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On the nonlinear Schrödinger–Poisson systems with sign-changing potential
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Abstract. In this paper, we study a nonlinear Schrödinger–Poisson system

{−Δu + Vλ (x) u + μK (x) φu = f (x, u) in R
3,

−Δφ = K (x) u2 in R
3,

where μ > 0 is a parameter, Vλ is allowed to be sign-changing and f is an indefinite function. We require that Vλ := λV +−V −
with V + having a bounded potential well Ω whose depth is controlled by λ and V − ≥ 0 for all x ∈ R

3. Under some suitable
assumptions on K and f , the existence and the nonexistence of nontrivial solutions are obtained by using variational
methods. Furthermore, the phenomenon of concentration of solutions is explored as well.
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1. Introduction

In this paper, we are concerned with the following nonlinear Schrödinger–Poisson system:{−Δu + Vλ (x) u + μK (x)φu = f (x, u) in R
3,

−Δφ = K (x) u2 in R
3,

(SPλ,μ)

where μ > 0 is a parameter, the potential Vλ(x) = λV +(x) − V −(x),K ∈ L2(R3) ∪ L∞(R3) and f :
R

3×R → R is a Carathéodory function. We assume that the functions V ± satisfy the following conditions:

(V 1) V ∈ C
(
R

3,R
)

with V ± = max {±V, 0} and V is bounded from below;
(V 2) There exists b > 0 such that the set {V + < b} :=

{
x ∈ R

3 | V + (x) < b
}

is nonempty and has
finite measure;

(V 3) Ω = int
{
x ∈ R

3 | V + (x) = 0
}

is nonempty and has smooth boundary with Ω =
{

x ∈ R
3 |

V + (x) = 0
}

;
(V 4) There exists a constant μ0 > 1 such that

μ1 (λ) := inf
u∈H1(R3)\{0}

∫
R3

[|∇u|2 + λV +u2
]
dx∫

R3 V −u2dx
≥ μ0 for all λ > 0.
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Remark 1.1. It is easy to verify that the condition (V 4) holds. Indeed, if we choose a function V − ∈
L

3
2 (R3) with ‖V −‖L3/2 < S

2
, then by the conditions (V 1)−(V 3) and the Hölder and Sobolev inequalities,∫

R3

[|∇u|2 + λV +u2
]
dx∫

R3 V −u2dx
≥

∫
R3 |∇u|2dx

‖V −‖L3/2

(∫
R3 |u|6 dx

) 1
3

≥
∫
R3 |∇u|2dx

‖V −‖L3/2 S
−2 ∫

R3 |∇u|2 dx

=
S

2

‖V −‖L3/2

for all λ ≥ 0,

which implies that

μ1 (λ) ≥ S
2

‖V −‖L3/2

> 1 for all λ > 0,

where S is the best Sobolev constant for the imbedding of D1,2
(
R

3
)
in L6

(
R

3
)
.

The hypotheses (V 1)−(V 3), first introduced by Bartsch and Wang [7] in the study of the nonlinear
Schrödinger equations, imply that λV + represents a potential well whose depth is controlled by λ. For
λ > 0, large one expects to find solutions which localize near its bottom Ω. We refer the reader to the
papers [6,25,28,31] for recent results.

Schrödinger–Poisson systems, also known as the nonlinear Schrödinger–Maxwell equations, have a
strong physical meaning. It was first introduced in [8] as a model describing solitary waves for the non-
linear stationary Schrödinger equations interacting with the electrostatic field and also in semiconductor
theory, in nonlinear optics and in plasma physics. Indeed, in Eq. (SPλ,μ) the first equation is a nonlinear
stationary Schrödinger equation (where, as usual, the nonlinear term simulates the interaction between
many particles) that is coupled with a Poisson equation, to be satisfied by φ, meaning that the potential
is determined by the charge of the wave function.

In recent years, Eq. (SPλ,μ) has been studied widely via variational methods under the various hy-
potheses on Vλ,K and f , see [2–4,10–12,16–21,23,24,27,29,30,32,33] and the references therein. For
example, in [23], when Vλ ≡ 1 and K ≡ 1, the existence and nonexistence results on positive radial
solutions for Eq. (SPλ,μ) with f(x, u) = |u|p−2u are obtained, depending on the parameters p and μ. It
turns out that p = 3 is a critical value for the existence of solution. When Vλ ≡ 1 and K is a nonnegative
L2-function, in [11] the authors use the Nehari manifold method to find a positive ground-state solution
and a bound-state solution for Eq. (SPλ,μ) with f(x, u) = a(x)|u|p−2u and 4 < p < 6 under some suitable
assumptions on K and a, but not requiring any symmetry property, respectively.

In [19], the steep potential well is first applied into Schrödinger–Poisson systems. The authors use
variational methods to study the following problem:{−Δu + (λV (x) + 1)u + μφu = |u|p−2u in R

3,
−Δφ = u2 in R

3,

where λ and μ are positive constants, V ≥ 0 and satisfies (V 1)− (V 3) with V instead of V +. They
obtain the existence results of nontrivial solution for the case p ∈ (2, 3) ∪ [4, 6) by combining domains
approximation with priori estimates. It is worth noting that the positivity of the infimum of the potential
Vλ(x) := λV (x) + 1 is the key in the arguments of [19].

In [32], under the assumptions (V 1)− (V 3) with V instead of V +, the authors consider a similar
problem: {−Δu + λV (x)u + K(x)φu = |u|p−2u in R

3,
−Δφ = K(x)u2 in R

3,
(1)
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where K ∈ L2(R3) ∪ L∞(R3),K ≥ 0 for all x ∈ R
3. When V ≥ 0, they find a nontrivial solution for Eq.

(1) with 3 < p < 6 and explore the phenomenon of concentration of solutions. When the potential V is
allowed to be sign-changing, the existence of nontrivial solution for the case p ∈ (4, 6) is obtained, but
not studying the concentration of nontrivial solutions.

Based on the study of [32], very recently, Ye and Tang [29] consider the Eq. (1) with a general nonlinear
term f , that is, {−Δu + λV (x)u + K(x)φu = f(x, u) in R

3,
−Δφ = K(x)u2 in R

3,
(2)

where λ > 0, V satisfies (V 1)−(V 3) with V instead of V +,K ∈ L2(R3) ∪ L∞(R3) and K ≥ 0 for all
x ∈ R

3. The authors mainly deal with two cases as follows:
(I) V is allowed to be sign-changing. When f satisfies the 4-superlinear conditions, like f(x, u) ≡
|u|p−2u(4 < p < 6), and the norm of K is small enough, they obtain a nontrivial solution for Eq.
(2), which generalizes Theorem 1.1 in [32];
(II) V ≥ 0. The existence and multiplicity of nontrivial solutions for Eq. (2) are obtained when f satisfies
the 4-superlinear conditions, but without the restriction on the norm of K. In addition, using the symmet-
ric mountain pass lemma, infinitely many solutions are found when f satisfies the sublinear conditions,
which improves Theorem 1.1 in [26].

Motivated by the above works, in the present paper we consider Eq. (SPλ,μ) with a sign-changing
potential Vλ satisfying (V 1)−(V 4), which are different from those in the previous papers [19,29,32]. By
using the mountain pass theorem, and combining some new inequalities, we mainly study the following
three problems:

(i) The existence result when f is indefinite and satisfies the asymptotically linear conditions;
(ii) The nonexistence result;
(iii) The phenomenon of concentration of nontrivial solutions.

It is worth emphasizing that cases (i) and (ii) are not concerned in the previous papers. Moreover,
we point out that we establish some new estimation, such as the inequality (9) below which will play an
important role in our proof. These estimations are totally different from those in the literature.

Before stating our results, we need to introduce some notations and definitions.

Notation 1.1. Throughout this paper, we denote by |·|r the Lr-norm, 1 ≤ r ≤ ∞, and we have to use the
notation p± = max {±p, 0} . The letter C will denote various positive constants whose value may change
from line to line but are not essential to the analysis of the problem. Also if we take a subsequence of a
sequence {un}, we shall denote it again {un} . We use o (1) to denote any quantity which tends to zero
when n → ∞.

We need the following minimum problems:

λ1(q) = inf

⎧⎨
⎩
∫
Ω

|∇u|2dx | u ∈ H1
0 (Ω) ,

∫
Ω

qu2dx = 1

⎫⎬
⎭ (3)

and

μ1 (q) = inf

⎧⎨
⎩
∫
Ω

∫
Ω

K (x)K (y)u2 (x) u2 (y)
|x − y| dxdy | u ∈ H1

0 (Ω) ,

∫
Ω

qu4dx = 1

⎫⎬
⎭ ≥ 0, (4)

where q ∈ L∞ (
R

3
)

with q > 0 on Ω and K(x) > 0 for x ∈ R
3, K ∈ L2(R3) ∪ L∞(R3). Then λ1(q) > 0,

which is achieved by some φ1 ∈ H1
0 (Ω) which

∫
Ω

q |φ1|2 dx = 1 and φ1 > 0 a.e. in Ω by the compactness
of Sobolev embedding from H1

0 (Ω) from L2 (Ω) and Fatou’s lemma (see Figueiredo [15]). In particular,

λ1(q)
∫
Ω

q |u|2 dx ≤
∫
Ω

|∇u|2dx for all u ∈ H1
0 (Ω) . (5)
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Now, we give our main results.

Theorem 1.1. Suppose that conditions (V 1)−(V 4) hold and K(x) > 0 for x ∈ R
3,K ∈ L2(R3)∪L∞(R3).

In addition, for any k ∈ {1, 3, 4}, we assume that the function f satisfies the following conditions:

(D1) f (x, s) is a continuous function on R
3×R such that f(x, s) ≡ 0 for all s < 0 and x ∈ R

3. Moreover,
there exists p ∈ L∞ (

R
3
)
with

∣∣p+
∣∣
∞ < Θ0 := min

{
b,

(μ0 − 1) S
2

μ0 |{V + < b}| 2
3

}

such that

lim
s→0+

f (x, s)
sk

= p (x) uniformly in x ∈ R
3

and
f (x, s)

sk
≥ p (x) for all s > 0 and x ∈ Ω,

where |·| is the Lebesgue measure;
(D2) there exists a function q ∈ L∞ (

R
3
)
with q > 0 on Ω such that

lim
s→∞

f (x, s)
sk

= q (x) uniformly in x ∈ R
3;

(D3) there exists a constant d0 satisfying

0 ≤ d0 <
(μ0 − 1) S

2

4μ0 |{V + < b}| 2
3

such that

F (x, s) − 1
4
f(x, s)s ≤ d0s

2 for all s > 0 and x ∈ R
3.

Then we have the following results.

(i) If k = 1 and λ1(q) < 1, then there exists a positive number μ∗ such that for every μ ∈ (0, μ∗), there
exists Λ∗ > 0 such that Eq. (SPλ,μ) has at least a nontrivial solution for all λ > Λ∗.

(ii) If k = 3, then for each μ ∈ (0, 1/μ1 (q)) (if μ1 (q) = 0, then μ > 0) there exists Λ∗ > 0 such that Eq.
(SPλ,μ) has at least a nontrivial solution for all λ > Λ∗.

(iii) If k = 4, then for each μ > 0 there exists Λ∗ > 0 such that Eq. (SPλ,μ) has at least a nontrivial
solution for all λ > Λ∗.

Remark 1.2. In [29], Ye and Tang study the existence of nontrivial solutions for Eq. (2) under the 4-
superlinear condition of f as follows:

lim
|u|→∞

F (x, u)
u4

= +∞ uniformly in x, (6)

where F (x, u) =
∫ u

0
f(x, s)ds. However, in our Theorem 1.1, for the cases of k = 1, 3, the nonlinearity f

does not satisfies the condition (6). Therefore, we extend the corresponding results in [29].

We need the following minimum problem:

μ̂1 (q) = inf

⎧⎨
⎩
∫
R3

∫
R3

K (x)K (y)u2 (x) u2 (y)
|x − y| dxdy | u ∈ H1

(
R

3
)
,

∫
R3

qu4dx = 1

⎫⎬
⎭ ≥ 0.

Clearly, μ̂1 (q) ≤ μ1 (q) . Then we have the following results.
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Theorem 1.2. Suppose that the conditions (V 1)−(V 4) hold and K(x) > 0 for x ∈ R
3,K ∈ L2(R3) ∪

L∞(R3). In addition, for each positive integer k = 1, 3, we assume that the function f satisfies the
conditions (D2) , (D3) and the following condition:

(D4) f ∈ C1
(
R

3 × R,R
)
and s �−→ f(x,s)

sk is nondecreasing function for any fixed x ∈ R.

Then we have the following results.

(i) If k = 1 and |q|∞ < (μ0−1)
μ0

S
2 |Ω|− 2

3 , then there exists positive number Λ∗ such that for every μ > 0
and λ > Λ∗, Eq. (SPλ,μ) does not admit any nontrivial solution.

(ii) If k = 3 and μ̂1 (q) > 0, then for every μ ≥ 1/μ̂1 (q) and λ > 0, Eq. (SPλ,μ) does not admit any
nontrivial solution.

Remark 1.3. Suppose that q is a bounded positive continuous function on R
3 and K(x) > 0 for x ∈ R

3,
K ∈ L2(R3) ∪ L∞(R3) with

lim
|x|→∞

q (x) = 1 and lim
|x|→∞

K (x) = 0.

Let ŵ0 be the unique positive solution with ŵ0 (0) = maxx∈R3 ŵ0 (x) for the following nonlinear Schrödinger
equation:

−Δu + u = u3 in R
3, (E∞

0 )

un = ŵ0 (x − ne) and vn = un

(∫
R3 qu4

ndx
)−1/4 for n ∈ N, where e = (1, 0, 0) . Then

∫
R3 qv4

ndx = 1 for all
n ∈ N and ∫

R3

∫
R3

K (x)K (y) v2
n (x) v2

n (y)
|x − y| dxdy → 0 as n → ∞,

which implies that μ̂1 (q) = 0. Therefore, if we would like to obtain the inequality μ̂1 (q) > 0, then the
condition lim|x|→∞ K (x) = K∞ > 0 is necessary.

On the concentration of solutions, we have the following result.

Theorem 1.3. Let uλ be the solution obtained by Theorem 1.1. Then uλ → u0 in H1(R3) as λ → ∞,
where u0 ∈ H1

0 (Ω) is the nontrivial solution of{
−Δu − V − (x)u + μ

4π

(
(K(x)u2) ∗ 1

|x|
)

K(x)u = f (x, u) in Ω,

u = 0, on ∂Ω.
(SP∞)

The remainder of this paper is organized as follows. In Sect. 2, some preliminary results are presented.
In Sects. 3–5, we give the proofs of our main results.

2. Variational setting and preliminaries

In this section, we give the variational setting for Eq. (SPλ,μ) following [13] and establish compactness
conditions. Let

X =

⎧⎨
⎩u ∈ H1

(
R

3
) |

∫
R3

V + (x) u2dx < ∞
⎫⎬
⎭

be equipped with the inner product and norm

〈u, v〉 =
∫
R3

[∇u∇v + V + (x) uv
]
dx, ‖u‖ = 〈u, u〉1/2

.
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For λ > 0, we also need the following inner product and norm

〈u, v〉λ =
∫
R3

[∇u∇v + λV + (x) uv
]
dx, ‖u‖λ = 〈u, u〉1/2

λ .

It is clear that ‖u‖ ≤ ‖u‖λ for λ ≥ 1. Furthermore, it follows from the condition (V 4) that

∫
RN

|∇u|2 + Vλu2dx ≥ μ0 − 1
μ0

‖u‖2
λ for all λ ≥ 0. (7)

Set Xλ = (X, ‖u‖λ) . By the conditions (V 1)−(V 2) and the Hölder and Sobolev inequalities, we have

∫
R3

(
|∇u|2 + u2

)
dx

=
∫
R3

|∇u|2 dx +
∫

{V +<b}

u2dx +
∫

{V +≥b}

u2dx

≤
∫
R3

|∇u|2 dx +

⎛
⎜⎝

∫
{V +<b}

1dx

⎞
⎟⎠

2
3
⎛
⎜⎝

∫
{V +<b}

|u|6 dx

⎞
⎟⎠

1
3

+
1
b

∫
{V +≥b}

V + (x)u2dx

≤
(
1 +

∣∣{V + < b
}∣∣ 23 S

−2
)∫
R3

|∇u|2 dx +
1
b

∫
R3

V + (x) u2dx

≤ max
{

1 +
∣∣{V + < b

}∣∣ 23 S
−2

,
1
b

}⎛
⎝∫

R3

|∇u|2 dx +
∫
R3

V + (x) u2dx

⎞
⎠ ,

which implies that the imbedding X ↪→ H1
(
R

3
)

is continuous. Moreover, using the conditions (V 1)−(V 2)
and the Hölder and Sobolev inequalities again, we have for any r ∈ [2, 6],

∫
R3

|u|r dx

≤

⎛
⎜⎝

∫
{V +≥b}

u2dx +
∫

{V +<b}

u2dx

⎞
⎟⎠

6−r
4
⎛
⎜⎝S

−6

⎛
⎝∫

R3

|∇u|2 dx

⎞
⎠

3
⎞
⎟⎠

r−2
4

≤

⎡
⎢⎢⎣ 1

λb

∫
{V +≥b}

λV + (x) u2dx +

⎛
⎜⎝

∫
{V +<b}

1dx

⎞
⎟⎠

2
3
⎛
⎜⎝

∫
{V +<b}

|u|2∗
dx

⎞
⎟⎠

2
2∗
⎤
⎥⎥⎦

6−r
4

·

⎡
⎢⎣S

−6

⎛
⎝∫

R3

|∇u|2 + λV + (x) u2dx

⎞
⎠

3
⎤
⎥⎦

r−2
4
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≤
⎛
⎝ 1

λb

∫
R3

λV + (x)u2dx +
∣∣{V + < b

}∣∣ 2∗−2
2∗

S
−2
∫
R3

|∇u|2 dx

⎞
⎠

6−r
4 (

S
−2∗

‖u‖2∗

λ

) r−2
4

=

(
max

{
S

2

λb
,
∣∣{V + < b

}∣∣ 23
}) 6−r

4

S
−r ‖u‖r

λ for all λ > 0, (8)

which implies that

∫
R3

|u|r dx ≤ ∣∣{V + < b
}∣∣ 6−r

6 S
−r ‖u‖r

λ for all λ ≥ S
2

b

∣∣{V + < b
}∣∣ 23 . (9)

It is well known that Eq. (SPλ,μ) can be easily transformed in a nonlinear Schrödinger equation with a
nonlocal term (see [3,23] etc.). Briefly, the Poisson equation is solved by using the Lax–Milgram theorem,
so, for all u ∈ H1(R3), a unique φK,u ∈ D1,2(R3) given by

φK,u (x) =
1
4π

∫
R3

K (y) u2 (y)
|x − y| dy,

such that −Δφ = Ku2 and that, inserted into the first equation, gives

−Δu + u + λK (x) φK,uu = a (x) |u|p−2
u in R

3.

Eq. (SPλ,μ) is variational and its solutions are the critical points of the functional defined in Xλ by

Jλ,μ (u) =
1
2

⎛
⎝∫

R3

|∇u|2 dx +
∫
R3

Vλu2dx

⎞
⎠+

μ

4

∫
R3

KφK,uu2dx −
∫
R3

F (x, u)dx

=
1
2

‖u‖2
λ −

∫
R3

V −u2dx +
μ

4

∫
R3

KφK,uu2dx −
∫
R3

F (x, u)dx,

where F (x, u) =
∫ u

0
f(x, s)ds. Furthermore, it is easy to prove that the functional Jλ,μ is of class C1 in

Xλ and that

〈J ′
λ,μ(u), v〉 =

∫
R3

∇u · ∇vdx +
∫
R3

Vλ (x)uvdx + μ

∫
R3

KφK,uuvdx −
∫
R3

f(x, u)vdx.

Hence, if u ∈ Xλ is a critical point of Jλ,μ, then (u, φK,u) is a solution of Eq. (SPλ,μ). Furthermore, we
have the following result.

Lemma 2.1. Suppose that the conditions (V 1)−(V 4) and (D1)−(D3) hold. For every λ ≥ S
2

b |{V < b}|− 2
3

and uλ a nontrivial solution of Eq. (SPλ,μ) , we have Jλ,μ (uλ) > 0.

Proof. If uλ is a nontrivial solution of Eq. (SPλ,μ) , then
∫
R3

|∇uλ|2 dx +
∫
R3

Vλu2
λdx + μ

∫
R3

KφK,uλ
u2

λdx =
∫
R3

f(x, uλ)uλdx.
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Combining this with the condition (D3), (7) and (9), we have

Jλ,μ(uλ) =
1
2

⎛
⎝∫

R3

|∇uλ|2 dx +
∫
R3

Vλu2
λdx

⎞
⎠+

μ

4

∫
R3

KφK,uλ
u2

λdx −
∫
R3

F (x, uλ)dx

=
1
4

⎛
⎝∫

R3

|∇uλ|2 dx +
∫
R3

Vλu2
λdx

⎞
⎠−

∫
R3

[
F (x, uλ) − 1

4
f(x, uλ)uλ

]
dx

≥ μ0 − 1
4μ0

‖uλ‖2
λ −

∫
R3

[
F (x, uλ) − 1

4
f(x, uλ)uλ

]
dx

≥ μ0 − 1
4μ0

‖uλ‖2
λ − d0

∫
R3

u2
λdx

≥
(

μ0 − 1
4μ0

− d0

∣∣{V + < b
}∣∣ 23 S

−2
)

‖uλ‖2
λ > 0. (10)

This completes the proof. �

Set

N (u) =
∫
R3

K (x) φK,uu2dx =
1
4π

∫∫
R3×R3

K (x)K (y)
|x − y| u2 (x)u2 (y) dxdy.

In [32], it was shown that the functional N and its derivative N ′ possess BL-splitting property, which
is similar to Brezis–Lieb Lemma [9]. Now we recall them.

Lemma 2.2. ([32], Lemma 2.2). Let K ∈ L∞ (
R

3
) ∪ L2

(
R

3
)
. If un ⇀ u in H1

(
R

3
)
and un → u a.e. in

R
3, then we have

(i) N (un − u) = N (un) − N (u) + o (1) ;
(ii) N ′ (un − u) = N ′ (un) − N ′ (u) + o (1) in H−1

(
R

3
)
.

Next, we give a useful theorem. It is the variant version of the mountain pass theorem, which allows
us to find a so-called Cerami type (PS) sequence.

Lemma 2.3. ([14], Mountain Pass Theorem). Let E be a real Banach space with its dual space E∗, and
suppose that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ μ < η ≤ inf
‖u‖=ρ

I(u),

for some μ < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths joining 0 and e, then
there exists a sequence {un} ⊂ E such that

I(un) → c ≥ η and (1 + ‖un‖)‖I ′(un)‖E∗ → 0 as n → ∞.

In what follows, we give two lemmas which ensure that the functional Jλ,μ has the mountain pass
geometry.

Lemma 2.4. For any k ∈ {1, 3, 4}, assume that the conditions (V 1)−(V 2) and (D1)−(D2) hold. Then for
each λ ≥ S

2

b |{V + < b}|− 2
3 , there exist ρ > 0 and η > 0 such that inf{Jλ,μ(u) : u ∈ Xλ with ‖u‖ = ρ} > η.
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Proof. For any ε > 0, it follows from the conditions (D1) and (D2) that there exist max{k, 2} < r < 6
and Cε > 0 such that

F (x, s) ≤ |p+|∞ + ε

2
s2 +

Cε

r
|s|r for all s ∈ R. (11)

So that, from (9), (11) and the Sobolev inequality, for all u ∈ Xλ and λ ≥ S
2

b |{V + < b}|− 2
3 ,∫

R3

F (x, u)dx ≤ |p+|∞ + ε

2

∫
R3

u2dx +
Cε

r

∫
R3

|u|rdx

≤ (|p+|∞ + ε) |{V + < b}| 2
3

2S
2 ‖u‖2

λ +
Cε |{V + < b}| 6−r

6

rS
r ‖u‖r

λ,

which implies that

Jλ,μ(u) =
1
2

⎛
⎝∫

R3

|∇u|2 dx +
∫
R3

Vλu2dx

⎞
⎠+

μ

4

∫
R3

KφK,uu2dx −
∫
R3

F (x, u)dx

≥ μ0 − 1
2μ0

‖uλ‖2
λ − (|p+|∞ + ε) |{V + < b}| 2

3

2S
2 ‖u‖2

λ

−Cε |{V + < b}| 6−r
6

rS
r ‖u‖r

λ

≥ 1
2

(
μ0 − 1

μ0
− (|p+|∞ + ε) |{V + < b}| 2

3

S
2

)
‖u‖2

λ − Cε |{V + < b}| 6−r
6

rS
r ‖u‖r

λ. (12)

So, by the condition (D1) and fixing ε ∈ (0,Θ0 − |p+|∞) and letting ‖u‖ = ρ > 0 small enough, it is easy
to see that there is η > 0 such that this lemma holds. �

Lemma 2.5. For any k ∈ {1, 3, 4}, assume that the conditions (V 1)−(V 2) and (D1) − (D2) hold. Let
ρ > 0 be as in Lemma 2.4. Then we have the following results:
(i) If k = 1 and λ1(q) < 1, then there exist μ∗ > 0 and e ∈ H1(R3) with ‖e‖λ > ρ such that Jλ,μ(e) < 0

for all μ ∈ (0, μ∗) and λ > 0.
(ii) If k = 3, then for each 0 < μ < 1/μ1 (q) (if μ1 (q) = 0, then μ > 0) and λ > 0, there exists

e ∈ H1(R3) with ‖e‖λ > ρ such that Jλ,μ(e) < 0.
(iii) If k = 4, then for each μ > 0 and λ > 0, there exists e ∈ H1(R3) with ‖e‖λ > ρ such that Jλ,μ(e) < 0.

Proof. Case (I) : k = 1. By λ1(q) < 1, the condition (D2) and Fatou’s lemma, we have

lim
t→+∞

Jλ,0(tφ1)
t2

=
1
2

⎛
⎝∫

R3

|∇φ1|2 dx +
∫
R3

Vλφ2
1dx

⎞
⎠− lim

t→+∞

∫
R3

F (x, tφ1)
t2φ2

1

φ2
1dx

≤ 1
2

∫
Ω

|∇φ1|2 dx −
∫
Ω

V −φ2
1dx −

∫
Ω

lim
t→+∞

F (x, tφ1)
t2φ2

1

φ2
1dx

≤ 1
2

∫
Ω

|∇φ1|2 dx − 1
2

∫
Ω

qφ2
1dx

≤ 1
2

(
1 − 1

λ1 (q)

)∫
Ω

|∇φ1|2 dx

< 0,
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where Jλ,0(u) = Jλ,μ(u) with μ = 0. So, if Jλ,0(tφ1) → −∞ as t → +∞, then there exists e ∈ H1(R3)
with ‖e‖λ > ρ such that Jλ,0(e) < 0. Since Jλ,μ(e) → Jλ,0(e) as μ → 0+, we see that there exists μ∗ > 0
such that Jλ,μ(e) < 0 for all μ ∈ (0, μ∗) .

Case (II) : k = 3, 4. For k = 3, since 0 < μ < 1/μ1 (q) , we can choose Φ ∈ H1
0 (Ω) such that

μ
∫
Ω

Kφ2
K,ΦΦ2dx < 1 and

∫
Ω

qΦ4dx = 1. Moreover, since q > 0 on Ω, we can choose a ϕ ∈ H1
0 (Ω) such

that
∫
Ω

qϕ5dx > 0. Define

ψk =
{

Φ, if k = 3,
ϕ, if k = 4.

Then, by the conditions (D1) , (D2) and Fatou’s lemma, one has

lim
t→+∞

Jλ,μ(tψk)
tk+1

=

{
μ
4

∫
R3 Kφ2

K,ΦΦ2dx − limt→+∞
∫
R3

F (x,tΦ)
t4Φ4 Φ4dx, if k = 3

− limt→+∞
∫
R3

F (x,tϕ)
t5ϕ5 ϕ5dx, if k = 4

≤
{

μ
4

∫
Ω

Kφ2
K,ΦΦ2dx − ∫

R3 limt→+∞
F (x,tΦ)

t4Φ4 Φ4dx, if k = 3
− ∫

R3 limt→+∞
F (x,tϕ)

t5ϕ5 ϕ5dx, if k = 4

=
{

1
4

(
μ
∫
Ω

Kφ2
K,ΦΦ2dx − ∫

Ω
qΦ4dx

)
, if k = 3

− 1
5

∫
Ω

qϕ5dx, if k = 4

=
{

1
4

(
μ
∫
Ω

Kφ2
K,ΦΦ2dx − 1

)
, if k = 3

− 1
5

∫
Ω

qϕ5dx, if k = 4
< 0.

So, if Jλ,μ(tψk) → −∞ as t → +∞, then there exists e ∈ H1(R3) with ‖e‖λ > ρ such that Jλ,μ(e) < 0
and the lemma is proved. �

3. Proof of Theorem 1.1

First we define
cλ,μ = inf

γ∈Γλ

max
0≤t≤1

Jλ,μ(γ(t))

and
c0,μ (Ω) = inf

γ∈Γλ(Ω)
max
0≤t≤1

Jλ,μ|H1
0 (Ω)(γ(t)),

where Jλ,μ|H1
0 (Ω) is a restriction of Jλ,μ on H1

0 (Ω) ,

Γλ = {γ ∈ C([0, 1],Xλ) : γ(0) = 0, γ(1) = e}
and

Γλ (Ω) = {γ ∈ C([0, 1],H1
0 (Ω)) : γ(0) = 0, γ(1) = e}.

Note that for u ∈ H1
0 (Ω) ,

Jλ,μ|H1
0 (Ω) (u) =

1
2

∫
R3

|∇u|2 dx − 1
2

∫
R3

V −u2dx +
μ

4

∫
R3

KφK,uu2dx −
∫
R3

F (x, u)dx

and c0,μ (Ω) independent of λ. Moreover, if the conditions (D1)−(D3) hold, then by the proofs of Lemmas
2.4 and 2.5, we can conclude that Jλ,μ|H1

0 (Ω) satisfies the mountain pass hypothesis as in Theorem 2.3.

Since H1
0 (Ω) ⊂ Xλ for all λ > 0. Then 0 < η ≤ cλ,μ ≤ c0,μ (Ω) for all λ ≥ S

2

b |{V < b}|− 2
3 . Define

m (k) =

⎧⎨
⎩

μ∗, if k = 1,
1/μ1 (q) , if k = 3,
∞, if k = 4.
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Then for each k ∈ {1, 3, 4} and μ ∈ (0,m (k)), take Dμ > c0,μ (Ω) . Thus,

0 < η ≤ cλ,μ ≤ c0,μ (Ω) < Dμ for all λ ≥ S
2

b

∣∣{V + < b
}∣∣− 2

3 .

Then by Lemmas 2.4 and 2.5 and Theorem 2.3, we obtain that for each μ ∈ (0,m (k)) and λ ≥
S

2

b |{V + < b}|− 2
3 there exists {un} ⊂ Xλ such that

Jλ,μ(un) → cλ,μ > 0 and (1 + ‖un‖λ)‖J ′
λ,μ(un)‖X−1

λ
→ 0 as n → ∞, (13)

where 0 < η ≤ cλ,μ ≤ c0,μ (Ω) < Dμ. Furthermore, we have the following results.

Lemma 3.1. For any k ∈ {1, 3, 4}, assume that the conditions (V 1)−(V 4) and (D1)−(D3) hold. Let {un}
defined in (13). Then {un} is bounded in Xλ for each λ ≥ S

2

b |{V + < b}|− 2
3 .

Proof. For n large enough, by the condition (D3), (7) and (9), one has

cλ,μ + 1 ≥ Jλ,μ (un) − 1
4
〈J ′

λ,μ(un), un〉

=
1
4

⎛
⎝∫

R3

|∇un|2 dx +
∫
R3

Vλu2
ndx

⎞
⎠+

∫
R3

[
1
4
f(x, un) − F (x, un)

]
dx

≥ μ0 − 1
4μ0

‖un‖2
λ −

∫
R3

[
F (x, un) − 1

4
f(x, un)un

]
dx

≥ μ0 − 1
4μ0

‖un‖2
λ − d0

∫
R3

u2
ndx

≥ (μ0 − 1) S
2 − 4μ0d0 |{V + < b}| 2

3

4μ0S
2 ‖un‖2

λ,

which implies that

‖un‖λ ≤
(

4μ0S
2
(cλ,μ + 1)

(μ0 − 1) S
2 − 4μ0d0 |{V + < b}| 2

3

)1/2

.

Therefore, {un} is bounded in Xλ. �

Lemma 3.2. Suppose that the conditions (V 1)− (V 2) and (D1)− (D2) hold. In addition, assume that
K(x) > 0 for x ∈ R

3, K ∈ L2(R3) ∪ L∞(R3). If un ⇀ u in Xλ and un → u a.e. in R
3, then for each

λ ≥ S
2

b |{V + < b}| 2
3 , we have

Jλ,μ (un − u) = Jλ,μ (un) − Jλ,μ (u) + o (1) (14)

and

J ′
λ,μ (un − u) = J ′

λ,μ (un) − J ′
λ,μ (u) + o (1) . (15)

Proof. By the definition of weak convergence in Xλ,∫
R3

[∇un∇u + λV + (x) unu
]
dx =

∫
R3

[
|∇u|2 + λV + (x)u2

]
dx + o (1) .
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Thus,

‖un − u‖2
λ =

∫
R3

|∇un − ∇u|2 dx + λ

∫
R3

V + (x) |un − u|2 dx

=
∫
R3

(
|∇un|2 + λV + (x) u2

n

)
dx +

∫
R3

(
|∇u|2 + λV + (x)u2

)
dx

−2
∫
R3

[∇un∇u + λV + (x)unu
]
dx

= ‖un‖2
λ − ‖u‖2

λ + o (1) . (16)

Noticing that the conditions (V 1) and (V 2) imply that V − ≥ 0 for all x ∈ R
3 and V − ∈ L∞ (

R
3
)
.

Moreover, from the condition (V 2) it follows that {V + = 0} has finite measure, which implies that
{V − > 0} has finite measure. Therefore, using the facts that un ⇀ u in Xλ and un → u in L2

loc

(
R

3
)
,

one has ∣∣∣∣∣∣
∫
R3

V − (un − u)2 dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

supp V −

V − (un − u)2 dx

∣∣∣∣∣∣∣
≤ ∣∣V −∣∣

∞

∫
supp V −

|un − u0|2 dx −→ 0 (17)

and ∣∣∣∣∣∣
∫
R3

V − (u2
n − u2

)
dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

supp V −

V − (un − u) (un + u) dx

∣∣∣∣∣∣∣
≤ ∣∣V −∣∣

∞

∫
supp V −

|un − u| |un + u| dx

≤ ∣∣V −∣∣
∞

⎛
⎜⎝

∫
supp V −

|un − u|2 dx

⎞
⎟⎠

1/2⎛
⎜⎝

∫
supp V −

|un + u|2 dx

⎞
⎟⎠

1/2

−→ 0,

which implies that ∫
R3

V − (un − u)2 dx =
∫
R3

V −u2
ndx −

∫
R3

V −u2dx + o (1) . (18)

Similarly, for any h ∈ Xλ we also have∫
R3

V − (un − u)hdx =
∫
R3

V −unhdx −
∫
R3

V −uhdx + o (1) . (19)

Therefore, it follows from (16), (18)–(19) and Lemma 2.2 that, to obtain (14) and (15), it suffices to check
that ∫

R3

[F (x, un − u) − F (x, un) + F (x, u)] dx = o (1) (20)
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and

sup
‖h‖λ=1

∫
R3

[f(x, un − u) − f(x, un) + f(x, u)] hdx = o (1) . (21)

First, we verify (20). Inspired by [1], we observe that

F (x, un − u) − F (x, un) =

1∫
0

(
d
dt

F (x, un − tu)
)

dt.

Then

F (x, un − u) − F (x, un) = −
1∫

0

f(x, un − tu)udt,

and hence, by the conditions (D1) and (D2) , we have

|F (x, un − u) − F (x, un)| ≤
1∫

0

[
δ |un − tu| |u| + Cδ |un − tu|r−1 |u|

]
dt,

where δ, Cδ > 0 and max {k, 2} < r < 6. This shows that

|F (x, un − u) − F (x, un)| ≤ δ1 |un| |u| + δ1 |u|2 + Cδ1 |un|r−1 |u| + Cδ1 |u|r .

For each ε > 0, we use the Young’s inequality to obtain that

|F (x, un − u) − F (x, un) + F (x, u)| ≤ C
[(

ε |un|2 + Cε |u|2
)

+ (ε |un|r + Cε |u|r)
]
.

Next, we consider the function gn given by

gn (x) := max
{

|F (x, un − u) − F (x, un) + F (x, u)| − Cε
(
|un|2 + |un|r

)
, 0
}

.

Then
0 ≤ gn (x) ≤ CCε

(
|u|2 + |u|r

)
∈ L1

(
R

3
)
.

Moreover, by the Lebesgue dominated convergence theorem,∫
R3

gn (x) dx → 0 as n → ∞, (22)

since un → u a.e. in R
3. From the definition of gn, it follows that

|F (x, un − u) − F (x, un) + F (x, u)| ≤ gn (x) + Cε
(
|un|2 + |un|r

)
,

which together with (22) and (9), shows that for n large enough,∣∣∣∣∣∣
∫
R3

[F (x, un − u) − F (x, un) + F (x, u)] dx

∣∣∣∣∣∣ ≤ Cε,

which implies that ∫
R3

[F (x, un − u) − F (x, un) + F (x, u)] dx = o (1) .

Similarly, we can verify (21) as well, and we omit it here. This completes the proof. �
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Next, we investigate the compactness conditions for the functional Jλ,μ. Recall that a C1-functional
Jλ,μ satisfies Cerami condition at level c ((C)c condition for short) if any sequence {un} ⊂ Xλ such that
Jλ,μ(un) → c and (1 + ‖un‖λ)‖J ′

λ,μ(un)‖X−1
λ

→ 0 has a convergent subsequence, and such sequence is
called a (C)c-sequence.

Proposition 3.3. For any k ∈ {1, 3, 4}, assume that the conditions (V 1)−(V 4) and (D1)−(D3) hold. Then
for each D > 0 there exists Λ0 = Λ(D) ≥ 4d0

b such that Jλ,μ satisfies the (C)c-condition in Xλ for all
c < D and λ > Λ0.

Proof. Let {un} be a (C)c-sequence with c < D. By Lemma 3.1, {un} is bounded in Xλ, and there exists
Cλ such that ‖un‖λ ≤ Cλ. Therefore, there exist a subsequence {un} and u0 in Xλ such that

un ⇀ u0 weakly in Xλ;
un → u0 strongly in Lr

loc

(
R

3
)

for 2 ≤ r < 6;

un (x) → u0 (x) a.e. on R
3.

Moreover, J ′
λ,μ (u0) = 0. Now we prove that un → u0 strongly in Xλ. Let vn = un − u0. Then vn ⇀ 0 in

Xλ. It follows from the condition (V 2) that∫
R3

v2
ndx =

∫
{V +≥b}

v2
ndx +

∫
{V +<b}

v2
ndx

≤ 1
λb

∫
R3

λV +v2
ndx +

∫
{V +<b}

v2
ndx

≤ 1
λb

‖vn‖2
λ + o (1) . (23)

Using this and combining the Hölder and Sobolev inequalities, we have

∫
R3

|vn|r dx ≤
⎛
⎝∫

R3

|vn|2 dx

⎞
⎠

6−r
4
⎛
⎝∫

R3

|vn|6 dx

⎞
⎠

r−2
4

≤
⎡
⎣ 1

λb

∫
R3

(
|∇vn|2 + λV +v2

n

)
dx

⎤
⎦

6−r
4
⎛
⎜⎝S

−6

⎡
⎣∫
R3

|∇vn|2 dx

⎤
⎦

3
⎞
⎟⎠

r−2
4

+ o (1)

≤
(

1
λb

) 6−r
4

S
− 3(r−2)

2 ‖vn‖r
λ + o (1) . (24)

Furthermore, from Lemma 3.2 it follows that

Jλ,μ (vn) = Jλ,μ (un) − Jλ,μ (u0) + o (1) and J ′
λ,μ (vn) = o (1) .

Consequently, this together with the condition (D3), (7), (23) and Lemma 2.1, we obtain

D ≥ c − Jλ,μ (u0)

≥ Jλ,μ (vn) − 1
4
〈
J ′

λ,μ (vn) , vn

〉
+ o (1)

≥ μ0 − 1
4μ0

‖vn‖2
λ − d0

∫
R3

v2
ndx + o (1)

≥
(

μ0 − 1
4μ0

− d0

λb

)
‖vn‖2

λ + o (1) ,
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which implies that

‖vn‖2
λ ≤

(
μ0 − 1
4μ0

− d0

λb

)−1

D + o (1) , for every λ >
4μ0d0

b (μ0 − 1)
.

Moreover, by (9), one has∫
R3

|vn|r dx ≤ ∣∣{V + < b
}∣∣ 6−r

6 S
−r ‖vn‖r

λ

≤ |{V + < b}| 6−r
6

S
r

[(
μ0 − 1
4μ0

− d0

λb

)−1

D

] r
2

+ o (1) . (25)

Thus, it follows from (24) and (25) that

o (1) =
∫
R3

(
|∇vn|2 + Vλv2

n

)
dx + μ

∫
R3

KφK,vn
v2

ndx −
∫
R3

f (x, vn) vndx

≥ μ0 − 1
μ0

‖vn‖2
λ − (∣∣p+

∣∣
∞ + ε

) ∫
R3

v2
ndx − Cε

∫
R3

|vn|r dx

≥ μ0 − 1
μ0

‖vn‖2
λ − |p+|∞ + ε

λb
‖vn‖2

λ − Cε

⎛
⎝∫

R3

|vn|r dx

⎞
⎠

(r−2)/r ⎛
⎝∫

R3

|vn|r dx

⎞
⎠

2/r

≥
(

μ0 − 1
μ0

− |p+|∞ + ε

λb

)
‖vn‖2

λ −
(∣∣{V + < b

}∣∣ 6−r
6 S

−r
)(r−2)/r

·
[(

μ0 − 1
4μ0

− d0

λb

)−1

D

](r−2)/2 [(
1
λb

) 6−r
4

S
− 3(r−2)

2

]2/r

‖vn‖2
λ

≥ ‖vn‖2
λ ·
[
μ0 − 1

μ0
− |p+|∞ + ε

λb

−
(

|{V + < b}| 6−r
6

S
r

) r−2
r
[(

μ0 − 1
4μ0

− d0

λb

)−1

D

](r−2)/2((
1
λb

) 6−r
4

S
− 3(r−2)

2

)2/r
⎤
⎦

+o (1) ,

since
〈
J ′

λ,μ (vn) , vn

〉
= o (1) and

∫
R3 f (x, vn) vndx ≤ (|p+|∞ + ε)

∫
R3 v2

ndx + Cε

∫
R3 |vn|r dx. Therefore,

there exists Λ0 = Λ (D) ≥ 4μ0d0
b(μ0−1) such that vn → 0 strongly in Xλ for λ > Λ0. This completes the

proof. �

Now we give the proof of Theorem 1.1 By Proposition 3.3 and 0 < η ≤ cλ,μ ≤ c0,μ (Ω) for all

λ ≥ S
2

b |{V + < b}|− 2
3 , for each μ ∈ (0,m (k)) there exists

Λ∗ ≥ max

{
S

2

b |{V + < b}| 2
3
,

4μ0d0

b (μ0 − 1)

}
> 0

such that for every λ > Λ∗ and (C)cλ,μ
-sequence {un} for Jλ,μ on Xλ there exist a subsequence {un} and

uλ ∈ Xλ such that un → uλ strongly in Xλ. Moreover, Jλ,μ (uλ) = cλ,μ and (uλ, φK,uλ
) is a nontrivial

solution of Eq. (SPλ,μ).
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4. Proof of Theorem 1.2

Proof. Suppose that u is a nontrivial solution of Eq. (SPλ,μ) , then

〈J ′
λ,μ(u), u〉 =

∫
R3

(
|∇u|2 + Vλu2

)
dx + μ

∫
R3

KφK,uu2dx −
∫
R3

f(x, u)udx = 0.

(i) By the conditions (V 1)−(V 4) and |q|∞ S
−2 |Ω| 2

3 < μ0−1
μ0

, there exists b1 > 0 such that

|q|∞ S
−2 ∣∣{V + < b1

}∣∣ 23 <
μ0 − 1

μ0
,

which implies that∫
R3

qu2dx ≤ |q|∞
∫

{V +<b1}

u2dx + |q|∞
∫

{V +≥b1}

u2dx

≤ |q|∞
∣∣{V + < b1

}∣∣ 23 S
−2
∫
R3

|∇u|2 dx +
|q|∞
λb1

∫
{V +≥b1}

λV +u2dx

<
μ0 − 1

μ0

∫
R3

|∇u|2 dx +
|q|∞
λb1

∫
{V +≥b1}

λV +u2dx. (26)

Then, by the conditions (D2) and (D4), (7), (9) and (26), for λ > Λ∗ := |q|∞μ0

b1(μ0−1) , we have

0 = 〈J ′
λ,μ(u), u〉 =

∫
R3

(
|∇u|2 + Vλu2

)
dx + μ

∫
R3

KφK,uu2dx −
∫
R3

f(x, u)udx

≥ μ0 − 1
μ0

‖u‖2
λ −

∫
R3

q(x)u2dx

>
μ0 − 1

μ0
‖u‖2

λ −

⎛
⎜⎝μ0 − 1

μ0

∫
R3

|∇u|2 dx +
|q|∞
λb1

∫
{V +≥b1}

λV u2dx

⎞
⎟⎠

≥
(

μ0 − 1
μ0

− |q|∞
λb1

) ∫
{V +≥b1}

λV +u2dx ≥ 0,

which is a contradiction. Therefore, Eq. (SPλ,μ) does not admit any nontrivial solution.
(ii) To proceed, we consider the proof in two separate cases.

Case 1 :
∫
R3 q(x)u4dx = 0. By (7) one has

0 = 〈J ′
λ,μ(u), u〉 =

∫
R3

(
|∇u|2 + Vλu2

)
dx + μ

∫
R3

KφK,uu2dx −
∫
R3

f(x, u)udx

≥ μ0 − 1
μ0

‖u‖2
λ + μ

∫
R3

KφK,uu2dx −
∫
R3

q(x)u4dx

=
μ0 − 1

μ0
‖u‖2

λ + μ

∫
R3

KφK,uu2dx > 0,

which is a contradiction.
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Case 2:
∫
R3 q(x)u4dx > 0. We set

v =
u(∫

R3 q(x)u4dx
)1/4

.

Clearly,
∫
R3 q(x)v4dx = 1. Then, by the conditions (D2) , (D4), (4) and (9), we have

0 = 〈J ′
λ,μ(u), u〉 =

∫
R3

(
|∇u|2 + Vλu2

)
dx + μ

∫
R3

KφK,uu2dx −
∫
R3

f(x, u)udx

≥ μ0 − 1
μ0

‖u‖2
λ +

1
μ̂1 (q)

∫
R3

KφK,uu2dx −
∫
R3

q(x)u4dx

=
μ0 − 1

μ0

⎛
⎝∫

R3

q(x)u4dx

⎞
⎠

1/2

‖v‖2
λ +

1
μ̂1 (q)

∫
R3

q(x)u4dx

⎛
⎝∫

R3

KφK,vv
2dx − μ̂1 (q)

⎞
⎠

> 0,

which is a contradiction. Therefore, Eq. (SPλ,μ) does not admit any nontrivial solution. This completes
the proof. �

5. Concentration for nontrivial solutions

In this section, we investigate the concentration of nontrivial solutions and give the proof of Theorem
1.3.

Proof of Theorem 1.3: We follow the argument in [5] (or see [32]). For any sequence λn → ∞, setting
un := uλn

are the critical points of Jλn,μ obtained in Theorem 1.1. Since

Dμ ≥ αλn
= Jλn,μ (un)

≥
{(

μ0−1
4μ0

− d0 |{V + < b}| 2
3 S

−2
)

‖un‖2
λn

, if k = 1
1
4‖un‖2

λn
, if k = 3, 4,

we have

‖un‖λn
≤ C0, (27)

where the constant C0 is independent of λn. Therefore, we may assume that un ⇀ u0 weakly in X and
un → u0 strongly in Lr

loc

(
R

3
)

for 2 ≤ r < 6. By Fatou’s Lemma, we have

∫
R3

V +u2
0dx ≤ lim inf

n→∞

∫
R3

V +u2
ndx ≤ lim inf

n→∞
‖un‖2

λn

λn
= 0,

which implies that u0 = 0 a.e. in R
3 \ V −1 (0) and u0 ∈ H1

0 (Ω) by (V 3). Now for any ϕ ∈ C∞
0 (Ω), since〈

J ′
λn,μ (un) , ϕ

〉
= 0, it is easy to check that

∫
R3

∇u0 · ∇ϕdx −
∫
R3

V −u0ϕdx + μ

∫
R3

KφK,u0u0ϕdx =
∫
R3

f (x, u0) ϕdx,

that is, u0 is a weak solution of (SP∞) by the density of C∞
0 (Ω) in H1

0 (Ω) .
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Now we show that un → u0 in Lr
(
R

3
)

for 2 ≤ r < 6. Otherwise, by Lions vanishing lemma [22] there
exist δ > 0, R0 > 0 and xn ∈ R

3 such that∫
B3(xn,R0)

(un − u0)
2 dx ≥ δ.

Moreover, xn → ∞, hence
∣∣B (xn, R0) ∩ {x ∈ R

3 : V + < b
}∣∣ → 0. By the Hölder inequality, we have∫

B(xn,R0)∩{V +<b}

(un − u0)
2 dx → 0.

Consequently,

‖un‖2
λn

≥ λnb

∫
B(xn,R0)∩{V +≥b}

u2
ndx = λnb

∫
B(xn,R0)∩{V +≥b}

(un − u0)
2 dx

= λnb

⎛
⎜⎝

∫
B(xn,R0)

(un − u0)
2 dx −

∫
B(xn,R0)∩{V +<b}

(un − u0)
2 dx + o(1)

⎞
⎟⎠

→ ∞,

which contradicts (27). Therefore, un → u0 in Lr
(
R

3
)

for 2 ≤ r < 6. Thus, by the conditions (D1) , (D2)
and un → u0 in Lr

(
R

3
)
, we have∫

R3

f (x, un) undx →
∫
R3

f (x, u0) u0dx. (28)

Now, choose ε ∈ (0,Θ0 − |p+|∞) as in the proof of Lemma 2.4 and use the conditions (D1) and (D2) to
get ∣∣∣∣∣∣

∫
R3

f(x, u)udx

∣∣∣∣∣∣ ≤
∫
RN

[
(∣∣p+

∣∣
∞ + ε

)
u2 + Cε |u|r]dx. (29)

Since
〈
J ′

λn,μ (un) , un

〉
= 0, by (8), (29) and the fact that un �= 0, for n large we have

‖un‖2 ≤ ‖un‖2
λn

≤
(|p+|∞ + ε) max

{
S

2

b , |{V + < b}| 2
3

}

S
2 ‖un‖2

+Cε

(
max

{
S

2

b , |{V + < b}| 2
3

}) 6−r
4

S
r ‖un‖r

=
|p+|∞ + ε

min
{

b, S
2 |{V + < b}|− 2

3

}‖un‖2 +
Cε

S
3r−6

2
(
min

{
b, S

2 |{V + < b}|− 2
3

}) 6−r
4

‖un‖r

=
|p+|∞ + ε

Θ0
‖un‖2 +

Cε

S
3r−6

2 Θ
6−r
4

0

‖un‖r
,

which implies that

‖un‖ ≥
⎛
⎝S

3r−6
2 Θ

6−r
4

0 (Θ0 − |p+|∞ − ε)
CεΘ0

⎞
⎠

1/(r−2)

> 0. (30)
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Moreover,

∫
R3

f(x, un)undx =

⎛
⎝∫

R3

|∇un|2 dx +
∫
R3

Vλn
u2

ndx

⎞
⎠+ μ

∫
R3

KφK,un
u2

ndx

≥ μ0 − 1
μ0

‖un‖2
λn

≥ μ0 − 1
μ0

‖un‖2
. (31)

By (28)–(31), we have

∫
R3

f (x, u0) u0dx ≥ μ0 − 1
μ0

⎛
⎝S

3r−6
2 Θ

6−r
4

0 (Θ0 − |p+|∞ − ε)
CεΘ0

⎞
⎠

2/(r−2)

> 0,

this shows that u0 �= 0. Finally, we show that un → u0 in X. Since
〈
J ′

λn,μ (un) , un

〉
=
〈
J ′

λn,μ (un) , u0

〉
=

0, we have

‖un‖2
λn

−
∫
R3

V −u2
ndx + μ

∫
R3

K(x)φK,un
u2

ndx =
∫
R3

f(x, un)undx, (32)

and

〈un, u0〉λn
−
∫
R3

V −unu0dx + μ

∫
R3

K(x)φK,un
unu0dx =

∫
R3

f(x, un)u0dx. (33)

It is easy to verify that ∫
R3

V − (u2
n − unu0

)
dx → 0 (34)

and ∫
R3

(
K(x)φK,un

u2
n − K(x)φK,un

unu0

)
dx → 0. (35)

Indeed, for (34), similar to the proof of (17), we have
∣∣∣∣∣∣
∫
R3

V − (u2
n − unu0

)
dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

supp V −

V −un (un − u0) dx

∣∣∣∣∣∣∣

≤ ∣∣V −∣∣
∞

⎛
⎜⎝

∫
supp V −

|un − u0|2 dx

⎞
⎟⎠

1/2

|un|2

→ 0,

since un → u0 in L2
loc

(
R

3
)

and {un} is bounded in L2
(
R

3
)
. For (35), if K(x) ∈ L∞(R3), then the Hölder

inequality and un → u0 in L3(R3) imply that∫
R3

(
K(x)φK,un

u2
n − K(x)φK,un

unu0

)
dx ≤ |K|∞|φun

|6|un|2|un − u0|3 → 0.

If K(x) ∈ L2(R3), similar to the proof of (2.11) in [32], then (35) holds. Moreover, by (32)–(35), we have

lim
n→∞ ‖un‖2

λn
= lim

n→∞ 〈un, u0〉λn
= lim

n→∞ 〈un, u0〉 = ‖u0‖2.
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On the other hand, weakly lower semi-continuity of norm yields that

‖u0‖2 ≤ lim inf
n→∞ ‖un‖2 ≤ lim sup

n→∞
‖un‖2 ≤ lim

n→∞ ‖un‖2
λn

.

This shows that un → u0 in X. This completes the proof.
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