Consider the first isoperimetric problem (IP-1) for the functional E[x, y],

E[x, y] =

t1∫

t2

E(x, y, xt, yt)dt +
2∑

j=1

τ∗
j∫

0

Aj(Xj , Yj ,Xj,τj , Yj,τj )dτj , (2.1)

with constraint V [x, y] = 1 imposed on functional,

V [x, y] =

t1∫

t2

V(x, y, xt, yt)dt +
2∑

j=1

(−1)j

τ∗
j∫

0

Bj(Xj , Yj ,Xj,τj , Yj,τj )dτj , (2.2)

where we denote ft = f ′ = df/dt and Fk,t = F ′
k = dFk/dt.

The integrands E and V should be positive homogeneous functions of degree one in xt and yt, e.g.,
E(x, y, kxt, kyt) = kE(x, y, xt, yt), that results in identities stemming from Euler theorem for homogeneous
functions,

E =
∂E

∂x′ xt +
∂E

∂y′ yt, Aj =
∂Aj

∂Xj,τj

Xj,τj +
∂Aj

∂Yj,τj

Yj,τj , (2.3)

and similar relations for V and Bj .
We have to find an extremal curve C̄ = {x̄(t), ȳ(t)} with free endpoints x̄(tj), ȳ(tj) which belong to

two given curves Sj such that the functional E[x, y] reaches its minimum, while the other functional
V [x, y] is constrained.

Fig. 1. A sketch of variation of extremal curve {x̄(t), ȳ(t)} with free endpoints x̄(tj), ȳ(tj), j = 1, 2, which belong to the
two given curves S1, S2 such that the functional E[x, y] reaches its minimum while V [x, y] is constrained. Extremal (solid)
and disturbed (dashed) curves are drawn in blue
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Define a functional W [x, y] = E[x, y] − λV [x, y] with the multiplier λ

W [x, y] =

t1∫

t2

F (x, y, xt, yt)dt −
2∑

j=1

(−1)j

τ∗
j∫

0

Gj(Xj , Yj ,Xj,τj , Yj,τj )dτj , (2.4)

where F = E − λV, G1 = λB1 + A1, G2 = λB2 − A2. According to (2.3) we have

F =
∂F

∂xt
xt +

∂F

∂yt
yt, Gj =

∂Gj

∂Xj,τj

Xj,τj +
∂Gj

∂Yj,τj

Yj,τj . (2.5)

Calculate the total variation of the functional, DW = D0W + D1W − D2W ,

D0W =

t1∫

t2

[F + Δ1F + Δ2F + · · · ] dt −
t1∫

t2

Fdt, (2.6)

DjW =

τ∗
j +δτj∫

0

Gjdτj −
τ∗
j∫

0

Gjdτj ,

where

Δ1F =
∂F

∂x
u +

∂F

∂xt
u′ +

∂F

∂y
v +

∂F

∂yt
v′,

Δ2F =
u2

2
∂2F

∂x2
+ uu′ ∂2F

∂x∂xt
+

u′2

2
∂2F

∂x2
t

+
v2

2
∂2F

∂y2
+ vv′ ∂2F

∂y∂yt
(2.7)

+
v′2

2
∂2F

∂y2
t

+ uv
∂2F

∂x∂y
+ uv′ ∂2F

∂x∂yt
+ u′v

∂2F

∂xt∂y
+ u′v′ ∂2F

∂xt∂yt
,

and {u(t), v(t)} is a small perturbation in vicinity of curve C̄ where the extremum of IP-1 is reached.
Define a projection of the {u(t), v(t)} vector on the normal to {x̄(t), ȳ(t)},

w̃(t) = u ȳt − v x̄t. (2.8)

Represent D0W and DjW up to the terms quadratic in δτj , u, v, u′, v′,

D0W =

t1∫

t2

Δ1Fdt +

t1∫

t2

Δ2Fdt, DjW = G∗
jδτj +

1
2

dG∗
j

dτj
(δτj)2,

dG∗
j

dτj
=

∂G∗
j

∂Xj

dXj

dτj
+

∂G∗
j

∂Yj

dYj

dτj
+

∂G∗
j

∂X ′
j

d2Xj

dτ2
j

+
∂G∗

j

∂Y ′
j

d2Yj

dτ2
j

,

(2.9)

where G∗
j = Gj and ∂G∗

j/∂Xj = ∂Gj/∂Xj computed at τj = τ∗
j .

2.1. First variation δW and Euler–Lagrange equations

Using the terms in (2.9) linear in δτj , u, v and ut, vt, in (2.6) calculate δW

δW =

t1∫

t2

Δ1Fdt + G∗
1δτ1 − G∗

2δτ2. (2.10)



Vol. 66 (2015) Stability of axisymmetric liquid bridges 3451

To derive BC for perturbations u(tj), v(tj), we have to make them consistent with free endpoints running
along the curves Sj

x̄(tj) = X(τ∗
j ), x̄(tj) + u(tj) = X(τ∗

j + δτj),

ȳ(tj)=Y (τ∗
j ), ȳ(tj) + v(tj) = Y (τ∗

j + δτj),
(2.11)

resulting in a sequence of equalities: u(tj)=
∑∞

k=1 uk(tj) and v(tj)=
∑∞

k=1 vk(tj),

uk(tj) =
1
k!

dkXj

dτk
j

(δτj)k, vk(tj) =
1
k!

dkYj

dτk
j

(δτj)k. (2.12)

A function w(t) = u1ȳt − v1x̄t is a linear in δτj part of w̃(t) in (2.8); it reads at the endpoints,

w(tj) = η(tj , τ∗
j )δτj , η(tj , τ∗

j ) = ȳt
dXj

dτj
− x̄t

dYj

dτj
. (2.13)

Denote by δF/δz = ∂F/∂z − d
dt

(∂F/∂z′) the variational derivative. Then δW in (2.10) may be written
as

δW =

t1∫

t2

(

u
δF

δx
+ v

δF

δy

)

dt +
[

u1
∂F

∂x′ + v1
∂F

∂y′

]t1

t2

+ G∗
1δτ1 − G∗

2δτ2.

Substitute u1(tj) and v1(tj) from (2.12) into the last expression and obtian

δW =

t1∫

t2

(

u
δF

δx
+ v

δF

δy

)

dt −
2∑

j=1

(−1)j

[
∂Fj

∂x′
dXj

dτj
+

∂Fj

∂y′
dYj

dτj
+ G∗

j

]

δτj ,

where Fj = F, ∂Fj/∂x = ∂F/∂x, etc. computed at t = tj . Thus, we get ELE
∂F

∂x
− d

dt

∂F

∂x′ = 0,
∂F

∂y
− d

dt

∂F

∂y′ = 0, (2.14)

supplemented by the transversality conditions:
∂F2

∂x′
dX2

dτ2
+

∂F2

∂y′
dY2

dτ2
+ G∗

2 = 0,
∂F1

∂x′
dX1

dτ1
+

∂F1

∂y′
dY1

dτ1
+ G∗

1 = 0. (2.15)

Solution x̄(t), ȳ(t) gives the extremal value of E[x, y] and constraint V [x, y] = 1.
Identify E[x, y] as a functional of surface energy of LB and fix its volume by variational constraint

V [x, y] = 1. Then we arrive at the LB problem [19] in absence of gravity where ELE (2.14) and transver-
sality conditions (2.15) are known as YLE and Young relations. The latter leaves free the values x(tj),
y(tj) at the endpoints where the meniscus contacts the solid surfaces at the fixed contact angles.

2.2. The Weierstrass representation of second variation δ2W

Making use in (2.6) of the terms quadratic in δτj , u1, v1 u′
1, v

′
1, and linear in u2, v2 calculate the second

variation,

δ2W=

t1∫

t2

Δ2Fdt +
(

∂F

∂x′ u2 +
∂F

∂y′ v2

)t1

t2

+
1
2

(
dG1

dτ1
(δτ1)

2 − dG2

dτ2
(δτ2)

2

)

(2.16)

Substituting u2 and v2 from (2.12) into the last expression, we obtain

δ2W =

t1∫

t2

Δ2Fdt − 1
2

2∑

j=1

(−1)j

(
∂F

∂x′
d2Xj

dτ2
j

+
∂F

∂y′
d2Yj

dτ2
j

+
dGj

dτj

)

(δτj)2.
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Denote δ2BW =
∫ t1

t2
Δ2Fdt and following Weierstrass [27], pp. 132–134 (see also Bolza [3], p. 206) represent

δ2BW in terms of small perturbation {u(t), v(t)} of the extremal curve {x̄(t), ȳ(t)} and w(t),

δ2BW [x, y] =
1
2
Ξ0[w] +

1
2
(
Lu2

1 + 2Mu1v1 + Nv2
1

) |t1t2 , (2.17)

Ξ0[w] =

t1∫

t2

(
H1w

′2 + H2w
2
)
dt, M =

{
Fxy′ + x̄tȳttH1,
Fyx′ + ȳtx̄ttH1,

L=Fxx′ − ȳtȳttH1, N =Fyy′ − x̄tx̄ttH1, H1=
Fx′x′

ȳ2
t

=
Fy′y′

x̄2
t

=−Fx′y′

x̄tȳt
, (2.18)

H2 =
Fxx − ȳ2

ttH1 − Lt

ȳ2
t

=
Fyy − x̄2

ttH1 − Nt

x̄2
t

= −Fxy + x̄ttȳttH1 − Mt

x̄tȳt
.

Substituting (2.12) and (2.9) into (2.16), we obtain,

δ2W = δ2BW + ξ1(δτ1)2 − ξ2(δτ2)2, (2.19)

where

2ξj =
∂Fj

∂x′
d2Xj

dτ2
j

+
∂Fj

∂y′
d2Yj

dτ2
j

+
∂Gj

∂Xj

dXj

dτj
+

∂Gj

∂Yj

dYj

dτj
+

∂Gj

∂X ′
j

d2Xj

dτ2
j

+
∂Gj

∂Y ′
j

d2Yj

dτ2
j

.

Substitute u1(tj), v1(tj) from (2.12) into (2.17) and combine it with (2.19),

δ2W =
1
2
Ξ0[w] + K1(δτ1)2 − K2(δτ2)2, (2.20)

2Kj = 2ξj + L(tj)
(

dXj

dτj

)2

+ 2M(tj)
dXj

dτj

dYj

dτj
+ N(tj)

(
dYj

dτj

)2

. (2.21)

3. Homogeneous boundary conditions: fixed endpoints

Study the stability of the extremal curve {x̄(t), ȳ(t)} w.r.t. small fluctuations in two different cases
considered separately; the first case corresponds to the perturbation of the extremal curve in the interval
(t2, t1) for the fixed endpoints,

u(tj) = v(tj) = w(tj) = 0, j = 1, 2. (3.1)

The second case is when at least one endpoint is free and allowed to run along given curves Sj and is
discussed in Sect. 4. Start with the second isoperimetric problem (IP-2) associated with perturbations
{u(t), v(t)} in the vicinity of {x̄(t), ȳ(t)} with BC (3.1). Following Bolza [3], p.215, write the constraint
δV [x, y] = 0,

Ξ1[w] =

t1∫

t2

H3wdt=0,

{
H3 = Vxy′ − Vx′y + H4(x̄tȳtt − ȳtx̄tt),
H4 = Vx′x′ ȳ−2

t = Vy′y′ x̄−2
t = −Vx′y′ x̄−1

t ȳ−1
t ,

(3.2)

which involves perturbation w. For LB problem, we have V = x2y′, Bj = X2
j Y ′

j , leading to H3 = x̄, which
substantially simplifies the computation (see Sect. 5).

Substitute (3.1) into (2.17) and arrive at the classical IP with the second variation Ξ0[w] treated in
the framework of Weierstrass’ theory (see [3], Chap. 6). Analyzing the problem with functional Ξ2[w] =
Ξ0[w] + 2μΞ1[w],

Ξ2[w] =

t1∫

t2

H(t, w,w′)dt, H(t, w,w′) = H1w
′2 + H2w

2 + 2μH3w, (3.3)
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and the Lagrange multiplier μ, write ELE for the function w(t) as an inhomogeneous Jacobi equation
with BC given in (3.1)

(H1w
′)′ − H2w = μH3, w(t1) = w(t2) = 0. (3.4)

The point t′2 �= t2 is called conjugate to the point t2, if (3.4) has a solution w̄(t) such that w̄(t2) =
w̄(t′2) = 0, but is not identically zero. According to Bolza [3], pp. 217–220, the following set of conditions
is sufficient for the functional (3.3) to have a weak minimum for the solution w̄(t) of Eq. (3.4):

a) H1(t) > 0, b) the interval [t2, t1] contains no points conjugate to t2. (3.5)

In fact, (3.5) provide a strong minimum because the Weierstrass function E(t, w,w′, f) = H(t, w, f) −
H(t, w,w′) + (w′ − f)Hw′(t, w,w′) for the functional Ξ2[w] in (3.3) is positive,

E(t, w,w′, f) = H1 [f(t) − w′(t)]2 , for f(t) �= w′(t). (3.6)

Weierstrass [27], p. 275, gave another version of conjugate points nonexistence condition. Assume that
w̄1(t) and w̄2(t) are fundamental solutions of homogeneous Jacobi equation, then the particular solution
μw̄3(t) of inhomogeneous Jacobi equation (3.4) may be found by standard procedure

w̄3(t) = w̄2

t∫
w̄1H3

H1Wr
ds − w̄1

t∫
w̄2H3

H1Wr
ds, Wr = w̄1w̄

′
2 − w̄2w̄

′
1, (3.7)

where Wr denotes the Wronskian for fundamental solutions. Find Wr assuming that w̄1 is known and the
second fundamental solution reads w̄2 = U(t)w̄1. Substitute it into (3.4) with μ = 0 and obtain

d
dt

(

H1w̄
2
1

dU

dt

)

= 0,
dU

dt
=

g

H1w̄2
1

, Wr = w̄2
1

dU

dt
=

g

H1
, (3.8)

where g is an integration constant. The fundamental solutions wj also can be expressed as wj =
y′(∂x/∂αj) − x′(∂y/∂αj), j = 1, 2, where αj denotes the integration constant emerging from ELE (see
Bolza [3], p.219). Making use of expression for Wr in (3.7), we get

gw̄3 = w̄2J1 − w̄1J2, gw̄′
3 = w̄′

2J1 − w̄′
1J2, gw̄′′

3 = w̄′′
2J1 − w̄′′

1J2 +
gH3

H1
,

where Jk =
∫ t

H3w̄kds. Following Weierstrass [27] introduce the matrix,

D(t2, t′)=

⎛

⎜
⎝

w̄1(t2) w̄2(t2) w̄3(t2)
w̄1(t′) w̄2(t′) w̄3(t′)

J1(t′) − J1(t2) J2(t′) − J2(t2) J3(t′) − J3(t2)

⎞

⎟
⎠ . (3.9)

Then the condition of nonexistence of conjugate points reads (see [27], p. 275),

Δ(t2, t′) �= 0, t2 < t′ < t1, Δ(t2, t1) = det D(t2, t1). (3.10)

Bolza in [3], p. 223, gave a more general condition of nonexistence of conjugate points,

Δ(t′′, t′) �= 0, t2 < t′ < t′′ < t1, (3.11)

making the Jacobi condition (3.5b) symmetric w.r.t. the endpoints t2 and t1. Write a determinant equation
Δ(t2, t1) = 0 as follows,

Δ(t2, t1) = I3 [w̄1(t2)w̄2(t1) − w̄1(t1)w̄2(t2)]
+ [I1w̄2(t1) − I2w̄1(t1)] w̄3(t2) + [I2w̄1(t2) − I1w̄2(t2)] w̄3(t1). (3.12)

where Ik = Jk(t1) − Jk(t2). If w̄1(t) and w̄2(t) are continuous functions, then equation Δ(t2, t1) = 0
describes a continuous curve D(t2, t1) of conjugated points.

Another important requirement is to guarantee that the extremal {x̄(t), ȳ(t)} does not intersect with
the curves Sj . In the case of the PR, this requirement provides the meniscus existence condition given
by the constant sign of η(tj , τ∗

j ). Define the lines tj = t•j in {t1, t2}-plane where η(t•j , τ
∗
j ) = 0.
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Consider a point M1 = (a, b) in the lower halfplane {t2 < t1} and two more points: M2 = (a, a) and
M3 = (b, b). Call a point M1 the Jacobi point if the line M1M2 does not intersect both D(t2, t1) and
t2 = t•2, and M1M3 does not intersect both D(t2, t1) and t1 = t•1. Define a set J(t2, t1) as a union of points
M1

J(t2, t1)=

⎧
⎨

⎩
(a, b)

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

Δ(t, a) �= 0, Δ(b, t) �= 0, t2 < b ≤ t ≤ a < t1,
η(t2, τ∗

2 ) �= 0, t•2 < b ≤ t2 ≤ a < t1,
η(t1, τ∗

1 ) �= 0, t2 < b ≤ t1 ≤ a < t•1.

⎫
⎬

⎭
(3.13)

representing an open domain in {t1, t2}-plane. Combining (3.5a, b) and (3.13) define a stability set as
intersection set

Stab1(t2, t1) = J(t2, t1) ∩ L(t2, t1),

L(t2, t1) = {(t2, t1)|H1(t) > 0, t ∈ [t2, t1]},
(3.14)

where the set L(t2, t1) comprises the points satisfying Legendre’s criterion (3.5a).

4. Inhomogeneous boundary conditions: free endpoints

Consider the case when the extremal {x̄(t), ȳ(t)} is perturbed at the interval [t2, t1] including both
endpoints. The case of one free and one fixed endpoints will follow as a corollary. The non-integral term
in (2.17) is fixed and in general case it does not vanish; the same is true for (2.20). It is worth to mention
that any other BC, e.g., the Neumann BC w′(tj) = 0 in [23] or mixed BC g1w

′(tj) + g0w(tj) = 0 in [15],
leads to changes in u(tj), v(tj) and requires variation of the non-integral term in (2.17).

From physical point of view, BC (2.13) requires that the endpoints of perturbed meniscus {x̄+u, ȳ+v}
always belong to the solid surfaces. These claims are justified from mathematical standpoint:

• The Jacobi equation (3.4) for perturbation w admits no more than two BC.
• The perturbed meniscus {x̄ + u, ȳ + v} may not provide the extremum for W [x, y] even if {u, v} do

provide the extremum for δ2W [x, y].

Following an ideology of stability theory, we have to find when δ2W is positive definite in vicinity of
the extremal curve constrained by (2.2). Since the only varying part in (2.20) is the functional Ξ0[w],
this brings us to IP-2 with one indeterminate function w(t): Find the extremal w̄(t) providing Ξ0[w] to
be positive definite in vicinity of w̄(t) and preserving Ξ1[w]. Inhomogeneity of BC requires to answer two
questions:

When is Ξ0[w] positive definite in vicinity of w̄(t) for the fixed δτj? (4.1)
When does Ξ0[w̄] reach a positive value as a function of displacements δτj? (4.2)

Consider the necessary conditions for functional Ξ0[w] to be positive definite in vicinity of extremal
perturbation w̄(t) for the fixed δτj and preserving Ξ1[w]. Let us prove that they coincide with those
conditions (3.5) for the functional E[x, y] to be positive definite in vicinity of extremal solution {x̄(t), ȳ(t)}
for the fixed endpoints and preserving V [x, y].

For this purpose, we ignore a fact that Ξ0[w] is a second variation, satisfying the relations (2.18), and
instead, we treat the analysis of (2.18) as independent problem. Represent w in a vicinity of extremal
perturbation w̄,

w(t) = w̄(t) + ε(t), ε(t1) = ε(t2) = 0, Ξ1[ε] =

t1∫

t2

H3εdt = 0, (4.3)
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where a perturbation ε preserves both BC (2.13) and the constraint (3.2). Find the first and second
variations of functional Ξ2[w] defined in (3.3),

δΞ2[w]=2

t1∫

t2

(
− (H1w̄

′)′ + H2w̄ + μH3

)
εdt, δ2Ξ2[w]=

t1∫

t2

(
H1ε

′2+H2ε
2
)
dt.

The first variation δΞ2[w] vanishes at the extremal w̄ satisfying the inhomogeneous Jacobi equation (3.4).
Regarding the second variation δ2Ξ2[w], it completely coincides with Ξ0[w] as well as BC and volume
constraint (4.3) is coinciding with similar BC (3.1) and constraint (3.2) in the IP with fixed endpoints
(Sect. 3). This coincidence implies the necessary conditions (3.5) for Ξ0[w] to be positive definite in
vicinity of extremal w̄ for the fixed δτj .

Consider (4.2) and write a general solution w̄ of equation (3.4) built upon the fundamental solutions
w̄1, w̄2 of homogeneous equation, and particular solution w̄3 of inhomogeneous equation,

w̄(t) = C1w̄1(t) + C2w̄2(t) + μw̄3(t). (4.4)

Inserting (4.4) into (2.13) and into constraint (3.2), we obtain three linear equations,

w̄1(tj)C1 + w̄2(tj)C2 + w̄3(tj)μ = w̄(tj), I1C1 + I2C2 + I3μ = 0, (4.5)

which are uniquely solvable (see [3], p. 220) if Δ(t2, t1) �= 0 and have nonzero solutions when at least one
of w̄(tj) is nonzero,

Cj = mj1δτ1 + mj2δτ2, j = 1, 2, μ = m31δτ1 + m32δτ2. (4.6)

Substitute (4.6) into (4.5) and find two equations with matrix D(t2, t1) in (3.9),

D(t2, t1)Mj = Nj , Mj =

⎛

⎝
m1j

m2j

m3j

⎞

⎠ , N1 =

⎛

⎝
0
η1
0

⎞

⎠ , N2 =

⎛

⎝
η2
0
0

⎞

⎠ ,

where ηj = η(tj , τ∗
j ) and w̄i(tj) = w̄ij . Then mj1 = η1βj1/Δ, mj2 = η2βj2/Δ,

β11 = I3w̄22 − I2w̄32, β21 = I1w̄32 − I3w̄12, β31 = I2w̄12 − I1w̄22,

β12 = I2w̄31 − I3w̄21, β22 = I3w̄11 − I1w̄31, β32 = I1w̄21 − I2w̄11.

Substituting (4.6) into (4.4) represents w̄(t) as follows

w̄(t) = A1(t)δτ1 + A2(t)δτ2, Aj(t) =
ηjBj(t)
Δ(t2, t1)

, Bj(t) = Bj(t, t2, t1), (4.7)

B1(t) = −
∣
∣
∣
∣
∣
∣

w̄1(t) w̄2(t) w̄3(t)
w̄1(t2) w̄2(t2) w̄3(t2)

I1 I2 I3

∣
∣
∣
∣
∣
∣
, B2(t)=

∣
∣
∣
∣
∣
∣

w̄1(t) w̄2(t) w̄3(t)
w̄1(t1) w̄2(t1) w̄3(t1)

I1 I2 I3

∣
∣
∣
∣
∣
∣
.

According to (2.13), we have B1(t2) = B2(t1) = 0, Bj(tj) = Δ(t2, t1), and its expression is given in
(3.12). Direct calculation of determinant’s derivatives gives

H1(t2)B′
1(t2) = −H1(t1)B′

2(t1) = I1(t1)I2(t2) − I1(t2)I2(t1) + gI3,

gB′
1(t1) = [I2w̄1(t2) − I1w̄2(t2)] [I2w̄′

1(t1) − I1w̄
′
2(t1)]

−H1(t1)B′
2(t1)[w̄1(t2)w̄′

2(t1) − w̄2(t2)w̄′
1(t1)], (4.8)

gB′
2(t2) = [I2w̄1(t1) − I1w̄2(t1)] [I2w̄′

1(t2) − I1w̄
′
2(t2)]

−H1(t2)B′
1(t2)[w̄1(t1)w̄′

2(t2) − w̄2(t1)w̄′
1(t2)],
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where B′
j(tk) ≡ dBj(t, t2, t1)/dt computed at t = tk. Formula (2.17) together with Eq. (3.4) allows to

express δ2W [x, y] in a simple form. Multiplying (3.4) by w̄ and integrating by parts, we obtain
t1∫

t2

(
H1(t)w̄′2(t) + H2(t)w̄2(t)

)
dt − H1(t)w̄(t)w̄′(t)|t1t2 = 0.

Combining the last equality with (2.20) and (2.21), we arrive at

δ2W =
1
2
(
H1w̄w̄′ + Lu2 + 2Muv + Nv2

) |t1t2 + ξ1(δτ1)2 − ξ2(δτ2)2, (4.9)

where ξj defined in (2.19). Substitute (2.12, 4.7) into (4.9) and using (4.8), we obtain

δ2W = Q11 (δτ1)
2 + 2Q12δτ1δτ2 + Q22 (δτ2)

2
, (4.10)

Q11(t2, t1) =
η2
1P11

2Δ
+ K1, P11 = H1(t1)B′

1(t1),

Q22(t2, t1) =
η2
2P22

2Δ
− K2, P22 = −H1(t2)B′

2(t2),

Q12(t2, t1) =
η1η2P12

2Δ
, P12 = P21 = H1(t1)B′

2(t1), (4.11)

where ηj = η(tj , τ∗
j ) and Kj = Kj(tj , τ∗

j ) are defined in (2.13) and (2.21), respectively.
Using BC (2.11): x̄(tj) = X(τ∗

j ), ȳ(tj) = Y (τ∗
j ), the matrix elements Qij may be represented as

functions of t2, t1 only. Thus, we arrive at the main result of this section: positiveness of the second
variation δ2W in (4.10) as a quadratic form in variables δτ1, δτ2.

Theorem 4.1. Let Qij(t2, t1) be given in accordance with (2.21, 3.12, 4.8 and 4.11). Then δ2W is positive
definite if the following inequalities hold,

Q11(t2, t1) ≥ 0, Q22(t2, t1) ≥ 0, Q33(t2, t1) = Q11Q22 − Q2
12 ≥ 0. (4.12)

One of the two first inequalities in (4.12) is redundant, but we leave it for the symmetry considerations.
Inequalities (4.12) provide an answer to the question (4.2). Define three different sets Qj(t2, t1)

Qj(t2, t1) := {(a, b) | (a, b) ∈ {t2 < t1}, Qjj(t2, t1) ≥ 0} , (4.13)

and the intersection set Q(t2, t1) := Q1(t2, t1) ∩ Q2(t2, t1) ∩ Q3(t2, t1).
Summarizing answers to both questions (4.1, 4.2) we conclude that the necessary conditions of stability

of extremal w̄(t) with BC comprise (3.5), (3.10), (3.14) and (4.11):

Stab2(t2, t1) = Stab1(t2, t1) ∩ Q(t2, t1), Stab2(t2, t1) ⊆ Stab1(t2, t1). (4.14)

The conditions (4.12) cannot determine the extremal solution stability in case when the determinant Q33

in (4.12) vanishes. Indeed, we have in (4.10)

δ2W =
(√

Q11δτ1 +
√

Q22δτ2

)2
, Q33(t2, t1) = 0. (4.15)

Thus, there exists a non-empty set of perturbations δτ1, δτ2 such that
√

Q11δτ1 +
√

Q22δτ2 = 0, which
does not affect the second variation, i.e., δ2W = 0. This limitation of the Weierstrass representation may
be resolved by studying the higher variations, necessarily including both terms δ3W and δ4W, which is
beyond the scope of the present manuscript.

Consider two menisci related by symmetry reflection t2 → −t1, t1 → −t2 w.r.t. a midline between two
solids and normal to the curve {x̄(t), ȳ(t)} at the point t = 0 (or to continuation of curve if 0 �∈ [t2, t1])
as shown in Fig. 2.

It is easy to conclude that the stability conditions (4.12) serve for both menisci simultaneously,

Qii(−t1,−t2)=Qjj(t2, t1), i �= j = 1, 2; Q12(−t1,−t2)=Q12(t2, t1). (4.16)
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t 0

t1

t2

t 0

t2

t1

(b)(a)

Fig. 2. Sketches of menisci between two plates showing the endpoints a t1, t2 and b −t2, −t1

Consider a symmetric setup: t1 = −t2 = t, when two solid bodies are similar and separated by a reflection
plane located in the midpoint of the meniscus at t = 0. Then due to (4.16), the necessary conditions
(4.12) read

Q11(−t, t)=Q22(−t, t) ≥ 0, Q33(−t, t)=Q2
11(−t, t) − Q2

12(−t, t) ≥ 0. (4.17)

Expression (4.10) and conditions (4.12) encompass the case when the extremal curve is perturbed at
interval [t2, t1] including only one endpoint (say, t1), while another is left fixed. Here we have δ2W =
Q11 (δτ1)

2
, Q11(t2, t1) ≥ 0.

5. Application to the problem of liquid bridges

Apply our approach to study the stability of axisymmetric LB between solid bodies in the absence of
gravity. The axial symmetry of bodies is assumed along z-axis (see Fig. 3). The shapes of meniscus
{r(φ), z(φ)} and two solid bodies {Rj(ψj), Zj(ψj)} are given in cylindrical coordinates, i.e., the following
correspondence holds, x → r, y → z, Xj → Rj , Yj → Zj , t → φ, τj → ψj .

The filling angle ψj along the j solid–liquid interface is chosen to satisfy 0 ≤ ψj ≤ ∞ for unbounded
solid bodies (semispace with planar boundary, paraboloid, catenoid) and 0 ≤ ψj ≤ const for bounded
solid bodies (e.g., for sphere, prolate and oblate ellipsoids const = π).

The functional W and its integrands in (2.4) read

W =

φ1∫

φ2

F (r, r′, z, z′)dφ −
2∑

j=1

(−1)j

ψ∗
j∫

0

Gjdψj ,

F =
[

γlv

√
r′2 + z′2 − λrz′

2

]

r, (5.1)

Gj =
[
λRjZ

′
j

2
− (−1)j(γlsj

− γvsj
)
√

R′2
j + Z ′2

j

]

Rj ,

where coefficients γlv, γlsj
and γvsj

, j = 1, 2, describe surface energy density at three interfaces: liquid–
vapor, solid–vapor and solid–liquid for the upper (j = 1) and lower (j = 2) solid bodies. The two ELE
(2.14) are reduced to a single YLE
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Fig. 3. A sketch of meniscus between plane and sphere showing the contact angles θ1, θ2, filling angle ψ and coordinates
of the endpoints

2H =
z′

r(r′2 + z′2)1/2
+

z′′r′ − z′r′′

(r′2 + z′2)3/2
, H =

λ

2γlv
, (5.2)

where H stands for the meniscus mean curvature. The transversality conditions (2.15) are known as the
Young relations for the contact angle θj of the meniscus with the j-th solid body: cos θj+(γlsj

−γvsj
)/γlv =

0. According to (2.13) the quantity ηj = η(φj , ψ
∗
j ) reads,

ηj = z̄′(φj)R′(ψ∗
j ) − r̄′(φj)Z ′(ψ∗

j ). (5.3)

Define a contact angle θj between meniscus and solid body as follows

θj = (−1)j−1

(

arctan
z̄′(φj)
r̄′(φj)

− arctan
Z ′(ψ∗

j )
R′(ψ∗

j )

)

, (5.4)

where 0 ≤ arctan(z̄′/r̄′), arctan(Z ′/R′) ≤ π. The contact angle θj vanishes when z̄′/r̄′ = Z ′/R′, i.e.,
ηj = 0, which manifests meniscus’ nonexistence at a critical angle φ•

j in accordance with (3.13)

z̄′(φ•
j )R

′(ψ∗
j ) − r̄′(φ•

j )Z
′(ψ∗

j ) = 0, r̄(φ•
j ) − R(ψ∗

j ) = 0. (5.5)

Rescale the integrands in (2.4) by 2γlv|H| and deal henceforth with expressions,

F =
[√

r′2 + z′2 − SH

2
rz′
]

r, (5.6)

Gj =
[
SH

2
RjZ

′
j + (−1)j cos θj

√
R′2

j + Z ′2
j

]

Rj ,

where SH = sign H. Direct calculation in (2.21) gives an expression for Kj ,

Kj = Ujηj , Uj = − Rj

2
√

r̄′2
j + z̄′2

j

(
z̄′′
j R′

j − r̄′′
j Z ′

j

r̄′2
j + z̄′2

j

− Z ′′
j R′

j − R′′
j Z ′

j

R′2
j + Z ′2

j

)

, (5.7)

where f̄ ′
j = f̄ ′(φj), f̄ ′′

j = f̄ ′′(φj). Combining (5.7, 4.11) find Qij(φ2, φ1),
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Q11 = η1

(
η1P11

2Δ
+ U1

)

, Q22 = η2

(
η2P22

2Δ
− U2

)

, Q12 =
η1η2P12

2Δ
, (5.8)

that results in Q33 ∝ η1η2 and according to (4.16) we have Uj(−φ, ψ∗) = Uj(φ, ψ∗). Thus, stability
domain Stab2(φ1, φ2) of liquid meniscus of any type has boundaries including meniscus nonexistence
lines φj = φ•

j given by (5.5).
Find formulas for Hj in (3.4) by substituting (5.6) into (2.18, 3.2) and obtain

H1 =
r̄

(r̄′2 + z̄′2)3/2
, H2 =

(H1r̄
′′)′

r̄′ , H3 = r̄,

(H1w
′)′r̄′ − (H1r̄

′′)′
w = μr̄′r̄.

(5.9)

Fundamental solutions of Eq. (5.9) read,

w̄1 = r̄′(φ), w̄2 = E(φ)r̄′(φ), E(φ) = g

φ∫
dt

H1r̄′2 = g

φ∫ (
r̄′2 + z̄′2)3/2 dt

r̄′2r̄
.

5.1. Liquid bridges with zero curvature

For H = 0 the first Delaunay’s type, catenoid (Cat) appears from (5.2),

r̄ = sec φ, z̄ = ln
cos φ

1 − sin φ
+ C,

z̄′

r̄′ = cot φ, r̄′2 + z̄′2 = r̄4, (5.10)

where C is the constant determined from the BC. Entries in (2.17) read,

H1 =
1
r̄5

, H2 = −4
r̄2 − 1

r̄5
,

L =
r̄3 r̄′ − z̄′ z̄′′

r̄5
, N = − r̄′ r̄′′

r̄5
, M =

z̄′ r̄′′

r̄5
.

(5.11)

Note that H1(φ) is always positive; therefore, the set L(φ1, φ2) is given by the whole lower halfplane
{φ2 < φ1}. The Jacobi equation (5.9) in this case reads

w′′ − 5w′ tan φ + 4w tan2 φ = μ sec6 φ.

Its fundamental and particular solutions and auxiliary functions read,

w̄1 = tan φ sec φ, w̄2 = sec2 φ − T (φ)w̄1,

w̄3 = − sec4 φ

2
+

3
4
w̄1 [T (φ) + w̄1] , T (φ) = ln (tanφ + sec φ) ,

J1(φ) =
sec2 φ

2
, J2(φ) =

T (φ)
4

[3 − 4J1(φ)] +
3
4
w̄1,

J3(φ) =
3T (φ)

32
[8J1(φ) − 5] +

w̄1

32
[4J1(φ) − 15] .

(5.12)

The determinant Δcat(φ1, φ2) = Δcat is given by

32Δcat

K12
=T12(7M3−2M5−6M1)−[3T 2

12−3L2+4L4]J12+(L2−2)(2L2−3)K12,

where

T12 = T (φ1) − T (φ2), J12 = tanφ1 tan φ2, K12 = sec φ1 sec φ2,

Ln = secn φ1 + secn φ2, Mn = tan φ1 secn φ2 − tan φ2 secn φ1.
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Fig. 4. a Stability diagram (SD) for Cat menisci between two plates is shaded in gray; its boundary coincides with the curve
given by (5.13). b The SD for Cat menisci between two equal spheres are represented by interiors of polygons: A = 100,
{OCBADEFGF’E’D’A’B’C’O}, φ•(1, 100) = 84.3◦; A = 13, {OCBEFJF’E’A’B’C’O}, φ•(1, 13) = 73.9◦; A = 4, {OCKC’O}
φ•(1, 4) = 60◦. The red curves show the location of conjugate points while the blue lines show the location of points where
η(φ•

j , ψ∗
j ) = 0, sec φ•

j = 100 sin ψ∗
j (color figure online)

Matrix Pij calculated from (4.11) is too cumbersome to be presented here. Functions η(φj , ψ
∗
j ) and

K(φj , ψj) are calculated substituting (5.10) into (5.3, 5.7).

5.1.1. Cat meniscus between two plates. The Cat with given endpoints on two solid plates exists for
arbitrary contact angles θj . Parametrization of plates and relations between φj and θj read (see Fig. 4a)

Rj =Aψj , Zj =dj , θj =
π

2
+ (−1)jφj , ηj =A sec φj , 2Kj =−A2 sin φj cos2 φj .

By (5.5) the critical angles φ•
j read: φ•

j = (−1)j+1π/2 that makes every point of infinite plates (at the
distance d = d1 − d2) attainable by Cat meniscus.

In Fig. 4a, the red curve determines the boundaries of Stab1(φ1, φ2) defined in (3.14), while the
lower boundary of stability domain gives the boundaries of Stab2(φ1, φ2) defined in (4.14). Numerical
calculations show a nice coincidence with boundaries found in the framework of Vogel’s approach in [29],

5

φ2∫

φ1

cos−5 t dt ·
φ2∫

φ1

cos−1 t dt = 9

⎛

⎜
⎝

φ2∫

φ1

cos−3 t dt

⎞

⎟
⎠

2

. (5.13)

In symmetric setup (4.17) Cat, meniscus between two plates is stable if θ ≥ 14.97o.

5.1.2. Cat meniscus between two ellipsoids. Consider Cat meniscus between two axisymmetric ellipsoids
given by equation R2

j +(Zj − gj)
2
ε−2
j = A2, εj > 0, where εj stands for anisotropy parameter and {0, gj}

denotes coordinates of the j-th ellipsoid center. Ellipsoids may be specified as prolate (εj > 1) and oblate
(εj < 1). The upper and lower ellipsoids are separated by distance d = g1 − g2 − A(ε1 + ε2) and given
parametrically,
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Rj = A sin ψj , Zj = gj + (−1)jAεj cos ψj ,

ηj =

√
A2 cos2 φj − 1 + (−)jεj tan φj

cos2 φj
,

Kj = −ηj cos φj

2

(

ηj sinφj cos3 φj + (−1)jεj

[

1 +
1

cos2 φj + ε2j sin2 φj

])

.

According to (5.4), the contact angles are given by

θj =
π

2
+ (−1)jφj − arctan

εj√
A2 cos2 φj − 1

.

By (5.5) the critical angles φ•
j = φ•

j (εj , A) are given by equation,

A2 cos4 φ•
j + (ε2j − 1) cos2 φ•

j − ε2j = 0,

φ•
1(1, A) = −φ•

2(1, A) = arccos
1√
A

,
(5.14)

where εj = 1 stands for two equal spheres. This makes the areas, attainable by Cat stable meniscus
on the spheres, substantially limited. Figure 4b shows stability diagrams (SD) of Cat menisci between
two equal spheres of different radii. Decrease of A reduces the stability domain Stab2(φ1, φ2) caused by
non-planar solid bodies and decrease of φ•

j . For A < 11.7 the domain Stab2(φ1, φ2) is a right isosceles
triangle {OCKC ′O}, otherwise the domain has curvilinear boundaries.

5.1.3. Cat meniscus between other solid bodies. The theory of LB stability with free CL developed in
Sect. 4 can be applied to arbitrary pair of axisymmetric solid bodies. Here we study another pair, two
paraboloids. Consider the Cat meniscus between two convex parts of axisymmetric solid bodies,

Rj = Aψj , Zj = gj + (−1)j+1ACjaj(ψj/aj)νj , aj , νj , Cj , A > 0. (5.15)

For νj > 1 the surface is smooth at ψj = 0, otherwise it has a singularity point. The case νj = 1 represents
a conic surface. The critical angles φ•

j are given by relations,

νjCj tan φ•
j =
(
ajA cos φ•

j

)νj−1
, νj > 1; cot φ•

j = Cj , νj = 1.

When Cat meniscus connects solid bodies of different shapes, the stability domain loses its symmetry
w.r.t. the line φ1 + φ2 = 0, thus breaking an equality φ•

1 = −φ•
2 for critical angles. This can be seen in

the setup of meniscus between solid sphere and plate at Fig. 5, for which according to (5.14) we have,

φ•
1(1, A) = arccos

1√
A

, φ•
2(0, A) = − arccos

1
A

.

6. Liquid bridges with nonzero curvature

For H �= 0 Eq. (5.2) is solved in elliptic integrals of the first F and the second E kind. Here we choose a
parametrization similar to that used in [10,12],

r̄(φ) =
√

1 + B2 + 2B cos(SHφ),
z̄(φ) = M(SHφ,B) − M(SHφ2, B) + Z2(ψ2), (6.1)

M(φ,B) = (1 + B)E (φ/2,m) + (1 − B)F (φ/2,m) , m2 =
4B

(1 + B)2
,

and provide a correct sign for H in (5.2) for two different types of Nod menisci with SH = ±1 defined in
(5.6). Here m stands for modulus of elliptic integral. The expression for B is given by

B2 + 2B cos (SHφ1) + 1 = R2
1(ψ1).
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Fig. 5. The SD b for Cat menisci between solid plate and sphere, A = 4, is not symmetric w.r.t. the dashed line φ1+φ2 = 0.
The critical angles are φ•

1(1, 4) = 60◦, φ•
2(0, 4) = −75.5◦. Points A and B mark a stable φ1 = 20◦, φ2 = −40◦, and c unstable

φ1 = 20◦, φ2 = −80◦, menisci, respectively

The derivatives r̄′, r̄′′ and z̄′, z̄′′ satisfy the relationships

r̄′

B
= − sin (SHφ)

SH r̄
,

r̄′′

B
=

r̄′ sin (SHφ)
SH r̄2

− cos (SHφ)
r̄

,

z̄′ =
1 + B cos(SHφ)

SH r̄
, z̄′′ = r̄′

(

SH − z̄′

r̄

)

.

(6.2)

Formulas (6.1) describe four Delaunay’s types [5] of surfaces of revolution with constant H: cylinder (Cyl),
B = 0, unduloid (Und), B < 1, sphere (Sph), B = 1, and nodoid (Nod), B > 1. Entries in (2.17) read,

H1=H3= r̄, H2=− (r̄ + 2r̄′′) , L= r̄′ − z̄′z̄′′r̄, N =−r̄′r̄′′r̄, M = z̄′r̄′′r̄.

Note that r̄′2 + z̄′2 = 1, and H1 are positive as in Sect. 5.1. Equation (5.9) reads

w′′ − B sin φ

r̄2
w′ +

(

1 − 2B cos φ

r̄2
− 2B2 sin2 φ

r̄4

)

w = μ. (6.3)

Its fundamental and particular solutions and corresponding auxiliary functions read:

w̄1 =
sin φ

r̄
, w̄2 = cos φ + (1 + B)M1w̄1, w̄3 = 1 + (1 + B)M2w̄1,

J1 = − cos φ, ηj =
1

r̄(φj)
[
SH(1 + B cos φj)R′

j(ψ
∗
j ) + B sin φjZ

′
j(ψ

∗
j )
]
, (6.4)

J2= r̄ sin φ + (1 + B)(J1M1 + M2), J3=(1 + B)
[

2E

(
φ

2
,m

)

+ J1M2 + M1

]

M1(φ,m) = E

(
φ

2
,m

)

− F

(
φ

2
,m

)

+ M2, M2(φ,m) =
m2

2
F

(
φ

2
,m

)

.

Expression for Δ(φ1, φ2) for arbitrary meniscus of nonzero curvature is too long to be presented here.
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6.1. Stability of cylinder menisci Cyl

Specify the above formulas for Cyl meniscus,

B = 0, r̄ = 1, z̄ = φ, w̄1 = sin φ, w̄2 = cos φ, w̄3 = 1,

L = M = N = 0, J1 = − cos φ, J2 = sin φ, J3 = φ,

ηj = R′
j(ψ

∗
j ), Kj = ξj , SH = 1. (6.5)

Expressions for ΔCyl(φ1, φ2) and matrix elements Pij read

ΔCyl(φ1, φ2) = Δφ Γ1

(
Δφ

2

)

sin Δφ, Γ1(x) = 1 − tan x

x
, Δφ = φ1 − φ2,

P11 = P22 = Δφ Γ1 (Δφ) cos Δφ, P12 = −ΔφΓ2(Δφ), Γ2(x) = 1 − sin x

x
.

6.1.1. Cyl meniscus between two plates. We have θ1 = θ2 = π/2 and Rj = ψj , Zj = d, Kj = 0, leading
to

Q11 = Q22 =
Γ1 (Δφ)

Γ1 (Δφ/2)
cot Δφ, Q12 = − Γ2 (Δφ)

Γ1 (Δφ/2)
csc Δφ,

Q33 = − 1
Γ1 (Δφ/2)

.

There are no conjugate points in region ΔCyl(φ1, φ2) < 0, i.e., Δφ < 2π. The stability domains Stab(Δφ)
for three different BCs are the following

(a) fixed endpoints: ΔCyl < 0 ⇒ 0 < Δφ < 2π,

(b) one endpoint is free and another is fixed: Q11 > 0 ⇒ 0 < Δφ < κπ,

(c) free endpoints: Q33 > 0 ⇒ 0 < Δφ < π,

where κ = min{x∗ | tan x∗ = x∗, x∗ > 0} � 1.4303. Stability of Cyl meniscus between two plates is
well studied and often compared [13,23] to the Plateau–Rayleigh instability of a slow flowing liquid jet
of infinite length. Its threshold coincides with the case (a) above in the following sense: The jet of the
circular cross section is stable if the length of fluctuations does not exceed the circumference.

6.1.2. Cyl meniscus between two ellipsoids or plate and ellipsoid. Making use of parametrization in
Sect. 5.1.2 allows anisotropy ε to get both positive and negative values that distinguishes the exterior
(convex) ellipsoid shape (ε > 0) and its interior (concave, or hollow) shape (ε < 0),

Qjj

A2
=

εj sin ψ∗
j cos ψ∗

j

ε2j sin2 ψ∗
j + cos2 ψ∗

j

+
Pjj cos2 ψ∗

j

ΔCyl
,

Q12

A2
=

P12 cos ψ∗
1 cos ψ∗

2

ΔCyl
,

where Pij are given in Sect. 6.1. Consider a case of Cyl between equal ellipsoids.
The stability criteria (4.11) give rise to the SD boundaries by equation,

cot
Δφ

2
+

ε tan ψ∗

ε2 sin2 ψ∗ + cos2 ψ∗ = 0, (6.6)

that results in solutions for spheres (see Fig. 6a, for ε = 1 it coincides with that of reported in [25],

ψ∗ =
−π + Δφ

2
, 1 ≤ Δφ

π
≤ 2 and ψ∗ =

π − Δφ

2
, 0 ≤ Δφ

π
≤ 1.
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Fig. 6. a The right boundaries of SD for Cyl menisci between two solid (plain) and hollow (dashed) ellipsoids shown in
blue εj = 1(−1), green ε1 = 3(−3), ε2 = 0.1(−0.1), and orange ε1 = 0.05(−0.05), ε2 = 0.15(−0.15). The thick black curve
corresponds to Cyl meniscus between solid and hollow ellipsoids (ε1 = −ε2 = 0.05). b The right boundaries of SD for Cyl
menisci between plate and convex (plain) or hollow (dashed) ellipsoids shown in blue ε1=ε2=1(−1), orange ε1=ε2=3(−3),
and green ε1=ε2= 0.1(−0.1). The left boundary of SD in both (a, b) coincides with the ψ axis (color figure online)

The case of Cyl meniscus between the plate and ellipsoid gives,

Q11

A2
=

ε sin ψ∗ cos ψ∗

ε2 sin2 ψ∗ + cos2 ψ∗ +
P11 cos2 ψ∗

ΔCyl
,

Q22

A2
=

P22

ΔCyl
,

Q12

A2
=

P12 cos ψ∗

ΔCyl
.

Its stability is governed by equation,

tan(Δφ)
Γ1(Δφ)

− ε tan ψ∗

ε2 sin2 ψ∗ + cos2 ψ∗ = 0, (6.7)

that results in solutions for sphere (ε = 1) upon the plate (see Fig. 6b),

cot ψ∗ = cot Δφ − 1
Δφ

, 1 ≤ Δφ

π
≤ κ, cot ψ∗ =

1
Δφ

− cot Δφ, 0 ≤ Δφ

π
≤ 1.

6.1.3. Cyl meniscus between two paraboloids or two catenoids. Using parametrization (5.15), write a
matrix Qij and the governing equation for stability of Cyl between two equal paraboloids, Ci =C, ai =a,
νi =ν (see Fig. 7a),

Qjj

A2
= ρ

ν − 1
1 + ρ2

+
Pjj

ΔCyl
,

Q12

A2
=

P12

ΔCyl
,

ρ =
Cν

aν−1
, cot

Δφ

2
+ ρ

ν − 1
1 + ρ2

= 0.

The Cyl meniscus between two solid catenoids,

Rj = Aψj , Zj = gj + (−1)j+1ACj cosh(bjψj), Cj , bj , A > 0, (6.8)
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Fig. 7. The SD for Cyl meniscus between a two solid paraboloids for ai = Ci = 1, ν1 = ν2 = ν, and b two solid catenoids
for Ci = 1, b1 = b2 = b

in the case of equal catenoids, Cj = C, bj = b, produces (see Fig. 7b)

Qjj

A2
=

Cb2 cosh b

1 + C2b2 sinh2 b
+

Pjj

ΔCyl
,

Q12

A2
=

P12

ΔCyl
, cot

Δφ

2
+

Cb2 cosh b

1 + C2b2 sinh2 b
= 0.

6.2. Stability of nonzero curvature menisci between two plates

In a variety of axisymmetric menisci with H �= 0 between two solid bodies, we focus on the simple case of
two plates and present Stab2(φ1, φ2) for all menisci types. An importance of the two plates setup is based
on the statement [7]: every stable connected configuration is rotationally symmetric, i.e., axisymmetric LB
between two plates under 3D asymmetric perturbations does not bifurcate to any stable 3D asymmetric
LB. The stability triangle for Sph menisci in Fig. 8b describes a single Sph segment trapped between two
plates. Its right corner φ1 = −φ2 = 180◦ corresponds to the whole sphere with contact angles θ1 = θ2 = π
embedded between two plates. The SD for Und menisci in Fig. 8c, d are intermediate domains in the
range 0 < B < 1 between Cyl and Sph menisci. The existence of IP in the Und meridional profile MU is
governed by requirement:

φ2 ≤ φip
U ≤ φ1, z̄′(φip

U )r̄′′(φip
U ) − z̄′′(φip

U )r̄′(φip
U ) = 0 ⇒ cos φip

U = −B.

A value φip
U has important property, namely, from (4.12) we obtain

Q33(φ
ip
U ,−φip

U ) = 0. (6.9)

In Sect. 6.2.1, we give detailed discussion of φip
U relationship to Und stability.
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Fig. 8. The SD for a Cyl, B = 0, b Sph, B = 1, and two Und menisci, c B = 0.3 and d B = 0.8, between two plates. The
red curves in (c, d) show the location of conjugate points

The arrangement of the planar solids gives rise to one more symmetry properties of Qij . Since Z ′
j(ψj) =

0 then according to (5.3, 5.7, 5.8) and (6.2), we have z̄′, z̄′′
j , Uj , ηj ∝ SH and therefore

Qij(SH) = Qij(−SH). (6.10)

The SD for Nod menisci in Fig. 9 differ from the rest of diagrams and comprise two different sort of
sub-diagrams: Nod menisci with H > 0 and H < 0. In the case of two solid plates, the positive curvature
H corresponds to the convex part of the Nod meridional profile MN , while the negative H produces
its concave segment, which meet at φip

N such that z′(φip
N ) = 0, i.e., cos φip

N = −B−1. This justifies the
nonexistence of Nod meniscus with both its convex and concave parts.
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Fig. 9. The SD for Nod menisci between two plates, with a B = 1.1 and b B = 1.3. Different types of Nod menisci curvature
are shown in violet-blue (H > 0) and orange (H < 0) colors. The orange domain is accompanied with its twin shifted by
360◦ in φ1, φ2 (color figure online)

6.2.1. Und menisci with inflection point between two plates. In this section, we verify three statements
[1,7,23,24] about stability of Und menisci with free contact points between two plates with contact angles
θ1, θ2. We also present a new statement summarizing our investigations on stability domain.

1. If θ1 = θ2 = π/2 the Und menisci are unstable [1,14,23].
The Und menisci with such BC have necessarily one or more IPs: one IP for φ1 = nπ, φ2 = (n − 1)π,
two IPs if φ1 = nπ, φ2 = (n − 2)π, etc., where n is an integer. However, for n ≥ 2 a criterion (3.13) is
broken, i.e., the conjugate points appear. So there remains one IP and a direct calculation of Q33 gives
for 0 < m < 1,

4
Q33(0,−π)
(1 − B)2

= [3E(m) − K(m)] [E(m) − K(m)] + m2K(m) [2E(m) − K(m)] < 0,

where K(m) and E(m) denote the complete elliptic integral of the first and second kind. The last
inequality may be verified numerically. In Fig. 10, we present detailed locations of Und menisci with B =
0.3 in the sense of its stability w.r.t. the boundaries Δ(φ1, φ2) = 0 (the red curve R) and Q33(φ1, φ2) = 0
(the gray curve G). The points C(φ1 = 0, φ2 = −π) and C ′(φ1 = π, φ2 = 0) lie in unstable zone.

2. If θ1 = θ2 there are no stable menisci with one or more IPs [7], Thm 5.7.
All Und menisci with θ1 = θ2 and without IP have the endpoints satisfying φ1 + φ2 = 0. In Fig. 10, they
belong to the interval OD of the blue line B and are stable. There are two different ways to generate IP.

First, allow φ1 to grow by preserving the above equality that leaves the meniscus symmetric w.r.t.
reflection plane between two plates. When φ1 = φip

U there appears a couple of IPs (see Fig. 10b), i.e., IPs
are born on both plates simultaneously. We cannot make any conclusion about stability of this meniscus
in the framework of Weierstrass’ theory. But all menisci with φ1 + φ2 = 0, φ1 > φip

U , having two IPs, are
unstable. In Fig. 10, they belong to S beyond the point D. Thus, the range of equal contact angles θ for
stable menisci without IP reads π/2 < θ < φip

U for convex Und and π − φip
U < θ < π/2 for concave Und.
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Fig. 10. The SD for Und menisci with B = 0.3. a The green lines Z show IP separation from a plate. The dots mark menisci

shown in: b point D for φ1 = −φ2 = φip
U = 107.46◦ (two IPs at the plates) c point A for φ1 = 0◦, φ2 = −60◦ (stable

meniscus without IP), d point B for φ1 = 0◦, φ2 = −120◦ (stable meniscus with one IP), e point C for φ1 = 0◦, φ2 = −180◦
(unstable meniscus with one IP) (color figure online)

Another way to generate IP with θ1 = θ2 is to break the reflection symmetry φ1 + φ2 �= 0, where
φ1<φip

U and φ2<−φip
U . Making use of (6.2) for tan θj =(−1)jz′(φj)/r′(φj) write an equality for φ1, φ2,

P (φ1) + P (φ2) = 0 ⇒ tan
φ1

2
tan

φ2

2
= −1 + B

1 − B
, (6.11)

where P (φ) = (1 + B cos φ)/(B sinφ). Calculation of Q33 in accordance with (4.11) and (6.11) leads to
cumbersome expression. Instead of its analysis, we present in Fig. 10 the blue curve B given by equation
(6.11) and observe that B always lies in instability zone, confirmed by numerical calculation of Q33 for
0 < B < 1. The curves B and G are tangent at points F, D, H.
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There is one more important conclusion: Und meniscus with reflection symmetry (θ1 = θ2) and fixed
CL at two plates are stable even when two IPs exist. This follows from an observation that an interval
DK at Fig. 10 is above the curve R. The point K(φ1 = π, φ2 = −π) marks unstable Und meniscus of
entire period with four IPs when two of them are separated from the plates.

3. If θ1, θ2 �= π/2, θ1 + θ2 = π there are stable menisci of large volume that have IPs [24], Remark
3.2.
Making use of (6.2) and identity tan(θ1 + θ2) = 0 write a relation for the angles φ1, φ2 valid for the
arbitrary volume’s value,

P (φ1) − P (φ2) = 0 ⇒ tan
φ1

2
tan

φ2

2
=

1 + B

1 − B
. (6.12)

Similar to the previous case considered in Fig. 10, the brown curves given by Eq. (6.12) and observe that
they always pass through the point C and cross transversely the curve G at point I which separates the
menisci in two families: stable with one IP (at interval GI) and unstable (beyond the point I). Note that
the stable menisci without IP are forbidden. Regarding the claim ’stable menisci of large volume that
have IPs’, we have found it incorrect. Indeed, the whole segment E’I belongs to the stability region and
it remains true when we approach the point E′, i.e., when φ2 → φ1 that manifests volume decrease up
to an arbitrary small value. Therefore, we make a statement slightly different: if θ1 + θ2 = π, then only
menisci with a single IP are stable.

Summarize the above results: The stability region Stab2(φ1, φ2) of Und meniscus between two plates
with free CL is represented in Fig. 10 by interior of domain decomposed in subdomains

Stab2(φ1, φ2)={DIFE}1∪{DI ′F ′E′}1 ∪ {JEF}0∪{EOE′DE}0∪{J ′E′F ′}0
where a subscript stands for a number of IP in stable meniscus.

4. Finish this section with two other setups for Und menisci between two plates: θ1 ± θ2 = π/2, which
differ from those discussed in [1,7,23,24]. Using formulas (6.2), write an equality which is not solvable in
φ1, φ2 for all B,

P (φ1)P (φ2)= ∓1, |P (φ)| ≥
∣
∣
∣P
(
φip

U

)∣
∣
∣ =

√
1 − B2

B
⇒ ∃ φj ∈ � if B ≥ 1√

2
.

The upper (lower) sign in last equality corresponds to upper (lower) sign in θ1 ± θ2. For B = 1/
√

2 there
exist two pointwise solutions of equation P (φ1)P (φ2) = ∓1,

a):
φ1

5
=

φ2

3
=

π

4
and

φ1

5
=

φ2

3
=−π

4

b):
φ1

5
=

φ2

5
= ±π

4
and

φ1

3
=

φ2

3
= ±π

4
.

However, when B > 1/
√

2 the solutions are represented by curves La and Lb in the halfplane {φ2 < φ1}:
La passes through unstable and stable (without IP) zones, while Lb exists only in stable zones with and
without IP (see Fig. 11).

7. Conclusion

We derive the stability criterion in the isoperimetric problem with free endpoints and apply it to theory
of axisymmetric LB between two axisymmetric solid bodies without gravity to determine the stability
of menisci with free CL. The former presents a new result which has not appeared earlier in classical
calculus of variations, while the latter allows to obtain an explicit expression for stability criterion which
was not widely discussed in the literature for arbitrary shapes of solid body and liquid bridge.

Our non-spectral theory of stability of axisymmetric LB upon axisymmetric LB perturbations may
be extended to any asymmetric LB perturbations. For this purpose, one can use Lemma 2.1 in [23]
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Fig. 11. The SD for Und menisci with B = 0.8 (a part of Fig. 8d). The green line shows the position of IPs. The dots mark
menisci contacting the lower and upper plates at φ2 and φ1, respectively: (Ya) φ1 = 225◦, φ2 = 135◦, (Y ′

b ) φ1 = φ2 = 225◦,
(Y ′′

b ) φ1 = φ2 = 135◦, in accordance with Sect. 6.2.1. Curves La and Lb describe Und menisci satisfying θ1 + θ2 = π/2 and
θ1 − θ2 = π/2, respectively

on elimination of the asymmetric perturbations in stability problem of axisymmetric LB. This strong
statement is based on the Schwarz symmetrization in functional analysis and belongs to a wide class of
isoperimetric inequalities. It supports also a coincidence of stability domains Stab2 calculated in spectral
and non-spectral theories in all setups considered earlier: Cyl between two plates [1,23] in Sect. 6.1.1, Cyl
between two equal convex spheres [25] in Sect. 6.1.2, Und between two plates with specific contact angles,
θ1 = θ2 [7] and θ1 + θ2 = π, θ1, θ2 �= π/2, [24] in Sect. 6.2.1, Cat between two plates [29] in Sect. 5.1.1.

In addition to usually treated menisci between two planar or two spherical solids, we consider a wide
range of axisymmetric solid shapes: Cyl menisci between two paraboloids, catenoids, convex and hollow
ellipsoids and Cat between plate and sphere. In fact, this list may be continued without limitation.

Beyond the scope of the present paper, there are left much more difficult cases of Und, Nod and Sph
menisci stability between non-planar solids: Here a new effect of LB existence begin to interfere with
the stability of LB. We plan to classify different types of LB nonexistence and study their influence on
stability domains in the separate paper.
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