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1. Introduction

In this paper, we are concerned with the Cauchy problem for the viscous compressible flow between two
horizontal plates. The governing equations are derived from the general three-dimensional Navier—Stokes
equations:

pt+ Ve - (pu) =0,

(pu); + Ve - (pu@u) + Vep = Ve - (v(Ve - )l + p (Veu + vgu ), (1.1)
Ei+Ve-(u(E+p) =Ve: (v(Ve-u)u+ pu (Veu+ (Veu)t) + £Veb) .

Here, ¢ € R? is the spatial variable, and ¢t > 0 is the time variable. p > 0, u = (u!,u? u?), § > 0,
and p = p(p, 0) denote the density, the velocity, the absolute temperature, and the pressure, respectlvely.
(Vu)™ is the transpose of the matrix Vu. The specific total energy E = p(3|ul®> + €) with e being
the specific internal energy, the viscous coefficients pu(p,0) > 0, and v(p,0) > 0 is assumed to satisfy
1(p,0) + 2v(p,0) > 0, and £(p,0) > 0 denotes the coefficient of heat conductivity. The thermodynamic
variables p, p, and e are related through Gibbs’ equation de = 6ds — pdp~! with s being the specific
entropy. The viscosity coefficients u, v and heat conductivity coefficient x can be functions of density
p and temperature 6. Such a dependence will have an obviously influence on the solutions of the field
equations and the mathematical analysis.

Let us consider the three-dimensional flow (1.1) with spatial variable £ = (z, 2, x3), which is moving
in the z direction and uniform in the transverse direction (z2,x3), with

p=ptx), 0=0(t2x), ultz)=uw)(tz), w(tx)=(uus3)tz); (1.2)

here, u € R is the longitudinal velocity and w € R? is the transverse velocity. With the structure (1.2),
Eq. (1.1) become the following system in one space dimension with A = v+ 2u > 0,

) Birkhauser
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pt + (pu)e = 0,
)

Ei+ (uW(E +p))s = (Auug + pw - Wy + K0,), .

Here, just as in (1.1), € R is the spatial variable, ¢ > 0 is the time variable, u € R is the longitudi-
nal velocity, w is the transverse velocity, A(p,8) and p(p,d) are the viscosity coefficients, k(p,0) is the
heat conductivity; u(p,0) is particularly called the shear viscosity. They depend on both viscosity and
temperature generally.

We begin with a rough review in this direction. When the viscosity coeflicients are constant, the
local classical solutions to the Navier—Stokes equations with heat-conducting fluid in Holder spaces were
obtained, respectively, by Itaya [1] for the Cauchy problem and by Tani [10] for initial-boundary-value
problem with inf pg > 0, where the spatial dimension N = 3. Matsumura and Nishida [6,7] showed
that the global classical solutions exist provided that the initial data are small in some sense and away
from vacuum with spatial dimension N = 3. For large initial data, as to polytropic perfect gas with
constant viscosity, Kazhikhov and Shelukhi [4]; Kawohl [3]; Jenssen and Karper [5]; and Tan et al. [9]
got global classical solutions in dimension N = 1, respectively. As to the vacuum case, recently, Wen and
Zhu [12,13] get the global well-posedness of strong and classical vacuum solutions with large initial data
in one dimension and the symmetric solutions in high dimensions.

As to the initial-boundary-value problem of (1.3) in a bounded spatial domain {2 = (0, 1), with the
following initial condition and mixed Dirichlet—Neumann impermeable thermally insulated boundaries,

(pauawvg)‘t:() = (p07u07W0a00)(x)7x € Qv
(U,W)|39 = O, (1.4)
Ozl00 =0,

Wang [11] deals with the real viscous heat-conducting flow with shear viscosity. They need to ask whether
there are positive constant bounds for viscosity coefficients, that is, u1 < p(v) < pa, A1 < A(v) < Ao, with
Wiy Aiyi = 1,2 as positive constants. They also assume the growth conditions with exponents r € [0, 1]
and g > 2 + 2r such that the following hold:

(1)  There exists a constant eg > 0 such that, for v > 0 and 0 > 0, p,(v,0) < 0,e(v,6) > eo(l +
0"); e9(v,0) > 0;

(2) For any given vy > 0, there exist positive constants ko = ko(v1),po = po(v1),e1 = e1(vy) such that,
for v > v1,0 >0, 0 < vp(v,0) < po(1+017), k(v,0) > ko(1l + 07),eq(v,0) > €1

(3) For any given ve > vy > 0, there exist positive constants p; = p;(vi,v2) (i 1,2,3), ¢; =
e;(v1,v2), (4 =2,3) and k1 = K1 (v1,v2) such that, for any v € [v1,v9],60 >0
lupg (v, 0)] < p1 (1 +067),
—p3 (1 + 91+r) < U2pv(v,9) < —po (1 4 91+r) , ( )
1.5

lew(v,0)] < ea(1+0M7), eg(v,0) < es(1+07),
K(0,0) + |ky (v, 0)| + Ko (v,0)] < k1 (1 +609).

With the above conditions, they get that the initial-boundary-value problems (1.3) and (1.4) have a unique
global solution (v, u, w,0)(t, z) such that v € L>(0,T); H* W1>°(£2), and (u,w,0) € L>°(0,T; H'(£2)).

Our main purpose in this paper is devoted to the construction of globally smooth, non-vacuum solu-
tions to the Cauchy problem for the one-dimensional non-isentropic compressible Navier—Stokes equations
with density-dependent viscous coefficient and density- and temperature-dependent heat conductivity
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coefficient for arbitrary large smooth initial data. Also, the viscosity coefficient p(p), A(p), and heat-
conducting coefficient x(p, ) can be degenerate functions of density p and temperature 6. That means
when p or 6 goes to 0, the viscosity coeflicients or the heat-conducting coefficient can be 0.

Here, let x be the Lagrangian space variable, ¢ be the time variable, and v = % denote the specific
volume, then the one-dimensional compressible Navier—Stokes equations (1.3) can be rewritten as

vy — Uy = 0,

Ut +p(U59)a: = ()\(Uv)ux) ,

Wy — (“(vvﬁ) ’ (1.6)
et + (up(v,0)), = (’\(vl"u“” i plojwws ”(Uf)ez)m.
Here, € = e + 1(u? + |w|?), with the initial data
(v(0,z),u(0,z),w(0,2),0(0,2)) = (vo(x), up(z), wo(x), 0 (x)),
i (vola), o), wo(e),Oo(a)) = (v, 0w, 02). o
Throughout this paper, we will concentrate on the case of ideal, polytropic gases, that is,
p(v,0) = %ngv*Vexp (7_1s> , e:CUHZ%, (1.8)

where the specific gas constants R and C, are positive constants, and v > 1 is the adiabatic exponent of
the gases.
Then, (1.6) can be rewritten as

vy — Uy = 0,

up +p(v,0), = (%) )
t . (H(UZWJE;T’ (1.9)

2

Coly + zp(v, 0) = 2 4 LIy (w0000

v

For simplicity, without the loss of generality, we consider the case when the far fields of the initial data
satisfy (vy,us, wy,01)=(1,0,0,1).

Our first result in this paper is concerned with the case A(v) = A > 0, u(v) depends on v, and the
heat-conducting coefficient x(v,6) > 0 depends on density and temperature, which can be summarized
as the following theorem:

Theorem 1.1. Suppose that the following conditions hold
o (vo(z) — 1,up(x), wo(z),00(z) — 1) € HY(R) and there exist positive constants V., V, O, O such

that
V <uw(z) <V, ©<b(z) <06; (1.10)
.
Av) =\ > o,v>iv%f>6 k(v,0) > C(V,0) > 0. (1.11)

w(v) >0 is smooth function of v.
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Then, the Cauchy problem (1.7)—(1.9) with u(v), A(v), and k(v,0) given above admits a unique global
solution (v(t,x),u(t,x),w ( x),0(t,x)) which satisfies
x)

(v(t,x) — Lu(t,z),w(t,z),0(t,z) —1) € C° (0 T, Hl(R))
(ug;(t,x),ww(t,x),ﬁw( x)) € L* (0, T; HY(R)), (1.12)
0< Vot <wlt,r) <Vy, 0<Op<O(txz)<Oy V(tz)ec[0,T]xR

Here, T > 0 is any given positive constant, and Vy, ©q are some positive constants which may depend on
T.

The assumptions imposed on A(v) = A do not cover the case when the viscosity coefficient A(v) depends
on density. So, our next main concern is the solvability of (1.7)—(1.9) when the viscosity coefficient A(v)
depends on density, and the heat conductivity coefficient x(v,0) depends on density and temperature.
Here, for simplicity, we just consider about the polynomial case, i.e.,

Aw)=v"% pw)=v"° k6 =6,

Here, a, b, c are constants to be determined later. Then, our next result in this direction can be summarized
in the following theorem.

Theorem 1.2. Suppose that the following conditions hold
o (vo(z) — 1,up(x), wo(z),00(z) — 1) € HY(R) and there exist positive constants V., V, O, O such

that
V<w(z) <V, O <by(r)<6; (1.13)
[}
1 1
g <a< 5

e bandc satisfy one of the following conditions:
(i) 1<b< 7% <2

(ii.) 0<b< I,QTb—l- (?3(:&1-;(21)(12;;) <1, (1(35)(53)';? ;Z)) < 1,lsign(14c¢)|Pa(1—0) < 1, Py are positive

constants that can be determined in Sect. 3.

Then, the Cauchy problem (1.7)—(1.9) with u(v), A(v), and r(v,0) given above admits a unique global
solution (v(t,z),u(t,z), w(t,x),0(t,x)), which satisfies (1.12).

Our next result is concerned with the case when p(v), A(v), and (v, ) are more general smooth
functions of density and temperature, which contains the case when u, A\, and k are positive constants.
The main idea is using the smallness of v — 1 to control the possible growth of the solutions caused by
the nonlinearity of the systems to deduce an uniform lower and upper bound on the absolute temper-
ature, which is based on the observation that when (vo(z) — 1,uo(z), wo(z), so(z) — 5) € H?*(R) with
its H?(R)—norm being bounded by some constant independent of v — 1, and ||fo(x) — 1|| =) can be
chosen as small as wanted provided that - — 1 is sufficiently small. Here, 5 = % In % is the far field of
the initial entropy so(x), i.e.,

~y—1
lim sp(z) = lim n lnReO(m)vO(x)

=35.

It is easy to see that s depends on T; It is more convenient to use v, u, w, and s as independent variables
in such a case. And our result in this direction can be summarized in the following theorem:

Theorem 1.3. Suppose that the following conditions hold

o (vo(x) = L up(x), Wo(x), s0(z) —3) € H*(R) with ||(vo(x) — 1,uo(x), wo(2), s0(x) — 3| m2(m) being
bounded by some positive constant independent of v—1 and (1.8) holds true for some y—lindependent
positive constants V., V, 0, O;
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o Aw)>0 forallv>0,and
lim ¥(v) =—o0, lim ¥(v) = +oo. (1.14)

v—0Tt v—+00

Here,

U(v) = Az)dz; (1.15)

/U Vz—Inz—-1
z
1
w(v) >0 for all v > 0, and u(v) is smooth function of v;
We assume that k(v,0) is smooth function of v,0, and k(v,8) > 0 for allv > 0,0 > 0 and if we set
k1(v) = min_ k(v,0), we may further assume that
0<0<O
A(v) A(v)

Tm W Ty a0, 1.16
SR )R T M) P (1.16)

o v —1 is sufficiently small.

Then, the Cauchy problem (1.7), (1.9) admits a unique global solution (v(t,x),u(t,z), w(t,x),0(t, x)),
which satisfies (1.12) and
lim sup |(v(t,x) — 1, u(t,z), w(t,x),0(t,x) —1)] = 0. (1.17)
t—=+00 zcR
This paper is organized as follows: after this introduction and the statement of our main results, which
constitutes Sect. 1, the proofs of Theorems 1.1-1.3 will be given in Sects. 2-4, respectively.
Notations: Almost all the notations used in this manuscript are standard: O(1) or C;(i € N) stands for
a generic positive constant, which is independent of ¢ and x, while C;(+,...,-) (i € N) is used to denote
some positive constant depending on the arguments listed in the parenthesis. Note that all these constants
may vary from line to line. We denote f* = max{f,0}, f~ = max{—f,0}. || - ||s represents the norm in
H*(R) with ||-|| = || - |]o and for 1 < p < 400, LP(R) denotes the standard Lebesgue space with the norm

P

/\f<r,x>|pdx L 1<p< o,
R

(Dl -

1.18
1£(7) s 1= sup | £(r, )], (1.18)
z€ER
[fllzse, == sup  |f(7,2)]
(r,z)€[0,t]xR

for f(r,z) € C([0,t], L?(R)).

2. The proof of Theorem 1.1
This section is devoted to proving Theorem 1.1. To this end, we first define the following closed set for
which we seek the solutions of the Cauchy problem (1.7), (1.9)
(v—T1,u,w,0—1)(t,z) € C° (O,T;Hk(R))
X(0,T; Mo, My; No, Nv) = < (v,u,w,0) (t,2) | (va, Uz, Wa,05) (t,2) € L? (0, T; H*(R)) (2.1)
My <wv(t,z) < M;, No<0(t,z) <N

Here, T' > 0, M; > My > 0, N; > Ny > 0 are some positive constants, and when k£ = 1,2 , the space
C°(0,T; H*(R) is different in different theorems. We can get the following local existence result.
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Lemma 2.1. (Local existence) Under the assumptions stated in Theorems 1.1-1.3, there exists a suffi-
ciently small positive constant t1, which depends only on V., V,0,0, and ||(vo — 1,ug, Wo, 0o — 1)||1, such
that the Cauchy problem (1.7), (1.9) admits a unique smooth solution (v(t,z),u(t,x), w(t,z),0(t,x)) and
(v(t, ), u(t,x), w(t,x),0(t,x)) satisfies

0<% <o(t,z) <2V, 2.3
0<2<0tx) < 20, '
[Sup] (”(U - 1,u,w,9 - 17)(t)||k) < 2||(U0 - 17“07W0a90 - I)Hkv (23)
0,t1
and
| l‘lm (U(t,l’) - l,u(t,x),w(t,x),ﬂ(t,z) - 1) = (0707070) (24)

Here, to prove Theorems 1.1 and 1.2, we need k = 1, and for Theorem 1.3, we need k = 2.

Lemma 2.1 can be proved by the standard iteration argument as in [8] for the one-dimensional com-
pressible Navier—Stokes system; we thus omit the details for brevity.

Suppose that the local solution (v(t,z),u(t,z), w(t,z),0(t,x)) constructed in Lemma 2.1 has been
extended to the time step t = T > t; and satisfies the a priori assumption

VO S ’U(t,l’) S Vla @0 S H(t,l') S él (Hl)

for all z € R, 0 < t < T, and some positive constants 0 < Oy < 01,0 < V < 771, we now deduce
certain a priori estimates on (v(¢, ), u(t, z), w(t, z), 6(¢, z)) which are independent of ©¢, O1,V, V7 but
may depend on 7.
First, we will get the basic energy estimate. For this purpose, note that
u? +|wl*  Re(0)

)=z —Inz—1

is a convex entropy to (1.9), which satisfies the following identity

2 2
Au o

2
(v, w, 0); + 5 + e+ e = {fe _ ufe | dwe sl |
RO
—{(*" = R)u},

we can deduce by integrating (2.5) with respect to ¢ and x over [0,7] x R and from (2.5) that

(2.5)

Lemma 2.2. (Basic energy estimates) Let the conditions listed in Lemma 2.1 hold and suppose that the
local solution (v(t,z),u(t,x),w(t,z),0(t,x)) constructed in Lemma 2.1 has been extended to the time step
t =T >ty and satisfies the a priori assumption (Hy), then we have for 0 <t < T that

t
K02 2 W, |2
[utvewwonao+ [ [ (5 + 2% 1 ML) agaoar = [ oo wo bo)das. 20
R 0 R R

From the argument used in [4], and the basic energy estimate (2.6), by making use of the Jenssen’s
inequality, we get for each i € Z, there are positive constants Ag > 0, A; > 0 such that

i+1 i1
Ap < /v(t,x)dx, / O(t,x)de < Ay, Vtel0,T]. (2.7)

i %
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And there exist a;(t) € [i,7 + 1], b;(t) € [i,¢ + 1] such that
AO S ’U(t, ai(t)), 9(t,b1(t)) S Al.

0
u = —R (v) + (Alnv),, .

Integrating (2.9) with respect to t over [0, ],
t
as| 1 (mU( ,y)> _
vo(y) /,
Y

u(t,y) — uo(y R(/t
0

Integrating (2.10) with respect to y from a;(t) to any = € [i,7 + 1], we obtain that

From (1.7)2, we have

Cb

@

[t~ uolupay :R/f -2
a;i(t) 0 5
[ 0(s, ai(t)) o(t, ) o(t, ai(t))
+RO/U D) d + Aln v0() —)\lnm.

Multiply % and take the exponential on both sides of (2.11), we arrive at

x

exp | 5 [ ult) = w(w)dy

a;(t)
o) wlw®) [ R [ 0(s,z) N (R [ 0(s, ai(t) .
— wo(x) v(t,ai(t))e p( A O/v(&x)d) P ()\ O/v(s,al(t))d)

Consequently, we get

with

Notice that

2311

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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Multiply M on both sides of (2.14), we arrive at

t

d R [ 0(s,x) R
dt Y ds | | = 5 Bilt,2)Yi(0)0(t, x). 91
5 | )\/U(S’x)s 3 (t,2)Yi(1)0(t, z) (2.15)
0
Integrating (2.15) with respect to variable ¢ over the interval [0, ¢], it follows that
R [ (s,2) R |
s,
exp )\/v(&x)ds + )\/ i(s,2)Y;(s)0(s, x)ds (2.16)
0 0

Then, plug (2.16) into (2.12), it yields

t

1 R [0 L+ & 7 Bi(s,2)Yi(s)6(s, 2)d
v(t, 1) = =————exp —/ (S’x)ds = 3 Jo Bils, 2)Yi(s)0(s, 2) ° (2.17)
B;(t,z)Y;(t) AJ v(s,x) B;(t,x)Y;(t)
0
Integrating (2.17) with respect to z over [¢,7 + 1] yields
i+1 i+1 .
1+ & [0 B;(s,2)Y;(s)0(s, x)ds
t,x)de = AU ——du. 2.18
[ty 0 : (2.18)
From the definition of B;(t, ), Y;(t), we can deduce there is C' > 0, such that
0<C ' <Bi(t,x)<C, Yi(t)>1, Vxelii+1], tecl0,T). (2.19)
Applying (2.19) to (2.18), we can discover that
i+1 t i+1
/v(t x)da < ¢ 1+ E/Y(s) / 0(s,z)dzds (2.20)
J sy \ P e ' '
i 0 7
Consequently, from (2.7), (2.8)
t
Yi(it) < C 1+/Yi(s)ds . (2.21)
0
Using Gronwall’s inequality,
1<Y,(t)<C, te[0,T), i=0,41,+2, ... (2.22)

Combine (2.19), (2.22) together, we have v(t,x) > C, Va € [i,i+ 1]. Since ¢ is arbitrary, C' is independent
of i, we actually obtain

Lemma 2.3. Under the same conditions listed in Lemma 2.1, there is V. > 0, such that for ¥Vt € [0,T],
v(t,x) can be bounded from below as

v(t,z) >V, VzeR. (2.23)
Our next result is concerned with the lower bound estimate of 0(¢, z),

Lemma 2.4. Under the assumptions listed in Lemma 2.3, we have

< 0<t<T. (2.24)

)

1D —

0(t,x)
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Proof. It is easy to see from (1.7)4 that

o (5), (%2 6)).-[2(6))

A OR\’| R%* w2
— Uy — — — = L. 2.25
+v92 <u 2/\) v vh? (225)
If we set h(t,z) = § — %H%HL%T, then
tht S (Mhz) 9
v i (2.26)
h(0,z) = ho(x) = (@)
From the maximal principle, we get
1 R% |1 1
- — < —. 2.2
Mbo) =5 -1 o], =@ (2.27)
T,x
Thus, we have completed the proof. O

With the lower bounds of v(¢, ) and (¢, z) at hand, our next job is getting the upper bound of v(t, x).

Since
1+1 i+1

“92 /et )d (t,z) L ¢ (2.28)
X xmaX'U X mg?,X (U 0) . .

and due to the assumptions 1mposed on K(U f) in (1.11), and (2.7), we obtain that
+1

0(t,x) <C /—mdx maxv(t,z) + C. (2.29)
Inserting (2.29) into (2.17), we finally get
t i+1
lo(®) e < c+// O o) - (2.30)

From the Gronwall’s inequality, we can get the following lemma:

Lemma 2.5. Under the same conditions listed in Lemma 2.1, there is a positive constant V > 0, such that
v(t,z) < V. (2.31)

With (2.23), (2.24), and (2.31) at hand, (2.6) can be rewritten as
t
9 92 2 . 2
/ txdx—i—//( v “9””+|0|>dxdr<c (2.32)
0
Then, our next main job is to get the upper bound of 6(¢,x), and for the purpose in this direction, we
get the following lemma:

Lemma 2.6. Under the same conditions listed in Lemma 2.1, we get
¢

10 =z, < [ (ol + Il + [0]E) dr + C. (239
0
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Proof. Multiply (1.7)4 by 2p(0 — 1)?’~!, and integrating the result with respect to ,

d v, 0
29Cu0 13 510~ 1o+ [ 20620 = 10 - P22 (9 - 1)) s
R
2 2 0
= /(9 — 1)t (A“x ‘““x) dz — /2p(0 _ oyt U g (2.34)
v v v
R R
By making use of the Young’s inequality, we obtain that
t
16 = tzze < [ (lualBo + 1wl + o ) dr (2.35)
0
Letting p — 400, we get (2.33); thus, the proof of Lemma 2.6 is completed. O

From Lemma 2.6, we can see that to get the upper bound of 0, we need to get the estimate of the
terms appeared in the right-hand side of (2.33). For the purpose in this direction, our next job is getting
the estimates of || (tz, Wa)||, ||(tzz, Waz)||. First, we will get the estimates of ||v,||. From (1.9)2, we obtain

that
> [ RO RO 2
il +//3ugdxd7//< Vs uI)dxdT
v
0

0 R
+/ (uvz(m) _ “0”096(1;)) de. (2.36)

v Vo
R

| >

By making use of the Cauchy’s inequality, we obtain that

t

¢ ¢
1 2 2
//Rewvwdxdr < 7//%dmdr+(}’//e—mdxd7. (2.37)
v2 8 vl
uv

0 0 0 R
- 1 v2
/ (t,x)dz < = / A5 dx —I—C/—dx (2.38)
v 2 v2
R R

Then, we can obtain that

//$d$dT<C+C//(2 i)d;zch. (2.39)
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Next, we will get the estimates of the terms appeared in the right-hand side of (2.39). For this purpose,
if we multiply (1.9)2 by wu, it follows that

2 2 A
<u> A% — o (p— R) + <u(R—p)+ “"’”) . (2.40)
2/, v v ©
With the estimates of (2.6) and from easily calculation, we can get that
t
2 u?
||l +//)\—zd:ﬂd7 <C. (2.41)
v
0 R
2 1 2
DI? + = 5 ol (242)

Then, plug (2.41) into (2.39), we get

2 02
— +// Idl’d’]’ < C+C// —2 dadr. (2.43)
0 0
If we denote f = C,(6 — 1) + u® + ‘WI , then from (1.9),
fi+ (up), = ( (1; 9)9 + é o+ @W . w,;> . (2.44)

Multiply (2.44) by f, we obtain
+Mw-wxuz>> f>
v x

(), (%57

- < r©.6) +é +HSJ)W'W$> fo +upfa. (2.45)

Since f, = Cyp0, +uu, +w - w,, integrating (2.45) with respect to t and = over [0,¢] x R, and combining
(2.23), (2.31) together, by making use of Cauchy’s inequality, we assume further that elim k(v,0) =
— 400

K < +o00, and then, we get

Ilf ()12 + // K(v,0)0%dxdr < C’—|—C’// wul + (W wy)? 4 0%u?) dadr. (2.46)

To get the estimates of the terms appeared on the right-hand side of (2.46), multiply (1.9)2 by u?,

t
[l 4 +// 2dxd¢<C+// Y2uldadr. (2.47)
0 R

t

w74 +//W2W§d$d7' <C. (2.48)
0 R
If we plug (2.47), (2.48) into (2.46), with (2.41) in hand, it yields that

Similarly, we have

t t
16— 1))2 +///<;(v,0)9§dxd7 <O+ / 16 — D)3 dr. (2.49)
0 R 0
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By making use of the Cauchy’s inequality and the Gronwall’s inequality, we actually get
t
\w—uﬁ+//£@ﬁw@ﬂhgc.
0 R

Thus, inserting (2.50) into (2.43) and combining (2.24), we actually get

t

[|vz]? —i—//@vgdxdr <cC.
R

0

Next, we will get the estimates of W, uz,. As to the estimates of w,,., we have

b= (8] ), - () e

From integrating parts and by making use of the Cauchy’s inequality, it follows that

t t
2 Ko 2 BN? 2 o
[lwg (1)) +//7wmdxd7§0+//(7) viwsdadr.
v v/v
0 R 0 R

Since

t t t t
/ / uwldedr < / s | [ve |2 waalldr < € / e [2dr + C / s 2o | dr.
R 0 0 0

0
Plug (2.51), (2.54) into (2.53), it follows that
t
u%mW+//%@mwga
0 R
Similarly, we can get that
t t t
[l (8)]|* + // %uixdxdT < C// (02 4 0%v2 +uZv2) dedr < C + / HHH%;,OdT
0 R 0 R 0
If we plug (2.50) into (2.56), it follows that
t
HM@W+//%@mmga
0 R
Inserting (2.55), (2.57) into (2.33), and using (2.50), we have
t t
0= 1lsz < [ 1= 1l~dr+C < [10-1loalar <
0 0

Thus, we have

ZAMP

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

Corollary 2.1. Under the conditions of Lemma 2.1, if we further assume that lim infy<, k(v,8) = K <

0—+oo

+o00, then there is © > 0, such that
0 <o.

(2.59)
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Otherwise, if lim infy<, k(v,0) = 400, we have to get the upper bound of 0 in a quite different

0—+oco

way. From (2.43), it follows that

t
2 002
s +//&dxd7 <C+C (2.60)
v v3 K(0,0) || oo
0 R b
Then, we have
t
Jus )P + @ + [ [ 02, + s Ppndr
0 R
62 0 / 01
<C+|— + H /||9||%md7 + H (2.61)
K || oo K| 0 = || oo
t,x t,x 0 t,x
Then, plug (2.61) into (2.33), it can be easily obtain that
1 t
92 2 5 0
0 —1f|z;e < C+ || — + [ 10— 1]|fedr + ||— (2.62)
’ K L x K L°
t,x 0 t, @
from easily calculation, we get
Corollary 2.2. Under the assumptions listed in Lemma 2.1, if we further assume that
lim inf x(v,0) = +oo,
O—+occ V<v
then there is © > 0, such that
0<o. (2.63)

With Corollaries 2.1 and 2.2, we can get the proof of Theorem 1.1.

3. Proof of Theorem 1.2

In this section, we are devoted to consider the case when p(v) = v=¢ A(v) = v~%, and k(v,0) = 6°.

Let (v(t,x),u(t,z),w(t,z),0(t,z)) € X(0,T; My, My; No, N1) be a solution of the Cauchy problem
(1.9), (1.7), which is defined in the time strip [0,7] for some T > 0, and to extend such a solution
globally, as pointed out in the proofs of Theorem 1.1, we only need to deduce positive lower and upper
bounds on v(t,x) and (¢, x), which are independent of My, M;, Ny, and N7 but may depend on T'.

Suppose that the local solution (v(t,x),u(t,z), w(t,z),0(t, z)) constructed in Lemma 2.1 has been
extended to the time step ¢ = T > t; and satisfies the a priori assumption

Vo <w(t,x) < Vi, 6Oy <0(t,x) <60, (Hz)

forallz € R, 0 <t < T, and some positive constants 0 < Oy < 1,0 < Vi < V1, we now deduce certain
a priori estimates on (v(t, ), u(t,z),w(t,x),0(t,x)), which are independent of Oy, O1,V(,V; but may
depend on T'.

First, just as the proof of Theorem 1.1, we get the following basic energy estimates.
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Lemma 3.1. Let the conditions listed in Theorem 1.2 hold and suppose that the local solution (v(t,z),
u(t,z), w(t,x),0(t,x)) constructed in Lemma 2.1 has been extended to the time step t = T > t; and
satisfies the a priori assumption (Hy), then we have for 0 <t <T that

t

2
/ (v, u, w,6) dx+// (ﬁo +AL|TLI}V;|) (T’x)dxdTZ/W(Umumwo,eo)dﬂ?- (3.1)
R

0

Here, as in Sect. 2, n(t,z) = C,¢(0) + Rop(v) + M, with ¢(x) =z —Inz — 1.

Lemma 3.2. Under the assumptions in Lemma 2.1, when a < 1, we have

l—a
, zeR, 0<t<T. (3.2)
LE,

1
v

<0(1) +0(1)

0(t,x)

Proof. First of all, (1.7)4 implies

a(s), = (52 (), -5 (G)) + (- 5)

R pw}
_ 3.3
v vh? (3:3)
Set
1 R%|1|
h(t,z) = - — -
( 73:) 9 4Cv v Lo )
T
we can deduce that h(t,z) satisfies
Cht§<9v—bhx) . zeR, 0<t<T,
L (3.4)
h0,2) = 5 < &

and the standard maximum principle for parabolic equation implies that h(t, ) < é holds for all (¢,z) €
[0,7] x R, that is, for z e R,0 <t < T

1—a

1 R% |1 1
= — - < —. 3.5
0 40, ||v|= ~ @ (3:5)
T,z
Thus, the proof of Lemma 3.2 is completed. 0

To use Kanel’s method to deduce a lower bound and an upper bound on v(t, z), we need to deduce
an estimate on || -4z ||, which is the main concern of our next lemma. It is worth to pointing out that it
is in this step that we ask the viscous coefficient p depends only on v.

Lemma 3.3. Under the assumptions listed in Lemma 3.1, we have

//v?":ddT
t

C (I[voell? + 1| (vo — 1, o, 6o — 1|2 +// : dxds+C// Haeda:ds (3.6)

0

,U1+a
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Proof. Notice that

Vg V¢ Uy
(U1+a)t - <'U1+a)z = <’U1+“)m = Uy +p(v70)£7

we have by multiplying the above identity by 74z and integrating the resulting equation with respect to
t and x over [0,7] x R that

t
1| ve |2 ROv?
§Hv1+a +/ 3+ad ads
0 R
t Re t
< O(1)Hv0w||2+/ S da ds+// Y dads, (3.7)
0 R 0

Il 12

As to I, we have

1 / 62
L < 5// % s 4+ O(1 )//Ulfaedxds. (3.8)
0 R

0

From easily calculation, we have

t
12:/ 1+a //u 11@ dxds
R 0
UV
2 e 4+ O(1) | (o, 00| / /

O(1) |(vo — 1, v0z, o, 6o — 1) //1LM® (3.9)

dxds

Inserting the estimates of (3.8) and (3.9) into (3.7), we can get (3.6). This completes the proof of
Lemma 2.5. O

To bound the two terms on the right-hand side of (3.6), we now estimate fg Jr ﬁ%dxds in the
following lemma.

Lemma 3.4. Under the assumptions in Lemma 3.1, we have

—dxds < O(1)|[(vo — 1,u0,00 — DII*+0() // v1 p dxds (3.10)
0

t
2
2 u
e+ [ [ 52
0 R
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Proof. Multiplying (1.9)2 by u, we have by integrating the resulting equation with respect to ¢ and z
over [0,T] x R that

f||u O + // U drds
(1)|uo||2 + //R +j/R<1-) wydads (3.11)

R

13 14

From the basic energy estimate (3.1) and the Cauchy-Schwarz inequality, we can bound I; (j = 3,4) as

follows:
t . .
Iy = //R <1 - > vdxds = R/@(v)d:c’
v 0
0 R R
=R /@(v)dx - /@(vo)dx

R R
< O()][(uo,v0 — 1,00 — 1 gp()fb)||2a
t

nedf [ohmson //

Substituting the above estimates into (3.11), we can deduce (3.10) and complete the proof of the
lemma. O

/\

dds

To bound the two terms on the right-hand side of (3.6) and (3.10), we need the following.

Lemma 3.5. Under the assumptions in Lemma 2.3, we have for b # 0, —1 that

/max|9(s,x)|bds < C(T), (3.12)
zeR
t
b+1
max |0(s, 2)|"*ds < C(T) (1 n IIHHL%%) , (3.13)
0
and
t
b+1
/glear){(|9(8,x)| as < 0(r) (14 ollzz.) (3.14)

Proof. We only prove (3.13) because (3.12) and (3.14) can be proved similarly.
From the argument used in [4], we have from the basic energy estimate (3.1), the Jenssen inequality
that from each ¢ € Z, there are positive constants Ay > 0, A; > 0 such that
i+1 i+1
Ap < /v(t,x)d:c, /O(t,x)dx <Ay, Vtelo,T]. (3.15)
Hence, there exist a;(t) € [i,4 4 1], b;(¢) € [i,7 + 1] such that
AO S v (t, al(t)) y 0 (t, bl(t)) § Al. (316)



Vol. 66 (2015) Cauchy problem for compressible Navier—-Stokes equations 2321

Define

0
q1(0) = /sb%lds = % (9% — 1) ,
1

for each = € R, there exists an integer i € Z such that = € [i,¢ + 1], and we can assume without the loss
of generality that = > b;(¢). Thus,

26(t.2) = 0 G50 + [ 01 6(t.0)),
b;(t)

i+l
b—1
1)+ / ‘ 2 0,|dx
i
02 3 /idl 2
<0(1)+ / o bda: / vldx
R i
1
1 62 ’
<o+t | [ s
R
The above estimate and (3.1) give (3.13) and then complete the proof of the lemma. O

As a direct corollary of (3.12)—(3.14), we have

Corollary 3.1. Under the conditions listed in Lemma 3.5, we have

t
// Pdads < O[] - (3.17)
0

Proof. In fact, (3.19) together with (3.12) implies that

t t
// dxdT <O(1 // (0 + 1)o(0)daxdr
0 0

O(1) /maxo9 7,2)dT 4+ O(1)
z€R
t
=0(1) [ max (0'~"6")dr + O(1)

zeR
0

t
<0(1) Hﬁl_bHLm /mear)é@b(ﬂ xz)dr +O(1)

<o) [0 . +0(),

and this completes the proof of corollary. O
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Having obtained (3.17), we can deduce that

1 1—a
// " dudr < // — 1)%dzdr < O(1) 6"~ bHLw (3.18)
Ullpg,
On the other hand, from (3.1), we have
//9 1+ad.’£d7_// 02 bv“&” ——dxdr
1" / 62
1-b ;
< > L ||9 HL%%//U@;—dedT
T 0 R
1 a
O)l|(vo — Lo, wo, 00~ DI || (6], - (3.19)

oo
T,z

Substituting (3.18) and (3.19) into (3.10) and (3.6), we have

Corollary 3.2. Under the assumptions in Lemma 3.1, we have

a

t
2
1
()] +// Ys_qadr < O(1) (v — 1, w0, wo, 00 — D) + O(1) Hv

o1 ., (3.20
o 10 g 820

v1+a

1-a
+0(1) ( - ) [ P (3.21)

Now, we apply Kanel’s approach to deduce a lower bound and an upper bound on v(¢, ) in terms of
[0 ~|| s, . To this end, set

// Vg _dzdr < O(1) || (vo — 1, ug, wo, 0 — 1)]°

a

1

v

1

v

+

oo
LT.a:

U (v) = Vo 1+a 2. (3.22)

Note that there exist positive constants As, A3 such that
W (0)| > As (fu*a + v%*a) A, (3.23)

|
Jlc

Since

1}1+“ U
R
< |vew] |55
$ 115"
1
< _ = 1-bl|2 ]
=0 <1+ <H” Ly v Ly ) e HL?’m)? )
T T
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we have from (3.23) and (3.24) that

1) 1, 1% 1= 1
o]tz <om (e (3«5 ek ) (3.25)
Vlleg, o Uiy, W00z, e
Thus, if + < a < %, we can deduce from (3.25)
Corollary 3.3. Under the conditions in Lemma 3.1, if we assume further that % <a< %, then we have
1
<o) (14| 5ot ) 3.26
s <00 (14 o (3.20)
and
v(t,x) < O(1) (1+Holbuwalﬂl2w) (3.27)

hold for any (t,z) € [0,T] x R.
Consequently, (3.20) and (3.21) can be rewritten as

()2 + // 2 edr < O(1 D (140757, (3.28)

//( o >dxdr<0 ) (14 ot

To get the upper bound of (¢, ), we need to get the estimates of u, and w,. Thus, we have the
following lemma:

o ) . (3.29)

U1+a

Lemma 3.6. Under the same conditions of Theorem 1.2, we have

t
1 1
SIw@E+ [ [ wzanar = Lol (3.0
2 v 2

0 R

t

2 pw) o 2 411 91=b| P

waol+ [ [ Hw2 dadr < ol + (0400 (33)

Here, we denote P as

4al2a — 1 — ]t +4a[l + T 2[2a —c—1]7 +2[1 + ]~ + 4a

b= (3a—1)(1 - 2a) 3a— 1

Proof. From (1.9)3, we get

t
v 1
t)||2+//¥w§dxd7= §||WO||- (3.32)
0 R
[ [ 1) ! [ [ (p)
(v (v
o + [ [ auar = o] - [ [ (A
0 R 0 R

) VW Wapdadr. (3.33)
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From easily calculation with the Cauchy’s inequality, it follows that
[ [ n) t (
w(v) o v w(v
weOl+ [ [5G, [ [
Iwa (0 . e
0 R 0 R

Is
As for I, since (3.32), and p(v) = v~ ¢ A(v) = v~ %, we get

))UvIww>2d:ch. (3:34)

t t
Ji2lezar < [ walllwdldr
0 0

< ooz / /

t
2a[14c]t [14¢] 2
oo [ g ) (3.35)
v
0 R

I
[N

Thus, we have

t
I5§/
0

P[ ,uz)v) ((ME}U) ) . “zwz) 2 dadr

: ufv) (Agjv) <u§)v)>v>2 Lﬁo/llwm(T)II%;o A(?% sz (3.36)
<O+ e 21| (L4105 [ e (337)
0

4a[2a—1—c]t +4ali+c]t | 2[2a—c—1]" +2[14¢]” +4a
< O()(1+ o)} j01 0 Tarhas T+ te / / HOWEs G,
0

Plug the estimates of (3.36) into (3.34) and combine (3.26) and (3.27) together, we can get the proof
of Lemma 3.6.

Lemma 3.7. Under the conditions listed in Lemma 3.1, we have for 0 <t < T that

|z (8)]|* + // ffadxdT

< <>\|<vo—1,uo,vvo,eo—1>|\2

0|0, (110 15E7)

+0(1) (1+H91 ’)H“aalial 2a)>> (3.38)
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Proof. By differentiating (1.9)2 with respect to x, multiplying the resulting identity by u,, and integrating

the result with respect to ¢t and x over [0,7] x R, we have

2 xTrxr
e ()] / / x4
t
Dionl? +2 [ [ tzsp(o.0)udodr +2(1+ a) / / Uitz |
0 R

0

Ig 17

For I, we have from (3.1) that

IG—2R//um (‘”—9%>d ar
R
1 Us, m 921)%
3 [ on [ [ Eoan o0 [ [ 5
0 R 0

i//ﬁﬁﬂﬂh+0 0, (1 I
0

7a—4a?—1
l_b a— —za
+0(1) (1 S8 e ) :

IN

Here, we have used the fact that

t 02
T://vgf_bvaHQ*bdxdT
0 R
Dl 162, // e dadr

< O)olsse, 0% e,

<O [, (141015 )

and

————dadr

6202
v3

0

U2+2a ’Ul —3a

02
< ax 02 ( >||v||3a ! / 2+2adx dr
R

t

o) (14 10157 ) ol | (g (s,0as)
0

=
g
%
\o\
B

(3.39)

(3.40)



2326 Q. Zou and H. Lei

t

o (14 101257 ) ol ! [ (g0t +2(s, ) )
0

t
1-b||Ba—1 3a—1 1+b
<1+H9 = > [l /(rggneaﬁ(@ (s,:c)ds)
0
Y (1+H@1 i ) ol (1+ ol )

<0(1) (14—H91 bH“G”“”“),

where (3.1), (3.12)—(3.14), and (3.29) are used.
As for Ir, since (3.28), (3.29) together with the Sobolev inequality imply

/ o ()2 dr < / et () et ()
0 0

t 2 t 2
< / s () |27 / e (7) 2
0 0
<ol | [ |- / oo ()| dr
V2
0

N

uww

2
1+a(T)H dr ,
V2

t
<0(1) <1+H91 me) /
0

we can deduce from (3.26) and (3.27) that

2

u-.v

Ll // Lo i + 001 //ng
0

Tx Ui 'U2
3 [ o [ || f e
R 0 R
1 1 1—a t
< 4// o dadr + O(1 )Hv (1+ 0™ b{|3a 1 /||ux(7)u'§godf
0 R LT
< 1// U dzdr + O(1 (1—1—”91 bH““ DI 2‘”) // 2L dxdr
— 4 1+a 1+a
0 R
1 2(20. 2a +1)
Tz 1-b|| Ba=—1)(1—2a)
<2//1me+0(<HWH]WIW2).
0

ZAMP

(3.41)

(3.42)

Putting (3.39), (3.40), and (3.42) together and noticing that 2(2a — 2a% + 1) > 7a — 4a? — 1 imply

(3.38), this completes the proof of Lemma 3.7.

O
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Now, we turn to deduce the upper bound on (¢, x).

Lemma 3.8. Under the conditions in Lemma 3.1, we have

10l L5, <O(1) 1+ e Lm+ e Lw+ 5 Lwa”Lf drp . (3.43)
" 2 2 2

Proof. From (1.9)y4, it is easy to see that for each p > 1,

bp2
Cy [(0—1)], 4+ 2p(2p — 1)(0 — 1)2@—1)%
v

_ {Qp(a - 1)2101917990} L WO s 20— )P, 2pRO

_1)%r—1
v plte x plt+a T v x(e 1) . (344)

Integrating (3.44) with respect to z over R and using the Young’s inequality, we get

t
u? w2 Ou
0— 1|2 <O(1)+O(1 . . 2 dr. 3.45
16— 1[2» < O(1) 4+ O( )/ <‘ vt o | ‘ sz) T (3.45)
0
Letting p — 400, we get (3.43); thus, the proof of Lemma 3.8 is completed. O

We are now ready to use (3.26), (3.27), and (3.43) to deduce a lower bound and an upper bound on
0(t, ). Firstly, from (3.38) and (3.41), we have

t
[ sl as
0

1-b %
< 0() (1+ 0| o)
I, (1 10 IE ) o o g
2-b||3 1—b|| T ey R
<O 107" e, <1+ [ IS a>) +0() [|07"[| 2% 7 + o). (3.46)

Thus, we have from (3.26) and (3.27), and (3.41) that

t
u? u?
= + || = dr
/( plta Lo V2 Lo
0 2 g
1][H+e 1112 p
<om (i) 5| ) [rueonar
UllLss, Ullzg, /)

<o) (14|~

t
2
2 [l o
T,z
0

1 a?—a+t2 3+a—2a2
<o (6> 75 (1 +[0*] 2;‘;;”””) +OM) 0|5 T o), (347)
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and similarly, from (3.30) and (3.31), we get

p 2
w
/ Ulfc dr
0
' /
<o) ‘() [ Iwalizar
L$, 0
1-b 3:1 1 Jr(1 2a)(3a 1)
<o) o ”Waf )i dr
1 1
t 2 t o 2
<0 Hel bHLQ ]1 +a= 2[0)(3]a ) H 1+cHLoo //H ld dr //M(U)Wmdde
t,x v
0 0 R

N

||91 b||La L +<1 2 H91 b” Lt ]1 + et // mdxdT
0

1 ot / / LOLE

20 (1+2a)[1+c]++(272a)[1+u]_+2a[2a717c]++(172a)[20,7170]_

<OM)(A+c)? 0" 0> am2a@eD (3.48)

2

Here, for brevity, if we denote P, as

2a (1+2a)1+c"+(2-2a)[1+¢] +2a2a—1—¢]t + (1 —2a)2a—1 -]

P =
2T 31 (1—2a)(3a — 1)

)

then (3.48) can be rewritten as

¢
2
/ el ar<omat oot (3.49)
) L
Also, from direct calculation, we have
¢ ¢
2 < 1-b b+1
I&Bﬁ(@ (s,2)ds < max (67"(s,2)0" (s, x)) ds
0 0

t
< HGl_bHL%ow gcneaé<91+b(s x)ds
0

<O 6", (14 I0lles. )

a—6a2—
<o) (1 + |\91—b|\L<3;13<121a>> . (3.50)
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Inserting (3.47), (3.49), and (3.50) into (3.43) yields
611z, < O) + O |92 <1+y|91 buwmw)
(0 oI 00 ot EEET - o+ o701
< 0)+o ||y (1+ 07
1) [|e*~ ”||m+0< J(1+)?[0" " 7 (3.51)

Then, based on (3.2), (3.26), and (3.27), we finally get
Corollary 3.4. Under the assumptions in Lemma 3.1, we further assume that Lca<? 5, and one of the
following conditions holds

(i) 1<b< 7% <2;

— — — — 2 .
(i) 0<b< 1, 271’ et 07 g GEhGhe-20D < 1 Jsign(1+ o) (1 b)(P2) < 1

Then, there exists positive constants Vi > 0,61 > 0, such that

Vit <w(t,z) <V,
- ' (3.52)
o7 <O(t,x) < 6.
Proof. We first consider the case b > 1. In this case, we have from (3.2), (3.26), and (3.27) that
(-a)(b=1)
1 1-b 3 = 1 et
5 <o +o@ ot <o) +o0) |4 ;
0| I
T,z T,
> 0 such
that
O(t,x) > 607" >0, VY(t,z)€[0,T] xR. (3.53)

Moreover, (3.26) and (3.27), and (3.53) together with the fact that b > 1 imply that there exists a
positive constant ¥, > 0, which may depends on 7', such that

Vit <w(t,z) < Vi, Y(tz)€[0,T] x R. (3.54)

Thus, to prove (3.52), we only need to deduce the upper bound on (¢, x). For this purpose, we have

(a®—at2)(b-1)
(Ba—1)(1—2a)

2-b 1
¥l < 00+ 0w o1, |1+
: .
1 4(3(52:12)"(?71(2;1) Ll Py
+O(1)H +O01)(1+0)*| =
0|, 0|,
T,x T,
2-b
< 0(1) (1 + ||9|\L§<3z). (3.55)

From (3.55) and the fact that 0 < % < 1, one can easily deduce an upper bound on (¢, z). This
completes the proof of (3.52) for the case 1 < b < 2% O
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When b < 1,

—a a— a2 —
—b+(a +2)(1-b) (3+a—2a2)(1-b)

16llzs, < O) +OW)0ll5 “ PO OO +O0M)A+?0l% . (3.56)

From (3.56) and the assumption (ii) of Corollary 3.4, we can deduce an upper bound on (¢, z). With
this, the lower and upper bound on v(¢, x) can be deduced from (3.26) and (3.27). And then, (3.2) implies
the lower bound on 6(¢,x). This completes the proof of the corollary.

From corollary 3.4, we can get Theorem 1.2.

4. The proof of Theorem 1.3

First of all, the local solvability of the Cauchy problem (1.7), (1.9) in the function space X (0,%;
%K, 2V; %Q, 20) with t; dependingon V., V, 0,0, ||(vo—1,v9, 0g—1, o, )||1 can be proved as in Lemma 3.1.
Suppose this solution (v(¢, x), u(t,x),0(t, z), P(t,x)) is extended to t =T > t;. To apply the continuation
argument for global existence, we first set the following a priori assumption:

10(t,z) — 1|2 <€, (t,z) €[0,T] x R. (Hs)

Here, € is small positive constant, and without the loss of generality, we can assume that € < %

Note that the smallness of v — 1 is needed to close the a priori assumption, the generic constants used
later are independent of v — 1, and whenever the dependence on this factor will be clearly stated in the
estimates. First, just as the proof of Theorem 1.1, we get the following basic energy estimates:

Lemma 4.1. Let the conditions listed in Lemma 2.1 hold and suppose that the local solution (v(t,x),u(t, x),
w(t,xz),0(t,x)) constructed in Lemma 2.1 has been extended to the time step t =T > t1 and satisfies the
a priori assumption (H3), then we have for 0 <t < T that

/ (v, 1, w, 0) daer// <”92 +“|ZV9|) (T,:c)dxdT:/U(UO,UO,WO,F)O)(I)d:p. (4.1)
R

Here, as in Sect. 2, n(t,z) = Cpd(0) + Rp(v) + %, with ¢(x) =z —Inx — 1.

A(v)vg |
v

Now, we turn to deduce an estimate on || |. For this, similar to Lemma 3.3, we can deduce

2 t 2
‘ Av)v +// )\(v)fvm dedr
v
0 R

O(1)|Jvez|I* + O(1 /t/ AW 44 +0(1 /t/A £ dadr. (4.2)
0 0

J1 J2

If the a priori estimate (Hs) holds, we have from (4.1) and the assumptions imposed on «(v,#) in
Theorem 1.3 that

2
; (4.3)

J1<O // md dr <O H< ].,UO,W(),\H/(%)
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and

2
Jég//%v@@ AW o
0 9)

t
2
< 0() //nvﬁ@xddT
LDCOR
6o — 1\ |I* || Mv)
<01 — 1, up, Wo, ——— 4.4
< ()’(Uo Uug, Wo T_1> (o), (4.4)

Putting (4.2)—(4.4) together, we obtain

Lemma 4.2. Under the assumptions in Lemma 4.1 and the a priori assumption (Hs), we have

0y — 1 :
H // xd dr <O H(’Uol Uo,W07\/(zﬁ,’Uor) <1+ ) . (45)
— L,

Having obtained (4.1) and (4.5), we can use Kanel’s argument, cf. [2], to deduce the lower and upper
bounds on v(t,z) as follows.

A(v)

k1(v)

Lemma 4.3. Under the assumptions in Theorem 1.3 and Lemma 4.2, there exists a positive constant

Vo > 1, which depends only on ||(vg — 1,uog, \o/ﬁ,vot)ﬂ V,V.,0, and O, but is independent of T, such
that

Vo ! <o(t,x) < Va, (t,2) €[0,T) x R. (4.6)
Proof. Define

/ /9(2) Az)dz

o(z)=z—Inz—1,

and notice that

)= | [ we),dy
A(v)vy
/’\/qﬁ(v) (v) ’d:ﬂ
1 [ A (v)vg
< o)l |
v
2 3
90 -1 )\(’U)
o — 1, anW07aU0w) 1+ .
H( vy —1 ( K1(v) L,
It is straightforward to deduce (4.6) from the assumptions in Theorem 1.3. This completes the proof of
the lemma. O]

Thus, combining (4. 5) and (4.6), we actually get

0y —1
// zd dr <O H(UO_l Ug, W0, —F——, Voz
A1

From easily calculation, we can deduce

2

(4.7)
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Lemma 4.4. Under the same conditions of Theorem 1.3, we can get

0o — 1\ |
Il (w, W) (2)]|* + // )w 2dedr < O(1 H (vo — 1, up, wo, \;ﬁ) (4.8)
Similar to Lemmas 3.6 and 3.7, we can get the estimates of u, and w,.
Lemma 4.5. Under the assumptions in Lemma 4.3, we have for each 0 <t < T that
\ww|2 o —1\|°
s (DI + el + // a dedr < 0(1) | vo — 1,uo, wo, =L (4.9)
UH vy—=1/1;

Here, for brevity, we omit the proof of Lemma 4.5. To close the a priori estimate (Hs), we need to
deduce an estimate on ||0,(t)].
Now, we turn to the case when (v, #) depends on both v and 6. For this , we have

Lemma 4.6. Under the assumptions in Lemma 4.1, if the assumption Hs holds true, then we have

k(v,0) Oy — 1
// 92 Ldzdr < O(1) (vo—l,uo,wo,\/%)

Proof. Differentiating (1.9) 4 with respect to z and multiplying the resulting equation by 6,, we have by
integrating it over [0,¢] x R that

ool + / /
:%||eox||2+//9m (Aiwuﬂ dadr +//9x (”S})wildwdT

J3 Ja

t t
_//91, <“(”9)> dexdT-i—//Gmp(v,é)uxdxdT. (4.11)
v
0 R * 0 R

J5 JG

(4.10)

1

edxdT

For Js, J4, J5, and Jg, we have from Lemmas 4.1-4.6 and the a priori estimate (Hs) that

t
= —//Agjv)uiﬁmdxdT

0 R
1 ; .0 ¢
S6//’6( g2, dadr + 0(1 // 4 dzdr
0 R A
1 / .0
< 6//’f( )92 Ldzdr + O(1 //||ux 2 tze (7)]| dadr
0 R 0 R
t
1 k(v,0) o 8o — 1
=z 02, dad 1 ~1 4.12
S 6O/R~/ 2z AT T+O( )H((Uo ,uo,wo,\/ﬁ> 1 , ( )
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In the same way, we can get

t t
v 1 0y —1
J4: _//IU/E)) 29:pwd d 6// dmdq’-’—o( )‘ (UO_:[’UO,WO’\/%) ) (413)
0 R 0
1 0 /
Js < 6//K( )92 Ldzdr 4+ O(1 //uid:vdT
0 R
L[ [ #(0,0) 0o —1\ |
k(v 0—
< = 02 dzd —-1 - 4.14
60/R/ T+O H( , Up, W0, /77_1> 17 ( )

As to Js, from the assumption Hs, there is positive constant C' > 0, such that ||0,(¢)|| L~ < C and also
from (4.7), we can deduce

t

Jo < O(1 //94dxdr+ // ”992dxdr+o //92 2dzdr

0

1//1% 92 dzdr + O(1 1, ug, w b —1)|°
- - _ J0— -
<% Vo 0, Wo, A1

0

1

(4.15)

O

Inserting (4.12)—(4.15) into (4.11), we can deduce (4.10), and then, we complete the proof of Lemma 4.7.
Lemmas 4.1-4.7 imply that under the a priori estimate (Hj), there exist two positive constants Vo > 1
and Cy > 1 with V5 depending only on |[(vg — 1, ug, wo, %,UOJ)H V,V,0, and O but independent of
T and v — 1, and C depending only on V5 but independent of 7" > 0 and v — 1, such that

Vil <o(te) < Ve, (tz)€[0,T] xR,
H( 97_11> ®) 2 * 0/1! (“i + 93)(77 z)dzdr < C

t
0o —1\|°
||v$(t)||2 +//vfc(7'7 x)dzdr < Cy (vo — 1, ug, wo, (iy—l)
0 R

1
t
|z (8)]]? + //uil(T, z)dzdr < C4
0 R

t
w82 + / / w2 (r,2)dadr < Gy
0 R

0.0) I |
T
’ —l—//@iI(T,x)dxdTgCl
vy —1
7 0 R

hold for 0 <t < T.
To obtain the global existence of solutions, we only need to close the a priori estimate (Hg); thus, our
main job is getting the higher estimate of 0(¢, z).

)

Op — 1
vo — 1, up, wo, ﬁ

)

)

1

Oy —1
vg — 1, ug, Wo, \/ﬁ

)

Vo — 1,U0, W0, —F/—
vy—1 1

0o — 1 10
vg — 1, ug, wo, ﬁ

1

(4.16)




2334 Q. Zou and H. Lei ZAMP

Differentiate (1.9)3 twice with respect to 2 and multiply the result with 6,., then it follows that

t
+//<P°9“x> amdxdT—//«“ez) —”9“””>9mdm. (4.17)
0 R 0 R

[
t

1 K o
0 R 0 R

1 :

< 6//E9wmdxd7'+0//u u? d.I’dT+C/||Ua;H ([t |t ||
v

0 R 0 R
t

1 6o —1\|I!
< 6//g@imdxdT—i—C//uiurxdwdT—l—C“(vo—1,u0,wo,\/(’)ﬁ) 1 (4.18)
0 R 0 R
Also, we can obtain
t
/ (M W”) 0pppdrdr
0 R
t
1 K 4
< 8 fﬁwmdxdT—i—C (V2w |* + |W2,||w,|?)dzdr
v
0 R
1 K 0o — 1 \||"*
<= —6? dxdT+C//\W2 [|w |2dxd7'—|—CH<v0—1 Ug, W *) (4.19)
—_— 6 // v T Trxr x ) ) b) — 1
0 0 R 7 !



Vol. 66 (2015) Cauchy problem for compressible Navier—-Stokes equations 2335

In the same method as above, we can get

) 0ppodadr

/fomdxd7+c// (02 + v2) + 2, )dadr
v

¢
1/
6
0
t
1 K 0o — 1\ ||*°
S 6//;9$$xdxd7'+c H( ];,’ll/(),WO7 \/’_ﬁ) ) . (420)
0 R
Our next job is getting the estimate of Jig, here
/ 0 0
Jio :// ((” ””) . m)emdm
v ) o v
1
< 5 // —02, dxdr + C// (08 4+ 020t 4+ 0202, + 0202, + 0202 )dxdr
R
. t t
< 6// medxdr—i—C// V2 +02)0%, + 0202 )dadr
0 0 R
t
C/(HG ||4||9wz||2+ ||UrHQHH:IJHQHUI:EHQ)dT
< - // Hmmdde—i—C// V2 + 02)0%, + 0202 )dadr
O —1
C -1 _— . 4.21
+ H(UO , U0, W0, /77_1) . ( )

Thus, input the estimate of Jr, Js, Jo, J1g into (4.17), we get the following lemma:

Lemma 4.7. Under the condition listed in Lemma 4.1, if the a priori assumption Hs holds, then we get

t'r"c 0071 30
——=dadr < C||| vg — 1, up, Wo, ——
v—1
t

1
—|—C’// u? 4 v? +02+W)(92 +uZ, +w2,) +02v2,) dadr.
0 R

(4.22)
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As the second-order estimate of wu,,, Ws;, we have the following lemma:

Lemma 4.8. Under the same condition listed in Lemma 4.7, we have

t
A\ 00— 1 10
xx 2 T <C -1 07
lttaz || +O/R/Uumm_ Vo ,uo,wo,m

2

// m—|—v +umvx)dxd7'—|—/||vm|\ dr,
t
—1
||wm||2+// 220 0 (30— 100w, & )
0

ZAMP

(4.23)

//W 02, +vy) dadr.  (4.24)

Just perform the same calculation as Lemma 4.7, we can get Lemma 4.8. Here, for brevity, we omit

the proof.
We will give the estimate for v,, in the following. First, since

(u(v)vm> _ (u(v)vt> ;
() (7).

Differentiate (4.25) with respect to « and then multiply the result by
() )= () e () (%),

_ [(m m) u} _ (uu)%) . (Re) (u(v)%)

() ] () o] )

<u(v)vx ) <R9m 2RO,V — ROvy,  2Rv? )
+ + + .

v v V2 v3

thus, there is

(%)I, we can get

<

Integrating the above equation over [0, ] x R, we have

35, ol //M - dadr /( ()m)mua;(t)—(“(?%)quo)dx
). ol + / 5

> UgpdadT

(4.25)

(4.26)
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" (RO, . 2R0uv, — Rbvay 2Rv?
+ + dxdr
v v2 v3
0
Jis
t
2
+ / / Wap (Rse | 2R0cve | 2R 4 (4.27)
v v v?2 v3
0 R

From easily calculation, with (4.16), we have

t t
sz//(u(v)mg) Ugpdzdr < O(1 // m,—i—v Ydadr
v
0 R 0 R

6o — 1
<C -1 . 4.28
> H(UO » U0, Wo, \/’ﬁ) ) ( )
= [((5) o= (H5) ) o
R xT
1 : 0o — 1|
§4H</~L ) (t) +c‘ <v0—1,u0,w0,\/(jﬁ> R (4.29)
1 (v)v 2
Jiz+Jis <01 //v +0i+9§$)dwd7'+4H('uvz> (t)|| dzdr
0 R *
2
<O //1} + 0Hdzdr + - H( z) ®)|| daedr
0 R *
b — 1
1 4.30
+C‘ , Uo, W0, \/’ﬁ) . ) ( )
Thus, plug the estimate of (4. 28) (4.30) into (4.27), it follows that
(22, o+ ] [ e
v T v rar
0 R
p 10
1)//(U4+94)dmd7+0 vy — 1, ug, w fo — 1
= . 0 » W0, Oam )
0 R
/ 6o —1
<0(1 / Vo |IP|vgs || + 1160212 10se dT—‘rC‘ <v —1,ug,w ,O_>
( )0 vz l*l[vzzll + 1021”102z 1) 0 oo = ||
t
0y —1 6 2
< — —_— = —E dadr; 4.31
CH(UO 1, ug, wo, 7_1> , 2// v xdar; ( 3)
0 R

thus, we have the following lemma:
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Lemma 4.9. Under the condition of Theorem 1.3, there is positive constant C > 0, such that

H (M% // ke ”dxdT <C H (vo — 1, ug, wo, H)

Since (£22), = (£)'v2 + Lv,, and v is bounded from above and below, thus combining the estimate
of (4.31), (4.32), we actually obtain

16
(4.32)

0o — 1\ ||
Vg (¢ V|| fdT < C (Uo — 1, ug, wo, ) . 4.33
H / JowsPar < | =3 | (43)
Then, if we plug (4.33) into (4.24), we can get
2 90 -1
(|[Waell® + WTM <C|l{wv—1 uo,wo, w2 (v, 4+ vl)dzdr
<o P)
y U0, WO, —F—=
y—=1/1h
+/ Ve I W W |+ ozl ves 12w %) dr
0
Op—1
S C <’U0 - 1,U07W0, > . 434
| =311 (434

Also, from (4.16), (4.23), and (4.33), we have

¢
A 6o —1\||"
l|tee||® + O/R/ng%m <C H (vo — 1, ug, Wo, \/’ﬁ) ,

¢ ¢
+//(ui(v2x+vi)+uimvi) dxdT—l—/vaHQdT
0 R 0

<C

Oy —1
vg — 1, ug, wo, \/ﬁ

/ Uy M—&—v —&-umvm) dzdr
R

2

+
o

<C

Oy —1
vg — 1, ug, wo, \/ﬁ

t
+ /(HuzllHumll\lvmll2 +vallllves|ltesl® + lluel? vzl lvee||?) d
0

2

<C ‘ (4.35)

Oy — 1
vg — 1, ug, W, ﬁ

2



Vol. 66 (2015) Cauchy problem for compressible Navier—-Stokes equations 2339

Finally, plug (4.33)—(4.35) into (4.12), we have

‘ // #0)020s 4 4.

9 1 30
<C 1 20— -
> H(UO , U0, W0, \/’ﬁ) .

—|—C// u + 02 +92+w)(92 +u, + w2 )—1—037 fm)dxdT

Oy —1
<C -1 —_—
> H (UO , Uo, W0, \/’ﬁ)

1

+C/ |ty Vas O, W) || (HGEIHHQIMH + ||9m||||9m||HUM”2 + |tuze [ |uzes || + ||Wm||HWzm||) dr

0o — 1\ |*°
<C H (Uo — 1, ugp, wo, m)
2

Consequently, we obtain the following lemma:

(4.36)

Lemma 4.10. Under the conditions listed in Theorem 1.3, there is positive constant C' > 0, such that

’ // 90 1 30
m‘”dxdT <C H (vo — 1, ug, wg, —
Vy—1

.
Lemmas 4.7-4.10 tell us that if the local solution (v(t, z), u(t, ), w(t, z), 0(¢,z)) to the Cauchy problem
(1.9) constructed in Lemma 2.1 has been extended to the time step ¢ = T' > ¢, and the a priori assumption

(H3) holds true, then there exist positive constants Cy > 1 depending only on ||(vg—1, ug, wo, \9/71, voz) ||

V.,V,0, and © but independent of T and v — 1, and Cy depending only on V5 but independent of T > 0
and v — 1, such that (4.16) and

(4.37)

16

O —1
e (1) /van ar < G <00—17U0,W07 0

s (DI + / tgae [2dr < Cs

! 0o —1\ |2
War O+ [ Iazelar < € ( 1, 0, W, ,
Y= 1 2
0
t
O.0(t) |I? 00— 1\ ||%°
( ) + / Hezaffl’||2d7— S 02 (UO 17u0>W07 0 (438)
Y= 1 2
0
holds true. O

To use the continue method to get the global solution step by step, we only need to show that the a
priori assumption Hs can be closed. For this purpose, here we need v — 1 > 0 to be sufficiently small. In
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fact, from (4.16)2, (4.16)¢, and (4.38)4, we know that

o—1 | o — 1\
<C —1 —_—
7_1 1 <’U0 , Uo, W0, \/’ﬁ) )
0.(r) |I? ( 90_1> 10
< CVl Vo 1,U0,W0,7 ’
vy —1 vy—=1/|
0s(t) | ( 0o — 1) »
< C! v — 1, ug, wo, 4.39
T 2 0 0 W0, o= , (4.39)
Due to 6 = évFV exp(”—l_%ls), if we set 5= 7—’31 In %, we have
A -1
9—1:Rv1_7exp<7R s)—l
A, v—1 A vy—1_
= —v' Vex 5] — =ex 5
R PUR RP\"R
A -1 A -1 —1
:R(vl_W—l)exp(WR s>+R<exp<WR s)—exp(A/R s))
Consequently,
A(y-1 | [\ — 1 _
160 = 11 < 0 20 exp (T2 Isolize ) [l oo = 11+ Fhsote) 51 (1.40)

Ay -1 -1
ool < O A exp (12 sl :

-(inf vo(2)) ™7 ||vos|| + 1 (inf vo(z))' 7 Sox||} )

—~

Ay —1 -1
180se | < 0(1) A0 )exp(” |wdu§)

x (lvoell* + lvoaa I + 150z 1 + lIsoaal|) - (4.41)

inf () " + (inf o))"~ + (inf uo(a) "]

Since inf vo(z), [|vol|2, [[sol|2 is assumed to be independent of v — 1, then from (4.39), we know that
160 — L2 < C(infvo (), [[voll2, [soll2) (v = 1)-

Thus, we have

B — 1\ [[*
nww—uﬁ<cw—1w(m—1mme)

2 =1/,

< Oy = )| (w0 — 1w, wo) [ + Cly — 1)1 16 — 1]

< C(7 = 1) |(v0 — Ltto, wo) [ + Clinf vo (@), [volla, [soll2)(y — 1)1, (4.42)

holds for 0 < ¢ < T and some positive constants independent of T' and the quantity (v — 1)1
Thus, if v — 1 is chosen sufficiently small, then the a priori assumption Hs can be hold; thus, we can
use the continuity method to get the global solution.
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