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Trapping of surface gravity waves by a vertical flexible porous plate near a wall
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Abstract. The present study deals with the trapping of oblique surface gravity waves by a vertical submerged flexible porous
plate located near a rigid wall in water of finite as well as infinite depths. The physical problem is based on the assumption
of small amplitude water wave theory and structural response. The flexible plate is assumed to be thin and is modeled
based on the Euler–Bernoulli beam equation. Using the Green’s function technique to the plate equation and associated
boundary conditions, an integral equation is derived which relates the normal velocity on the plate to the difference in
velocity potentials across the plate involving the porous-effect parameter and structural rigidity. Further, applying Green’s
second identity to the free-surface Green’s function and the scattered velocity potentials on the two sides of the plate, a
system of three more integral equations is derived involving the velocity potentials and their normal derivatives across the
plate boundary along with the velocity potential on the rigid wall. The system of integral equations is converted into a
set of algebraic equations using appropriate Gauss quadrature formula which in turn solved to obtain various quantities
of physical interest. Utilizing Green’s identity, explicit expressions for the reflection coefficients are derived in terms of
the velocity potentials and their normal derivatives across the plate. Energy balance relations are derived and used to
check the accuracy of the computational results. As special cases of the submerged plate, wave trapping by the bottom-
standing as well as surface-piercing plates is analyzed. Effects of various wave and structural parameters in trapping of
surface waves are studied from the computational results by analyzing the reflection coefficients, wave forces exerted on the
plate and the rigid wall, flow velocity, plate deflections and surface elevations. It is observed that surface-piercing plate is
more effective for trapping of water waves compared to the bottom-standing and submerged plates. Further, irrespective of
plate configurations, full reflection occurs for the same values of the distance between the plate and the rigid wall. Similar
phenomenon is observed in case of angle of incidence. Irrespective of plate configurations, in the very long wave regime, full
reflection occurs in case of partial plate of any length due to the occurrence of the wave diffraction through the gap region
while zero reflection occurs in case of fully extended plate.
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1. Introduction

One of the greatest menaces to the mankind is the rise of seawater level due to global warming. The
significant increase in real estate along the coast, due to the rise in world population, is likely to exert
even greater pressure on the coastal cities and island countries for designing coastal structures for shore
protection keeping in mind the rise in sea level. Further, the significant rise in global trade and transport
is putting additional pressure on the existing ports and harbors. With an increase in global trading, there
is a substantial increase in harbor traffic on account of movement of large number of ships results in the
deterioration of wave conditions in various ports and harbors around the world. Field measurements reveal
that most of the wave energy incident upon harbor walls is reflected back and worsen the wave climate
during the peak hours within harbors. Over the years, vertical rigid walls have been constructed for
protection of marine facilities in coastal zones. However, many of these vertical rigid walls have collapsed
due to high wave loads. To reduce wave loads on these existing walls, various permeable structures such
as perforated caisson-type sea walls, piled barriers and slotted vertical walls have been suggested (see
[1]). Further, to minimize wave loads on coastal structures like sea walls, it is found that a complete or
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partial porous structure can be kept at a suitable distance from the vertical wall and thus developing
a wave trapping system. Also, for creating a tranquility zone, flexible and porous partial barriers are
proposed as alternatives. In the design of an effective wave trapping system for protecting marine facilities,
complete/partial flexible porous structures are proposed as temporary barriers in the vicinity of marine
structures. Moreover, flexible porous wave barriers which consist of vertical porous membrane acting
under tension are proposed to increase the effectiveness of wetlands habitat restoration projects (see [2]).

In the absence of end wall in a channel, studies on water wave scattering by partial rigid barriers
started since Dean [3] who studied the surface gravity wave reflection by a thin submerged barrier in
infinite water depth. Ursell [4] studied the wave scattering by surface-piercing barrier using Havelock’s
expansion of velocity potential in infinite water depth. Since then, various mathematical techniques were
developed to tackle mixed boundary value problems involving different barrier configurations. Mandal
and Chakrabarti [5] extensively reviewed the numerous methods to study wave scattering by partial rigid
barriers. Further, in the book of Linton and McIver [6], a wide range of mathematical techniques are
described to deal with wave-structure interaction problems in broad fields of research including water
waves. In these studies, the structure was assumed to be rigid in nature. Sahoo [7] discussed several
mathematical techniques used in the literature for analyzing wave interaction with flexible and porous
barriers of various configurations. On the other hand, Meylan [8] studied water wave scattering by a
surface-piercing vertical flexible sheet by using Fredholm- type integral equations and Green’s function
technique. Following Meylan’s approach, Chakraborty and Mandal [9,10] studied water wave scattering
by a submerged flexible plate in water of finite and infinite water depths, respectively. Recently, Koley et
al. [11] studied oblique wave scattering by a submerged flexible porous plate in both the cases of finite and
infinite water depths. In the solution procedure, using free-surface Green’s function and Green’s identity,
the boundary value problem is converted into a system of three integral equations which are handled for
solution numerically. Also, energy identities for wave scattering by flexible porous barriers are derived
and used to check the accuracy of the numerical results obtained in several cases.

In the literature, studies on the existence of trapped waves started since Stokes [12] demonstrated the
existence of edge waves along a sloping beach. Ursell [13] demonstrated the existence of trapped modes
traveling along the top of a fully submerged infinite circular cylinder, having sufficiently small radius
and parallel to free surface in a channel of infinite water depth. Subsequently, Jones [14] generalized
Ursell’s result to prove the existence of trapped modes in the presence of cylinders of arbitrary cross
section which is symmetric about vertical axis. Greenspan [15] found trapped and interfacial waves in a
constantly stratified fluid over a sloping beach. Later on, several investigations were carried out in different
situations on the existence of trapped waves. Leblond and Mysak [16] highlighted the importance of edge
waves/trapped modes in the dynamics and sedimentology of the nearshore zones. Linton and Evans [17]
analyzed the existence of trapped modes above a horizontal submerged flat plate in water of finite
depth. Linton and McIver [18] found the occurrence of zero reflection for any given incident wavenumber
when a circular cylinder is submerged horizontally in the lower layer of two-layer fluid of infinite depth.
An extensive literature survey on the mathematical theory of trapped waves for different geometrical
situations can be found in Kuznetsov et al. [19]. In all these studies, the emphasis was on showing the
existence of trapped waves. These trapped waves correspond to the time-harmonic free oscillation of water
surface confined to a finite region as defined by Sahoo et al. [20].

In the context of wave interaction with porous structures, Chwang and Dong [21] developed a wave
trapping system by introducing a vertical porous plate near the end of a semi-infinite long channel of
uniform depth. This study was further generalized by Wang and Ren [22] to analyze wave trapping by a
flexible porous barrier located at a finite distance from a rigid wall in a channel of finite depth. Sahoo et
al. [20] analyzed trapping as well as generation of surface waves by partial permeable barriers of different
configurations located near the end of a semi-infinitely long channel of finite depth. Yip et al. [23] extended
the study on wave trapping to include flexibility in the porous barriers. Behera et al. [24] investigated
oblique wave trapping system in a two-layer fluid of finite depth. In the aforementioned problems, the
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barrier is assumed to be of negligible width. On the other hand, oblique wave trapping by porous structures
of finite width was studied by Koley et al. [25]. Behera and Sahoo [26] analyzed oblique wave scattering
and trapping by porous structures of finite width having various configurations in water of finite depth
in two-layer fluid. Also, they considered a porous structure with perforated front and rigid back walls as
special cases. In all these class of problems, the objective was on finding the optimum distance between
the porous structure and the end wall for which wave reflection attends minimum value. The case of zero
reflection is referred as full-wave trapping, while the case for which nonzero minimum in wave reflection
occurs is referred as partial wave trapping. In most of these studies on wave trapping mentioned above, the
physical problems are handled using classical methods such as eigenfunction expansion method, least-
square approximation method and boundary element method. In the boundary element method, free-
space Green’s function is used and one has to deal with a large matrix system for the accuracy of the
solution. Further, all these problems were handled in water of finite depth. To the authors knowledge,
no study on wave trapping by porous and flexible structures is available in the literature in the case of
infinite water depth.

In the present paper, oblique wave trapping by a vertical submerged flexible porous plate located near
a vertical rigid wall is analyzed. As special cases of the submerged flexible plate problem, oblique wave
trapping by surface-piercing and bottom-standing partial flexible porous plates are analyzed. Using the
free-surface Green’s function and Green’s identity, the mixed boundary value problem is converted into
a system of four integral equations. The integrals associated with the integral equations are evaluated
using Gauss–Legendre quadrature formulae in case of finite water depth and Gauss–Laguerre quadra-
ture formulae in case of infinite water depth. With suitable application of Green’s identity and far-field
condition, expression for reflection coefficient is obtained in terms of the velocity potentials and their
normal derivatives. Furthermore, using Green’s identity, energy relations are derived in both the cases
of finite and infinite water depths and are used to check the accuracy of various computational results.
To understand the effectiveness of the flexible porous plates in trapping oblique waves, various numerical
results on reflection coefficients, wave loads on the plate and the rigid wall, plate deflection, free- surface
elevation and flow field are presented in both the cases of water of finite and infinite depths. A compara-
tive study on wave trapping by flexible porous plates located near a wall is demonstrated between finite
and infinite water depths by analyzing the reflection coefficients and forces acting on the flexible porous
plate.

2. Formulation of boundary value problem

The physical problem associated with oblique surface wave trapping by flexible submerged porous plate
is studied in the three-dimensional Cartesian coordinate system in both the cases of water of finite
and infinite depths under the assumption of classical small amplitude water wave theory and structural
response. The fluid domain is assumed to be infinitely extended in the x–z horizontal directions as
−∞ < x, z < ∞ with y-axis being taken vertically downward and the horizontal plane y = 0 being the
undisturbed free surface. A flexible porous plate is assumed to be kept at x = 0 at a finite distance L from a
rigid wall in a semi-infinite long channel as in Fig. 1. As special cases of the submerged plate, wave trapping
by surface-piercing and bottom-standing flexible porous plates is studied. For notational convenience, Lp

refers to the plate region and Lg refers to the gap region above and/or below the plate. Further, in the
case of finite water depth, Lp = (0, b) for surface-piercing plate, (a, b) for submerged plate and (a, h) for
bottom-standing plate while, the corresponding gap regions are given by Lg = (b, h), (0, a) ∪ (b, h) and
(0, a). On the other hand, in the case of infinite water depth, Lg = (b,∞) for surface-piercing plate and
Lg = (0, a) ∪ (b,∞) for submerged plate. In the present study, bottom-standing plate in infinite water
depth is not considered since such a structure in practice is physically irrelevant in nature. The fluid is
assumed to be incompressible, inviscid with motion being irrotational and simple harmonic in time with
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Fig. 1. Schematic diagram for oblique wave trapping by a flexible porous plate near a wall

angular frequency ω. Further, it is assumed that the surface waves are incident upon the plates making an
angle θ with x-axis. Thus, there exist velocity potentials of the form Φj(x, y, z, t) = Re{φj(x, y)ei(kzz−ωt)}
with kz being the z-component of the plane progressive wave incident upon the plate and subscripts
j = 1, 2 referring to the fluid domains 1 and 2 shown in Fig. 1. The assumption of the simple harmonic
form of the velocity potential along z-axis accounts for the oblique incident waves and maintains symmetry
in the fluid motion. In the jth fluid region, the spatial velocity potential φj satisfies the partial differential
equation

∂2φj

∂x2
+

∂2φj

∂y2
− k2

zφj = 0, (1)

along with the free-surface boundary condition given by

∂φj

∂y
+ Kφj = 0 on y = 0, (2)

where K = ω2/g and g is the acceleration due to gravity. The bottom boundary condition is given by

∂φj

∂y = 0 on y = h (for finite water depth),

φj ,∇φj → 0 as y → ∞ (for infinite water depth).

}
(3)

On the vertical rigid wall, vanishing of horizontal velocity yields

∂φ2

∂x
= 0, at x = L. (4)

Assuming that the flexible plate is of uniform rigidity and is oscillating in the horizontal direction with
displacement ζ(y, z, t) = Re{χ(y)ei(kzz−ωt)} where χ(y) is the complex deflection amplitude that is
assumed to be the small compared to the water depth. The equation of motion for flexible plate acted
upon by fluid pressure is given by (see [27,28])

EI
(

d2

dy2
− k2

z

)2

χ + Q

(
d2

dy2
− k2

z

)
χ − msω

2χ = iρω(φ1 − φ2), for x = 0, y ∈ Lp, (5)

where EI is the uniform flexural rigidity of the plate, Q is the uniform compressive force acting on the
plate, ms = ρsd is the uniform mass per unit length with ρs being material density of the elastic plate
and d being the thickness of the plate that is assumed to be small, and ρ is the density of water. The
boundary condition on the flexible porous plate is given by (see [7, p. 120])

∂φj

∂x
= ik0G0(φ1 − φ2) − iωχ, for x = 0, y ∈ Lp (6)
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with G0 being the porous-effect parameter as in Yu and Chwang [29]. Assuming that the plate is having
free edge at y = b, vanishing of bending moment and shear force at the edge yields(

d2

dy2
− νk2

z

)
χ = 0,

{
EI

(
d2

dy2
− (2 − ν)k2

z

)
d
dy

+ Q
d
dy

}
χ = 0, at y = b, (7)

where ν is the Poisson’s ratio of the elastic plate. On the other hand, if the plate is having fixed edge at
y = a, vanishing of the plate deflection and slope at the edge yields

χ = 0,
dχ

dy
= 0 at y = a. (8)

Moreover, the continuity of pressure and velocity in the gap yields

φ1 = φ2 for x = 0, y ∈ Lg,

∂φ1
∂x = ∂φ2

∂x for x = 0, y ∈ Lg.

}
(9)

Finally, radiation condition is given by

φ1(x, y) → φ0(x, y) + Rφ0(−x, y) as x → −∞, (10)

where R is the unknown amplitude of the reflected wave and φ0(x, y) being the known incident wave
potential. In the finite depth case, φ0(x, y) = {cosh k0(h − y)/ cosh k0h}eikxx while φ0(x, y) = eikxx−Ky

in the infinite depth case, with kx = k0 cos θ for finite water depth and kx = K cos θ for infinite water
depth. Moreover, kz = k0 sin θ for finite water depth and K sin θ for infinite water depth with k0 being
the wave number associated with plane progressive wave in finite depth, satisfying dispersion relation
ω2 = gk0 tanh k0h.

3. Formulation of system of integral equations

In this section, the boundary value problem, discussed in the aforementioned section, is converted into
a system of integral equations following the procedure of Meylan [8]. Initially, using Green’s function
technique to the flexible plate equation and associated boundary conditions, an integral equation is
derived. Then, applying Green’s second identity to the velocity potential and the free-surface Green’s
function in the fluid domain, another system of three integral equations is derived. Further, using Green’s
second identity, explicit relation for the reflection coefficient is obtained in terms of the velocity potentials
and their normal derivatives. Hereafter, the method of solution is described for a submerged plate as a
general configuration with Lp = (a, b), and the problems of plate configurations such as surface-piercing
and bottom-standing plates will be studied as particular cases in the numerical discussion.

It is observed that the boundary conditions in Eqs. (5), (7) and (8) is itself a Sturm–Liouville-type
boundary value problem for χ(y). Thus, the associated Green’s function gp(η, y) satisfies

d4gp

dη4
+ A

d2gp

dη2
+ Bgp = δ(η − y), for a < y, η < b, (11)

along with the boundary conditions (7) at η = b and (8) at η = a. Further, the Green function gp(η, y)
satisfies the continuity and jump conditions given by

gp,
∂gp

∂η
,
∂2gp

∂η2
are continuous at η = y, (12)

and
∂3gp

∂η3
(y + 0, y) − ∂3gp

∂η3
(y − 0, y) = −1. (13)
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The form of general solution gp(η, y) is given by

gp(η, y) =

{
P1eδ1η + Q1e−δ1η + R1eδ2η + S1e−δ2η, a < η < y < b

P2eδ1η + Q2e−δ1η + R2eδ2η + S2e−δ2η, a < y < η < b.

where ±δ1 and ±δ2 are the distinct roots of the characteristic equation q4 + Aq2 + B = 0 with A =
(Q/EI ) − 2k2

z , B = k4
z − (Q/EI )k2

z − (msω
2/EI ) being known parameters associated with the flexible

plate equation given in Eq. (5). However, Pj , Qj , Rj , Sj (j = 1, 2) are unknown functions of y to be
determined using the above-mentioned boundary conditions and the properties of Green’s function (see
[11]). Further, the expression for gp(η, y) will be modified in an appropriate manner for δ1 = δ2. Thus,
using Green’s function technique, the deflection χ(y) is obtained as

χ(y) =
iρω

EI

∫
Lp

gp(η, y)(φ1(η) − φ2(η)) dη, y ∈ Lp, (14)

where φj(η) = φj(0, η). Next, substituting χ(y) into (6) yields a Fredholm-type integral equation

∂φj

∂x
= ik0G0(φ1 − φ2) +

ρω2

EI

∫
Lp

gp(η, y)(φ1(η) − φ2(η)) dη, on x = 0, y ∈ Lp. (15)

Hereafter, the subscript j assigned to ∂φ/∂x is removed since the normal velocity across the plate is
continuous. Next, using the free-surface Green’s function along with the continuity of velocity, three
more Fredholm-type integral equations connecting φ1, φ2 and ∂φ/∂x will be derived whose details are
discussed separately for water of finite and infinite depths in the subsequent subsections.

3.1. Oblique wave trapping in finite water depth

Oblique wave trapping by a submerged vertical flexible porous plate involves the determination of the
velocity potentials φ1, φ2 and the plate deflection χ along with the unknown constant R as discussed in
Sect. 2. It may be noted that Eq. (15) is derived for the determination of φ1, φ2, and ∂φ/∂x. Thus, to
derive a consistent system of Fredholm-type integral equations which relate these unknowns, application of
Green’s integral theorem to the functions φ1(ξ, η)−(cosh k0(h−η)/ cosh k0h)eikxξ and G(ξ, η;x, y) (x < 0)
in a region of (ξ, η) plane bounded externally by the contour composed of the lines η = 0, −X ≤ ξ ≤
0; ξ = −X, 0 ≤ η ≤ h; η = h, −X ≤ ξ ≤ 0; ξ = 0, 0 ≤ η ≤ h, and internally by a circle of very small
radius ε with center at (x, y), which after taking the limits X → ∞, ε → 0 and x → 0−, yields

φ1(y) = 2φ0(0, y) +
1
π

h∫
0

{
φ1(η)

∂G(0, η; 0, y)
∂n

− G(0, η; 0, y)
∂φ(η)
∂n

}
dη, for x = 0−, y ∈ (0, h) (16)

where ∂/∂n being the differentiation with respect to the outward drawn normal and G(ξ, η;x, y) is the
finite depth free-surface Green’s function associated with oblique gravity wave problems (see [30]), given
by

G(ξ, η;x, y) = −4πik0
cosh k0(h − η) cosh k0(h − y)

kx(2k0h + sinh 2k0h)
eikx|ξ−x|

− 4π

∞∑
n=1

kn cos kn(h − η) cos kn(h − y)
k′

n(2knh + sin 2knh)
e−k

′
n|ξ−x|

with kn(n = 1, 2, 3, . . .) being the positive real roots of the dispersion relation k tan kh = −K, k
′
n =

(k2
n + k2

z)1/2. Hereafter, φj(0∓, y) and ∂φj(0∓, y)/∂x are denoted as φj(y) and ∂φ(y)/∂x, respectively,
as and when necessary.
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Fig. 2. Contour in the plane

Further, using the Green’s second identity to the functions along the contours as discussed above and
taking the limit x → −∞ instead of x → 0− and comparing the velocity potential with the far-field
condition in Eq. (10), the reflected amplitude R is obtained as

R =
2k0 cosh k0h

kx (2k0h + sinh 2k0h)

h∫
0

[
kxφ1(η) − i

∂φ(η)
∂n

]
cosh k0(h − η)dη. (17)

Similarly, applying Green’s integral theorem to the functions φ2(ξ, η) and G(ξ, η;x, y) (x > 0) in a region
bounded externally by a contour, as in Fig. 2, that is composed of the lines η = 0, 0 ≤ ξ ≤ L; ξ = L, 0 ≤
η ≤ h; η = h, 0 ≤ ξ ≤ L; ξ = 0, 0 ≤ η ≤ h and internally by a circle of very small radius ε with center at
(x, y), and ultimately letting ε → 0 and x → 0+, another Fredholm-type integral equation is derived as

φ2(y) =
1
π

h∫
0

{
φ2(η)

∂G(0, η; 0, y)
∂n

− G(0, η; 0, y)
∂φ(η)
∂n

}
dη

− 1
π

h∫
0

{
φ2(L, η)

∂G(L, η; 0, y)
∂n

}
dη, for x = 0+, y ∈ (0, h). (18)

Proceeding in a similar manner as done for Eq. (18), taking the limit x → L− instead of x → 0+, another
Fredholm-type integral equation is derived as

φ2(y) =
1
π

h∫
0

{
φ2(η)

∂G(0, η;L−, y)
∂n

− G(0, η;L−, y)
∂φ(η)
∂n

}
dη

− 1
π

h∫
0

{
φ2(L, η)

∂G(L, η;L−, y)
∂n

}
dη, for x = L−, y ∈ (0, h). (19)

Thus, Eqs. (15), (16), (18) and (19) yield a set of four coupled-integral equations for the determination
of the unknown functions φ1(0−, y), φ2(0+, y), φ2(L−, y) and ∂φ/∂x in the finite depth case, and the
scattering quantity R will be calculated using its explicit expression in Eq. (16).
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3.2. Oblique wave trapping in infinite water depth

In this subsection, using similar contours as in case of finite depth with h being replaced by Y , and finally
considering the limiting case Y → ∞, three different integral equations are derived as

φ1(y) = e−Ky +
1
π

∞∫
0

{
φ1(η)

∂G(0, η; 0, y)
∂n

− G(0, η; 0, y)
∂φ(η)
∂n

}
dη, for x = 0−, y ∈ (0,∞), (20)

φ2(y) =
1
π

∞∫
0

{
φ2(η)

∂G(0, η; 0+, y)
∂n

− G(0, η; 0+, y)
∂φ(η)
∂n

}
dη

− 1
π

∞∫
0

{
φ2(L, η)

∂G(L, η; 0+, y)
∂n

}
dη, for x = 0+, y ∈ (0,∞) (21)

and

φ2(y) =
1
π

∞∫
0

{
φ2(η)

∂G(0, η;L−, y)
∂n

− G(0, η;L−, y)
∂φ(η)
∂n

}
dη

− 1
π

∞∫
0

{
φ2(L, η)

∂G(L, η;L−, y)
∂n

}
dη, for x = L−, y ∈ (0,∞). (22)

where

G(ξ, η;x, y) = K0(kzr) − K0(kzr
′
) +

2πiK

(K2 − k2
z)1/2

e−K(y+η)+i(K2−k2
z)1/2|x−ξ|

+ 2

∞∫
0

k{k cos k(y + η) − K sin k(y + η)}
(k2 + K2)(k2 + k2

z)1/2
e−(k2+k2

z)1/2|x−ξ| dk,

with r = {(x− ξ)2 +(y − η)2}1/2, r
′
= {(x− ξ)2 +(y + η)2}1/2 and K0(kzr) is the zeroth- order modified

Bessel function of the second kind. The derivation of G in the case of infinite water depth can be found
in Levine [31]. In addition, the reflected amplitude is calculated as

R =
K

kx

∞∫
0

[
kxφ1(η) − i

∂φ(η)
∂n

]
e−Kηdη, (23)

Thus, for the wave trapping in the case of infinite water depth, Eqs. (15) and (20)–(22) will be solved
simultaneously and R can be computed subsequently.

3.3. Energy identity

In the study of surface wave scattering by floating/submerged structures, hydrodynamical relations such
as energy identities are derived to understand the relationship between the scattered coefficients and to
check the accuracy of the computational results. Often, the energy identities are derived using Green’s
integral theorem or law of conservation of energy flux. In case of water wave scattering by finite rigid
plates, the energy identity is given by the relation |R0|2 + |T0|2 = |A0|2 where A0, R0 and T0 are the
incident, reflected and transmitted wave amplitudes, respectively. Unlike wave scattering by a barrier, in
case of wave trapping by flexible porous plate near a wall, because of the fact that the region between
the rigid wall and the flexible porous plate is finite, transmitted wave amplitude T will not appear in
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the energy relation. In this subsection, using Green’s second identity, energy relations for oblique wave
trapping by a flexible porous plate located near a wall are derived in both the cases of water of finite and
infinite depths separately.

Using Green’s integral theorem to the function φ(x, y) and its complex conjugate φ̄(x, y) in the region
bounded by a contour as shown in Fig. 2, for finite water depth, it is derived that∫

Γ

(
φ

∂φ̄

∂n
− φ̄

∂φ

∂n

)
dΓ = 0,

where the contour Γ is composed of the lines y = 0 (−X ≤ x ≤ L); x = L (0 ≤ y ≤ h); y = h (−X ≤ x ≤
L); x = −X (0 ≤ y ≤ h) and x = ±0(a ≤ y ≤ b). The contribution from the line x = −X (0 ≤ y ≤ h) is
obtained by taking the limit as X → ∞, which yields

−ikx(|R|2 − 1)(2k0h + sinh 2k0h)
2k0 cosh2 k0h

. (24)

It can be easily checked that there is no contribution from the lines y = 0 (−X ≤ x ≤ L), x = L (0 ≤
y ≤ h) and y = h (−X ≤ x ≤ L). Finally, the contribution from x = ±0(a ≤ y ≤ b) is obtained as

ρω2

EI

b∫
a

b∫
a

{Ū(η, y)[φ1(y) − φ2(y)] − U(η, y)
[
φ̄1(y) − φ̄2(y)

] }
dη dy

−ik0

b∫
a

{V̄(y)[φ1(y) − φ2(y)] + V(y)[φ̄1(y) − φ̄2(y)]
}

dy, (25)

where U(η, y) = gp(η, y)[φ1(η) − φ2(η)], V = G0[φ1(η) − φ2(η)] and Ū , V̄, φ̄1, φ̄2 are the complex conju-
gates of the functions U , V, φ1, φ2, respectively. Thus, by summing up the results in (24) and (25), for
finite depth case, we deduce an energy balance relation

|R|2 + |γ1| + |γ2| = 1, (26)

where

γ1 =
iρω2A
EI

b∫
a

b∫
a

{Ū(η, y) [φ1(y) − φ2(y)] − U(η, y)[φ̄1(y) − φ̄2(y)]
}

dη dy and

γ2 = k0A
b∫

a

{V̄(y)[φ1(y) − φ2(y)] + V(y)[φ̄1(y) − φ̄2(y)]
}

dy,

with

A = − 2k0 cosh2 k0h

kx(2k0h + sinh 2k0h)
. (27)

Proceeding in a similar manner, it is easy to check that in case of infinite water depth, the energy identity
satisfies the relation in (26) with k0 being K and A being replaced by −K/kx.

4. Numerical results and discussions

As discussed in the aforementioned section, the study of oblique wave trapping by flexible porous plates
leads to a system of four integral equations involving φ1(0−, y), φ2(0+, y), φ2(L−, y) and ∂φ/∂n in
finite/semi-infinite intervals. To evaluate various integrals associated with the above-mentioned integral
equations, Gauss–Legendre quadrature formula is used for evaluating integrals over finite intervals while,
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for integrals in semi-infinite intervals, Gauss–Laguerre quadrature formula is used with the assumption
that the velocity potentials and their normal derivatives decrease exponentially. The two Gauss quadra-
ture formulae are briefly discussed for clarity (as in [33]).

The Gauss–Legendre quadrature formula is given by
b∫

a

f(x)dx ≈ b − a

2

n∑
j=1

wjf

(
b − a

2
xj +

b + a

2

)
(28)

where xj(j = 1, 2, . . . , n) are the zeros of Legendre polynomial Pn(x) of degree n, and the weight functions
wj(j = 1, 2, . . . , n) are given by

wj =
2(

1 − xj

)2(
P ′

n(xj)
)2 (29)

with P
′
n(x) being the derivative of Pn(x). On the other hand, for function f(x) which decays exponentially

in the interval (0,∞), the Gauss–Laguerre quadrature formula is given by
∞∫
0

f(x)dx ≈
n∑

j=1

wjf(xj) (30)

where xjs are the zeros of the Laguerre polynomial Ln(x) of degree n, and corresponding weight functions
wjs are given by

wj =
(j!)2

L′
n(xj)Ln+1(xj)

, (31)

with L
′
n(x) being the derivative of Ln(x).

In order to solve the system of integral equations derived for finite and infinite water depths, the above-
mentioned quadrature formulae will be used depending upon the nature of the integral. Hereafter, oblique
wave trapping by flexible porous plates of three different configurations discussed in the previous sections
will be analyzed separately. For the numerical computation, values of various physical parameters are
kept fixed as G0 = 0.5+0.5i, m1 = ms/(ρc) = 0.01, ν = 0.3, γ = EI/(ρgc4) = 0.1, β = Q/(ρgc2) = 0.05,
and θ = 30◦ unless it is mentioned. Further, in the non-dimensionalization of the flexural rigidity EI and
mass ms, c refers to b in case of infinite water depth, and c refers to either b or h depending on the nature
of the physical boundary and plate configurations which will be highlighted as and when required for
water of finite depth. In the present study, it is found that the characteristic equation associated with the
plate equation in Sect. 3 has distinct roots. For the wave trapping problems, the reflection coefficients
are computed using the formulae

Kr = |R|. (32)

Equation (26) yields the energy relation in the form given by

E = 1, (33)

with E = K2
r + |γ1| + |γ2|. The non-dimensional horizontal wave forces on the flexible porous plate Kf

and the vertical rigid wall Kw are given by the formulae

Kf =
ω

gc2

∣∣∣ ∫
Lp

(φ1(0, y) − φ2(0, y))dy
∣∣∣, (34)

and

Kw =
ω

gc2

∣∣∣ ∫
Lw

(φ2(L, y))dy
∣∣∣, (35)
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Table 1. Energy identity for bottom-standing plate in water of finite depth with
k0h = 1, a/h = 0.4, γ = 0.1, β = 0.05, G0 = 0.5 + 0.5i and θ = 30◦

L/λ Kr |γ1| |γ2| E
1.0 0.8400 0.0005 0.2943 1.0004
1.5 0.7346 0.0009 0.4502 0.9907
2.0 0.6551 0.0014 0.5608 0.9913
2.5 0.6629 0.0012 0.5704 1.0110
3.0 0.8207 0.0007 0.3164 0.9906

Table 2. Energy identity for surface-piercing plate in water of finite depth with
k0h = 1, b/h = 0.6, γ = 0.1, β = 0.05, G0 = 0.5 + 0.5i and θ = 30◦

L/λ Kr |γ1| |γ2| E
1.0 0.7677 0.0011 0.4005 0.9909
1.5 0.6259 0.0020 0.6081 1.0018
2.0 0.4891 0.0025 0.7507 0.9924
2.5 0.4197 0.0032 0.8237 1.0030
3.0 0.6389 0.0016 0.5817 0.9914

, respectively, with c being the same as defined above and Lw span over the water depth. Further, the
non-dimensional form of the structural displacements ς(y) is given by

ς(y) =
ρω

EI h

∣∣∣ ∫
Lp

g(η, y)[φ1(0, η) − φ2(0, η)]dη
∣∣∣. (36)

In order to check the accuracy of the computational results, the numerical results are validated by
comparing the results obtained in the present paper with known results in the literature and the energy
identity derived in the previous section. Moreover, computational results for the surface-piercing and
submerged plates are obtained based on the assumption that the upper end of the plate near the free
surface is fixed and the submerged end is free. On the other hand, for the bottom-standing plate, numerical
results are obtained assuming that the submerged end is free and the edge near the bottom bed is fixed.

Tables 1 and 2 show the values of the reflection coefficient Kr, wave energy transformation due to the
plate deformation γ1 and wave energy dissipation by the porous plate γ2 for various values of normalized
distance between the porous plate and the rigid wall L/λ for bottom-standing and surface-piercing flexible
porous plates, respectively. It is clear from both Tables 1 and 2 that energy loss due to porosity is higher
compared to that of plate deformation. Further, Tables 1 and 2 depict that for a particular value of
L/λ, wave reflection is higher for bottom-standing plate compared to that of surface-piercing plate, and
reverse trend is observed for energy loss due to dissipation by the porous plate. This may be because of
the fact that wave energy concentration is more near the free surface, which is dissipated more by the
surface-piercing plate compared to the bottom-standing plate. From both the tables, it is concluded that
the computational results for the reflection coefficient satisfy the energy identity for bottom-standing and
surface-piercing plates in water of finite depth which demonstrates the accuracy of the computational
results.

4.1. Bottom-standing flexible porous plate

In this subsection, various numerical results on oblique wave trapping by the bottom-standing flexible
porous plate are studied in finite water depth while the corresponding results in infinite water depth
are not considered as mentioned in Sect. 2. The accuracy and convergence of the numerical results are
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Fig. 3. Variation of the reflection coefficient versus a L/λ for different values of a/h with γ = 0.1, G0 = 1.0 and b structural
rigidity EI (MN-m) for different values of G0 with a/h = 0.0, β = 0.0, k0h = 1.0, θ = 0◦ and L/λ = 0.25

verified by comparing the reflection coefficients for wave trapping by a flexible porous plate as in Fig. 3a,
b with known results in the literature followed by discussion on various physical parameters related to
wave trapping in the subsequent figures.

In Fig. 3a, the reflection coefficient Kr versus normalized distance between the plate and the rigid
wall L/λ is plotted for different values of gap length a/h. Here, the computational results for Kr agree
well with the results of figure 2 in Yip et al. [23]. It is observed that the reflection coefficient changes
periodically as L/λ increases. As the distance between the plate and the rigid wall L becomes an integer
multiple of half of the wavelength of the incident waves, full-wave reflection occurs irrespective of the gap
length a/h. Further, Fig. 3a depicts that between two consecutive maxima in wave reflection, minima in
the wave reflection takes place. The minima in wave reflection is referred as partial wave trapping as in
Yip et al. [23]. Next, the reflection coefficient Kr versus structural rigidity EI is plotted in Fig. 3b for
different values of porous-effect parameter G0. The reflection coefficient plotted in Fig. 3b agrees well
with Fig. 2d of Wang and Ren [22]. Figure 3b depicts that with an increase in the structural rigidity,
reflection coefficient decreases until it reaches a uniform pattern. Further, it can be observed that for
highly flexible plate, structural porosity has negligible effect on wave reflection which may be due to the
predominant role of higher modes of vibration of the highly flexible plate.

In Fig. 4a, b, the reflection coefficient Kr versus normalized distance between the flexible porous plate
and the rigid wall L/λ and angle of incidence θ are plotted, respectively, for different values of the porous-
effect parameter G0. From both the figures, it is observed that with the increase in the absolute value of
the porous-effect parameter G0, reflection coefficient increases. This may be because of the fact that with
the increase in plate porosity, more wave energy passes through the porous plate which in turn is reflected
by the rigid wall. Figure 4a shows that irrespective of the values of the porous-effect parameter G0, full
reflection occurs for the same values of L/λ. However, a comparison with Fig. 3a reveals that for nonzero
angle of incidence θ, full reflection does not occur at L/λ = n/2 with n being a positive integer. Further,
Fig. 4a depicts that as the absolute value of the porous-effect parameter G0 increases, the minima in
the wave reflection shifted to the right. This may be due to the phase change of the reflected waves as
the absolute value of the porous-effect parameter G0 increases. On the other hand, Fig. 4b depicts that
with an increase in angle of incidence θ, wave reflection increases in an oscillatory pattern. This pattern
in wave reflection with the variation in angle of incidence is completely different from the oblique wave
scattering by flexible porous plate of similar configurations as observed in Koley et al. [11].
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Fig. 4. Variation of the reflection coefficient Kr versus a L/λ with θ = 30◦ and b angle of incidence θ for different values
of G0 with a/h = 0.4, k0h = 1.0, L/λ = 5 and γ = 0.1

Figure 5a shows the variation of reflection Kr versus k0h for different values of the gap length a/h.
It is observed that near k0h = 0, i.e., in case of long waves, zero reflection occurs for complete plate
while full reflection occurs for the same k0h for partial plates irrespective of plate length. However, in the
case of partial plate, due to presence of gap, wave diffraction occurs (as in [32]), which tends to transmit
all the waves for smaller values of k0h which is reflected back by the rigid wall. A reverse pattern was
observed in case of wave scattering by a bottom-standing flexible plate as in Koley et al. [11]. On the
other hand, for moderate values of k0h, i.e., for intermediate water depth, minimum reflection occurs in
case of partial plate which is because of the destructive interference between the incident and reflected
waves whereas maximum reflection occurs in case of a complete plate which is due to the constructive
interference between the incident and reflected waves. Further, in case of deep water, with an increase
in wave number k0h, wave reflection increases for bottom-standing partial plates of any length while
wave reflection decreases for complete plate. Moreover, Fig. 5a depicts that for partial plates, as the plate
length increases, wave reflection decreases. In Fig. 5b, the reflection coefficient Kr versus non-dimensional
structural rigidity γ is plotted for different values of porous-effect parameter G0. Figure 5b reveals that
as the absolute value of the porous-effect parameter G0 increases, wave reflection increases. Further, it is
observed that for values of structural rigidity γ close to zero, regardless of the variation in the porous-effect
parameter G0, almost full reflection occurs which may be due to the predominate role of higher modes
of vibration of the flexible structure. However, wave reflection attends certain minimum for moderate
value of structural rigidity γ, which increases and attends an uniform steady state with further increase
in structural rigidity γ. The minimum in wave reflection for moderate values of structural rigidity may
be due to the mutual interaction of different structural modes of vibration with the incident and reflected
waves. Further, for higher values of structural rigidity, the flexible structure behaves like a rigid body
and thus wave reflection follows a steady pattern.

Figure 6a shows the displacement profiles of the bottom-standing plate for various values of the
structural rigidity γ. It is observed that with an increase in structural rigidity γ, plate deflection decreases.
This may be due to the reason that as the structural rigidity increases, flexible plate tends to behave
like a rigid plate. Further, plate deflection is zero near the bottom bed as the plate is fixed near the
bottom and maximum deflection takes place at the submerged free edge for moderate values of structural
rigidity. Moreover, for highly flexible plate, the plate deflection is very high because of the predominant
role of higher modes of vibration of the plate under wave action. On the other hand, in Fig. 6b, the
free-surface elevation η̄/h versus x/h is plotted for different values of gap length a/h. It is observed that
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the free-surface elevation in the confined region decreases with a decrease in the gap length a/h. This
may be because of the fact that with a decrease in the gap length, more wave energy gets trapped in the
confined region between the porous plate and the rigid wall as observed in Fig. 3a.

Figure 7a, b depicts the instantaneous velocity field in Regions 1 and 2 as in Fig. 1 at t = 0. In Fig. 7a,
the horizontal scale has taken same as the vertical scale, while in Fig. 7b, the distance between the plate
and the rigid wall has taken same as wavelength of the incident wave. Figure 7a illustrates that the flow
velocity is higher near the free surface. This may be due to the fact that in case of bottom-standing
plate, the fluid can pass freely in the gap region above the plate. On the other hand, Fig. 7b reveals
that the flow velocity near the free surface adjacent to the rigid wall is predominant in the vertically
downward direction which is negligible at the sea bed. Further, along the interface of the porous plate,
the flow direction is neither horizontal nor vertical which is because of the energy dissipation by the
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Fig. 8. Variation of the wave force Kf versus a L/λ with θ = 30◦ and b angle of incidence θ for different values of G0 with
a/h = 0.4, k0h = 1.0, L/λ = 5 and γ = 0.1

flexible porous plate. However, at the interface region along the gap, the flow velocity is comparatively
higher than that along the porous plate. Further, near the bottom bed along the porous plate, the flow
velocity in the vertical direction is negligible. Moreover, in the confined zone near L = λ/2, seiches are
formed where flow direction remains in the vertically upward direction.

Figure 8a, b shows the variations of the wave forces exerted on the plate Kf versus the normalized
distance between the plate and the rigid wall L/λ and the angle of incidence θ for various values of
porous-effect parameter G0, respectively. Both the figures reveal that as the absolute value of the porous-
effect parameter G0 increases, wave force exerted on the plate decreases. This may be due to the fact
that with an increase in the absolute value of the porous-effect parameter G0, more wave energy passes
through the fine pores of the plate and thus less force is exerted on the plate. A comparison with Fig. 4
shows the values of L/λ and θ for which full reflection occurs, and no wave force is exerted on the plate.
Moreover, the values of L/λ and θ for which minimum wave reflection occurs correspond to the situation
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Fig. 9. Variation of the wave force Kw versus a L/λ with θ = 30◦ and b angle of incidence θ for different values of G0 with
a/h = 0.4, k0h = 1.0, L/λ = 5 and γ = 0.1

of maximum force on the plate which ensures that during trapping, wave force exerted on the plate
becomes maximum.

Figure 9a, b shows the variations of the wave forces exerted on the rigid wall Kw versus the normalized
distance between the plate and the rigid wall L/λ and the angle of incidence θ for various values of
porous-effect parameter G0, respectively. From both the figures, it is observed that optima in wave load
is observed for moderate values of the porous-effect parameter G0 = 0.5 + 0.5 i. Further, a comparison
with Fig. 8 reveals the values of L/λ and angle of incidence θ (0◦ < θ < 90◦) for which wave force exerted
on the plate becomes maximum, and wave force exerted on the rigid wall becomes minimum. However,
for angle of incidence θ close to 0◦ and 90◦, forces acting on the porous plate become zero and on the
rigid wall remain the same.

4.2. Surface-piercing flexible porous plate

In this subsection, various numerical results on oblique wave trapping by the surface-piercing flexible
porous plate are studied in both the cases of finite and infinite water depths. Although major results are
discussed for finite depth, results on finite and infinite water depths are compared in various cases.

In Fig. 10a, b, the reflection coefficient Kr versus normalized distance between the flexible porous
plate and the rigid wall L/λ and angle of incidence θ are plotted, respectively, for different values of
porous-effect parameter G0. It is observed that with an increase in the absolute value of the porous-effect
parameter G0, reflection coefficient increases. The overall pattern of Fig. 10 is same as that of bottom-
standing plate as in Fig. 4. However, a comparison of Fig. 10 with Fig. 4 reveals that wave reflection
is higher in case of bottom-standing plate compared to the surface-piercing plate. This may be due to
the reason that wave energy concentration is more near the free surface, which is dissipated more by the
surface-piercing plate compared to the bottom-standing plate. Thus, less wave energy is reflected back
by the rigid wall for a surface-piercing plate. Therefore, it can be concluded that a surface-piercing plate
is more suitable for developing an effective wave trapping system.

Figure 11a shows the variation of the reflection coefficient Kr versus k0h for different values of the plate
length b/h. It is observed that for fully extended plate, reflection coefficient becomes zero near k0h = 0,
whereas for the same values of k0h, full reflection occurs for partial plate. The observation is similar to
that in case of bottom-standing plate. However, more energy is reflected back in case of bottom-standing
plate compared to the surface-piercing plate of similar configurations. Thus, a bottom-standing plate is
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Fig. 10. Variation of the reflection coefficient Kr versus a L/λ with θ = 30◦ and b angle of incidence θ for different values
of G0 with b/h = 0.6, k0h = 1.0, L/λ = 5 and γ = 0.1
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Fig. 11. Variation of the reflection coefficient versus a k0h for different values of b/h with θ = 0◦ and b angle of incidence
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preferred for maximum wave reflection. On the other hand, in Fig. 11b, reflection coefficient Kr versus
angle of incidence θ is plotted for various values of L/λ. It is observed that the minima in the wave
reflection increases with an increase in the angle of incidence. Further, it can be seen that number of full
reflection increases as L/λ increases, while the global minimum in the reflection coefficient decreases as
L/λ increases. The occurrences of the minima in the wave reflection for certain angle of incidence may
be due to the destructive interference between the incident and the reflected waves.

Figure 12a shows the displacement profiles of the surface-piercing plate for various values of the
structural rigidity γ. It is observed that with an increase in structural rigidity γ, plate deflection decreases.
Further, Fig. 12a depicts that the plate with moderate structural rigidity γ, deflection is more near the
submerged end having free edges. Moreover, plate deflection is zero near the free surface as the plate is
fixed near the free surface. A comparison with Fig. 6a shows that the plate deflection is more in case of
surface-piercing plate compared to the bottom-standing plate of the same configurations. On the other
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Fig. 13. Flow field for a left-hand region of the plate and b confined region between the plate and the rigid wall for
b/h = 0.6, G0 = 0.5 + 0.5i, β = 0.05, γ = 0.1, k0h = 1.0, θ = 30◦ and L/λ = 1.0

hand, Fig. 12b shows that the free-surface elevation η̄/h versus x/h for different values of plate length
b/h. It is observed that the free-surface elevation in the confined region decreases as the plate length b/h
increases. A comparison with Fig. 6b reveals that in the confined zone, free-surface elevation is less in
case of surface-piercing plate as compared with the bottom-standing plate. This may be due to the fact
that a surface-piercing plate dissipates more wave energy concentrating near the free surface.

Figure 13a, b depicts the instantaneous velocity field at t = 0 in Regions 1 and 2 as in Fig. 1. In
Fig. 13a, the horizontal scale remains the same as the vertical scale, while in Fig. 13b, the distance
between the plate and the rigid wall remains the same as the wavelength of the incident wave. Figure 13a
depicts that near the plate, the flow velocity is higher in the gap region compared to the free surface as
the plate obstructs the wave motion and a major amount of wave energy passes through the gap below the
plate. However, in the region far from the plate, the flow velocity is higher near the free surface compared
to the bottom as the concentration of the wave energy is higher near the free surface than the bottom.



Vol. 66 (2015) Trapping of surface gravity waves by a vertical flexible porous... 2695

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

L/λ

K
f

G
0
=0.5+0.5i

G
0
=1+0.5i

G
0
=2+i

G
0
=3+2i

0 10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

θ(deg.)

K
f

G
0
=0.5+0.5i

G
0
=1+0.5i

G
0
=2+i

G
0
=3+2i

(a) (b)

Fig. 14. Variation of the wave force Kf versus a L/λ with θ = 30◦ and b angle of incidence θ for different values of G0 with
b/h = 0.6, k0h = 1.0, L/λ = 5 and γ = 0.1

On the other hand, Fig. 13b reveals that due to the energy dissipation by the porous plate, the flow
direction is neither vertical nor horizontal along the interface of the plate. Moreover, the flow velocity is
comparatively higher through the gap than through the porous plate. Further, a comparison with Fig. 7b
shows that in both the cases of bottom-standing and surface-piercing plate, seiches are formed in the
tranquility zone near L = λ/2, where flow direction remains vertically upward. This is because of the
mutual interaction of the wave motion within the confined zone between the surface-piercing plate and
the rigid wall. Moreover, near the rigid wall, horizontal velocity is zero and wave energy excitation is in
the vertically downward direction which is negligible near the bottom bed.

Figure 14a, b shows the variations of the wave forces exerted on the plate Kf versus the normalized
distance between the plate and the rigid wall L/λ and the angle of incidence θ for various values of
porous-effect parameter G0, respectively. Form both the figures, it is observed that with an increase in
the absolute value of the porous-effect parameter G0, wave force exerted on the plate decreases. Further,
the value of L/λ for which trapping occurs as in Fig. 10, wave force on the plate becomes maximum while
the situation of full reflection corresponds to zero wave force on the plate. This observation is similar to
that of the bottom-standing plate as in Fig. 8. However, a comparison with Fig. 8 reveals that wave force
exerted on the surface-piercing plate is higher than that of the bottom-standing plate.

Figure 15a, b depicts the variations of the wave forces exerted on the rigid wall Kw versus the nor-
malized distance between the plate and the rigid wall L/λ and the angle of incidence θ for various values
of porous-effect parameter G0, respectively. From both the figures, it is observed that wave force exerted
on the rigid wall Kw increases with an increase in the absolute value of the porous-effect parameter G0

and angle of incidence θ except for certain values of L/λ and θ for which maxima in the wave reflection
occurs. Further, a comparison with Fig. 14 reveals that maxima in the wave force exerted on the rigid wall
Kw corresponds to the minima in the wave force exerted on the plate Kf . Similar phenomena is observed
in case of bottom-standing plate as in Fig. 9. Further, a comparison with Fig. 9 shows that although in
both the cases, the reflection coefficient is oscillatory in nature but the amplitude of oscillation is higher
in case of surface-piercing plate compared to that of the bottom-standing plate.

In Fig. 16a, b, the reflection coefficient Kr versus the normalized distance between the plate and the
rigid wall L/b and the angle of incidence θ are plotted for different values of water depth k0h. Both
the figures illustrate that minimum in wave reflection decreases with an increase in water depth. This
is because of the fact that as water depth increases, wave energy concentration near the free surface
increases and is dissipated by the surface-piercing plate. Further, from Fig. 16a, it is observed that as
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Fig. 15. Variation of the wave force Kw versus a L/λ with θ = 30◦ and b angle of incidence θ for different values of G0

with b/h = 0.6, k0h = 1.0, L/λ = 5 and γ = 0.1
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Fig. 16. Variation of the reflection coefficient versus a L/b with θ = 30◦ and b angle of incidence θ for different values of
k0h with γ = 0.1, G0 = 0.5 + 0.5i, β = 0.05 and L/b = 15

water depth increases, the optima in the reflection coefficient occurs for different values of the distance
between the plate and the rigid wall L/b. This may be due to the change in wave characteristics such
as wave length and amplitude with the change in water depth. On the other hand, Fig. 16b depicts that
near θ = 0◦, as water depth increases, wave reflection decreases. However, as the angle of incidence θ
increases, the reflection coefficient Kr increases in an oscillatory pattern and finally converges at θ = 90◦

irrespective of water depth.
In Fig. 17a, b, reflection coefficient Kr and wave force exerted on the plate Kf versus structural

rigidity γ are plotted for different values of water depth, respectively. Figure 17a reveals that with an
increase in water depth, reflection coefficient increases. Further, it is observed that initially, the reflection
coefficient Kr decreases to attend certain minimum which increases and becomes uniform for higher values
of structural rigidity γ. For very small values of γ close to zero, full reflection occurs which is independent
of water depth. For smaller values of structural rigidity γ, due to the destructive interference of higher
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modes of vibration of the flexible plate with the incident waves, wave reflection attends certain minimum.
However, for larger values of structural rigidity γ, the flexible plate tends to behave like a rigid plate and
thus wave reflection is least affected with change in structural rigidity γ. On the other hand, Fig. 17b
shows that as the non-dimensional water depth k0h increases, wave force exerted on the plate decreases.
Further, a comparison with Fig. 17a shows that maxima in wave reflection corresponds to the minima in
the wave force.

4.3. Submerged flexible porous plate

In Fig. 18a, b, reflection coefficient Kr versus normalized distance between the plate and rigid wall L/λ
and angle of incidence θ are plotted for various values of the porous-effect parameter G0, respectively.
From both the figures, it is observed that wave reflection increases with an increase in the absolute value
of the porous-effect parameter G0 which is similar to the observations made in case of surface-piercing
and bottom-standing plates. A comparison with Figs. 4 and 10 reveals that wave reflection is more for
a submerged plate compared to a surface-piercing plate and less compared to a bottom-standing plate.
Further, a comparison with Figs. 4 and 10 demonstrates that irrespective of plate configurations, full
reflection occurs for the same distance between the plate and the rigid wall L/λ and for the same angle
of incidence θ.

In Fig. 19a, b, the instantaneous velocity field is plotted at t = 0 for Regions 1 and 2 as in Fig. 1.
In Fig. 19a, the horizontal scale remains the same as the vertical scale, while in Fig. 19b, the distance
between the plate and the rigid wall remains the same as the wavelength of the incident wave. Figure 19a
depicts that the flow velocity adjacent to the submerged plate is higher in the horizontal direction near
the free surface and near to the bottom bed compared to the plate region. On the other hand, Fig. 19b
depicts that in the confined zone between the submerged plate and the rigid wall, the direction of flow
is similar to that of the bottom-standing and surface-piercing plates. However, the flow speed remains
almost uniform within the confined zone which may be due to the uniform distribution of the wave energy
in the confined zone. Moreover, a comparison with Figs. 7 and 13 shows that in all the cases, seiches
are formed near L/λ = 0.5. However, near L/λ = 0.5, the vertical motion is very small in the case of
submerged plate compared to the bottom-standing and surface-piercing plates.
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Fig. 18. Variation of the reflection coefficient Kr versus a L/λ with θ = 30◦ and b angle of incidence θ for different values
of G0 with a/h = 0.2, b/h = 0.8, k0h = 1.0, L/λ = 5 and γ = 0.1
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Fig. 19. Flow field for a left-hand region of the plate and b confined region between the plate and the rigid wall for
a/h = 0.2, b/h = 0.8, G0 = 0.5 + 0.5i, β = 0.05, γ = 0.1, k0h = 1.0, θ = 30◦ and L/λ = 1.0

Figure 20a, b shows the variation of the wave force exerted on the plate Kf versus the normalized
distance between the plate and the rigid wall L/λ and the angle of incidence θ for various values of the
porous-effect parameter G0, respectively. Both the figures reveal that wave force acting on the plate Kf

decreases as the absolute value of the porous-effect parameter G0 increases. A comparison with Figs. 8
and 14 demonstrate that wave force Kf exerted on the plate is less in case of submerged plate compared
to the bottom-standing and surface-piercing plate, which may be due to the uniform distribution of the
wave energy in the confined region as discussed in Fig. 19. Moreover, it can be seen that irrespective of
the plate configurations, wave force Kf vanishes for the same distance between the plate and the rigid
wall L/λ and the angle of incidence θ.

In Fig. 21a, b, wave force exerted on the rigid wall Kw versus normalized distance between the plate
and the rigid wall L/λ and angle of incidence θ are plotted for various values of the porous-effect parameter
G0, respectively. Both the figures illustrate that wave force acting on the rigid wall Kw increases as the
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Fig. 20. Variation of the wave force Kf versus a L/λ with θ = 30◦ and b angle of incidence θ for different values of G0 with
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Fig. 21. Variation of the wave force Kw versus a L/λ with θ = 30◦ and b angle of incidence θ for different values of G0

with a/h = 0.2, b/h = 0.8, k0h = 1.0, L/λ = 5 and γ = 0.1

absolute value of the porous-effect parameter G0 increases. Further, wave force exerted on the rigid wall
is more for the submerged plate compared to the surface-piercing plate and is similar to that of the
bottom-standing plate as in Figs. 9 and 15, respectively. Further, a comparison with Figs. 9 and 15 shows
that irrespective of the plate configurations, wave force acted on the rigid wall Kw becomes minimum for
the same distance between the plate and the rigid wall L/λ and for the same angle of incidence θ.

Figure 22a, b depicts the reflection coefficient Kr versus the normalized distance between the plate and
the rigid wall L/(b − a) and the angle of incidence θ for different values of water depth k0h, respectively.
In both the figures, it is observed that as water depth increases, the wave reflection decreases. Further,
Fig. 22a shows that with an increase in water depth, the optima in the reflection coefficient changes and
occurs for different values of the distance between the plate and the rigid wall L/(b−a). This may be due
to the fact that as water depth increases, the wavelength increases and thus less wave energy is reflected
back by the rigid wall. On the other hand, in Fig. 22b, it is observed that near θ = 0◦, wave reflection
decreases as the water depth increases. However, as the angle of incidence θ increases and approaches to
90◦, the reflection coefficients Kr increase in an oscillatory pattern and finally converges at θ = 90◦ for
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different water depth. A comparison with Fig. 16 illustrates that wave reflection is less in case of surface-
piercing plate compared to that of submerged plate in finite as well as infinite water depth. Further,
Figs. 16, 17 and 22 reveal that wave reflection in infinite water depth is close to the finite depth results
for higher values of k0h which means that wave reflection in case of infinite water depth is comparable
to that in case of deep water waves.

5. Conclusions

The present study deals with trapping of oblique water waves by a submerged flexible porous plate located
at a finite distance from a rigid wall in water of finite and infinite depths. Results for bottom-standing
and surface-piercing flexible porous plates are derived and analyzed as special cases from the general
formulation of the submerged plate. Using Green’s function technique, a system of four integral equations
is derived which are handled for solution using appropriate Gauss quadrature formulae. Accuracy of the
computational results is demonstrated by substituting the computed values of the reflection coefficients
in the derived energy identity for the bottom-standing and surface-piercing plates in water of finite
depth. It is observed that the flexibility of a plate is not much effective without porosity. However, with
moderate porosity, a flexible plate can act as an effective barrier for dissipating unwanted wave energy.
For developing an effective wave trapping system, the effectiveness of the surface-piercing plate over the
bottom-standing as well as submerged plate is analyzed by comparing various numerical results. Further,
certain comparisons among reflection coefficients and wave forces acting on the plate and the rigid wall
have been demonstrated, and it is observed that for suitable combination of porous-effect parameter and,
distance between the plate and the rigid wall, full reflection is associated with zero force on the flexible
porous plate. Moreover, maximum wave load on the flexible porous plate is associated with minimum
wave load on the rigid wall and vice versa irrespective of plate configurations. A comparison of the flow
velocity within the confined zone demonstrates that for oblique wave trapping by submerged flexible
porous plate, flow speed within the confined zone is more uniform compared to the bottom-standing and
surface-piercing plates. However, flow direction within the confined zone remains similar regardless of
the plate configuration. A comparison of results on finite and infinite water depths reveals that results
for higher values of the non-dimensional water depth k0h are similar to results in infinite water depth.
Irrespective of plate configuration, it is found that for very long waves, negligible wave reflection occurs
when the plate is complete while, due to wave diffraction through the gap, full reflection occurs for
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partial flexible porous plates irrespective of plate length. From the present study, it can be concluded
that using flexible porous plates of suitable configuration located at a finite distance from a rigid wall,
wave load on the rigid wall can be reduced to a minimum and suitable tranquility zone can be created
for protecting existing marine structures. The present study is likely to play a significant role in the
protection of existing vertical walls from wave impact by introducing a flexible porous plate near coastal
infrastructure. The same concept can also be used in the design of new rigid walls in marine environment
which can withstand the wave load to a great extent.
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