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1. Introduction

This paper is concerned with the following non-dimensional quantum Navier–Stokes equations in a three-
dimensional torus T

3:

∂tn + div(nu) = 0, x ∈ T
3, t > 0, (1.1)

∂t(nu) + div(nu ⊗ u) + ∇p(n) − 2�
2n∇

(
Δ

√
n√

n

)
= 2div(μ(n)D(u)) − αu, (1.2)

n(x, 0) = n0, u(x, 0) = u0, (1.3)

where n and u = (u1, u2, u3) stand for the density and velocity, respectively. p(n) is the pressure, and
in this paper, we consider the case of isentropic flows with p(n) = nγ/γ for γ > 1. In (1.2), D(u) =
(∇u+∇uT )/2. And μ(n) denotes the density-dependent viscosity. In this paper, we assume that μ(n) = μn
for some constant μ > 0. κ > 0 is the scaled Planck constant. 2κ2n∇ (Δ

√
n/

√
n) can be interpreted as

the quantum Bohm potential term or as a quantum correction to the pressure. Moreover, the following
relation holds

2n∇
(

Δ
√

n√
n

)
= ∇Δn − 4div(∇√

n ⊗ ∇√
n). (1.4)

which can avoid using too high regularities of the density nλ. The constant α > 0 is the damping coefficient
which can guarantee to prove the existence of global weak solutions of the systems (1.1)–(1.3) as in [3].
Brull and Méhats [5] utilized a moment method and a Chapman–Enskog expansion around the quantum
equilibrium to derive (1.1)–(1.2) from a Wigner equation.

Our main aim in the present paper is to rigorously prove a combined incompressible and semiclassical
limit in the framework of the global weak solutions to (1.1)–(1.3). To begin with, we introduce the scaling

t �→ εt, u �→ εu, μ(n) �→ εμ(n), α �→ εα,

and set � = εθ for 0 < θ, ε < 1. With such scalings, the quantum Navier–Stokes equations (1.1)–(1.3)
read as
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∂tn
ε + div(nεuε) = 0, (1.5)

∂t(nεuε) + div(nεuε ⊗ uε) +
1

ε2γ
∇(nε)γ

− 2
ε2(1−θ)

nε∇
(

Δ
√

nε

√
nε

)
= 2μdiv(nεD(uε)) − αuε, (1.6)

with the initial conditions

nε(·, 0) = nε
0(x), uε(·, 0) = uε

0(x). (1.7)

Here, we use the superscript to emphasize the dependence of ε for each variables in (1.5) and (1.6).
When letting ε → 0, we formally obtain from the momentum equation (1.6) that nε converges to some

function n(t) > 0. If we further assume that the initial datum nε
0 is of order 1 + o(ε) [see (2.2) below],

then one can expect that n(t) ≡ 1. Thus, the continuity equation (1.5) yields to the limit divu = 0,
which is the incompressible condition of a fluid. Hence, we formally obtain the following incompressible
Navier–Stokes equations with damping

∂tu + (u · ∇)u + ∇π = 2μdiv(D(u)) − αu, divu = 0, (1.8)
u(·, 0) = u0. (1.9)

In the present paper, we shall apply the method of relative entropy (or the modulated energy) to study
the combined incompressible and semiclassical limit (ε → 0) of weak solutions to the system (1.5)–(1.6).
Therefore, we shall prove the limit on any time intervals on which the incompressible Navier–Stokes
equations possess a regular solution.

Define the energy of (1.5)–(1.7) by the sum of the kinetic, internal and quantum energy:

Eε(t) =
∫
T3

{
1
2
nε|uε|2 +

1
ε2γ(γ − 1)

(nε)γ +
2

ε2(1−θ)
|∇√

nε|2
}

dx. (1.10)

A formal computation shows that

d
dt

Eε(t) +
∫
T3

(2μnε|D(uε)|2 + α|uε|2)dx ≤ 0. (1.11)

The initial data are taken in such a way as

nε
0 ∈ Lγ(T3),

|mε
0|2

nε
0

∈ L1(T3), ∇√
nε
0 ∈ L2(T3), ∇Φε

0 ∈ L2(T3), − ln− nε
0 ∈ L1(T3), (1.12)

where mε
0 = 0 when nε

0 = 0 and ln− f = ln min{f, 1}.
The quantum Navier–Stokes system is hyperbolic–parabolic coupled; the presence of the third-order

derivative and the viscosity depending on density in the momentum equation give rise to more difficulties
than the common Navier–Stokes equations in the mathematical analysis. The existence of global-in-time
weak solutions to the one-dimensional viscous quantum hydrodynamic equations was first proved by
Gamba and Jüngel in [6]. The global existence of weak solutions for to the multidimensional quantum
Navier–Stokes equations (1.1)–(1.3) was obtained in the non-classical sense of weak solutions (multiplying
the momentum equation by the density)(see [9] for details). When the damping α is a positive constant,
the velocity uε makes sense by itself independently of the density nε since uε belongs to L2([0, T ];L2(T3))
so that existence of global weak solutions can be obtained in the classical sense of weak solutions (see [3]
for details). The main idea of proof was based on the new entropy estimates which have been used in [2,3]
by means of the so-called effective velocity uε + μ∇ ln nε for viscous Korteweg-type and shallow-water
equations. More precisely, multiplying the momentum equations (1.6) by ∇ ln nε provides an additional



Vol. 66 (2015) Asymptotic limits of Navier–Stokes equations with quantum effects 2273

energy inequality
d
dt

E
ε
(t) + μ

∫
T3

(
(nε)γ−2|∇nε|2 +

2
ε2(1−θ)

nε|∇2 ln nε|2 + α|uλ|2
)
dx ≤ 0, (1.13)

with

E
ε
(t) =

∫
T3

{
1
2
nε|uε + μ∇ ln nε|2 +

1
ε2γ(γ − 1)

(nε)γ +
2

ε2(1−θ)
|∇√

nε|2 − αμ ln nε

}
dx. (1.14)

which can guarantee the global existence of weak solutions to the quantum Navier–Stokes model (1.5)–
(1.6) as in [3]. We state the existence result of global weak solutions to the problem (1.5)–(1.6) in the
following. The details of the proof are omitted here.

Theorem 1.1. Let T > 0 and γ > 1. Assume that the initial data (nε
0, u

ε
0) are taken in such a way that

(1.12) holds. Then there exists a weak solution (nε, uε) to quantum Navier–Stokes equations (1.5)–(1.7)
with the regularity √

nε ∈ L∞([0, T ];H1(T3)) ∩ L2([0, T ];H2(T3)),

nε ∈ L∞([0, T ];Lγ(T3)),
√

nεuε ∈ L∞([0, T ];L2(T3)),

uε ∈ L2([0, T ];L2(T3)),
√

nε|D(uε)| ∈ L2([0, T ];L2(T3)),

and (1.5) holds in the sense of distributions, and for all smooth test functions satisfying v, compactly
supported in T

3 × [0, T ), one has

∫
T3

(nεuε · v)(t = 0)dx +

T∫
0

∫
T3

(
nεuε · ∂sv + nεuε ⊗ uε : ∇v + p(nε)divv +

1
ε2(1−α)

nεΔdivv

+
4

ε2(1−α)
�
2(∇√

nε ⊗ ∇√
nε) : ∇v − 2μnεD(uε) : ∇v − αuε · v

)
dxds = 0. (1.15)

There are a lot of studies on the rigorous verification of the incompressible limit of the compressible
fluids without quantum effects, such as Klainerman and Majda [11], Beirao da Veiga [4], Isozaki [7],
Schochet [16], Ukai [17], Lions and Masmoudi [13], Masmoudi [14], Alazard [1] and Jiang and Ou [8]. In
particular, for the isentropic Navier–Stokes equations, Masmoudi [14] proved the inviscid and incompress-
ible limit for the weak solutions by using the relative entropy method for the general initial data. The
present paper will extend the results in [14] to the multidimensional barotropic quantum Navier–Stokes
equations. However, being different from the system analyzed in [14], the third-order derivative term
appears in the momentum equations. In addition, the viscosity coefficient we consider here is dependent
on the density. Therefore, new techniques and ideas are introduced to treat them. To our knowledge, it is
the first work on the combined incompressible limit and the semiclassical limit of weak solutions to the
quantum Navier–Stokes equations.

In this present paper, we denote by χ the characteristics function and C the generic positive constants
independent of ε.

The rest of this paper is organized as follows. In the next section, we state some useful known results,
our main result and the main idea of the proof. Finally, Sect. 3 is devoted to the proof of our main result.

2. Main Result

Before stating our main results, we first recall the following classical results on the existence of regular
solutions of the incompressible Navier–Stokes equations.
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Proposition 2.1. (Ref.[10,15]) Assume that u0 ∈ Hs, s > 3/2 + 3 and divu0 = 0. Then there exist
0 < T∗ < ∞, the maximal existence time and a unique smooth solution (u, π) of the incompressible
Navier–Stokes equations (1.8)–(1.9) on [0, T∗) satisfying that

∫
T3

π(x, t)dx = 0, and for any T0 < T∗,

sup
0≤t≤T0

(
‖u‖Hs(T3) + ‖∂tu‖Hs−2(T3) + ‖∇π‖Hs−2(T3) + ‖∂tπ‖Hs−3(T3)

)
≤ C(T ) (2.1)

for some positive constant C(T ).

The main result of this paper can be stated as follows.

Theorem 2.2. Let θ ∈ (0, 1), γ > 1. Assume that {(nε, uε)}ε>0 is a sequence of weak solutions to the com-
pressible quantum Navier–Stokes equations (1.5)–(1.7) obtained in Theorem 1.1, satisfying the conditions:

1
ε2

∫
T3

(|nε
0 − 1|2χ(|nε

0−1|≤δ) + |nε
0 − 1|γχ(|nε

0−1|>δ)

)
dx ≤ Cε, (2.2)

‖√
nε
0u

ε
0 − u0‖2L2(T3) ≤ Cε, (2.3)

1
ε2(1−θ)

‖∇√
nε
0‖L2(T3) ≤ Cε (2.4)

for any δ ∈ (0, 1). Also assume that (u, π) is the smooth solution to incompressible Navier–Stokes equations
(1.8)–(1.9) satisfying the condition (2.1). For any T < T∗, we have that

1
ε2

∫
T3

(|nε − 1|2χ(|nε−1|≤δ) + |nε − 1|γχ(|nε−1|>δ)

)
dx ≤ Cεβ , (2.5)

‖√
nεuε − u‖2L∞([0,T ];L2(T3)) ≤ Cεβ , (2.6)

‖nεuε − u‖2
L∞([0,T ];L

2γ
γ+1 (T3))

≤ Cεβ , (2.7)

where β = min{1 − θ, 2
γ−1}.

Remark 2.3. Theorem 2.2 describes the asymptotic limit of the quantum Navier–Stokes system (1.5)–
(1.7) with well-prepared initial data. For the general initial data, the fast singular oscillation appears. It
is more difficult to prove the asymptotic limit in this situation, which will be studied in a forthcoming
paper.

Remark 2.4. We remark that the estimate in Theorem 2.2 is uniform with respect to μ. Therefore,
Theorem 2.2 is a stability result not only with respect to ε but also with respect to μ. In fact, we can
show that the combined incompressible limit, semiclassical limit and vanishing viscosity limit of the
quantum Navier–Stokes system (1.5)–(1.6) are the incompressible Euler equation.

In the next section, we are going to prove Theorem 2.2. To this end, we introduce the following form
of the modulated energy:

Hε(t) =
∫
T3

{
1
2
nε|uε − u|2 +

1
ε2

h(nε) +
2

ε2(1−α)
|∇√

nε|2
}

dx. (2.8)

where u is the smooth solution of the incompressible Navier–Stokes equations (1.8)–(1.9) and

h(nε) =
1

γ(γ − 1)
((nε)γ − 1 − γ(nε − 1)) .

In fact, h(nε) stands for the free energy per unit volume. These terms in the right-hand side of equation
(2.8) express the differences of the kinetic, internal and quantum energies. We shall employ the evolution
equations and elaborated computations to prove the inequality
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Hε(t) ≤ C

t∫
0

Hε(s)ds + εθ (2.9)

for some positive constant θ > 0. The Gronwall lemma then implies the result.

3. Proof of Theorem 2.2

From the energy inequality (1.11) and the conservation of mass, we have for almost all t ∈ [0, T ],∫
T3

{
1
2
nε|uε|2 +

1
ε2

h(nε) +
2

ε2(1−α)
|∇√

nε|2
}

dx

+

t∫
0

∫
T3

(2μnε|D(uε)|2 + α|uε|2)dxds

≤
∫
T3

{
1
2
nε
0|uε

0|2 +
1
ε2

h(nε
0) +

2
ε2(1−α)

|∇√
nε
0|2

}
dx

≤ C. (3.1)

Therefore, we have the following properties:
√

nεuε is bounded in L∞([0, T ];L2(T3)), (3.2)
1
ε2

h(nε) is bounded in L∞([0, T ];L1(T3)), (3.3)

2
ε2(1−α)

|∇√
nε|2 is bounded in L∞([0, T ];L1(T3)). (3.4)

Lemma 3.1. Let (nε, uε) be the weak solution to quantum Navier–Stokes equations (1.5)–(1.7)on [0, T ].
Then there exists a constant C > 0 such that for all ε ∈ (0, 1) and γ > 1,

‖nε − 1‖L∞([0,T ];Lγ(T3)) ≤ Cε
λ
γ and ‖nε − 1‖L∞([0,T ];Lλ(T3)) ≤ Cε, (3.5)

where λ = min{2, γ}.
Proof. In view of Lemma 5.3 in [12], there exist two positive constants c1 ∈ (0, 1) and c2 ∈ (1,+∞)
independent of nε such that the following inequality

c1

∫
T3

(|nε − 1|2χ(|nε−1|≤δ) + |nε − 1|γχ(|nε−1|>δ)

)
dx

≤
∫
T3

h(nε)dx ≤ c2

∫
T3

(|nε − 1|2χ(|nε−1|≤δ) + |nε − 1|γχ(|nε−1|>δ)

)
dx, (3.6)

for any δ ∈ (0, 1), which implies Lemma 3.1 holds due to (3.3). �

Lemma 3.2. Let T > 0, γ > 1, and 0 < α < 1. Then

Hε(t) ≤ Cεβ (3.7)

uniformly in [0, T ], where β = min{1 − θ, 2
γ−1}.

Proof. To derive the integration inequality for Hε(t), we use u as a test function in the weak formulation
of momentum equation (1.6) to yield the following equality for almost all t:
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∫
T3

nεuε · udx =
∫
T3

(nεuε · u)(t = 0)dx +

t∫
0

∫
T3

nεuε · ∂sudxds

+

t∫
0

∫
T3

(nεuε ⊗ uε) : ∇udxds

+
4

ε2(1−θ)

t∫
0

∫
T3

(∇√
nε ⊗ ∇√

nε) : ∇udxds

− 2μ

t∫
0

∫
T3

nεD(uε) : ∇udxds − α

t∫
0

∫
T3

uε · udxds, (3.8)

where we have used the fact that divu = 0 and

nε∇
(

Δ
√

nε

√
nε

)
=

1
2
∇Δnε − 2div(∇√

nε ⊗ ∇√
nε).

From (1.8)–(1.9), we have that the energy identity of the incompressible Navier–Stokes equations:

1
2

d
dt

∫
T3

|u|2dx + 2μ

∫
T3

|D(u)|2dx = 0,

which implies that

1
2

∫
T3

|u0|2dx =
1
2

∫
T3

|u|2dx + 2μ

t∫
0

∫
T3

|D(u)|2dxds. (3.9)

Using (3.8)–(3.9) and the energy inequality (3.1), by integration by parts, we calculate Hε(t) as follows:

Hε(t) + 2μ

t∫
0

∫
T3

nε|D(uε) − D(u)|2dxds + α

t∫
0

∫
T3

|uε − u|2dxds

=
∫
T3

{
1
2
nε|uε|2 +

1
ε2

h(nε) +
2

ε2(1−θ)
|∇√

nε|2
}

dx

+

t∫
0

∫
T3

(2μnε|D(u)|2 + α|uε|2)dxds −
∫
T3

(nεuε · u)(t = 0)dx

+
1
2

∫
T3

nε|u|2dx − α

t∫
0

∫
T3

uε · udxds + α

t∫
0

∫
T3

|u|2dxds

+ 2μ

t∫
0

∫
T3

nε|D(u)|2dxds − 2μ

t∫
0

∫
T3

nεD(uε) : D(u)dxds

−
t∫

0

∫
T3

nεuε · ∂sudxds −
t∫

0

∫
T3

(nεuε ⊗ uε) : ∇udxds
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− 4
ε2(1−α)

t∫
0

∫
T3

(∇√
nε ⊗ ∇√

nε) : ∇udxds

≤
∫
T3

{
1
2
nε
0|uε

0|2 +
1
ε2

h(nε
0) +

2
ε2(1−θ)

|∇√
nε
0|2

}
dx

+
1
2

∫
T3

nε
0|u0|2dx −

∫
T3

(nε
0u

ε
0 · u0)dx

− 1
2

∫
T3

|u0|2dx +
1
2

∫
T3

|u|2dx + 2μ

t∫
0

∫
T3

|D(u)|2dxds + α

t∫
0

∫
T3

|u|2dxds

︸ ︷︷ ︸
=0 from (3.9)

− 1
2

∫
T3

(nε
0 − 1)|u0|2dx +

1
2

∫
T3

(nε − 1)|u|2dx

+ 2μ

t∫
0

∫
T3

(nε − 1)|D(u)|2dxds − 2μ

t∫
0

∫
T3

nεD(uε) : D(u)dxds

−
t∫

0

∫
T3

nεuε · ∂sudxds − α

t∫
0

∫
T3

uε · udxds

−
t∫

0

∫
T3

(nεuε ⊗ uε) : ∇udxds − 4
ε2(1−θ)

t∫
0

∫
T3

(∇√
nε ⊗ ∇√

nε) : ∇udxds

= Hε(0) − 1
2

∫
T3

(nε
0 − 1)|u0|2dx +

1
2

∫
T3

(nε − 1)|u|2dx +
5∑

k=1

Ik, (3.10)

where

I1 = 2μ

t∫
0

∫
T3

(nε − 1)|D(u)|2dxds,

I2 = −
t∫

0

∫
T3

nεuε · ∂sudxds − α

t∫
0

∫
T3

uε · udxds,

I3 = −
t∫

0

∫
T3

(nεuε ⊗ uε) : ∇udxds,

I4 = − 4
ε2(1−θ)

t∫
0

∫
T3

(∇√
nε ⊗ ∇√

nε) : ∇udxds,

I5 = −2μ

t∫
0

∫
T3

nεD(uε) : D(u)dxds.
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Now, we begin to treat the integrals Ik(k = 1, 2, 3, 4, 5) term by term. Using (2.1), Lemma 3.1 and Hölder
inequality, we have that

I1 ≤ C‖nε − 1‖L∞([0,T ];Lλ(T3))‖D(u)‖2
L∞([0,T ];L

2λ
λ−1 (T3))

≤ Cε. (3.11)

From (1.8), we have

I2 =

t∫
0

∫
T3

nεuε · ((u · ∇)u)dxds − 2μ

t∫
0

∫
T3

nεuε · div(D(u)))dxds

+

t∫
0

∫
T3

nεuε · ∇πdxds − α

t∫
0

∫
T3

(nε − 1)uε · udxds.

In fact, we only need to treat the last two terms on the right-hand side of (3.12) since the first two terms
will be canceled later. Using Lemma 3.1, Young inequality, continuity equation (1.5) and integrating by
parts, we get that

t∫
0

∫
T3

nεuε · ∇πdxds = −
t∫

0

∫
T3

div(nεuε)πdxds =

t∫
0

∫
T3

∂sn
επdxds

=
∫
T3

(nε − 1)πdx −
∫
T3

(nε
0 − 1)π0dx −

t∫
0

∫
T3

(nε − 1)∂sπdxds

≤ C‖nε − 1‖L∞([0,T ];Lλ(T3)) −
∫
T3

(nε
0 − 1)π0dx

≤ Cε +
1
ε2

∫
T3

|nε
0 − 1|2χ(|nε

0−1|≤δ)dx + cε2

+
1
ε2

∫
T3

|nε
0 − 1|γχ(|nε

0−1|>δ)dx + cε
2

γ−1

≤ Cεmin{1, 2
γ−1},

and

− α

t∫
0

∫
T3

(nε − 1)uε · udxds

≤ C‖nε − 1‖L∞([0,T ];L2(T3))‖uε‖L∞([0,T ];L2(T3))

≤ Cε.

Therefore, we obtain that

I2 ≤
t∫

0

∫
T3

nεuε · ((u · ∇)u)dxds + Cεmin{1, 2
γ−1}

− 2μ

t∫
0

∫
T3

nεuε · div(D(u)))dxds. (3.12)
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In order to estimate I3, we express it as follows:

I3 = −
t∫

0

∫
T3

nε(uε − u) ⊗ (uε − u) : ∇udxds −
t∫

0

∫
T3

(nεu ⊗ uε) : ∇udxds

+

t∫
0

∫
T3

(nεu ⊗ u) : ∇udxds −
t∫

0

∫
T3

(nεuε ⊗ u) : ∇udxds

≤ C

t∫
0

∫
T3

nε|uε − u|2dxds −
t∫

0

∫
T3

nεuε · ((u · ∇)u)dxds + I31 + I32,

where

I31 =

t∫
0

∫
T3

(nεu ⊗ u) : ∇udxds

and

I32 = −
t∫

0

∫
T3

(nεuε ⊗ u) : ∇udxds.

Notice that the second term on the right-hand side of the above inequality will be canceled by the first
term on the right-hand side of (3.12). Similar to the estimate of I1, using Lemma 3.1 and the inequality
(2.1), we get that

I31 =

t∫
0

∫
T3

nε(u · ∇)u · udxds

=

t∫
0

∫
T3

(nε − 1)(u · ∇)u · udxds

≤ Cε,

since
t∫

0

∫
T3

(u · ∇)u · udx =
1
2

t∫
0

∫
T3

u · ∇|u|2dxds = 0.

From the continuity equation (1.5) and the inequality (2.1), we get, by integration by parts, that

I32 = −1
2

∫
T3

(nε − 1)|u|2dx +
1
2

∫
T3

(nε
0 − 1)|u0|2dx +

1
2

t∫
0

∫
T3

(nε − 1)∂s|u|2dxds

≤ − 1
2

∫
T3

(nε − 1)|u|2dx +
1
2

∫
T3

(nε
0 − 1)|u0|2dx
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+ C‖nε − 1‖L∞([0,T ];Lλ(T3))‖∂s|u|2‖
L∞([0,T ];L

λ
λ−1 (T3))

≤ − 1
2

∫
T3

(nε − 1)|u|2dx +
1
2

∫
T3

(nε
0 − 1)|u0|2dx + Cε.

To justify the calculation in the above inequality, we need to use the definition of the weak solution to
the compressible quantum Navier–Stokes system (1.5)–(1.7) as in Proposition 1.1. Therefore, we obtain
that

I3 ≤ C

t∫
0

∫
T3

nε|uε − u|2dxds −
t∫

0

∫
T3

nεuε · ((u · ∇)u)dxds

− 1
2

∫
T3

(nε − 1)|u|2dx +
1
2

∫
T3

(nε
0 − 1)|u0|2dx + Cε. (3.13)

For I4, one gets that

I4 ≤ C‖u‖L∞((0,T )×(T3)))

ε2(1−θ)

t∫
0

∫
T3

|∇√
nε|2dxds ≤ C

t∫
0

Hε(s)ds. (3.14)

Now, we deal with the last term I5. To estimate it, we rewrite it as follows:

I5 = μ

t∫
0

∫
T3

nεuε · (Δu + ∇divu)dxds

+ μ

t∫
0

∫
T3

(∇nε ⊗ uε + uε ⊗ ∇nε) : ∇udxds

= 2μ

t∫
0

∫
T3

nεuε · div(D(u))dxds

+ 2μ

t∫
0

∫
T3

(∇√
nε ⊗ √

nεuε +
√

nεuε ⊗ ∇√
nε) : ∇udxds,

where we have used the equality 2div(D(u)) = Δu with divu = 0. Applying the Cauchy–Schwarz inequal-
ity and the properties (3.2) and (3.4), the last integral is bounded by

C‖∇√
nε‖L∞([0,T ];L2(T3))‖

√
nεuε‖L∞([0,T ];L2(T3)) ≤ Cε1−θ.

Therefore, we obtain that

I5 ≤ 2μ

t∫
0

∫
T3

nεuε · div(D(u))dxds + Cε1−θ. (3.15)

Inserting (3.11)–(3.15) into (3.10), we get

Hε(t) ≤ Hε(t = 0) + C

t∫
0

Hε(s)ds + Cεβ .
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Using the initial conditions (2.2)–(2.4) and the inequality (3.6), we have that Hε(0) ≤ Cε since
∫
T3

nε
0|uε

0 − u0|2dx ≤ 2
∫
T3

|√nε
0u

ε
0 − u0|2dx + 2

∫
T3

|(1 − √
nε
0)u0|2dx

≤ 2
∫
T3

|√nε
0u

ε
0 − u0|2L2(T3) + C

∫
T3

|(1 − √
nε
0)|2dx

≤ 2
∫
T3

|√nε
0u

ε
0 − u0|2L2(T3)

+ C

∫
T3

(|nε
0 − 1|2χ(|nε

0−1|≤δ) + |nε
0 − 1|γχ(|nε

0−1|>δ)

)
dx

≤ Cε.

Here, we have used the following elementary inequality:

|1 − √
x|2 ≤ C|1 − x|k, ∀k ≥ 1, (3.16)

for some positive constant C and any x ≥ 0. Thus the proof of Lemma 3.2 is completed. �

We are now in the position to prove Theorem 2.2. From Lemma 3.2 and inequality (3.6), we claim
that the estimate (2.5) holds. Using Lemma 3.2, the inequality (3.16) and the Hölder inequality, we have
that

‖√
nεuε − u‖2L2(T3) ≤ 2‖√nε(uε − u)‖2L2(T3) + 2‖(1 − √

nε)u‖2L2(T3)

≤ Cεβ + C‖1 − √
nε‖2L2(T3)

≤ Cεβ + C

∫
T3

(|nε − 1|2χ(|nε−1|≤δ) + |nε − 1|γχ(|nε−1|>δ)

)
dx

≤ Cεβ + Cε2
∫
T3

h(nε)dx

≤ Cεβ ,

for any t ∈ [0, T ]. Therefore, we conclude that (2.6) holds. Using the Hölder inequality and the fact that
1 < 2γ

γ+1 < γ, as ε → 0,

‖nεuε − u‖2
L

2γ
γ+1 (T3)

≤ 2‖nε(uε − u)‖2
L

2γ
γ+1 (T3)

+ 2‖(nε − 1)u‖2
L

2γ
γ+1 (T3)

≤ 2‖√nε‖2L2γ(T3)‖
√

nε(uε − u)‖2L2(T3)

+ 2‖nε − 1‖2Lλ(T3)‖u‖2
L

2λγ
λγ+λ−2γ (T3)

≤ Cεβ + Cε2

≤ Cεβ .

We remark that 0 < λγ + λ − 2γ < 2λγ for the definition of λ in Lemma 3.1. So we conclude that (2.7)
holds.

Thus the proof of Theorem 2.2 is finished. �
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