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1. Introduction

In this paper, we are concerned with the Cauchy problem for the viscous compressible flow between two
horizontal plates. The governing equations are derived from the general three-dimensional Navier–Stokes
equations:

⎧
⎪⎨

⎪⎩

ρt + ∇ξ · (ρu) = 0,

(ρu)t + ∇ξ · (ρu ⊗ u) + ∇ξp = ∇ξ · (ν(∇ξ · u)I + μ
(∇ξu + (∇ξu)T)

)
,

Et + ∇ξ · (u(E + p)) = ∇ξ · (ν(∇ξ · u)u + μu
(∇ξu + (∇ξu)T

)
+ κ∇ξθ

)
.

(1.1)

Here, ξ ∈ R3 is the spatial variable, and t > 0 is the time variable. ρ > 0, u = (u1, u2, u3), θ > 0,
and p = p(ρ, θ) denote the density, the velocity, the absolute temperature, and the pressure, respectively.
(∇u)T is the transpose of the matrix ∇u. The specific total energy E = ρ(12 |u|2 + e) with e being
the specific internal energy, the viscous coefficients μ(ρ, θ) > 0, and ν(ρ, θ) > 0 is assumed to satisfy
μ(ρ, θ) + 2

3ν(ρ, θ) > 0, and κ(ρ, θ) > 0 denotes the coefficient of heat conductivity. The thermodynamic
variables p, ρ, and e are related through Gibbs’ equation de = θds − pdρ−1 with s being the specific
entropy. The viscosity coefficients μ, ν and heat conductivity coefficient κ can be functions of density
ρ and temperature θ. Such a dependence will have an obviously influence on the solutions of the field
equations and the mathematical analysis.

Let us consider the three-dimensional flow (1.1) with spatial variable ξ = (x, x2, x3), which is moving
in the x direction and uniform in the transverse direction (x2, x3), with

ρ = ρ(t, x), θ = θ(t, x), u(t, x) = (u,w)(t, x), w(t, x) = (u2, u3)(t, x); (1.2)

here, u ∈ R is the longitudinal velocity and w ∈ R2 is the transverse velocity. With the structure (1.2),
Eq. (1.1) become the following system in one space dimension with λ = ν + 2μ > 0,
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = (λux)x,

(ρw)t + (ρuw)x = (μwx)x,

Et + (u(E + p))x = (λuux + μw · wx + κθx)x .

(1.3)

Here, just as in (1.1), x ∈ R is the spatial variable, t > 0 is the time variable, u ∈ R is the longitudi-
nal velocity, w is the transverse velocity, λ(ρ, θ) and μ(ρ, θ) are the viscosity coefficients, κ(ρ, θ) is the
heat conductivity; μ(ρ, θ) is particularly called the shear viscosity. They depend on both viscosity and
temperature generally.

We begin with a rough review in this direction. When the viscosity coefficients are constant, the
local classical solutions to the Navier–Stokes equations with heat-conducting fluid in Hölder spaces were
obtained, respectively, by Itaya [1] for the Cauchy problem and by Tani [10] for initial-boundary-value
problem with inf ρ0 > 0, where the spatial dimension N = 3. Matsumura and Nishida [6,7] showed
that the global classical solutions exist provided that the initial data are small in some sense and away
from vacuum with spatial dimension N = 3. For large initial data, as to polytropic perfect gas with
constant viscosity, Kazhikhov and Shelukhi [4]; Kawohl [3]; Jenssen and Karper [5]; and Tan et al. [9]
got global classical solutions in dimension N = 1, respectively. As to the vacuum case, recently, Wen and
Zhu [12,13] get the global well-posedness of strong and classical vacuum solutions with large initial data
in one dimension and the symmetric solutions in high dimensions.

As to the initial-boundary-value problem of (1.3) in a bounded spatial domain Ω = (0, 1), with the
following initial condition and mixed Dirichlet–Neumann impermeable thermally insulated boundaries,

⎧
⎪⎪⎨

⎪⎪⎩

(ρ, u,w, θ)|t=0 = (ρ0, u0,w0, θ0)(x), x ∈ Ω,

(u,w)|∂Ω = 0,

θx|∂Ω = 0,

(1.4)

Wang [11] deals with the real viscous heat-conducting flow with shear viscosity. They need to ask whether
there are positive constant bounds for viscosity coefficients, that is, μ1 ≤ μ(v) ≤ μ2, λ1 ≤ λ(v) ≤ λ2, with
μi, λi, i = 1, 2 as positive constants. They also assume the growth conditions with exponents r ∈ [0, 1]
and q ≥ 2 + 2r such that the following hold:

(1) There exists a constant e0 > 0 such that, for v > 0 and θ ≥ 0, pv(v, θ) ≤ 0, e(v, θ) ≥ e0(1 +
θr); eθ(v, θ) ≥ 0;

(2) For any given v1 > 0, there exist positive constants κ0 = κ0(v1), p0 = p0(v1), e1 = e1(v1) such that,
for v ≥ v1, θ ≥ 0, 0 ≤ vp(v, θ) ≤ p0(1 + θ1+r), κ(v, θ) ≥ κ0(1 + θq), eθ(v, θ) ≥ e1(1 + θr);

(3) For any given v2 > v1 > 0, there exist positive constants pi = pi(v1, v2) (i = 1, 2, 3), ej =
ej(v1, v2), (j = 2, 3) and κ1 = κ1(v1, v2) such that, for any v ∈ [v1, v2], θ ≥ 0

|vpθ(v, θ)| ≤ p1 (1 + θr) ,

−p3
(
1 + θ1+r

) ≤ v2pv(v, θ) ≤ −p2
(
1 + θ1+r

)
,

|ev(v, θ)| ≤ e2(1 + θ1+r), eθ(v, θ) ≤ e3(1 + θr),

κ(v, θ) + |κv(v, θ)| + |κvv(v, θ)| ≤ κ1 (1 + θq) .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1.5)

With the above conditions, they get that the initial-boundary-value problems (1.3) and (1.4) have a unique
global solution (v, u,w, θ)(t, x) such that v ∈ L∞(0, T );H1

⋂
W 1,∞(Ω), and (u,w, θ) ∈ L∞(0, T ;H1(Ω)).

Our main purpose in this paper is devoted to the construction of globally smooth, non-vacuum solu-
tions to the Cauchy problem for the one-dimensional non-isentropic compressible Navier–Stokes equations
with density-dependent viscous coefficient and density- and temperature-dependent heat conductivity
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coefficient for arbitrary large smooth initial data. Also, the viscosity coefficient μ(ρ), λ(ρ), and heat-
conducting coefficient κ(ρ, θ) can be degenerate functions of density ρ and temperature θ. That means
when ρ or θ goes to 0, the viscosity coefficients or the heat-conducting coefficient can be 0.

Here, let x be the Lagrangian space variable, t be the time variable, and v = 1
ρ denote the specific

volume, then the one-dimensional compressible Navier–Stokes equations (1.3) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vt − ux = 0,

ut + p(v, θ)x =
(

λ(v)ux

v

)

x
,

wt =
(

μ(v)wx

v

)

x
,

εt + (up(v, θ))x =
(

λ(v)uux

v + μ(v)w·wx

v + κ(v,θ)θx

v

)

x
.

(1.6)

Here, ε = e + 1
2 (u2 + |w|2), with the initial data

(v(0, x), u(0, x),w(0, x), θ(0, x)) = (v0(x), u0(x),w0(x), θ0(x)) ,

lim
x→±∞ (v0(x), u0(x),w0(x), θ0(x)) = (v±, u±,w±, θ±) .

(1.7)

Throughout this paper, we will concentrate on the case of ideal, polytropic gases, that is,

p(v, θ) =
Rθ

v
= Av−γ exp

(
γ − 1

R
s

)

, e = Cvθ =
Rθ

γ − 1
, (1.8)

where the specific gas constants R and Cv are positive constants, and γ > 1 is the adiabatic exponent of
the gases.

Then, (1.6) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vt − ux = 0,

ut + p(v, θ)x =
(

λ(v)ux

v

)

x
,

wt =
(

μ(v)wx

v

)

x
,

Cvθt + uxp(v, θ) = λ(v)u2
x

v + μ(v)|wx|2
v +

(
κ(v,θ)θx

v

)

x
.

(1.9)

For simplicity, without the loss of generality, we consider the case when the far fields of the initial data
satisfy (v±, u±,w±, θ±) = (1, 0,0, 1).

Our first result in this paper is concerned with the case λ(v) ≡ λ̄ > 0, μ(v) depends on v, and the
heat-conducting coefficient κ(v, θ) > 0 depends on density and temperature, which can be summarized
as the following theorem:

Theorem 1.1. Suppose that the following conditions hold

• (v0(x) − 1, u0(x),w0(x), θ0(x) − 1) ∈ H1(R) and there exist positive constants V , V , Θ, Θ such
that

V ≤ v0(x) ≤ V , Θ ≤ θ0(x) ≤ Θ; (1.10)

•
λ(v) ≡ λ̄ > 0, inf

v≥V ,θ≥Θ
κ(v, θ) ≥ C(V ,Θ) > 0. (1.11)

μ(v) ≥ 0 is smooth function of v.
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Then, the Cauchy problem (1.7)–(1.9) with μ(v), λ(v), and κ(v, θ) given above admits a unique global
solution (v(t, x), u(t, x),w(t, x), θ(t, x)) which satisfies

(v(t, x) − 1, u(t, x),w(t, x), θ(t, x) − 1) ∈ C0
(
0, T ;H1(R)

)
,

(ux(t, x),wx(t, x), θx(t, x)) ∈ L2
(
0, T ;H1(R)

)
,

0 < V −1
0 ≤ v(t, x) ≤ V0, 0 < Θ−1

0 ≤ θ(t, x) ≤ Θ0, ∀(t, x) ∈ [0, T ] × R

(1.12)

Here, T > 0 is any given positive constant, and V0, Θ0 are some positive constants which may depend on
T .

The assumptions imposed on λ(v) ≡ λ̄ do not cover the case when the viscosity coefficient λ(v) depends
on density. So, our next main concern is the solvability of (1.7)–(1.9) when the viscosity coefficient λ(v)
depends on density, and the heat conductivity coefficient κ(v, θ) depends on density and temperature.
Here, for simplicity, we just consider about the polynomial case, i.e.,

λ(v) = v−a, μ(v) = v−c, κ(v, θ) = θb,

Here, a, b, c are constants to be determined later. Then, our next result in this direction can be summarized
in the following theorem.

Theorem 1.2. Suppose that the following conditions hold
• (v0(x) − 1, u0(x),w0(x), θ0(x) − 1) ∈ H1(R) and there exist positive constants V , V , Θ, Θ such

that
V ≤ v0(x) ≤ V , Θ ≤ θ0(x) ≤ Θ; (1.13)

•
1
3

< a <
1
2

• b and c satisfy one of the following conditions:
(i.) 1 ≤ b < 2a

1−a < 2;

(ii.) 0 < b < 1,2−b
2 + (a2−a+2)(1−b)

(3a−1)(1−2a) < 1, (1−b)(3+a−2a2)
(3a−1)(1−2a) < 1, |sign(1+c)|P2(1−b) < 1, P2 are positive

constants that can be determined in Sect. 3.
Then, the Cauchy problem (1.7)–(1.9) with μ(v), λ(v), and κ(v, θ) given above admits a unique global
solution (v(t, x), u(t, x),w(t, x), θ(t, x)), which satisfies (1.12).

Our next result is concerned with the case when μ(v), λ(v), and κ(v, θ) are more general smooth
functions of density and temperature, which contains the case when μ, λ, and κ are positive constants.
The main idea is using the smallness of γ − 1 to control the possible growth of the solutions caused by
the nonlinearity of the systems to deduce an uniform lower and upper bound on the absolute temper-
ature, which is based on the observation that when (v0(x) − 1, u0(x),w0(x), s0(x) − s) ∈ H2(R) with
its H2(R)−norm being bounded by some constant independent of γ − 1, and ‖θ0(x) − 1‖L∞(R) can be
chosen as small as wanted provided that γ − 1 is sufficiently small. Here, s = R

γ−1 ln R
A is the far field of

the initial entropy s0(x), i.e.,

lim
|x|→+∞

s0(x) = lim
|x|→+∞

R

γ − 1
ln

Rθ0(x)v0(x)γ−1

A
= s.

It is easy to see that s depends on 1
γ−1 . It is more convenient to use v, u,w, and s as independent variables

in such a case. And our result in this direction can be summarized in the following theorem:

Theorem 1.3. Suppose that the following conditions hold
• (v0(x) − 1, u0(x),w0(x), s0(x) − s) ∈ H2(R) with ‖(v0(x) − 1, u0(x),w0(x), s0(x) − s‖H2(R) being

bounded by some positive constant independent of γ−1 and (1.8) holds true for some γ−1independent
positive constants V , V , Θ, Θ;



Vol. 66 (2015) Cauchy problem for compressible Navier–Stokes equations 2309

• λ(v) > 0 for all v > 0,and

lim
v→0+

Ψ(v) = −∞, lim
v→+∞ Ψ(v) = +∞. (1.14)

Here,

Ψ(v) =

v∫

1

√
z − ln z − 1

z
λ(z)dz; (1.15)

• μ(v) > 0 for all v > 0, and μ(v) is smooth function of v;
• We assume that κ(v, θ) is smooth function of v, θ, and κ(v, θ) > 0 for all v > 0, θ > 0 and if we set

κ1(v) = min
Θ≤θ≤Θ

κ(v, θ), we may further assume that

lim
v→0+

λ(v)
κ1(v)

|Ψ(v)|2 = lim
v→+∞

λ(v)
κ1(v)

|Ψ(v)|2 = 0; (1.16)

• γ − 1 is sufficiently small.

Then, the Cauchy problem (1.7), (1.9) admits a unique global solution (v(t, x), u(t, x),w(t, x), θ(t, x)),
which satisfies (1.12) and

lim
t→+∞ sup

x∈R
|(v(t, x) − 1, u(t, x),w(t, x), θ(t, x) − 1)| = 0. (1.17)

This paper is organized as follows: after this introduction and the statement of our main results, which
constitutes Sect. 1, the proofs of Theorems 1.1–1.3 will be given in Sects. 2–4, respectively.
Notations: Almost all the notations used in this manuscript are standard: O(1) or Ci(i ∈ N) stands for
a generic positive constant, which is independent of t and x, while Ci(·, . . . , ·) (i ∈ N) is used to denote
some positive constant depending on the arguments listed in the parenthesis. Note that all these constants
may vary from line to line. We denote f+ = max{f, 0}, f− = max{−f, 0}. ‖ · ‖s represents the norm in
Hs(R) with ‖ ·‖ = ‖ ·‖0 and for 1 ≤ p ≤ +∞, Lp(R) denotes the standard Lebesgue space with the norm

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

‖f(τ)‖Lp :=

⎛

⎝

∫

R

|f(τ, x)|pdx

⎞

⎠

1
p

, 1 ≤ p < +∞,

‖f(τ)‖L∞
x

:= sup
x∈R

|f(τ, x)|,
‖f‖L∞

t,x
:= sup

(τ,x)∈[0,t]×R

|f(τ, x)|

(1.18)

for f(τ, x) ∈ C([0, t], Lp(R)).

2. The proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. To this end, we first define the following closed set for
which we seek the solutions of the Cauchy problem (1.7), (1.9)

X(0, T ;M0,M1;N0, N1) =

⎧
⎪⎪⎨

⎪⎪⎩

(v, u,w, θ) (t, x)

∣
∣
∣
∣
∣
∣
∣
∣

(v − 1, u,w, θ − 1) (t, x) ∈ C0
(
0, T ;Hk(R)

)

(vx, ux,wx, θx) (t, x) ∈ L2
(
0, T ;H2(R)

)

M0 ≤ v(t, x) ≤ M1, N0 ≤ θ(t, x) ≤ N1

⎫
⎪⎪⎬

⎪⎪⎭

(2.1)

Here, T > 0,M1 ≥ M0 > 0, N1 ≥ N0 > 0 are some positive constants, and when k = 1, 2 , the space
C0(0, T ;Hk(R) is different in different theorems. We can get the following local existence result.
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Lemma 2.1. (Local existence) Under the assumptions stated in Theorems 1.1–1.3, there exists a suffi-
ciently small positive constant t1, which depends only on V , V ,Θ,Θ, and ‖(v0 − 1, u0,w0, θ0 − 1)‖1, such
that the Cauchy problem (1.7), (1.9) admits a unique smooth solution (v(t, x), u(t, x),w(t, x), θ(t, x)) and
(v(t, x), u(t, x),w(t, x), θ(t, x)) satisfies

{
0 < V

2 ≤ v(t, x) ≤ 2V ,

0 < Θ
2 ≤ θ(t, x) ≤ 2Θ,

(2.2)

sup
[0,t1]

(‖(v − 1, u,w, θ − 1, )(t)‖k) ≤ 2‖(v0 − 1, u0,w0, θ0 − 1)‖k, (2.3)

and

lim
|x|→∞

(v(t, x) − 1, u(t, x),w(t, x), θ(t, x) − 1) = (0, 0, 0, 0). (2.4)

Here, to prove Theorems 1.1 and 1.2, we need k = 1, and for Theorem 1.3, we need k = 2.

Lemma 2.1 can be proved by the standard iteration argument as in [8] for the one-dimensional com-
pressible Navier–Stokes system; we thus omit the details for brevity.

Suppose that the local solution (v(t, x), u(t, x),w(t, x), θ(t, x)) constructed in Lemma 2.1 has been
extended to the time step t = T ≥ t1 and satisfies the a priori assumption

V 0 ≤ v(t, x) ≤ V 1, Θ0 ≤ θ(t, x) ≤ Θ1 (H1)

for all x ∈ R, 0 ≤ t ≤ T, and some positive constants 0 < Θ0 ≤ Θ1, 0 < V 0 ≤ V 1, we now deduce
certain a priori estimates on (v(t, x), u(t, x),w(t, x), θ(t, x)) which are independent of Θ0, Θ1, V 0, V 1 but
may depend on T .

First, we will get the basic energy estimate. For this purpose, note that

η(v, u,w, θ) = Rφ(v) +
u2 + |w|2

2
+

Rφ(θ)
γ − 1

, φ(x) = x − ln x − 1

is a convex entropy to (1.9), which satisfies the following identity

η(v, u,w, θ)t + κθ2
x

vθ2 + λu2
x

vθ + μ|w|2x
vθ =

{
κθx

v − κθx

vθ + λuux

v + μ(v)w·wx

v

}

x

−{(
Rθ
v − R

)
u
}

x

(2.5)

we can deduce by integrating (2.5) with respect to t and x over [0, T ] × R and from (2.5) that

Lemma 2.2. (Basic energy estimates) Let the conditions listed in Lemma 2.1 hold and suppose that the
local solution (v(t, x), u(t, x),w(t, x), θ(t, x)) constructed in Lemma 2.1 has been extended to the time step
t = T ≥ t1 and satisfies the a priori assumption (H1), then we have for 0 ≤ t ≤ T that

∫

R

η(v, u,w, θ)dx +

t∫

0

∫

R

(
κθ2x
vθ2

+
λu2

x

vθ
+

μ|wx|2
vθ

)

(τ, x)dxdτ =
∫

R

η(v0, u0,w0, θ0)(x)dx. (2.6)

From the argument used in [4], and the basic energy estimate (2.6), by making use of the Jenssen’s
inequality, we get for each i ∈ Z, there are positive constants A0 > 0, A1 > 0 such that

A0 ≤
i+1∫

i

v(t, x)dx,

i+1∫

i

θ(t, x)dx ≤ A1, ∀t ∈ [0, T ]. (2.7)
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And there exist ai(t) ∈ [i, i + 1], bi(t) ∈ [i, i + 1] such that

A0 ≤ v(t, ai(t)), θ(t, bi(t)) ≤ A1. (2.8)

From (1.7)2, we have

ut = −R

(
θ

v

)

x

+ (λ ln v)tx . (2.9)

Integrating (2.9) with respect to t over [0, t],

u(t, y) − u0(y) = −R

⎛

⎝

t∫

0

θ(s, y)
v(s, y)

ds

⎞

⎠

y

+ λ

(

ln
v(t, y)
v0(y)

)

y

. (2.10)

Integrating (2.10) with respect to y from ai(t) to any x ∈ [i, i + 1], we obtain that

x∫

ai(t)

u(t, y) − u0(y)dy = −R

t∫

0

θ(s, x)
v(s, x)

ds

+R

t∫

0

θ(s, ai(t))
v(s, ai(t))

ds + λ ln
v(t, x)
v0(x)

− λ ln
v(t, ai(t))
v0(ai(t))

. (2.11)

Multiply 1
λ and take the exponential on both sides of (2.11), we arrive at

exp

⎛

⎜
⎝

1
λ

x∫

ai(t)

u(t, y) − u0(y)dy

⎞

⎟
⎠

=
v(t, x)
v0(x)

· v0(ai(t))
v(t, ai(t))

exp

⎛

⎝−R

λ

t∫

0

θ(s, x)
v(s, x)

ds

⎞

⎠ · exp

⎛

⎝
R

λ

t∫

0

θ(s, ai(t))
v(s, ai(t))

ds

⎞

⎠ds.

Consequently, we get

1
v(t, x)

exp

⎛

⎝
R

λ

t∫

0

θ(s, x)
v(s, x)

ds

⎞

⎠ = Bi(t, x) · Yi(t), (2.12)

with

Bi(t, x) =
v0(ai(t))

v0(x)v(t, ai(t))
exp

⎛

⎜
⎝

1
λ

x∫

ai(t)

u(t, y) − u0(y)dy

⎞

⎟
⎠,

Yi(t) = exp

⎛

⎝
R

λ

t∫

0

θ(s, ai(t))
v(s, ai(t))

⎞

⎠ . (2.13)

Notice that

d
dt

⎡

⎣exp

⎛

⎝
R

λ

t∫

0

θ(s, x)
v(s, x)

ds

⎞

⎠

⎤

⎦ =
R

λ

θ(t, x)
v(t, x)

exp

⎛

⎝
R

λ

t∫

0

θ(s, x)
v(s, x)

ds

⎞

⎠. (2.14)
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Multiply Rθ(t,x)
λ on both sides of (2.14), we arrive at

d
dt

⎡

⎣exp

⎛

⎝
R

λ

t∫

0

θ(s, x)
v(s, x)

ds

⎞

⎠

⎤

⎦ =
R

λ
Bi(t, x)Yi(t)θ(t, x). (2.15)

Integrating (2.15) with respect to variable t over the interval [0, t], it follows that

exp

⎛

⎝
R

λ

t∫

0

θ(s, x)
v(s, x)

ds

⎞

⎠ = 1 +
R

λ

t∫

0

Bi(s, x)Yi(s)θ(s, x)ds. (2.16)

Then, plug (2.16) into (2.12), it yields

v(t, x) =
1

Bi(t, x)Yi(t)
exp

⎛

⎝
R

λ

t∫

0

θ(s, x)
v(s, x)

ds

⎞

⎠ =
1 + R

λ

∫ t

0
Bi(s, x)Yi(s)θ(s, x)ds

Bi(t, x)Yi(t)
. (2.17)

Integrating (2.17) with respect to x over [i, i + 1] yields

i+1∫

i

v(t, x)dx =

i+1∫

i

1 + R
λ

∫ t

0
Bi(s, x)Yi(s)θ(s, x)ds

Bi(t, x)Yi(t)
dx. (2.18)

From the definition of Bi(t, x), Yi(t), we can deduce there is C > 0, such that

0 < C−1 ≤ Bi(t, x) ≤ C, Yi(t) ≥ 1, ∀x ∈ [i, i + 1], t ∈ [0, T ]. (2.19)

Applying (2.19) to (2.18), we can discover that

i+1∫

i

v(t, x)dx ≤ C

Yi(t)

⎛

⎝1 +
R

μ

t∫

0

Yi(s)

i+1∫

i

θ(s, x)dxds

⎞

⎠ . (2.20)

Consequently, from (2.7), (2.8)

Yi(t) ≤ C

⎛

⎝1 +

t∫

0

Yi(s)ds

⎞

⎠ . (2.21)

Using Gronwall’s inequality,

1 ≤ Yi(t) ≤ C, t ∈ [0, T ], i = 0,±1,±2, . . . . (2.22)

Combine (2.19), (2.22) together, we have v(t, x) ≥ C, ∀x ∈ [i, i+1]. Since i is arbitrary, C is independent
of i, we actually obtain

Lemma 2.3. Under the same conditions listed in Lemma 2.1, there is V > 0, such that for ∀t ∈ [0, T ],
v(t, x) can be bounded from below as

v(t, x) ≥ V , ∀x ∈ R. (2.23)

Our next result is concerned with the lower bound estimate of θ(t, x),

Lemma 2.4. Under the assumptions listed in Lemma 2.3, we have

1
θ(t, x)

≤ 1
Θ

, 0 ≤ t ≤ T. (2.24)
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Proof. It is easy to see from (1.7)4 that

Cv

(
1
θ

)

t

=
(

κ(v, θ)
v

(
1
θ

)

x

)

x

−
[

2κθ

v

((
1
θ

)

x

)2

+
λ

vθ2

(

ux − θR

2λ

)2
]

+
R2

4λv
− μw2

x

vθ2
. (2.25)

If we set h(t, x) = 1
θ − R2t

4Cvλ‖ 1
v ‖L∞

T,x
, then

⎧
⎨

⎩

Cvht ≤
(

κ(v,θ)
v hx

)

x
,

h(0, x) = h0(x) = 1
θ0(x)

.
(2.26)

From the maximal principle, we get

h(t, x) =
1
θ

− R2t

4Cvλ

∥
∥
∥
∥

1
v

∥
∥
∥
∥

L∞
T,x

≤ 1
Θ

. (2.27)

Thus, we have completed the proof. �

With the lower bounds of v(t, x) and θ(t, x) at hand, our next job is getting the upper bound of v(t, x).
Since

θ(t, x) ≤ C

i+1∫

i

κθ2x
vθ2

dx ·
i+1∫

i

θ(t, x)dx max
x

v(t, x)max
x

1
κ(v, θ)

+ C. (2.28)

and due to the assumptions imposed on κ(v, θ) in (1.11), and (2.7), we obtain that

θ(t, x) ≤ C

i+1∫

i

κθ2x
vθ2

dx · max
x

v(t, x) + C. (2.29)

Inserting (2.29) into (2.17), we finally get

‖v(t)‖L∞
x

≤ C +

t∫

0

i+1∫

i

κθ2x
vθ2

dx‖v(τ)‖L∞
x

dτ. (2.30)

From the Gronwall’s inequality, we can get the following lemma:

Lemma 2.5. Under the same conditions listed in Lemma 2.1, there is a positive constant V > 0, such that

v(t, x) ≤ V . (2.31)

With (2.23), (2.24), and (2.31) at hand, (2.6) can be rewritten as

∫

R

η(t, x)dx +

t∫

0

∫

R

(
κ(v, θ)θ2x

θ2
+

u2
x

θ
+

|wx|2
θ

)

dxdτ ≤ C. (2.32)

Then, our next main job is to get the upper bound of θ(t, x), and for the purpose in this direction, we
get the following lemma:

Lemma 2.6. Under the same conditions listed in Lemma 2.1, we get

‖θ − 1‖L∞
t,x

≤
t∫

0

(‖ux‖2L∞ + ‖wx‖2L∞ + ‖θ‖2L∞
)
dτ + C. (2.33)
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Proof. Multiply (1.7)4 by 2p(θ − 1)2p−1, and integrating the result with respect to x,

2pCv‖θ − 1‖2p−1
L2p

d
dt

‖θ − 1‖L2p +
∫

R

2p(2p − 1)(θ − 1)2p−2 κ(v, θ)
v

((θ − 1)x)2 dx

=
∫

R

(θ − 1)2p−1

(
λu2

x

v
+

μw2
x

v

)

dx −
∫

R

2p(θ − 1)2p−1 Rθux

v
dx. (2.34)

By making use of the Young’s inequality, we obtain that

‖θ − 1‖L2p ≤ C

t∫

0

(
‖ux‖2L4p + ‖wx‖2L4p + ‖θ‖2L∞

x

)
dτ. (2.35)

Letting p → +∞, we get (2.33); thus, the proof of Lemma 2.6 is completed. �

From Lemma 2.6, we can see that to get the upper bound of θ, we need to get the estimate of the
terms appeared in the right-hand side of (2.33). For the purpose in this direction, our next job is getting
the estimates of ‖(ux,wx)‖, ‖(uxx,wxx)‖. First, we will get the estimates of ‖vx‖. From (1.9)2, we obtain
that

λ

2

∥
∥
∥

vx

v

∥
∥
∥
2

+

t∫

0

∫

R

Rθ

v3
v2

xdxdτ =

t∫

0

∫

R

(
Rθxvx

v2
+

u2
x

v

)

dxdτ

+
∫

R

(
uvx

v
(t, x) − u0v0x

v0
(x)

)

dx. (2.36)

By making use of the Cauchy’s inequality, we obtain that

t∫

0

∫

R

Rθxvx

v2
dxdτ ≤ 1

8

t∫

0

∫

R

Rθv2
x

v3
dxdτ + C

t∫

0

∫

R

θ2x
vθ

dxdτ. (2.37)

∫

R

uvx

v
(t, x)dx ≤ 1

2

∫

R

λ
v2

x

v2
dx + C

∫

R

u2

λ
dx. (2.38)

Then, we can obtain that

∥
∥
∥

vx

v

∥
∥
∥
2

+

t∫

0

∫

R

θv2
x

v3
dxdτ ≤ C + C

t∫

0

∫

R

(
θ2x
vθ

+
u2

x

v

)

dxdτ. (2.39)
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Next, we will get the estimates of the terms appeared in the right-hand side of (2.39). For this purpose,
if we multiply (1.9)2 by u, it follows that

(
u2

2

)

t

+ λ
u2

x

v
= ux(p − R) +

(

u(R − p) +
λuux

v

)

x

. (2.40)

With the estimates of (2.6) and from easily calculation, we can get that

‖u‖2 +

t∫

0

∫

R

λ
u2

x

v
dxdτ ≤ C. (2.41)

1
2

‖w(t)‖2 +

t∫

0

∫

R

μw2
x

v
dxdτ =

1
2

‖w0‖2 . (2.42)

Then, plug (2.41) into (2.39), we get

∥
∥
∥

vx

v

∥
∥
∥
2

+

t∫

0

∫

R

θv2
x

v3
dxdτ ≤ C + C

t∫

0

∫

R

θ2x
vθ

dxdτ. (2.43)

If we denote f = Cv(θ − 1) + 1
2u2 + |w|2

2 , then from (1.9),

ft + (up)x =
(

κ(v, θ)
v

θx +
λ

v
uux +

μ(v)
v

w · wx

)

x

. (2.44)

Multiply (2.44) by f , we obtain
(

1
2
f2

)

t

−
((

κ(v, θ)
v

θx +
λ

v
uux +

μ(v)
v

w · wx − up

)

f

)

x

= −
(

κ(v, θ)
v

θx +
λ

v
uux +

μ(v)
v

w · wx

)

fx + upfx. (2.45)

Since fx = Cvθx +uux +w · wx, integrating (2.45) with respect to t and x over [0, t]×R, and combining
(2.23), (2.31) together, by making use of Cauchy’s inequality, we assume further that lim

θ→+∞
κ(v, θ) =

K < +∞, and then, we get

‖f(t)‖2 +

t∫

0

∫

R

κ(v, θ)θ2xdxdτ ≤ C + C

t∫

0

∫

R

(
u2u2

x + (w · wx)2 + θ2u2
)
dxdτ. (2.46)

To get the estimates of the terms appeared on the right-hand side of (2.46), multiply (1.9)2 by u3,

‖u‖4L4 +

t∫

0

∫

R

λ

v
u2u2

xdxdτ ≤ C +

t∫

0

∫

R

(θ − 1)2u2dxdτ. (2.47)

Similarly, we have

‖w‖4L4 +

t∫

0

∫

R

w2w2
xdxdτ ≤ C. (2.48)

If we plug (2.47), (2.48) into (2.46), with (2.41) in hand, it yields that

‖θ − 1‖2 +

t∫

0

∫

R

κ(v, θ)θ2xdxdτ ≤ C +

t∫

0

‖(θ − 1)‖2L∞
x

dτ. (2.49)
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By making use of the Cauchy’s inequality and the Gronwall’s inequality, we actually get

‖θ − 1‖2 +

t∫

0

∫

R

κ(v, θ)θ2xdxdτ ≤ C. (2.50)

Thus, inserting (2.50) into (2.43) and combining (2.24), we actually get

‖vx‖2 +

t∫

0

∫

R

θv2
xdxdτ ≤ C. (2.51)

Next, we will get the estimates of wxx, uxx. As to the estimates of wxx, we have

1
2
(w2

x)t =
((μ

v
wx

)

x
wx

)

x
−
(μ

v
wx

)

x
wxx, (2.52)

From integrating parts and by making use of the Cauchy’s inequality, it follows that

‖wx(t)‖2 +

t∫

0

∫

R

μ

v
w2

xxdxdτ ≤ C +

t∫

0

∫

R

(μ

v

)2

v
v2

xw2
xdxdτ. (2.53)

Since
t∫

0

∫

R

v2
xw2

xdxdτ ≤
t∫

0

‖wx‖‖vx‖2‖wxx‖dτ ≤ ε

t∫

0

‖wxx‖2dτ + C

t∫

0

‖wx‖2‖vx‖4dτ. (2.54)

Plug (2.51), (2.54) into (2.53), it follows that

‖wx(t)‖2 +

t∫

0

∫

R

μ

v
w2

xxdxdτ ≤ C. (2.55)

Similarly, we can get that

‖ux(t)‖2 +

t∫

0

∫

R

μ

v
u2

xxdxdτ ≤ C

t∫

0

∫

R

(
θ2x + θ2v2

x + u2
xv2

x

)
dxdτ ≤ C +

t∫

0

‖θ‖2L∞
x

dτ. (2.56)

If we plug (2.50) into (2.56), it follows that

‖ux(t)‖2 +

t∫

0

∫

R

μ

v
u2

xxdxdτ ≤ C. (2.57)

Inserting (2.55), (2.57) into (2.33), and using (2.50), we have

‖θ − 1‖L∞
t,x

≤
t∫

0

‖θ − 1‖2L∞dτ + C ≤
t∫

0

‖θ − 1‖‖θx‖dτ ≤ C. (2.58)

Thus, we have

Corollary 2.1. Under the conditions of Lemma 2.1, if we further assume that lim
θ→+∞

infV ≤v κ(v, θ) = K <

+∞, then there is Θ > 0, such that
θ ≤ Θ. (2.59)
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Otherwise, if lim
θ→+∞

infV ≤v κ(v, θ) = +∞, we have to get the upper bound of θ in a quite different

way. From (2.43), it follows that

∥
∥
∥

vx

v

∥
∥
∥
2

+

t∫

0

∫

R

θv2
x

v3
dxdτ ≤ C + C

∥
∥
∥
∥

θ

κ(v, θ)

∥
∥
∥
∥

L∞
t,x

. (2.60)

Then, we have

‖ux(t)‖2 + ‖wx(t)‖2 +

t∫

0

∫

R

(u2
xx + |wxx|2)dxdτ

≤ C +
∥
∥
∥
∥

θ2

κ

∥
∥
∥
∥

L∞
t,x

+
∥
∥
∥
∥

θ

κ

∥
∥
∥
∥

L∞
t,x

t∫

0

‖θ‖2L∞
x

dτ +
∥
∥
∥
∥

θ

κ

∥
∥
∥
∥

2

L∞
t,x

. (2.61)

Then, plug (2.61) into (2.33), it can be easily obtain that

‖θ − 1‖L∞
t,x

≤ C +
∥
∥
∥
∥

θ2

κ

∥
∥
∥
∥

1
2

L∞
t,x

+

t∫

0

‖θ − 1‖2L∞
x

dτ +
∥
∥
∥
∥

θ

κ

∥
∥
∥
∥

L∞
t,x

. (2.62)

from easily calculation, we get

Corollary 2.2. Under the assumptions listed in Lemma 2.1, if we further assume that

lim
θ→+∞

inf
V ≤v

κ(v, θ) = +∞,

then there is Θ > 0, such that

θ ≤ Θ. (2.63)

With Corollaries 2.1 and 2.2, we can get the proof of Theorem 1.1.

3. Proof of Theorem 1.2

In this section, we are devoted to consider the case when μ(v) = v−c, λ(v) = v−a, and κ(v, θ) = θb.
Let (v(t, x), u(t, x),w(t, x), θ(t, x)) ∈ X(0, T ;M0,M1;N0, N1) be a solution of the Cauchy problem

(1.9), (1.7), which is defined in the time strip [0, T ] for some T > 0, and to extend such a solution
globally, as pointed out in the proofs of Theorem 1.1, we only need to deduce positive lower and upper
bounds on v(t, x) and θ(t, x), which are independent of M0,M1, N0, and N1 but may depend on T .

Suppose that the local solution (v(t, x), u(t, x),w(t, x), θ(t, x)) constructed in Lemma 2.1 has been
extended to the time step t = T ≥ t1 and satisfies the a priori assumption

V 0 ≤ v(t, x) ≤ V 1, Θ0 ≤ θ(t, x) ≤ Θ1 (H2)

for all x ∈ R, 0 ≤ t ≤ T, and some positive constants 0 < Θ0 ≤ Θ1, 0 < V 0 ≤ V 1, we now deduce certain
a priori estimates on (v(t, x), u(t, x),w(t, x), θ(t, x)), which are independent of Θ0, Θ1, V 0, V 1 but may
depend on T .

First, just as the proof of Theorem 1.1, we get the following basic energy estimates.
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Lemma 3.1. Let the conditions listed in Theorem 1.2 hold and suppose that the local solution (v(t, x),
u(t, x),w(t, x), θ(t, x)) constructed in Lemma 2.1 has been extended to the time step t = T ≥ t1 and
satisfies the a priori assumption (H2), then we have for 0 ≤ t ≤ T that

∫

R

η(v, u,w, θ)dx +

t∫

0

∫

R

(
κθ2x
vθ2

+
λu2

x

vθ
+

μ|wx|2
vθ

)

(τ, x)dxdτ =
∫

R

η(v0, u0,w0, θ0)dx. (3.1)

Here, as in Sect. 2, η(t, x) = Cvφ(θ) + Rφ(v) + u2+|w|2
2 , with φ(x) = x − ln x − 1.

Lemma 3.2. Under the assumptions in Lemma 2.1, when a < 1, we have

1
θ(t, x)

≤ O(1) + O(1)
∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a

L∞
T,x

, x ∈ R, 0 ≤ t ≤ T. (3.2)

Proof. First of all, (1.7)4 implies

Cv

(
1
θ

)

t

=
(

κ(v, θ)
v

(
1
θ

)

x

)

x

−
[

2κθ

v

((
1
θ

)

x

)2

+
λ

vθ2

(

ux − θR

2λ

)2
]

+
R2

4λv
− μw2

x

vθ2
. (3.3)

Set

h(t, x) =
1
θ

− R2t

4Cv

∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a

L∞
T,x

,

we can deduce that h(t, x) satisfies
⎧
⎨

⎩

Cvht ≤
(

θb

v hx

)

x
, x ∈ R, 0 ≤ t ≤ T,

h(0, x) = 1
θ0(x)

≤ 1
Θ ,

(3.4)

and the standard maximum principle for parabolic equation implies that h(t, x) ≤ 1
Θ holds for all (t, x) ∈

[0, T ] × R, that is, for x ∈ R, 0 ≤ t ≤ T

1
θ

− R2t

4Cv

∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a

L∞
T,x

≤ 1
Θ

. (3.5)

Thus, the proof of Lemma 3.2 is completed. �

To use Kanel’s method to deduce a lower bound and an upper bound on v(t, x), we need to deduce
an estimate on ‖ vx

v1+a ‖, which is the main concern of our next lemma. It is worth to pointing out that it
is in this step that we ask the viscous coefficient μ depends only on v.

Lemma 3.3. Under the assumptions listed in Lemma 3.1, we have

∥
∥
∥

vx

v1+a

∥
∥
∥
2

+

t∫

0

∫

R

θv2
x

v3+a
dxdτ

≤ C
(‖v0x‖2 + ‖(v0 − 1, u0, θ0 − 1)‖2)+

t∫

0

∫

R

u2
x

v1+a
dxds + C

t∫

0

∫

R

θ2x
v1+aθ

dxds (3.6)
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Proof. Notice that

( vx

v1+a

)

t
=
( vt

v1+a

)

x
=
( ux

v1+a

)

x
= ut + p(v, θ)x,

we have by multiplying the above identity by vx

v1+a and integrating the resulting equation with respect to
t and x over [0, T ] × R that

1
2

∥
∥
∥

vx

v1+a

∥
∥
∥
2

+

t∫

0

∫

R

Rθv2
x

v3+a
dxds

≤ O(1)‖v0x‖2 +

t∫

0

∫

R

Rθxvx

v2+a
dxds

︸ ︷︷ ︸
I1

+

t∫

0

∫

R

utvx

v1+a
dxds

︸ ︷︷ ︸
I2

, (3.7)

As to I1, we have

I1 ≤ 1
2

t∫

0

∫

R

Rθv2
x

v3+a
dxds + O(1)

t∫

0

∫

R

θ2x
v1+aθ

dxds. (3.8)

From easily calculation, we have

I2 =
∫

R

uvx

v1+a
dx
∣
∣
∣
t

0
−

t∫

0

∫

R

u
( vx

v1+a

)

t
dxds

≤
∫

R

uvx

v1+a
dx + O(1) ‖(u0, v0x)‖2 −

t∫

0

∫

R

u
( ux

v1+a

)

x
dxds

≤ 1
2

∥
∥
∥

vx

v1+a

∥
∥
∥
2

+ O(1) ‖(v0 − 1, v0x, u0, θ0 − 1)‖2 +

t∫

0

∫

R

u2
x

v1+a
dxds. (3.9)

Inserting the estimates of (3.8) and (3.9) into (3.7), we can get (3.6). This completes the proof of
Lemma 2.5. �

To bound the two terms on the right-hand side of (3.6), we now estimate
∫ t

0

∫

R
u2
x

v1+a dxds in the
following lemma.

Lemma 3.4. Under the assumptions in Lemma 3.1, we have

‖u(t)‖2 +

t∫

0

∫

R

u2
x

v1+a
dxds ≤ O(1)‖(v0 − 1, u0, θ0 − 1)‖2 + O(1)

t∫

0

∫

R

(θ − 1)2

v1−a
dxds. (3.10)



2320 Q. Zou and H. Lei ZAMP

Proof. Multiplying (1.9)2 by u, we have by integrating the resulting equation with respect to t and x
over [0, T ] × R that

1
2
‖u(t)‖2 +

t∫

0

∫

R

u2
x

v1+a
dxds

≤ O(1)‖u0‖2 +

t∫

0

∫

R

R(θ − 1)ux

v
dxds

︸ ︷︷ ︸
I3

+

t∫

0

∫

R

R

(

1 − 1
v

)

uxdxds

︸ ︷︷ ︸
I4

(3.11)

From the basic energy estimate (3.1) and the Cauchy–Schwarz inequality, we can bound Ij (j = 3, 4) as
follows:

I4 =

t∫

0

∫

R

R

(

1 − 1
v

)

vtdxds = R

∫

R

Φ(v)dx
∣
∣
∣
t

0

= R

⎛

⎝

∫

R

Φ(v)dx −
∫

R

Φ(v0)dx

⎞

⎠

≤ O(1)‖(u0, v0 − 1, θ0 − 1, Φ0x)‖2,

I3 ≤ 1
2

t∫

0

∫

R

u2
x

v1+a
dxds + O(1)

t∫

0

∫

R

(θ − 1)2

v1−a
dxds.

Substituting the above estimates into (3.11), we can deduce (3.10) and complete the proof of the
lemma. �

To bound the two terms on the right-hand side of (3.6) and (3.10), we need the following.

Lemma 3.5. Under the assumptions in Lemma 2.3, we have for b = 0,−1 that
t∫

0

max
x∈R

|θ(s, x)|bds ≤ C(T ), (3.12)

t∫

0

max
x∈R

|θ(s, x)|b+1ds ≤ C(T )
(
1 + ‖θ‖L∞

T,x

)
, (3.13)

and
t∫

0

max
x∈R

|θ(s, x)|b+1ds ≤ C(T )
(
1 + ‖v‖L∞

T,x

)
. (3.14)

Proof. We only prove (3.13) because (3.12) and (3.14) can be proved similarly.
From the argument used in [4], we have from the basic energy estimate (3.1), the Jenssen inequality

that from each i ∈ Z, there are positive constants A0 > 0, A1 > 0 such that

A0 ≤
i+1∫

i

v(t, x)dx,

i+1∫

i

θ(t, x)dx ≤ A1, ∀t ∈ [0, T ]. (3.15)

Hence, there exist ai(t) ∈ [i, i + 1], bi(t) ∈ [i, i + 1] such that

A0 ≤ v (t, ai(t)) , θ (t, bi(t)) ≤ A1. (3.16)
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Define

g1(θ) =

θ∫

1

s
b−1
2 ds =

2
b + 1

(
θ

b+1
2 − 1

)
,

for each x ∈ R, there exists an integer i ∈ Z such that x ∈ [i, i + 1], and we can assume without the loss
of generality that x ≥ bi(t). Thus,

g1(θ(t, x)) = g1 (θ(t, bi(t))) +

x∫

bi(t)

g1 (θ(t, y))y dy

≤ O(1) +

i+1∫

i

∣
∣
∣θ

b−1
2 θx

∣
∣
∣dx

≤ O(1) +

⎛

⎝

∫

R

θ2x
vθ2−b

dx

⎞

⎠

1
2
⎛

⎝

i+1∫

i

vθdx

⎞

⎠

1
2

≤ O(1) + ‖θ‖ 1
2
L∞

T,x

⎛

⎝

∫

R

θ2x
vθ2−b

dx

⎞

⎠

1
2

.

The above estimate and (3.1) give (3.13) and then complete the proof of the lemma. �

As a direct corollary of (3.12)–(3.14), we have

Corollary 3.1. Under the conditions listed in Lemma 3.5, we have

t∫

0

∫

R

(θ − 1)2dxds ≤ O(1)
∥
∥θ1−b

∥
∥

L∞
T,x

. (3.17)

Proof. In fact, (3.19) together with (3.12) implies that

t∫

0

∫

R

(θ − 1)2dxdτ ≤ O(1)

t∫

0

∫

R

(θ + 1)φ(θ)dxdτ

≤ O(1)

t∫

0

max
x∈R

θ(τ, x)dτ + O(1)

= O(1)

t∫

0

max
x∈R

(
θ1−bθb

)
dτ + O(1)

≤ O(1)
∥
∥θ1−b

∥
∥

L∞
T,x

t∫

0

max
x∈R

θb(τ, x)dτ + O(1)

≤ O(1)
∥
∥θ1−b

∥
∥

L∞
T,x

+ O(1),

and this completes the proof of corollary. �
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Having obtained (3.17), we can deduce that
t∫

0

∫

R

(θ − 1)2

v1−a
dxdτ ≤

∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a

L∞
T,x

t∫

0

∫

R

(θ − 1)2dxdτ ≤ O(1)
∥
∥θ1−b

∥
∥

L∞
T,x

∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a

L∞
T,x

. (3.18)

On the other hand, from (3.1), we have
t∫

0

∫

R

θ2x
θv1+a

dxdτ =

t∫

0

∫

R

θ2x
vθ2−b

1
vaθb−1

dxdτ

≤
∥
∥
∥
∥

1
v

∥
∥
∥
∥

a

L∞
T,x

∥
∥θ1−b

∥
∥

L∞
T,x

t∫

0

∫

R

θ2x
vθ2−b

dxdτ

≤ O(1)‖(v0 − 1, u0,w0, θ0 − 1)‖2
∥
∥
∥
∥

1
v

∥
∥
∥
∥

a

L∞
T,x

∥
∥θ1−b

∥
∥

L∞
T,x

. (3.19)

Substituting (3.18) and (3.19) into (3.10) and (3.6), we have

Corollary 3.2. Under the assumptions in Lemma 3.1, we have

‖u(t)‖2 +

t∫

0

∫

R

u2
x

v1+a
dxdτ ≤ O(1) ‖(v0 − 1, u0,w0, θ0 − 1)‖2 + O(1)

∥
∥
∥
∥

1
v

∥
∥
∥
∥

a

L∞
T,x

∥
∥θ1−b

∥
∥

L∞
T,x

, (3.20)

∥
∥
∥

vx

v1+a

∥
∥
∥
2

+

t∫

0

∫

R

θv2
x

v3+a
dxdτ ≤ O(1) ‖(v0 − 1, u0,w0, θ0 − 1)‖2

+O(1)

(∥
∥
∥
∥

1
v

∥
∥
∥
∥

a

L∞
T,x

+
∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a

L∞
T,x

)
∥
∥θ1−b

∥
∥

L∞
T,x

. (3.21)

Now, we apply Kanel’s approach to deduce a lower bound and an upper bound on v(t, x) in terms of
‖θ1−b‖L∞

T,x
. To this end, set

Ψ(v) =

v∫

1

√
φ(z)

z1+a
dz. (3.22)

Note that there exist positive constants A2, A3 such that

|Ψ(v)| ≥ A2

(
v−a + v

1
2−a

)
− A3. (3.23)

Since

|Ψ(v)| =

∣
∣
∣
∣
∣
∣

x∫

−∞
Ψ(v(t, y))ydy

∣
∣
∣
∣
∣
∣

≤
∫

R

∣
∣
∣
∣
∣

√
φ(v)

v1+a
vx

∣
∣
∣
∣
∣
dx

≤
∥
∥
∥
√

φ(v)
∥
∥
∥

∥
∥
∥

vx

v1+a

∥
∥
∥

≤ O(1)

(

1 +

(∥
∥
∥
∥

1
v

∥
∥
∥
∥

a
2

L∞
T,x

+
∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a
2

L∞
T,x

)
∥
∥θ1−b

∥
∥

1
2

L∞
T,x

)

, (3.24)
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we have from (3.23) and (3.24) that

∥
∥
∥
∥

1
v

∥
∥
∥
∥

a

L∞
T,x

+ ‖v‖ 1
2−a

L∞
T,x

≤ O(1)

(

1 +

(∥
∥
∥
∥

1
v

∥
∥
∥
∥

a
2

L∞
T,x

+
∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a
2

L∞
T,x

)
∥
∥θ1−b

∥
∥

1
2

L∞
T,x

)

. (3.25)

Thus, if 1
3 < a < 1

2 , we can deduce from (3.25)

Corollary 3.3. Under the conditions in Lemma 3.1, if we assume further that 1
3 < a < 1

2 , then we have

1
v(t, x)

≤ O(1)
(
1 +

∥
∥θ1−b

∥
∥

1
3a−1

L∞
T,x

)
, (3.26)

and

v(t, x) ≤ O(1)
(
1 +

∥
∥θ1−b

∥
∥

2a
(3a−1)(1−2a)

L∞
T,x

)
(3.27)

hold for any (t, x) ∈ [0, T ] × R.
Consequently, (3.20) and (3.21) can be rewritten as

‖u(t)‖2 +

t∫

0

∫

R

u2
x

v1+a
dxdτ ≤ O(1)

(
1 +

∥
∥θ1−b

∥
∥

2a
3a−1

L∞
T,x

)
, (3.28)

∥
∥
∥

vx

v1+a

∥
∥
∥
2

+

t∫

0

∫

R

(
θv2

x

v3+a

)

dxdτ ≤ O(1)
(
1 +

∥
∥θ1−b

∥
∥

2a
3a−1

L∞
T,x

)
. (3.29)

To get the upper bound of θ(t, x), we need to get the estimates of ux and wx. Thus, we have the
following lemma:

Lemma 3.6. Under the same conditions of Theorem 1.2, we have

1
2
‖w(t)‖2 +

t∫

0

∫

R

μ(v)
v

w2
xdxdτ =

1
2
‖w0‖, (3.30)

‖wx(t)‖2 +

t∫

0

∫

R

μ(v)
v

w2
xxdxdτ ≤ ‖w0x‖2 + (1 + c)4‖θ1−b‖P1

L∞
t,x

. (3.31)

Here, we denote P1 as

P1 =
4a[2a − 1 − c]+ + 4a[1 + c]+

(3a − 1)(1 − 2a)
+

2[2a − c − 1]− + 2[1 + c]− + 4a

3a − 1
.

Proof. From (1.9)3, we get

1
2
‖w(t)‖2 +

t∫

0

∫

R

μ(v)
v

w2
xdxdτ =

1
2
‖w0‖. (3.32)

1
2
‖wx(t)‖2 +

t∫

0

∫

R

μ(v)
v

w2
xxdxdτ =

1
2
‖w0x‖ −

t∫

0

∫

R

(
μ(v)

v

)

v

vxwxwxxdxdτ. (3.33)
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From easily calculation with the Cauchy’s inequality, it follows that

‖wx(t)‖2 +

t∫

0

∫

R

μ(v)
v

w2
xxdxdτ ≤ ‖w0x‖2 +

t∫

0

∫

R

v

μ(v)

((
μ(v)

v

)

v

vxwx

)2

dxdτ

︸ ︷︷ ︸
I5

. (3.34)

As for I5, since (3.32), and μ(v) = v−c, λ(v) = v−a, we get

t∫

0

‖w2
x‖L∞

x
dτ ≤

t∫

0

‖wx‖‖‖wxx‖dτ

≤ ‖v1+c‖L∞
t,x

⎛

⎝

t∫

0

∫

R

μ(v)w2
x

v
dxdτ

⎞

⎠

1
2
⎛

⎝

t∫

0

∫

R

μ(v)w2
xx

v
dxdτ

⎞

⎠

1
2

≤ O(1)‖θ1−b‖
2a[1+c]+

(1−2a)(3a−1)+
[1+c]−
3a−1

L∞
t,x

⎛

⎝

t∫

0

∫

R

μ(v)w2
xx

v
dxdτ

⎞

⎠

1
2

. (3.35)

Thus, we have

I5 ≤
t∫

0

∫

R

v

μ(v)

((
μ(v)

v

)

v

vxwx

)2

dxdτ

≤
∥
∥
∥
∥
∥

v

μ(v)

(
v

λ(v)

(
μ(v)

v

)

v

)2
∥
∥
∥
∥
∥

L∞
t,x

t∫

0

‖wx(τ)‖2L∞
x

∥
∥
∥
∥

λ(v)vx

v

∥
∥
∥
∥

2

dτ (3.36)

≤ O(1)(1 + c)2
∥
∥v2a−1−c

∥
∥

L∞
t,x

(
1 + ‖θ1−b‖ 2a

3a−1

) t∫

0

‖wx‖2L∞
x

dτ (3.37)

≤ O(1)(1 + c)4‖θ1−b‖ 4a[2a−1−c]++4a[1+c]+

(3a−1)(1−2a) + 2[2a−c−1]−+2[1+c]−+4a
3a−1 + ε

t∫

0

∫

R

μ(v)w2
xx

v
dxdτ.

Plug the estimates of (3.36) into (3.34) and combine (3.26) and (3.27) together, we can get the proof
of Lemma 3.6.

Lemma 3.7. Under the conditions listed in Lemma 3.1, we have for 0 ≤ t ≤ T that

‖ux(t)‖2 +

t∫

0

∫

R

u2
xx

v1+a
dxdτ

≤ O(1) ‖(v0 − 1, u0,w0, θ0 − 1)‖2

+O(1)
∥
∥θ2−b

∥
∥

L∞
T,x

(

1 +
∥
∥θ1−b

∥
∥

2a2
(3a−1)(1−2a)

L∞
T,x

)

+O(1)
(

1 +
∥
∥θ1−b

∥
∥

2(2a−2a2+1)
(3a−1)(1−2a)

L∞
T,x

)

. (3.38)
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Proof. By differentiating (1.9)2 with respect to x, multiplying the resulting identity by ux, and integrating
the result with respect to t and x over [0, T ] × R, we have

‖ux(t)‖2 +

t∫

0

∫

R

u2
xx

v1+a
dxdτ

≤ O(1)‖u0x‖2 + 2

t∫

0

∫

R

uxxp(v, θ)xdxdτ

︸ ︷︷ ︸
I6

+ 2(1 + a)

t∫

0

∫

R

uxvxuxx

v2+a
dxdτ

︸ ︷︷ ︸
I7

. (3.39)

For I6, we have from (3.1) that

I6 = 2R

t∫

0

∫

R

uxx

(
θx

v
− θvx

v2

)

dxdτ

≤ 1
4

t∫

0

∫

R

u2
xx

v1+a
dxdτ + O(1)

t∫

0

∫

R

θ2x
v1−a

dxdτ + O(1)

t∫

0

∫

R

θ2v2
x

v3−a
dxdτ

≤ 1
4

t∫

0

∫

R

u2
xx

v1+a
dxdτ + O(1)

∥
∥θ2−b

∥
∥

L∞
T,x

(

1 +
∥
∥θ1−b

∥
∥

2a2
(3a−1)(1−2a)

L∞
T,x

)

+O(1)
(

1 +
∥
∥θ1−b

∥
∥

7a−4a2−1
(3a−1)(1−2a)

L∞
T,x

)

. (3.40)

Here, we have used the fact that

t∫

0

∫

R

θ2x
v1−a

dxdτ =

t∫

0

∫

R

θ2x
vθ2−b

vaθ2−bdxdτ

≤ O(1)‖v‖a
L∞

T,x

∥
∥θ2−b

∥
∥

L∞
T,x

t∫

0

∫

R

θ2x
vθ2−b

dxdτ

≤ O(1)‖v‖a
L∞

T,x

∥
∥θ2−b

∥
∥

L∞
T,x

≤ O(1)
∥
∥θ2−b

∥
∥

L∞
T,x

(

1 +
∥
∥θ1−b

∥
∥

2a2
(3a−1)(1−2a)

L∞
T,x

)

,

and
t∫

0

∫

R

θ2v2
x

v3−a
dxdτ =

t∫

0

∫

R

v2
x

v2+2a

θ2

v1−3a
dxdτ

≤
t∫

0

∫

R

(

max
x∈R

θ2(s, x)ds

)

‖v‖3a−1
L∞

T,x

⎛

⎝

∫

R

v2
x

v2+2a
dx

⎞

⎠dτ

≤ O(1)
(
1 +

∥
∥θ1−b

∥
∥

2a
3a−1

L∞
T,x

)
‖v‖3a−1

L∞
T,x

t∫

0

(

max
x∈R

θ2(s, x)ds

)
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≤ O(1)
(
1 +

∥
∥θ1−b

∥
∥

2a
3a−1

L∞
T,x

)
‖v‖3a−1

L∞
T,x

t∫

0

(

max
x∈R

θ1−bθ1+b(s, x)ds

)

≤ O(1)
(

1 +
∥
∥θ1−b

∥
∥

5a−1
3a−1

L∞
T,x

)

‖v‖3a−1
L∞

T,x

t∫

0

(

max
x∈R

θ1+b(s, x)ds

)

≤ O(1)
(

1 +
∥
∥θ1−b

∥
∥

5a−1
3a−1

L∞
T,x

)

‖v‖3a−1
L∞

T,x

(
1 + ‖v‖L∞

T,x

)

≤ O(1)
(

1 +
∥
∥θ1−b

∥
∥

7a−4a2−1
(3a−1)(1−2a)

L∞
T,x

)

,

where (3.1), (3.12)–(3.14), and (3.29) are used.
As for I7, since (3.28), (3.29) together with the Sobolev inequality imply

t∫

0

‖ux(τ)‖2L∞
x

dτ ≤
t∫

0

‖ux(τ)‖‖uxx(τ)‖dτ

≤
⎛

⎝

t∫

0

‖ux(τ)‖2dτ

⎞

⎠

1
2
⎛

⎝

t∫

0

‖uxx(τ)‖2dτ

⎞

⎠

1
2

≤ ‖v‖1+a
L∞

T,x

⎛

⎝

t∫

0

∥
∥
∥
∥

ux

v
1+a
2

(τ)
∥
∥
∥
∥

2

dτ

⎞

⎠

1
2
⎛

⎝

t∫

0

∥
∥
∥
∥

uxx

v
1+a
2

(τ)
∥
∥
∥
∥

2

dτ

⎞

⎠

1
2

≤ O(1)
(
1 +

∥
∥θ1−b

∥
∥

3a
(3a−1)(1−2a)

L∞
T,x

)
⎛

⎝

t∫

0

∥
∥
∥
∥

uxx

v
1+a
2

(τ)
∥
∥
∥
∥

2

dτ

⎞

⎠

1
2

, (3.41)

we can deduce from (3.26) and (3.27) that

I7 ≤ 1
4

t∫

0

∫

R

u2
xx

v1+a
dxdτ + O(1)

t∫

0

∫

R

u2
xv2

x

v3+a
dxdτ

≤ 1
4

t∫

0

∫

R

u2
xx

v1+a
dxdτ + O(1)

t∫

0

∥
∥
∥
∥

u2
x

v1−a

∥
∥
∥
∥

L∞
x

∫

R

v2
x

v2+2a
dxdτ

≤ 1
4

t∫

0

∫

R

u2
xx

v1+a
dxdτ + O(1)

∥
∥
∥
∥

1
v

∥
∥
∥
∥

1−a

L∞
T,x

(
1 +

∥
∥θ1−b

∥
∥

2a
3a−1

L∞
T,x

) t∫

0

‖ux(τ)‖2L∞
x

dτ

≤ 1
4

t∫

0

∫

R

u2
xx

v1+a
dxdτ + O(1)

(

1 +
∥
∥θ1−b

∥
∥

2a−2a2+1
(3a−1)(1−2a)

L∞
T,x

)
⎛

⎝

t∫

0

∫

R

u2
xx

v1+a
dxdτ

⎞

⎠

1
2

≤ 1
2

t∫

0

∫

R

u2
xx

v1+a
dxdτ + O(1)

(

1 +
∥
∥θ1−b

∥
∥

2(2a−2a2+1)
(3a−1)(1−2a)

L∞
T,x

)

. (3.42)

Putting (3.39), (3.40), and (3.42) together and noticing that 2(2a − 2a2 + 1) > 7a − 4a2 − 1 imply
(3.38), this completes the proof of Lemma 3.7. �
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Now, we turn to deduce the upper bound on θ(t, x).

Lemma 3.8. Under the conditions in Lemma 3.1, we have

‖θ‖L∞
T,x

≤ O(1)

⎧
⎨

⎩
1 +

t∫

0

(∥
∥
∥
∥

u2
x

v1+a

∥
∥
∥
∥

L∞
x

+
∥
∥
∥
∥
w2

x

v1+c

∥
∥
∥
∥

L∞
x

+
∥
∥
∥
∥

u2
x

v2

∥
∥
∥
∥

L∞
x

+ ‖θ‖2L∞
x

)

dτ

⎫
⎬

⎭
. (3.43)

Proof. From (1.9)4, it is easy to see that for each p > 1,

Cv

[
(θ − 1)2p

]

t
+ 2p(2p − 1)(θ − 1)2(p−1) θ

bθ2x
v

=
{

2p(θ − 1)2p−1θbθx

v

}

x

+
2p(θ − 1)2p−1

v1+c
w2

x +
2p(θ − 1)2p−1

v1+a
u2

x − 2pRθ

v
ux(θ − 1)2p−1. (3.44)

Integrating (3.44) with respect to x over R and using the Young’s inequality, we get

‖θ − 1‖L2p ≤ O(1) + O(1)

t∫

0

(∥
∥
∥
∥

u2
x

v1+a

∥
∥
∥
∥

L2p

+
∥
∥
∥
∥
w2

x

v1+c

∥
∥
∥
∥

L2p

+
∥
∥
∥
∥

θux

v

∥
∥
∥
∥

L2p

)

dτ. (3.45)

Letting p → +∞, we get (3.43); thus, the proof of Lemma 3.8 is completed. �

We are now ready to use (3.26), (3.27), and (3.43) to deduce a lower bound and an upper bound on
θ(t, x). Firstly, from (3.38) and (3.41), we have

t∫

0

‖ux(s)‖2L∞
x

ds

≤ O(1)
(
1 +

∥
∥θ1−b

∥
∥

3a
(3a−1)(1−2a)

L∞
T,x

)

×
[
∥
∥θ2−b

∥
∥

1
2

L∞
T,x

(

1 +
∥
∥θ1−b

∥
∥

a2
(3a−1)(1−2a)

L∞
T,x

)

+ 1 +
∥
∥θ1−b

∥
∥

2a−2a2+1
(3a−1)(1−2a)

L∞
T,x

]

≤ O(1)
∥
∥θ2−b

∥
∥

1
2

L∞
T,x

(

1 +
∥
∥θ1−b

∥
∥

3a+a2
(3a−1)(1−2a)

L∞
T,x

)

+ O(1)
∥
∥θ1−b

∥
∥

5a−2a2+1
(3a−1)(1−2a)

L∞
T,x

+ O(1). (3.46)

Thus, we have from (3.26) and (3.27), and (3.41) that

t∫

0

(∥
∥
∥
∥

u2
x

v1+a

∥
∥
∥
∥

L∞
x

+
∥
∥
∥
∥

u2
x

v2

∥
∥
∥
∥

L∞
x

)

dτ

≤ O(1)

(∥
∥
∥
∥

1
v

∥
∥
∥
∥

1+a

L∞
T,x

+
∥
∥
∥
∥

1
v

∥
∥
∥
∥

2

L∞
T,x

) t∫

0

‖ux(τ)‖2L∞
x

dτ

≤ O(1)
(
1 +

∥
∥θ1−b

∥
∥

2
3a−1

L∞
T,x

) t∫

0

‖ux(τ)‖2L∞
x

dτ

≤ O(1)
∥
∥θ2−b

∥
∥

1
2

L∞
T,x

(

1 +
∥
∥θ1−b

∥
∥

a2−a+2
(3a−1)(1−2a)

L∞
T,x

)

+ O(1)
∥
∥θ1−b

∥
∥

3+a−2a2
(3a−1)(1−2a)

L∞
T,x

+ O(1), (3.47)
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and similarly, from (3.30) and (3.31), we get

t∫

0

∥
∥
∥
∥
w2

x

v1+c

∥
∥
∥
∥

L∞
x

dτ

≤ O(1)

∥
∥
∥
∥
∥

(
1
v

)1+c
∥
∥
∥
∥
∥

L∞
T,x

t∫

0

‖wx(τ)‖2L∞
x

dτ

≤ O(1)
∥
∥θ1−b

∥
∥

[1+c]+

3a−1 + 2a[1+c]−
(1−2a)(3a−1)

L∞
T,x

t∫

0

‖wx(τ)‖2L∞
x

dτ

≤ O(1)
∥
∥θ1−b

∥
∥

[1+c]+

3a−1 + 2a[1+c]−
(1−2a)(3a−1)

L∞
T,x

∥
∥v1+c

∥
∥

L∞
t,x

⎛

⎝

t∫

0

∫

R

μ(v)w2
x

v
dxdτ

⎞

⎠

1
2
⎛

⎝

t∫

0

∫

R

μ(v)w2
xx

v
dxdτ

⎞

⎠

1
2

≤ O(1)
∥
∥θ1−b

∥
∥

[1+c]+

3a−1 + 2a[1+c]−
(1−2a)(3a−1)

L∞
T,x

∥
∥θ1−b

∥
∥

[1+c]−
3a−1 + 2a[1+c]−

(1−2a)(3a−1)

L∞
T,x

⎛

⎝

t∫

0

∫

R

μ(v)w2
xx

v
dxdτ

⎞

⎠

1
2

≤ O(1)
∥
∥θ1−b

∥
∥

[1+c]++[1+c]−
(1−2a)(3a−1)

L∞
T,x

⎛

⎝

t∫

0

∫

R

μ(v)w2
xx

v
dxdτ

⎞

⎠

1
2

≤ O(1)(1 + c)2
∥
∥θ1−b

∥
∥

2a
3a−1+

(1+2a)[1+c]++(2−2a)[1+c]−+2a[2a−1−c]++(1−2a)[2a−1−c]−
(1−2a)(3a−1) (3.48)

Here, for brevity, if we denote P2 as

P2 =
2a

3a − 1
+

(1 + 2a)[1 + c]+ + (2 − 2a)[1 + c]− + 2a[2a − 1 − c]+ + (1 − 2a)[2a − 1 − c]−

(1 − 2a)(3a − 1)
,

then (3.48) can be rewritten as

t∫

0

∥
∥
∥
∥
w2

x

v1+c

∥
∥
∥
∥

L∞
x

dτ ≤ O(1)(1 + c)2‖θ1−b‖P2
L∞

t,x
. (3.49)

Also, from direct calculation, we have

t∫

0

max
x∈R

θ2(s, x)ds ≤
t∫

0

max
x∈R

(
θ1−b(s, x)θb+1(s, x)

)
ds

≤ ∥
∥θ1−b

∥
∥

L∞
T,x

t∫

0

max
x∈R

θ1+b(s, x)ds

≤ O(1)
∥
∥θ1−b

∥
∥

L∞
T,x

(
1 + ‖v‖L∞

T,x

)

≤ O(1)
(

1 +
∥
∥θ1−b

∥
∥

7a−6a2−1
(3a−1)(1−2a)

L∞
T,x

)

. (3.50)



Vol. 66 (2015) Cauchy problem for compressible Navier–Stokes equations 2329

Inserting (3.47), (3.49), and (3.50) into (3.43) yields

‖θ‖L∞
T,x

≤ O(1) + O(1)
∥
∥θ2−b

∥
∥

1
2

L∞
T,x

(

1 +
∥
∥θ1−b

∥
∥

a2−a+2
(3a−1)(1−2a)

L∞
T,x

)

+O(1)
∥
∥θ1−b

∥
∥

3+a−2a2
(3a−1)(1−2a)

L∞
T,x

+ O(1)
∥
∥θ1−b

∥
∥

7a−6a2−1
(3a−1)(1−2a)

L∞
T,x

+ O(1)(1 + c)2‖θ1−b‖P2
L∞

t,x

≤ O(1) + O(1)
∥
∥θ2−b

∥
∥

1
2

L∞
T,x

(

1 +
∥
∥θ1−b

∥
∥

a2−a+2
(3a−1)(1−2a)

L∞
T,x

)

+O(1)
∥
∥θ1−b

∥
∥

3+a−2a2
(3a−1)(1−2a)

L∞
T,x

+ O(1)(1 + c)2‖θ1−b‖P2
L∞

t,x
. (3.51)

Then, based on (3.2), (3.26), and (3.27), we finally get

Corollary 3.4. Under the assumptions in Lemma 3.1, we further assume that 1
3 < a < 1

2 , and one of the
following conditions holds

(i.) 1 ≤ b < 2a
1−a < 2;

(ii.) 0 < b < 1, 2−b
2 + (a2−a+2)(1−b)

(3a−1)(1−2a) < 1, (1−b)(3+a−2a2)
(3a−1)(1−2a) < 1, |sign(1 + c)|(1 − b)(P2) < 1.

Then, there exists positive constants V1 > 0, Θ1 > 0, such that
{

V −1
1 ≤ v(t, x) ≤ V1,

Θ−1
1 ≤ θ(t, x) ≤ Θ1.

(3.52)

Proof. We first consider the case b ≥ 1. In this case, we have from (3.2), (3.26), and (3.27) that

∥
∥
∥
∥

1
θ

∥
∥
∥
∥

L∞
T,x

≤ O(1) + O(1)
∥
∥θ1−b

∥
∥

1−a
3a−1

L∞
T,x

≤ O(1) + O(1)
∥
∥
∥
∥

1
θ

∥
∥
∥
∥

(1−a)(b−1)
3a−1

L∞
T,x

,

which, together with the assumption b < 2a
1−a , implies that there exists a positive constant Θ1 > 0 such

that
θ(t, x) ≥ Θ−1

1 > 0, ∀(t, x) ∈ [0, T ] × R. (3.53)

Moreover, (3.26) and (3.27), and (3.53) together with the fact that b ≥ 1 imply that there exists a
positive constant V1 > 0, which may depends on T , such that

V −1
1 ≤ v(t, x) ≤ V1, ∀(t, x) ∈ [0, T ] × R. (3.54)

Thus, to prove (3.52), we only need to deduce the upper bound on θ(t, x). For this purpose, we have
from the fact 1 ≤ b < 2a

1−a < 2, that

‖θ‖L∞
T,x

≤ O(1) + O(1) ‖θ‖
2−b
2

L∞
T,x

⎛

⎝1 +
∥
∥
∥
∥

1
θ

∥
∥
∥
∥

(a2−a+2)(b−1)
(3a−1)(1−2a)

L∞
T,x

⎞

⎠

+O(1)
∥
∥
∥
∥

1
θ

∥
∥
∥
∥

(3+a−2a2)(b−1)
(3a−1)(1−2a)

L∞
T,x

+ O(1)(1 + c)2
∥
∥
∥
∥

1
θ

∥
∥
∥
∥

P2

L∞
T,x

≤ O(1)
(
1 + ‖θ‖

2−b
2

L∞
T,x

)
. (3.55)

From (3.55) and the fact that 0 < 2−b
2 < 1, one can easily deduce an upper bound on θ(t, x). This

completes the proof of (3.52) for the case 1 ≤ b < 2a
1−a . �



2330 Q. Zou and H. Lei ZAMP

When b < 1,

‖θ‖L∞
T,x

≤ O(1) + O(1)‖θ‖
2−b
2 + (a2−a+2)(1−b)

(3a−1)(1−2a)

L∞
T,x

+ O(1)‖θ‖
(3+a−2a2)(1−b)
(3a−1)(1−2a)

L∞
T,x

+ O(1)(1 + c)2‖θ‖P2
L∞

T,x
. (3.56)

From (3.56) and the assumption (ii) of Corollary 3.4, we can deduce an upper bound on θ(t, x). With
this, the lower and upper bound on v(t, x) can be deduced from (3.26) and (3.27). And then, (3.2) implies
the lower bound on θ(t, x). This completes the proof of the corollary.

From corollary 3.4, we can get Theorem 1.2.

4. The proof of Theorem 1.3

First of all, the local solvability of the Cauchy problem (1.7), (1.9) in the function space X(0, t1;
1
2V , 2V ; 1

2Θ, 2Θ) with t1 depending on V , V ,Θ,Θ, ‖(v0−1, v0, θ0−1, Φ0x)‖1 can be proved as in Lemma 3.1.
Suppose this solution (v(t, x), u(t, x), θ(t, x),Φ(t, x)) is extended to t = T ≥ t1. To apply the continuation
argument for global existence, we first set the following a priori assumption:

‖θ(t, x) − 1‖2 ≤ ε, (t, x) ∈ [0, T ] × R. (H3)

Here, ε is small positive constant, and without the loss of generality, we can assume that ε < 1
2 .

Note that the smallness of γ − 1 is needed to close the a priori assumption, the generic constants used
later are independent of γ − 1, and whenever the dependence on this factor will be clearly stated in the
estimates. First, just as the proof of Theorem 1.1, we get the following basic energy estimates:

Lemma 4.1. Let the conditions listed in Lemma 2.1 hold and suppose that the local solution (v(t, x), u(t, x),
w(t, x), θ(t, x)) constructed in Lemma 2.1 has been extended to the time step t = T ≥ t1 and satisfies the
a priori assumption (H3), then we have for 0 ≤ t ≤ T that

∫

R

η(v, u,w, θ)dx +

t∫

0

∫

R

(
κθ2x
vθ2

+
λu2

x

vθ
+

μ|wx|2
vθ

)

(τ, x)dxdτ =
∫

R

η(v0, u0,w0, θ0)(x)dx. (4.1)

Here, as in Sect. 2, η(t, x) = Cvφ(θ) + Rφ(v) + u2+|w|2
2 , with φ(x) = x − ln x − 1.

Now, we turn to deduce an estimate on ‖λ(v)vx

v ‖. For this, similar to Lemma 3.3, we can deduce

∥
∥
∥
∥

λ(v)vx

v

∥
∥
∥
∥

2

+

t∫

0

∫

R

λ(v)θv2
x

v3
dxdτ

≤ O(1)‖v0x‖2 + O(1)

t∫

0

∫

R

λ(v)u2
x

v
dxdτ

︸ ︷︷ ︸
J1

+O(1)

t∫

0

∫

R

λ(v)θ2x
vθ

dxdτ

︸ ︷︷ ︸
J2

. (4.2)

If the a priori estimate (H3) holds, we have from (4.1) and the assumptions imposed on κ(v, θ) in
Theorem 1.3 that

J1 ≤ O(1)

t∫

0

∫

R

λ(v)u2
x

vθ
dxdτ ≤ O(1)

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

2

, (4.3)
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and

J2 ≤
t∫

0

∫

R

κ(v, θ)θ2x
vθ2

θλ(v)
κ(v, θ)

dxdτ

≤ O(1)
∥
∥
∥
∥

λ(v)
κ1(v)

∥
∥
∥
∥

L∞

t∫

0

∫

R

κ(v, θ)θ2x
vθ2

dxdτ

≤ O(1)
∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

2 ∥∥
∥
∥

λ(v)
κ1(v)

∥
∥
∥
∥

L∞
. (4.4)

Putting (4.2)–(4.4) together, we obtain

Lemma 4.2. Under the assumptions in Lemma 4.1 and the a priori assumption (H3), we have
∥
∥
∥
∥

λ(v)vx

v

∥
∥
∥
∥

2

+

t∫

0

∫

R

λ(v)v2
x

v3
dxdτ ≤ O(1)

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

, v0x

)∥
∥
∥
∥

2
(

1 +
∥
∥
∥
∥

λ(v)
κ1(v)

∥
∥
∥
∥

L∞
T,x

)

. (4.5)

Having obtained (4.1) and (4.5), we can use Kanel’s argument, cf. [2], to deduce the lower and upper
bounds on v(t, x) as follows.

Lemma 4.3. Under the assumptions in Theorem 1.3 and Lemma 4.2, there exists a positive constant
V2 ≥ 1, which depends only on ‖(v0 − 1, u0,

θ0−1√
γ−1

, v0x)‖, V , V ,Θ, and Θ, but is independent of T , such
that

V −1
2 ≤ v(t, x) ≤ V2, (t, x) ∈ [0, T ] × R. (4.6)

Proof. Define

Ψ(v) =

v∫

1

√
φ(z)
z

λ(z)dz, φ(z) = z − ln z − 1,

and notice that

|Ψ(v)| =

∣
∣
∣
∣
∣
∣

x∫

−∞
Ψ(v(t, y))ydy

∣
∣
∣
∣
∣
∣

≤
∫

R

∣
∣
∣
∣

√
φ(v)

λ(v)vx

v

∣
∣
∣
∣ dx

≤ ‖φ(v)‖ 1
2
L1

∥
∥
∥
∥

λ(v)vx

v

∥
∥
∥
∥

≤ O(1)
∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

, v0x

)∥
∥
∥
∥

2
(

1 +
∥
∥
∥
∥

λ(v)
κ1(v)

∥
∥
∥
∥

L∞
T,x

) 1
2

.

It is straightforward to deduce (4.6) from the assumptions in Theorem 1.3. This completes the proof of
the lemma. �

Thus, combining (4.5) and (4.6), we actually get
∥
∥
∥
∥

λ(v)vx

v

∥
∥
∥
∥

2

+

t∫

0

∫

R

λ(v)v2
x

v3
dxdτ ≤ O(1)

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

, v0x

)∥
∥
∥
∥

2

. (4.7)

From easily calculation, we can deduce
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Lemma 4.4. Under the same conditions of Theorem 1.3, we can get

‖(u,w)(t)‖2 +

t∫

0

∫

R

λ(v)
v

u2
x +

μ(v)
v

w2
xdxdτ ≤ O(1)

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

2

. (4.8)

Similar to Lemmas 3.6 and 3.7, we can get the estimates of ux and wx.

Lemma 4.5. Under the assumptions in Lemma 4.3, we have for each 0 ≤ t ≤ T that

‖ux(t)‖2 + ‖wx‖2 +

t∫

0

∫

R

u2
xx

v1+a
+

|wxx|2
v1+c

dxdτ ≤ O(1)
∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

6

1

. (4.9)

Here, for brevity, we omit the proof of Lemma 4.5. To close the a priori estimate (H3), we need to
deduce an estimate on ‖θx(t)‖.

Now, we turn to the case when κ(v, θ) depends on both v and θ. For this , we have

Lemma 4.6. Under the assumptions in Lemma 4.1, if the assumption H3 holds true, then we have
∥
∥
∥
∥

θx(t)√
γ − 1

∥
∥
∥
∥

2

+

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ ≤ O(1)
∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

. (4.10)

Proof. Differentiating (1.9) 4 with respect to x and multiplying the resulting equation by θx, we have by
integrating it over [0, t] × R that

Cv

2
‖θx(t)‖2 +

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ

=
Cv

2
‖θ0x‖2 +

t∫

0

∫

R

θx

(
λ(v)

v
u2

x

)

x

dxdτ

︸ ︷︷ ︸
J3

+

t∫

0

∫

R

θx

(
μ(v)

v
w2

x

)

x

dxdτ

︸ ︷︷ ︸
J4

−
t∫

0

∫

R

θx

(
κ(v, θ)

v

)

x

θxxdxdτ

︸ ︷︷ ︸
J5

+

t∫

0

∫

R

θxxp(v, θ)uxdxdτ

︸ ︷︷ ︸
J6

. (4.11)

For J3, J4, J5, and J6, we have from Lemmas 4.1–4.6 and the a priori estimate (H3) that

J3 = −
t∫

0

∫

R

λ(v)
v

u2
xθxxdxdτ

≤ 1
6

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ + O(1)

t∫

0

∫

R

u4
xdxdτ

≤ 1
6

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ + O(1)

t∫

0

∫

R

‖ux(τ)‖3‖uxx(τ)‖dxdτ

≤ 1
6

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ + O(1)
∥
∥
∥
∥

(

(v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

, (4.12)
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In the same way, we can get

J4 = −
t∫

0

∫

R

μ(v)
v

w2
xθxxdxdτ ≤ 1

6

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ + O(1)
∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

. (4.13)

J6 ≤ 1
6

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ + O(1)

t∫

0

∫

R

u2
xdxdτ

≤ 1
6

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ + O(1)
∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

2

1

, (4.14)

As to J5, from the assumption H3, there is positive constant C > 0, such that ‖θx(t)‖L∞ ≤ C and also
from (4.7), we can deduce

J9 ≤ O(1)

t∫

0

∫

R

θ4xdxdτ +
1
6

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ + O(1)

t∫

0

∫

R

θ2xv2
xdxdτ

≤ 1
6

t∫

0

∫

R

κ(v, θ)
v

θ2xxdxdτ + O(1)
∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

6

1

. (4.15)

�

Inserting (4.12)–(4.15) into (4.11), we can deduce (4.10), and then, we complete the proof of Lemma 4.7.
Lemmas 4.1–4.7 imply that under the a priori estimate (H3), there exist two positive constants V2 ≥ 1
and C1 ≥ 1 with V2 depending only on ‖(v0 − 1, u0,w0,

θ0−1√
γ−1

, v0x)‖, V , V ,Θ, and Θ but independent of
T and γ − 1, and C1 depending only on V2 but independent of T > 0 and γ − 1, such that

V −1
2 ≤ v(t, x) ≤ V2, (t, x) ∈ [0, T ] × R,

∥
∥
∥
∥

(

v − 1, u,w,
θ − 1√
γ − 1

)

(t)
∥
∥
∥
∥

2

+

t∫

0

∫

R

(
u2

x + θ2x

)
(τ, x)dxdτ ≤ C1

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

2

,

‖vx(t)‖2 +

t∫

0

∫

R

v2
x(τ, x)dxdτ ≤ C1

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

2

1

,

‖ux(t)‖2 +

t∫

0

∫

R

u2
xx(τ, x)dxdτ ≤ C1

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

6

1

,

‖wx(t)‖2 +

t∫

0

∫

R

w2
xx(τ, x)dxdτ ≤ C1

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

6

1

,

∥
∥
∥
∥

θx(τ)√
γ − 1

∥
∥
∥
∥

2

+

t∫

0

∫

R

θ2xx(τ, x)dxdτ ≤ C1

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

(4.16)

hold for 0 ≤ t ≤ T .
To obtain the global existence of solutions, we only need to close the a priori estimate (H3); thus, our

main job is getting the higher estimate of θ(t, x).
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Differentiate (1.9)3 twice with respect to x and multiply the result with θxx, then it follows that

1
2

∥
∥
∥
∥

θxx√
γ − 1

∥
∥
∥
∥

2

+

t∫

0

∫

R

κ(θ)θ2xxx

v
dxdτ

=
1
2

∥
∥
∥
∥

θ0xx√
γ − 1

∥
∥
∥
∥

2

+

t∫

0

∫

R

(
λ(v)u2

x

v

)

x

θxxxdxτ

︸ ︷︷ ︸
J7

+

t∫

0

∫

R

(
μ(v)wx

2
x

v

)

x

θxxxdxτ

︸ ︷︷ ︸
J8

+

t∫

0

∫

R

(
Rθux

v

)

x

θxxxdxdτ

︸ ︷︷ ︸
J9

−
t∫

0

∫

R

((
κθx

v

)

xx

− κθxxx

v

)

θxxxdxτ

︸ ︷︷ ︸
J10

. (4.17)

Notice that, from (4.16), we have

J7 =

t∫

0

∫

R

(
λ(v)u2

x

v

)

x

θxxxdxτ

≤ 1
6

t∫

0

∫

R

(
κ

v
θ2xxx)dxdτ + C

t∫

0

∫

R

(v2
xu4

x + u2
xxu2

x)dxdτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

t∫

0

∫

R

u2
xu2

xxdxdτ + C

t∫

0

‖vx‖2‖ux‖2‖uxx‖2dτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

t∫

0

∫

R

u2
xu2

xxdxdτ + C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

14

1

. (4.18)

Also, we can obtain

J8 =

t∫

0

∫

R

(
μ(v)wx

2
x

v

)

x

θxxxdxdτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

t∫

0

∫

R

(v2
x|wx|4 + |w2

xx||wx|2)dxdτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

t∫

0

∫

R

|w2
xx||wx|2dxdτ + C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

14

1

. (4.19)
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In the same method as above, we can get

J9 =

t∫

0

∫

R

(
Rθux

v

)

x

θxxxdxdτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

t∫

0

∫

R

(u2
x(θ2x + v2

x) + u2
xx)dxdτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

1

. (4.20)

Our next job is getting the estimate of J10, here

J10 =

t∫

0

∫

R

((
κθx

v

)

xx

− κθxxx

v

)

θxxxdxτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

t∫

0

∫

R

(θ6x + θ2xv4
x + θ2xθ2xx + θ2xv2

xx + v2
xθ2xx)dxdτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

t∫

0

∫

R

((v2
x + θ2x)θ2xx + θ2xv2

xx)dxdτ

+C

t∫

0

(‖θx‖4‖θxx‖2 + ‖vx‖2‖θx‖2‖vxx‖2)dτ

≤ 1
6

t∫

0

∫

R

κ

v
θ2xxxdxdτ + C

t∫

0

∫

R

((v2
x + θ2x)θ2xx + θ2xv2

xx)dxdτ

+C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

1

. (4.21)

Thus, input the estimate of J7, J8, J9, J10 into (4.17), we get the following lemma:

Lemma 4.7. Under the condition listed in Lemma 4.1, if the a priori assumption H3 holds, then we get

∥
∥
∥
∥

θxx√
γ − 1

∥
∥
∥
∥

2

+

t∫

0

∫

R

κ(θ)θ2xxx

v
dxdτ ≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

1

+C

t∫

0

∫

R

((
u2

x + v2
x + θ2x + w2

x

) (
θ2xx + u2

xx + w2
xx

)
+ θ2xv2

xx

)
dxdτ.

(4.22)
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As the second-order estimate of uxx,wxx, we have the following lemma:

Lemma 4.8. Under the same condition listed in Lemma 4.7, we have

‖uxx‖2 +

t∫

0

∫

R

λ

v
u2

xxx ≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

2

+

t∫

0

∫

R

(u2
x(v2

xx + v4
x) + u2

xxv2
x)dxdτ +

t∫

0

‖vxx‖2dτ, (4.23)

‖wxx‖2 +

t∫

0

∫

R

μ

v
u2

xxx ≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

+

t∫

0

∫

R

w2
x

(
v2

xx + v4
x

)
dxdτ. (4.24)

Just perform the same calculation as Lemma 4.7, we can get Lemma 4.8. Here, for brevity, we omit
the proof.

We will give the estimate for vxx in the following. First, since
(

μ(v)vx

v

)

t

=
(

μ(v)vt

v

)

x

;

thus, there is
(

μ(v)vt

v

)

x

= ut +
(

Rθ

v

)

x

. (4.25)

Differentiate (4.25) with respect to x and then multiply the result by (μ(v)vx

v )x, we can get

1
2

[(μvx

v

)

x

]2

t
=
(

μ(v)vx

v

)

x

utx +
(

Rθ

v

)

xx

(
μ(v)vx

v

)

x

=
[(

μ(v)vx

v

)

x

ux

]

t

−
(

μ(v)vx

v

)

tx

ux +
(

Rθ

v

)

xx

(
μ(v)vx

v

)

x

=
[(

μ(v)vx

v

)

x

ux

]

t

−
[(

μ(v)ux

v

)

x

ux

]

x

+
(

μ(v)ux

v

)

x

uxx

+
(

μ(v)vx

v

)

x

(
Rθxx

v
+

2Rθxvx − Rθvxx

v2
+

2Rv2
x

v3

)

. (4.26)

Integrating the above equation over [0, t] × R, we have

1
2

∥
∥
∥

(μvx

v

)

x
(t)
∥
∥
∥
2

+

t∫

0

∫

R

μv2
xx

v
dxdτ =

∫

R

(
μ(v)vx

v

)

x

ux(t) −
(

μ(v)vx

v

)

x

ux(0)dx

︸ ︷︷ ︸
J11

+
1
2

∥
∥
∥

(μvx

v

)

x
(0)
∥
∥
∥
2

+

t∫

0

∫

R

(
μ(v)ux

v

)

x

uxxdxdτ

︸ ︷︷ ︸
J12
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+

t∫

0

∫

R

(
μ(v)

v

)′
v2

x

(
Rθxx

v
+

2Rθxvx − Rθvxx

v2
+

2Rv2
x

v3

)

dxdτ

︸ ︷︷ ︸
J13

+

t∫

0

∫

R

μvxx

v

(
Rθxx

v
+

2Rθxvx

v2
+

2Rv2
x

v3

)

dxdτ

︸ ︷︷ ︸
J14

. (4.27)

From easily calculation, with (4.16), we have

J12 =

t∫

0

∫

R

(
μ(v)ux

v

)

x

uxxdxdτ ≤ O(1)

t∫

0

∫

R

(u2
xx + v2

x)dxdτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

6

1

. (4.28)

J11 =
∫

R

((
μ(v)vx

v

)

x

ux(t) −
(

μ(v)vx

v

)

x

ux(0)
)

dx

≤ 1
4

∥
∥
∥
∥

(
μ(v)vx

v

)

x

(t)
∥
∥
∥
∥

2

+ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

2

2

, (4.29)

J13 + J14 ≤ O(1)

t∫

0

∫

R

(v4
x + θ4x + θ2xx)dxdτ +

1
4

∥
∥
∥
∥

(
μ(v)vx

v

)

x

(t)
∥
∥
∥
∥

2

dxdτ

≤ O(1)

t∫

0

∫

R

(v4
x + θ4x)dxdτ +

1
4

∥
∥
∥
∥

(
μ(v)vx

v

)

x

(t)
∥
∥
∥
∥

2

dxdτ

+C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

, (4.30)

Thus, plug the estimate of (4.28)–(4.30) into (4.27), it follows that

∥
∥
∥

(μvx

v

)

x
(t)
∥
∥
∥
2

+

t∫

0

∫

R

μv2
xx

v
dxdτ

≤ O(1)

t∫

0

∫

R

(v4
x + θ4x)dxdτ + C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

2

≤ O(1)

t∫

0

(‖vx‖3‖vxx‖ + ‖θx‖3‖θxx‖)dτ + C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

2

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

16

2

+
1
2

t∫

0

∫

R

μv2
xx

v
dxdτ ; (4.31)

thus, we have the following lemma:
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Lemma 4.9. Under the condition of Theorem 1.3, there is positive constant C > 0, such that

∥
∥
∥

(μvx

v

)

x
(t)
∥
∥
∥
2

+

t∫

0

∫

R

μv2
xx

v
dxdτ ≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

16

2

. (4.32)

Since (μvx

v )x = (μ
v )′v2

x + μ
v vxx and v is bounded from above and below, thus combining the estimate

of (4.31), (4.32), we actually obtain

‖vxx(t)‖2 +

t∫

0

‖vxx‖2dτ ≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

16

2

. (4.33)

Then, if we plug (4.33) into (4.24), we can get

‖wxx‖2 +

t∫

0

∫

R

μ

v
w2

xxx ≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

+

t∫

0

∫

R

w2
x(v2

xx + v4
x)dxdτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

+

t∫

0

(‖vxx‖2‖‖wx‖‖wxx‖ + ‖vx‖2‖‖vxx‖2‖wx‖2) dτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

20

2

. (4.34)

Also, from (4.16), (4.23), and (4.33), we have

‖uxx‖2 +

t∫

0

∫

R

λ

v
u2

xxx ≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

2

+

t∫

0

∫

R

(
u2

x(v2
xx + v4

x) + u2
xxv2

x

)
dxdτ +

t∫

0

‖vxx‖2dτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

16

2

+

t∫

0

∫

R

(
u2

x(v2
xx + v4

x) + u2
xxv2

x

)
dxdτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

16

2

+

t∫

0

(‖ux‖‖uxx‖‖vxx‖2 + ‖vx‖‖vxx‖‖uxx‖2 + ‖ux‖2‖vx‖2‖vxx‖2) dτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

20

2

. (4.35)
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Finally, plug (4.33)–(4.35) into (4.12), we have

∥
∥
∥
∥

θxx√
γ − 1

∥
∥
∥
∥

2

+

t∫

0

∫

R

κ(θ)θ2xxx

v
dxdτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

1

+C

t∫

0

∫

R

((
u2

x + v2
x + θ2x + w2

x

) (
θ2xx + u2

xx + w2
xx

)
+ θ2xv2

xx

)
dxdτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

1

+C

t∫

0

‖(ux, vx, θx,wx)‖ (‖θxx‖‖θxxx‖ + ‖θx‖‖θxx‖‖vxx‖2 + ‖uxx‖‖uxxx‖ + ‖wxx‖‖wxxx‖) dτ

≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

2

(4.36)

Consequently, we obtain the following lemma:

Lemma 4.10. Under the conditions listed in Theorem 1.3, there is positive constant C > 0, such that

∥
∥
∥
∥

θxx√
γ − 1

∥
∥
∥
∥

2

+

t∫

0

∫

R

κ(θ)θ2xxx

v
dxdτ ≤ C

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

2

. (4.37)

Lemmas 4.7–4.10 tell us that if the local solution (v(t, x), u(t, x),w(t, x), θ(t, x)) to the Cauchy problem
(1.9) constructed in Lemma 2.1 has been extended to the time step t = T ≥ t1, and the a priori assumption
(H3) holds true, then there exist positive constants C2 ≥ 1 depending only on ‖(v0−1, u0,w0,

θ0−1√
γ−1

, v0x)‖,

V , V ,Θ, and Θ but independent of T and γ − 1, and C2 depending only on V2 but independent of T > 0
and γ − 1, such that (4.16) and

‖vxx(t)‖2 +

t∫

0

‖vxx‖2dτ ≤ C2

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

16

2

,

‖uxx(t)‖2 +

t∫

0

‖uxxx‖2dτ ≤ C2

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

20

2

,

‖wxx(t)‖2 +

t∫

0

‖wxxx‖2dτ ≤ C2

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

20

2

,

∥
∥
∥
∥

θxx(t)√
γ − 1

∥
∥
∥
∥

2

+

t∫

0

‖θxxx‖2dτ ≤ C2

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

2

. (4.38)

holds true. �

To use the continue method to get the global solution step by step, we only need to show that the a
priori assumption H3 can be closed. For this purpose, here we need γ − 1 > 0 to be sufficiently small. In
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fact, from (4.16)2, (4.16)6, and (4.38)4, we know that
∥
∥
∥
∥

θ − 1√
γ − 1

∥
∥
∥
∥

2

≤ C1

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

2

,

∥
∥
∥
∥

θx(τ)√
γ − 1

∥
∥
∥
∥

2

≤ C1

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

10

1

,

∥
∥
∥
∥

θxx(t)√
γ − 1

∥
∥
∥
∥

2

≤ C2

∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

2

. (4.39)

Due to θ = A
r v1−γ exp(γ−1

R s), if we set s = R
γ−1 ln R

A , we have

θ − 1 =
A

R
v1−γ exp

(
γ − 1

R
s

)

− 1

=
A

R
v1−γ exp

(
γ − 1

R
s

)

− A

R
exp

(
γ − 1

R
s

)

=
A

R

(
v1−γ − 1

)
exp

(
γ − 1

R
s

)

+
A

R

(

exp
(

γ − 1
R

s

)

− exp
(

γ − 1
R

s

))

.

Consequently,

‖θ0 − 1‖ ≤ O(1)
A(γ − 1)

R
exp

(
γ − 1

R
‖s0‖L∞

x

)[
∥
∥v−γ

0

∥
∥

L∞
x

‖v0 − 1‖ +
1
R

‖s0(x) − s‖
]

, (4.40)

‖θ0x‖ ≤ O(1)
A(γ − 1)

R
exp

(
γ − 1

R
‖s0‖L∞

x

)[

(inf v0(x))−γ ‖v0x‖ +
1
R

(inf v0(x))1−γ ‖s0x‖
]

,

‖θ0xx‖ ≤ O(1)
A(γ − 1)

R
exp

(
γ − 1

R
‖s0‖L∞

x

)[
(inf v0(x))−γ + (inf v0(x))1−γ + (inf v0(x))−γ−1

]

× (‖v0x‖2 + ‖v0xx‖2 + ‖s0x‖2 + ‖s0xx‖2) . (4.41)

Since inf v0(x), ‖v0‖2, ‖s0‖2 is assumed to be independent of γ − 1, then from (4.39), we know that

‖θ0 − 1‖2 ≤ C(inf v0(x), ‖v0‖2, ‖s0‖2)(γ − 1).

Thus, we have

‖θ(t) − 1‖22 ≤ C(γ − 1)
∥
∥
∥
∥

(

v0 − 1, u0,w0,
θ0 − 1√
γ − 1

)∥
∥
∥
∥

30

2

≤ C(γ − 1) ‖(v0 − 1, u0,w0)‖302 + C(γ − 1)−14 ‖θ0 − 1‖302
≤ C(γ − 1) ‖(v0 − 1, u0,w0)‖302 + C(inf v0(x), ‖v0‖2, ‖s0‖2)(γ − 1)16, (4.42)

holds for 0 ≤ t ≤ T and some positive constants independent of T and the quantity (γ − 1)−1.
Thus, if γ − 1 is chosen sufficiently small, then the a priori assumption H3 can be hold; thus, we can

use the continuity method to get the global solution.
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