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On the nonlinear Schrodinger—Poisson systems with sign-changing potential
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Abstract. In this paper, we study a nonlinear Schrédinger—Poisson system

—Au+Vy () u + pK (z) pu = f(z,u) in R3,
{—A¢:K(x)u2 in R3,

where p > 0 is a parameter, V), is allowed to be sign-changing and f is an indefinite function. We require that Vy := AVt -V~
with V+ having a bounded potential well  whose depth is controlled by A and V'~ > 0 for all z € R3. Under some suitable
assumptions on K and f, the existence and the nonexistence of nontrivial solutions are obtained by using variational
methods. Furthermore, the phenomenon of concentration of solutions is explored as well.
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1. Introduction

In this paper, we are concerned with the following nonlinear Schrédinger—Poisson system:

—Au+ Vy (2)u + pK (x) pu = f(z,u) in R3, (SPy)
—A¢ = K () u? in R3, Ao

where p > 0 is a parameter, the potential Vy(z) = AV (2) — V= (2), K € L*(R3) U L*®(R?) and f :
R3 xR — R is a Carathéodory function. We assume that the functions V* satisfy the following conditions:
(V1) V € C (R3,R) with V* = max {£V, 0} and V is bounded from below;

(V2) There exists b > 0 such that the set {V* <b} := {2 € R* | V* (2) < b} is nonempty and has

finite measure;
(V3) Q@ = int{z € R® | V* () =0} is nonempty and has smooth boundary with Q = {x € R? |

Vti(z)= O};
(V4) There exists a constant p > 1 such that

_ Jes [[Vul? + AV Fu?] da
A) = f R > fi 11Xx>0.
i ueHll(fllaS)\{o} Jps V—uldx = o for &
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Remark 1.1. It is easy to verify that the condition (V4) holds. Indeed, if we choose a function V— €
L3 (R3) with V=l pse < ?2, then by the conditions (V1)—(V3) and the Holder and Sobolev inequalities,

Jes [[Vul? + AVTu?] do - Jas [Vul?dx
V-u?de - 3
Jeo 1Vl (o ful® o)’
S Jgs |Vu|? da
Z ——2
IV=llgsr2 S Jas [Vul® de
—2
S
=——— forallX>0,
IV=ligs/2
which implies that
=2
1 (A) > —————>1 for all A > 0,
IV=ligsre

where S is the best Sobolev constant for the imbedding of D2 (R3) in LS (R3) .

The hypotheses (V1)—(V3), first introduced by Bartsch and Wang [7] in the study of the nonlinear
Schrodinger equations, imply that AV represents a potential well whose depth is controlled by A. For
A > 0, large one expects to find solutions which localize near its bottom 2. We refer the reader to the
papers [6,25,28,31] for recent results.

Schrodinger—Poisson systems, also known as the nonlinear Schrodinger—-Maxwell equations, have a
strong physical meaning. It was first introduced in [8] as a model describing solitary waves for the non-
linear stationary Schrédinger equations interacting with the electrostatic field and also in semiconductor
theory, in nonlinear optics and in plasma physics. Indeed, in Eq. (SPy ;) the first equation is a nonlinear
stationary Schrodinger equation (where, as usual, the nonlinear term simulates the interaction between
many particles) that is coupled with a Poisson equation, to be satisfied by ¢, meaning that the potential
is determined by the charge of the wave function.

In recent years, Eq. (SPy,,) has been studied widely via variational methods under the various hy-
potheses on V), K and f, see [2-4,10-12,16-21,23,24,27,29,30,32,33] and the references therein. For
example, in [23], when V), = 1 and K = 1, the existence and nonexistence results on positive radial
solutions for Eq. (SPy,,) with f(z,u) = |u|P~2u are obtained, depending on the parameters p and p. It
turns out that p = 3 is a critical value for the existence of solution. When V), = 1 and K is a nonnegative
L2-function, in [11] the authors use the Nehari manifold method to find a positive ground-state solution
and a bound-state solution for Eq. (SPy ) with f(z,u) = a(z)|u|P~?u and 4 < p < 6 under some suitable
assumptions on K and a, but not requiring any symmetry property, respectively.

In [19], the steep potential well is first applied into Schrodinger—Poisson systems. The authors use
variational methods to study the following problem:

—Au+ AV (z) + Du+ pou = |ulP~?u in R3,
—A¢ = u? in R3,

where A and p are positive constants, V' > 0 and satisfies (V1) —(V3) with V instead of V. They

obtain the existence results of nontrivial solution for the case p € (2,3) U [4,6) by combining domains

approximation with priori estimates. It is worth noting that the positivity of the infimum of the potential
Va(z) := AV (x) + 1 is the key in the arguments of [19].

In [32], under the assumptions (V1)—(V3) with V instead of VT, the authors consider a similar

problem:
—Au+ AV (z)u+ K(z)pu = [u[P~2u in R3, 1
{ —A¢ = K(x)u? in R?, (1)
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where K € L*(R3) U L*(R?), K > 0 for all z € R®. When V > 0, they find a nontrivial solution for Eq.
(1) with 3 < p < 6 and explore the phenomenon of concentration of solutions. When the potential V' is
allowed to be sign-changing, the existence of nontrivial solution for the case p € (4,6) is obtained, but
not studying the concentration of nontrivial solutions.

Based on the study of [32], very recently, Ye and Tang [29] consider the Eq. (1) with a general nonlinear
term f, that is,

—A¢ = K(x)u? in R?, (2)
where A > 0,V satisfies (V1)—(V3) with V instead of V™, K € L?(R3) U L>*°(R3) and K > 0 for all
x € R3. The authors mainly deal with two cases as follows:

(I) V is allowed to be sign-changing. When f satisfies the 4-superlinear conditions, like f(z,u) =
|ulP~2u(4 < p < 6), and the norm of K is small enough, they obtain a nontrivial solution for Eq.
(2), which generalizes Theorem 1.1 in [32];

(IT) V' > 0. The existence and multiplicity of nontrivial solutions for Eq. (2) are obtained when f satisfies
the 4-superlinear conditions, but without the restriction on the norm of K. In addition, using the symmet-
ric mountain pass lemma, infinitely many solutions are found when f satisfies the sublinear conditions,
which improves Theorem 1.1 in [26].

Motivated by the above works, in the present paper we consider Eq. (SPy ) with a sign-changing
potential V) satisfying (V'1)—(V'4), which are different from those in the previous papers [19,29,32]. By
using the mountain pass theorem, and combining some new inequalities, we mainly study the following
three problems:

{ —Au+ AV (z)u+ K(z)pu = f(z,u) in R3,

(i) The existence result when f is indefinite and satisfies the asymptotically linear conditions;
(ii) The nonexistence result;
(iii) The phenomenon of concentration of nontrivial solutions.

It is worth emphasizing that cases (i) and (ii) are not concerned in the previous papers. Moreover,
we point out that we establish some new estimation, such as the inequality (9) below which will play an
important role in our proof. These estimations are totally different from those in the literature.

Before stating our results, we need to introduce some notations and definitions.

Notation 1.1. Throughout this paper, we denote by |-|,. the L"-norm, 1 < r < oo, and we have to use the
notation p* = max {#p,0}. The letter C' will denote various positive constants whose value may change
from line to line but are not essential to the analysis of the problem. Also if we take a subsequence of a
sequence {uy}, we shall denote it again {u,}. We use o(1) to denote any quantity which tends to zero
when n — oo.

We need the following minimum problems:

A1(g) = inf |Vul?de | u € HY (), [ quidr =1 (3)
/ /
and
p (q) = inf // K(x)KTz)“yfm)“ W) grdy | u e 0 (Q),/qu4da: —1% >0, (4)
Q0 Q

where ¢ € L> (R?) with ¢ > 0 on Q and K(z) > 0 for z € R®, K € L*(R*) U L>(R?). Then \;(q) > 0,
which is achieved by some ¢ € H} () which fQ q \¢1|2 dx =1 and ¢; > 0 a.e. in Q by the compactness
of Sobolev embedding from H{ (Q) from L? () and Fatou’s lemma (see Figueiredo [15]). In particular,

A(q) /q ul” dz < / |Vu|?da for all u € H} (). (5)
Q %)
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Now, we give our main results.

Theorem 1.1. Suppose that conditions (V1)—(V4) hold and K (x) > 0 for x € R?, K € L*(R3) U L>(R3).
In addition, for any k € {1,3,4}, we assume that the function f satisfies the following conditions:

(D1) f(x,s) is a continuous function on R® xR such that f(x,s) = 0 for all s < 0 and x € R®. Moreover,
there exists p € L™ (R3) with

—2
|p+‘DO < Qg := min{b, (MO_I)S}

2
po {V+ < b}[?

such that
1im+ Lk,s) = p(z) uniformly in € R?
s—0 S
and
flx,s)

>p(x) forall s> 0 and x € Q,

sk

where |-| is the Lebesgue measure;
(D2) there exists a function ¢ € L™ (R*) with ¢ > 0 on Q such that

lim f(@,s) (z,5)

§—00 sk

= q(z) uniformly in x € R?;
(D3) there exists a constant dy satisfying

(o~ 1)5"

0<dyg< —H0 =2
Ao {V+ < bY[®

such that

1
Zf(:c,s)s < dys®* foralls >0 and x € R®.

Then we have the following results.

F(x,s)—

(1) If k=1 and M\ (q) < 1, then there exists a positive number u* such that for every p € (0, pu*), there
exists A* > 0 such that Eq. (SPy ) has at least a nontrivial solution for all A > A*.
(1) If k = 3, then for each p € (0,1/11(q)) (if p1 (¢) =0, then p > 0) there exists A* > 0 such that Eq.
(SPy ) has at least a nontrivial solution for all X > A*.
(49i) If k = 4, then for each p > 0 there exists A* > 0 such that Eq. (SP» ) has at least a nontrivial
solution for all A > A*.

Remark 1.2. In [29], Ye and Tang study the existence of nontrivial solutions for Eq. (2) under the 4-
superlinear condition of f as follows:

lim ———~ = 400 wuniformly in x, (6)

where F(x,u) fo (z, s)ds. However, in our Theorem 1.1, for the cases of k = 1,3, the nonlinearity f
does not satisfies the condition (6). Therefore, we extend the corresponding results in [29].

We need the following minimum problem:

K 2
fir (q) = inf // |x_y|( z)u (y)dxdylueHl (Rg),/qu4dx:1 > 0.
R?»

Clearly, 111 (¢) < p1 (¢) . Then we have the following results.



Vol. 66 (2015) On the nonlinear Schrédinger—Poisson systems 1653

Theorem 1.2. Suppose that the conditions (V1)—(V4) hold and K(z) > 0 for x € R3 K € L?*(R®)U
L>®(R®). In addition, for each positive integer k = 1,3, we assume that the function f satisfies the
conditions (D2),(D3) and the following condition:

(D4) feC' (R®xR,R) and s — I@5) i< nondecreasing function for any fized x € R.

S

Then we have the following results.

(i) If k=1 and |q|, < %731)32 |Q\_% , then there exists positive number A, such that for every p >0

and X > Ay, Eq. (SPy,,) does not admit any nontrivial solution.
(1) If k = 3 and [i1 (¢) > 0, then for every p > 1/11 (q) and A > 0, Eq. (SPy,) does not admit any
nontrivial solution.

Remark 1.3. Suppose that q is a bounded positive continuous function on R® and K(x) > 0 for x € R3,
K € L3(R3) U L*(R3) with
lim ¢(z)=1and lim K (z)=0.

|| =00 || =00
Let wg be the unique positive solution with Wy (0) = max,egs Wo () for the following nonlinear Schrédinger
equation:
—Au+u=u® inR3, (ES°)
Up, = Wo (x — ne) and vy, = Uy (s qufldnc)_l/4 forn € N, where e = (1,0,0). Then [gs qupde =1 for all
n € N and
K () K (y) v () vz (y)
|z =y

dxdy — 0 as n — oo,

R3 R3
which implies that i1 () = 0. Therefore, if we would like to obtain the inequality iy (q) > 0, then the
condition lim,| o K (z) = Ko > 0 is necessary.

On the concentration of solutions, we have the following result.

Theorem 1.3. Let uy be the solution obtained by Theorem 1.1. Then uy — ug in H'(R?) as A\ — oo,
where ug € HY(Q) is the nontrivial solution of

&l

(SPx)
u =0, on 0f2.

{ —Au—-V~ (z)u+ £ ((K(x)u2) * ) K(z)u = f(x,u) in Q,

The remainder of this paper is organized as follows. In Sect. 2, some preliminary results are presented.
In Sects. 3-5, we give the proofs of our main results.

2. Variational setting and preliminaries

In this section, we give the variational setting for Eq. (SPy,,) following [13] and establish compactness
conditions. Let
X={ueH (R? | /V+(x)u2dsc < 00
R3
be equipped with the inner product and norm
(u,v) = / [VuVo + VT (z) uwo] dz, |u] = (u,u>1/2 .

R3
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For A > 0, we also need the following inner product and norm
(u,v), = / [VuVo + AV (z) wo da, [Jully = (u,u)y>.
R3

It is clear that ||u|| < [Jul|, for A > 1. Furthermore, it follows from the condition (V'4) that

/|vu| + Vaulde > 20—~ ., ||u\|A for all A > 0. (7)

0
RN

Set X\ = (X, [lu[[,) . By the conditions (V'1)—(V2) and the Holder and Sobolev inequalities, we have

/ (|Vu|2 + u2) dz
RS

:/|Vu|2dx+ / u*dx + / u?dz
3

{v+<o} {v+2o}
3 3
< /|Vu|2dac + / ldx / u|® dz +% / VT (z)u’de
R3 {V+<b} {V+<b} {V+>b}
< (1+\{v+<b}|%§‘2)/|v B dx+b/v+( yuldx
R3 R3

§max{1+|{V+<b}|g’S_2,ll)} /\Vu|2da:+/vjL (z)u’dz |,
3

R3

which implies that the imbedding X — H' (R?) is continuous. Moreover, using the conditions (V1)—(V2)
and the Holder and Sobolev inequalities again, we have for any r € [2, 6],

/|u|' dx

R3
g 3\ T
< u?dx + / u?de 5° / Vu|® dz
(V>h) (vi<n 5
< / AV (z)u?dz + / 1dx / |u|2* dx
{V+>b} {V+<b} {V+<b}
31

/ [Vul® + AV (2) u?dz
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< %/AV* (¢) ulde + [{V* <b}|%§*2/\vu|2dx (3*2* ||u|\?\*)%
R3 R3

= | max % 5

which implies that

6—1r
e
< b}’% }) S lul|y for all A >0, (8)

—=2
/|u|’“dg; <|{vt< b}|6TT§‘T [lully, for all A > % {VT <b}|®. (9)

It is well known that Eq. (SP ) can be easily transformed in a nonlinear Schrédinger equation with a
nonlocal term (see [3,23] etc.). Briefly, the Poisson equation is solved by using the Lax—Milgram theorem,
so, for all u € H'(R3), a unique ¢, € DV?(R?) given by

u2
o) = 1 [ L ay,
R3

such that —A¢ = Ku? and that, inserted into the first equation, gives
—Au+u+ MK (z) druu = a(z) lulP"?u in R3.

Eq. (SPy,,) is variational and its solutions are the critical points of the functional defined in X by

I (0) /|Vu|2da3+/V,\u2dx +%/K¢K7uu2dx—/F(m,u)dx
3 R3 R3

R3

1
3 ||u||§\ —/V_u2dx+%/K¢K7uu2dx— /F(x,u)da:,
R3 R3

R3

where F(x,u) fo (x, s)ds. Furthermore, it is easy to prove that the functional Jy , is of class C'in
X and that

(Jyu(u),v) = /Vu Vvdx—l—/V)\( )uvdx—l—,u/quKuuvdx—/f x,u)vdz.
RS RS

Hence, if u € X is a critical point of J ,, then (u, ¢ ) is a solution of Eq. (SPy ). Furthermore, we
have the following result.

Lemma 2.1. Suppose that the conditions (V1)—(V4) and (D1)—(D3) hold. For every X\ > %2 {V < b} 3
and uy a nontrivial solution of Eq. (SPy,,), we have Jx , (ux) > 0.

Proof. If uy is a nontrivial solution of Eq. (SP ), then

/|Vu>\| d;er/V>\u>\dx+,u/K¢KuAu/\dz—/f(x,uA)uAdx.

R3 R3
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Combining this with the condition (D3), (7) and (9), we have

1
Iap(un) = 3 /|Vu)\|2dx+/V>\u§dx +%/K¢K7uku§dx—/F(x,u>\)dx
3 R3 R3 R3
1 ) ) 1
=1 [Vur|"dz + [ Vaurde | — | |F(z,un) — Zf(x,ux)m\ dz
3 R3 R3
>#0_1||UAH?\—/ F(x u,\)—lf(x uy)uy | do
= Adpg ’ 4 ’
R3
o — 1 2 2
> —d, d
> sl —do [ ude
R3
-1 2 ___
> ("Z o [{vt <v}|}3 2) a2 > 0. (10)
Ho
This completes the proof. O

Set
N = [ K@ ocaiar = 1 [ EEED 2 )02 ) sy
R3 R3xR3

In [32], it was shown that the functional N and its derivative N’ possess BL-splitting property, which
is similar to Brezis—Lieb Lemma [9]. Now we recall them.

Lemma 2.2. ([32], Lemma 2.2). Let K € L™ (R*) UL? (R3). If u, = u in H' (R?®) and u, — u a.e. in
R3, then we have

(1) N (un —u) =N (un) = N (u) +0(1);
(i) N’ (up —u) =N’ (up,) — N'(u) +0(1) in H* (R?).
Next, we give a useful theorem. It is the variant version of the mountain pass theorem, which allows

us to find a so-called Cerami type (PS) sequence.

Lemma 2.3. ([14], Mountain Pass Theorem). Let E be a real Banach space with its dual space E*, and
suppose that I € C*(E,R) satisfies

max{1(0),I(e)} <p<n< ”iﬂipl(“)’

for some p <n,p>0 and e € E with ||e|]| > p. Let ¢ > n be characterized by

©= Jh oy 100,

where I' = { € C([0,1], E) : v(0) = 0,7v(1) = e} is the set of continuous paths joining 0 and e, then
there exists a sequence {u,} C E such that

I(up) —c>n and (1 + |Jua DI (un)||lex — 0 asn — occ.

In what follows, we give two lemmas which ensure that the functional J) , has the mountain pass
geometry.

Lemma 2.4. For any k € {1,3,4}, assume that the conditions (V1)—(V2) and (D1)—(D2) hold. Then for
= 2
each A > %2 H{VT < b} 2, there exist p > 0 and ) > 0 such that inf{Jy ,(u) : u € X\ with ||u| = p} > n.
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Proof. For any € > 0, it follows from the conditions (D1) and (D2) that there exist max{k,2} <r < 6
and C. > 0 such that
+
F(z,s) < M#""E 2

So that, from (9), (11) and the Sobolev inequality, for all u € Xy and A > 3~ |{V+ < b}\

+
/ (z, u)dx<pQ+6/ u’dx +f/|u|rdz

Ce
+ 7|s|r for all s € R. (11)

R3 R3
6—r
(Ip*|oo +€) [{VF < B} C{VFE<bil® v
< 5 o + S g,
25 rS
which implies that
1
Iap(u) = 3 /|Vu| d:B—l—/V,\u /K(bKuu dx—/F(:mu)dx
R3 R3
fio — 1 (Pt + ) {VF < B}
2 WHU/\H?\ - — lull3
o
C{Vr<b}l® v
- — ([l
rS
2 6—r
Llpo—1  (p*le +o) VT <B}® C{vr<vil®
> 5 - — lullX — — [[ual[ .- (12)
2 Ho g rS
So, by the condition (D1) and fixing € € (0,00 — |[p*| ) and letting ||u|| = p > 0 small enough, it is easy
to see that there is 7 > 0 such that this lemma holds. O

Lemma 2.5. For any k € {1,3,4}, assume that the conditions (V1)—(V2) and (D1) — (D2) hold. Let
p >0 be as in Lemma 2.4. Then we have the following results:

(i) If k=1 and M\ (q) < 1, then there exist u* > 0 and e € H'(R3) with |||y > p such that Jy ,(e) < 0
for all p € (0, u*) and X > 0.
(13) If k = 3, then for each 0 < p < 1/p1(q) (if u1(q) = 0, then u > 0) and X\ > 0, there exists
e € H'(R?) with |le||x > p such that Jy ,(e) < 0.
(iii) Ifk = 4, then for each p > 0 and A > 0, there exists e € H*(R3) with ||e||x > p such that Jy ,(e) < 0.

Proof. Case (I): k= 1. By A\ (¢) < 1, the condition (D2) and Fatou’s lemma, we have

. J>\7 (t¢ ) F x t¢
tilinoo% — /\v¢1| dx+/V,\¢1dm = Jim t2¢21 P2da
. (l’,t¢1) 2
<! /|V¢1| dx—/v %dm—/ Jim S i
< f/|V</>1|2dx— f/qqﬁzdx
) 2 !
Q Q
1 1 )
<-11 \V4 dx
2 ( 1 Q)> Q/| @l

<0
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where Jy o(u) = Jy ,(u) with g = 0. So, if Jy(t¢1) — —oo as t — +oo, then there exists e € H'(R?)
with |le||x > p such that Jy(e) < 0. Since Jy ,(e) — Jro(e) as p — 0, we see that there exists p* > 0
such that Jy ,(e) < 0 for all € (0, ).

Case (II) : k = 3,4. For k = 3, since 0 < p < 1/u1(q), we can choose ® € H} () such that
p fo KoF ®*dz < 1 and [, ¢®*dz = 1. Moreover, since ¢ > 0 on §, we can choose a @ € H (Q) such

that [, ¢¢°dz > 0. Define
o, if k=3,
V= { if k= 4.

P,
and Fatou’s lemma, one has

Then, by the conditions (D1), (D2)
bl Ko3 q,cb?dx iy poo [y IR G, if k=3

lim I Al AN LA (t4x)
t—Foo  thtl limy oo fps ff %) podx, ifk=4
_ jQ K% o ®2dx — [oylimg oo LB @ddz, if k =3
- R 11mt_,+oo F(?}P) Z°de, ifk=4
R t°p°
1 quKgZ)Kq)(I)zdx—f q®dz), if k=3
75 Q qp°dz, ifk=14

1 (pfq Kok o®*dx — 1), if k=3
ffoqcp dz, if k=4

So, if Jy ,(tYy) — —oc as t — +oo, then there exists e € H'(R?) with |e||x > p such that Jy ,(e) <0
and the lemma is proved. O

3. Proof of Theorem 1.1

First we define

Ao = wlenri 0Siz1 Tan(r(8)

and

cou (Q) = welfrif( ) (2 Dulmp @) (V(1),

where Jy .| g1 (o) is a restriction of Jy , on Hj (Q),

Iy ={y€C(0,1],X,) : v(0) = 0,7(1) = e}
and
T () = {v € C([0, 1], Hy () : 7(0) = 0,7(1) = e}
Note that for u € H{ (Q),

Dulmi ) (v) = /|V I” dz —f/V7u2dx—|— /K(bKuqux—/F x,u)d
R3
and co , (©2) independent of X\. Moreover, if the conditions (Dl)—(D3) hold, then by the proofs of Lemmas
2.4 and 2.5, we can conclude that Jy ,| HL(Q) satisfies the mountain pass hypothesis as in Theorem 2.3.
Since H{ () € X for all A > 0. Then 0 < n < ¢y, < co,, (Q) for all A > %2 HV < b}|_% . Define
wh, if k=1,
0, if £ =4.
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Then for each k € {1,3,4} and p € (0,m (k)), take D,, > co,, (©2) . Thus,
5 2
0<n<ecau<cou(Q) <D, foral X > 5 HV+ < b}|_§ .

Then by Lemmas 2.4 and 2.5 and Theorem 2.3, we obtain that for each u € (0,m (k)) and A >
- 2
STZ {V*T < b} 3 there exists {u,} C X, such that

Iap(un) = x>0 and (14 ||un||>\)||J§\7M(un)||X;1 — 0 asn— oo, (13)
where 0 <n < ¢y, < co,, () < D,,. Furthermore, we have the following results.

Lemma 3.1. For any k € {1,3,4}, assume that the conditions (V1)—(V4) and (D1)—(D3) hold. Let {uy}
= 2
defined in (13). Then {u,} is bounded in Xy for each \ > %2 {V+ <b} 3.

Proof. For n large enough, by the condition (D3), (7) and (9), one has

1
e+ 1> Ty, (uy) — Z<J//\u(u")’u”>

1 1
1 /|Vun‘2 dx—|—/V)\uidx +/ {4f(x,un) - F(x,un)} dz
3 R3

R3

> 23 [ [Fovn) = 31w ds

410
R3
> o}~ do [ ude
410
R3
—2 2
o (o= 1) 5 —dpodo {VF < b} 2
> — l[unllx,
4,&05
which implies that
—92 1/2
4105 (CA,M + 1)
HunHA < —2 2 :
(o —1) S™ — dpodo {V+ < b}
Therefore, {u,} is bounded in X). O

Lemma 3.2. Suppose that the conditions (V1)—(V2) and (D1)—(D2) hold. In addition, assume that
K(z) >0 forx € R®, K € L?(R3) U L*>®(R®). If u,, — w in Xy and u, — u a.e. in R, then for each

A> i [{V <b}\g we have
- b )
J)\,u (un ’LL) - J)\,u (un) J)\,u (U,) o (1) (1 1)

and
J&,M (u" - U) = J;,,u, (Un) - Jg\,u (U) +o (1) : (15)

Proof. By the definition of weak convergence in X,

/ [Vu, Vu+ AV (2) upu] do = / {|Vu|2 + AV (z)u?| dz +o(1).

R3 RS
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Thus,

tn — ul|3 = /|Vun — Vul’ dz + )\/V+ (2) |un — ul® dz
R3

R3

:/(|v%|2+w+ (@) u2) dx+/(|vu|2+w+ () w?) d

R3 R3
—2/ [Vu, Vu+ AV () uyu] da
R3
= llualR = llul} +o(1). (16)

Noticing that the conditions (V1) and (V2) imply that V= > 0 for all z € R® and V~ € L> (R?).
Moreover, from the condition (V2) it follows that {V* = 0} has finite measure, which implies that
{V= > 0} has finite measure. Therefore, using the facts that u, — u in X and u, — win L}, (R?),
one has

/Vﬁ (un —u)? dz| = / V™ (uy — u)® da

upp V—
< |V7|Oo / [un — uo|* dz — 0 (17)
supp V—
and
/V* (uz —u?)dz| = / V7™ (up —u) (up +u)de
3 supp V'~
< ’V_|Oo / |y, — ul Ju, + ul da
supp V—
1/2 1/2
< |V7|OO / |ty — ul® dz / lun + ul? da
upp V— supp V—
— 0,
which implies that
/V_ (p — )’ dz = /V‘uidx - /V_u2dx +o(l). (18)
R3 R3 R3
Similarly, for any h € X we also have
/V_ (up, —u) hdx = /V_unhdx - /V_uhda: +o(1). (19)
R3 R3 R3

Therefore, it follows from (16), (18)—(19) and Lemma 2.2 that, to obtain (14) and (15), it suffices to check
that

/[F(x,un —u) — F(z,u,) + F(z,u)]dz = 0(1) (20)

R3
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and

sup /[f(a:,un —u) — f(x,u,) + f(z,u)] hdz = 0(1). (21)

h|l,=1
I1hllx=17,

First, we verify (20). Inspired by [1], we observe that

1
F(x,up, —u) — F(x,uy) / ( (z,u, — tu)) dt.
0

Then
1
P, =) = Faouw) == [ flau, — tujudt,
0

and hence, by the conditions (D1) and (D2), we have
1
|F(z,un —u) — F(z,up)| / 5 [ — tu |u| + Cs |un — tu]” ™" |ul| dt,
0

where 6, Cs5 > 0 and max {k,2} < r < 6. This shows that
[t ) = F )| < 5l 4+ 81 uf? 4+ Co, "~ a4+ Ci, "
For each € > 0, we use the Young’s inequality to obtain that
B (2, un — 1) — F(z,un) + F(z,u)| < C [(e lun|? + C. W) + (e |un|” + C. W)} .
Next, we consider the function g, given by
gn () = max{|F(aj,un —u) — F(x,u,) + F(z,u)| — Ce (|un|2 + |un\r> ,O} .

Then
0< gu (@) < CC, (uf + |ul") € L' (R?).

Moreover, by the Lebesgue dominated convergence theorem,

gn (x)dz — 0 asn — oo, (22)
R3

since u,, — u a.e. in R3. From the definition of g, it follows that
|F (@, un =) = Fle,up) + F(z,0)] < gn (2) + Ce (Junl” + Jun|")

which together with (22) and (9), shows that for n large enough,

/[F(a:,un —u) — F(z,u,) + F(z,u)]dz| < Ce,

3
which implies that
/ [F(2,tn — ) — Fla,un) + Pz, )] dz = 0(1).
R3
Similarly, we can verify (21) as well, and we omit it here. This completes the proof. O
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Next, we investigate the compactness conditions for the functional .Jy ,. Recall that a C'-functional
J, satisfies Cerami condition at level ¢ ((C'), condition for short) if any sequence {u, } C X such that
Inpu(un) — cand (1+ ||un||,\)||J/’\7#(un)||X;1 — 0 has a convergent subsequence, and such sequence is

called a (C) -sequence.

Proposition 3.3. For any k € {1, 3,4}, assume that the conditions (V1)—(V4) and (D1)—(D3) hold. Then
for each D > 0 there exists Ag = A(D) > % such that Jy , satisfies the (C).-condition in Xy for all
c< D and X > Ag.

Proof. Let {uy,} be a (C)_-sequence with ¢ < D. By Lemma 3.1, {u,} is bounded in X}, and there exists
Cy such that |lu,||, < C\. Therefore, there exist a subsequence {u,} and ug in X such that

U, — ug weakly in Xy;
up — ug strongly in L, (R?’) for 2 <r < 6;
up () — ug () a.e. on R3,
Moreover, J;\}H (ug) = 0. Now we prove that u,, — ug strongly in X,. Let v,, = u,, — ug. Then v,, — 0 in

X It follows from the condition (V'2) that

/ vide = / vide + / vida

R3 {V+>b} {V+<b}
1
< " AV To2de + / vida
R3 {V+<b}
1
< b ”UnHi"'o(l)' (23)
Using this and combining the Holder and Sobolev inequalities, we have
627‘ TZ2
/|vn|rdm < /\vn|2 dz /|vn|6 dx
R3 \RS 3
- GZT 3 "‘22
1 _—
< |—= (\an|2+/\V+v,2L) dz 5°° [Vu,|? da +o0(1)
Ab
L R3 3
6—1
1 4 3(r—2) -
< ()\b) S 2 ||Un||)\ +O(1). (24)

Furthermore, from Lemma 3.2 it follows that
I (V) = Iapu (un) = I (wo) +0(1) and J} , (v,) = o(1).
Consequently, this together with the condition (D3), (7), (23) and Lemma 2.1, we obtain
D >c—Jy,(uw)

> s (0n) = § (A0 (0n) s 0a) 0 (1)

po — 1 2 /2

> vplly —do | vidx +o(1

g Il o | (1)
R

) lonl2 +0 (1),

s (fo—1 do
AT Y)
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which implies that

-1
2 po—1 do 4podo
12 < ~ %) Dio(), f A > —Ho%
vnlly < < I )\b) +0(1), for every A > b0 —1)
Moreover, by (9), one has
b6—r ____ r
/|un|’“dzg 1V <} T 5 ol
R3
V<0l (=1 o\ ]
0— 0
< — - — D 1). 25
MM (=B o) o) (25)

Thus, it follows from (24) and (25) that

o(l) = / (|an|2 + V)\’Ui) dx + U/KQbK,anidI - /f (z,v,) vydx
R3 R3

R3
po — 1 2 4 9 r
> lvnllx = (|p |<><>+6) vyde —Ce [ |vp|" dx
Ho 2 2
| +| (r=2)/r 2/r
Ho — 1 2 p +e€ 2 T r
> B o}~ P o3~ C | [ ol d Jke
‘LL 3 3
Mo — 1 |p+|oo + € 2 + GfT’” ——r (r=2)/r
> (= - ) Il - (Hv* <o} =57

r—2)/2 —r
. ,UO_I B @ _1D ( )/ i 6T§73(r272)
4,[1/(] b b
po—1 |pT| +e
> Junl - [t - B
Ho

2/r
] o2

r—2

S—r N\ " _ r—2)/2 6—r 2/r
B |{V+ < b}|66 o — 1 B @ lD (r=2)/ i = g_:s(r;z)
Gl Y b

+o(1),

since <J//\7u (V) ,vn> =0(1) and [gs f (2, vn) vpda < (IpT| +€) [ps vada + Ce oo |vn|” dz. Therefore,

there exists Ag = A(D) > b?ﬁé’fi) such that v, — 0 strongly in X, for A > Ay. This completes the

proof. O

Now we give the proof of Theorem 1.1 By Proposition 3.3 and 0 < n < ¢y, < ¢, (Q) for all
= _2
A> STQ {V*t < b} 3, for each u € (0,m (k)) there exists

=2
A* > max 5 =, Auodo >0
bl{V+ < b}z 0o —1)

such that for every A > A* and (C)

ux € X such that w, — uy strongly in X,. Moreover, Jy , (ux) = cx,, and (ux, @k u,) is a nontrivial
solution of Eq. (SPj ).

o, ,-Sequence {u,} for Jy , on X, there exist a subsequence {u, } and
7
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4. Proof of Theorem 1.2

Proof. Suppose that u is a nontrivial solution of Eq. (SPy ), then
(Jau(u),u) = /(|Vu| + Vhu )da:—l—u/K(bKuu dx—/f x,u)udr = 0.
R3

(i) By the conditions (V1)—(V4) and |q|oo§_ |Q|§ < “Z—gl, there exists by > 0 such that

_ 2 1
a5V <P < B
Ho
which implies that
/quzdz < 1¢| / u’dr + |ql / u?dx
R3 {V+<bi} {V+>b1}
gl [{VF <bi}|*S /|v ?dz + ‘i'b / AV ulde
(V+>b1}
/\V| da +|q‘ / AVHulde.
{V+>b1}

Then, by the conditions (D2) and (D4), (7), (9) and (26), for A > A, := l‘%l“fol), we have

0= (J}y . (u),u) = /(|Vu| + V\u )deru/KgbKuu da:—/f x,u)udx

R3

-1
> Dl ~ [ ateyuida
Ho
R3
-1
> HOZ 2?2 — /\v | da + 5= 'q‘ / AVulde
Ho
{V+>b,}
> </”L0_1 _ |Q|00) / AV tu2dr > 0,
Ho Aby
{(V+2b1)

which is a contradiction. Therefore, Eq. (SPy ) does not admit any nontrivial solution.
(#i) To proceed, we consider the proof in two separate cases.
Case 1 : g, q(z)u*dz = 0. By (7) one has

0= (J} ,(u),u) = /(|Vu| + Vau )dx+u/K¢Kuu dx—/f x,u)udz

R3
>t Hm+u/Kmmum—/<>wm
RS
Ho — 2 2
= Hu||)\+u/K¢K)uu dx >0,
Ho 2

which is a contradiction.

ZAMP
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Case 2: [g, q(z)u*dz > 0. We set

= (fR% q(x)u4d$)1/4 .

Clearly, [gs q(z)v*de = 1. Then, by the conditions (D2),(D4), (4) and (9), we have

0= (J}  (u),u) = /<|Vu| + Vu )dm+u/K¢Kuu dx—/f (2, u)udz

RB
> B =Ly 4 / Kb ai’de - / (2)utde
1o J
_]_ R
e / Jutda ||v\|A = [aantae | [ Kowotde =7 @
R3 3
>0,

which is a contradiction. Therefore, Eq. (SPy,,) does not admit any nontrivial solution. This completes
the proof. n

5. Concentration for nontrivial solutions

In this section, we investigate the concentration of nontrivial solutions and give the proof of Theorem
1.3.

Proof of Theorem 1.3: We follow the argument in [5] (or see [32]). For any sequence \,, — oo, setting
Uy, 1= uy,, are the critical points of Jy, , obtained in Theorem 1.1. Since

Du >y, = J)\ - (un)

(e —do v+ <b}|iS )||un||§\n, k=1
4”“71”)\”7 if k=3,4,

we have
[unlly, < Co, (27)

where the constant Cy is independent of \,. Therefore, we may assume that w, — ug weakly in X and
Uy, — ug strongly in L], (R3) for 2 < r < 6. By Fatou’s Lemma, we have

2
Up
/ VFuddz < liminf / VHulde < liminf& =0,
n—oo n—oo )\n
R3 R3
which implies that ug = 0 a.e. in R3\ V=1 (0) and uy € H} () by (V3). Now for any ¢ € C5° (Q), since

<J§\n,u (un), §0> =0, it is easy to check that
/Vuo-Vﬁpdw—/V‘uoapdx—ku/KqSK’uouO(pdx = /f(%uo)wdx,
3 R3 R3 R3

that is, ug is a weak solution of (SPs,) by the density of C§° () in H} ().
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Now we show that u,, — ug in L" (R3) for 2 <r < 6. Otherwise, by Lions vanishing lemma [22] there
exist § > 0, Ry > 0 and 2,, € R? such that
(un — ug)*da > 0.
B3(ZH,R0)

Moreover, z,, — 0o, hence |B (zn, Ro) N {x eR3: VTt < b}| — 0. By the Hoélder inequality, we have

(un — up)* dz — 0.

B(xy,Ro)N{V+<b}

Consequently,
||un||in > A\b / uldz = A\,b / (un — ug)* da
B($7L7RO)O{V+ZI7} B(In7Ro)ﬂ{V+Zb}
= \.b / (unp —u0)2 dz — / (up —u0)2 dz + o(1)
Boo Ro) B(2n,Ro)N{V+<b}
— 00,

which contradicts (27). Therefore, u,, — ug in L" (R?) for 2 < r < 6. Thus, by the conditions (D1), (D2)
and u,, — ug in L" (R?’) , we have

/f (z,upn) upde — /f (2, up) upde. (28)
R3 R3

Now, choose € € (0,0 — |[p™|.,) as in the proof of Lemma 2.4 and use the conditions (D1) and (D2) to
get

/f(x,u)udx < /[(|p+‘oo+e) u? + C, |u|"]dz. (29)

RN

Since <J§\m# (un) ,un> =0, by (8), (29) and the fact that u, # 0, for n large we have

(IpTl +€) max{ET7 HVT < b}|5}

||un||2 < ”unnin < —5 Hun||2
S
32 2 %
(max{T,HV"' < b}\3})
+C. = [l "
Pl +e C. ;
= — - 3 lun | + I - T [l
min 0STHVE <SOSR S (i {05 v <o)
Ipt| +e C. ,
=6 [unll® + === lunll”
0 2 @04
which implies that
731”2—6 6—r n 1/(r=2)
S O,* (Bg — —
] > 0" (G0 = [pTlee —©) > 0. (30)

COg
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Moreover,

/f(x,un)undx = /|Vun|2 dx—i—/V)\”uidx —i—u/K(bK’unuidx
3 R3 R3

R3

po — 1 2 po — 1 2
> lunlly, = o l[unll™ (31)
By (28)—(31), we have
50T @0
Ho — 1 S @04 90 —|P — €
x,ug) updr > & > 0,
R[ f (oyt0) e > 0 ——

this shows that ug # 0. Finally, we show that u,, — ug in X. Since <J§\m# (tn) ,un> = <J§\m# (un) ,u0> =
0, we have

Hun||§\n —/Vfuidx—i-u/K(z)d)K’unuidx = /f(:c,un)undx, (32)
R3 R3 R3
and
(Un,uo)y, —/Vfunuoda:+u/K(x)¢K,ununuodx = /f(x,un)uodx. (33)
R3 R3 R3
It is easy to verify that
/V_ (uz — upug) dz — 0 (34)
R3
and
/ (K(a:)qbK,u"ui — K(x)gﬁK,u"unuo) dz — 0. (35)

R3
Indeed, for (34), similar to the proof of (17), we have

/V_ (ufl — unuo) dz| = / V= up (uy, —up) de
3

upp V—
1/2

|V7|OO / [ — uo|® da [ty

supp V' —

IN

— 0,
since u, — ug in L}, (R?) and {u,} is bounded in L? (R?) . For (35), if K () € L°°(R?), then the Holder
inequality and u, — ug in L3(R?) imply that

/ (K(m)(bK,un EL - K(aj)QsK,u"unuO) dx S |K‘oo|¢un
R3

If K(z) € L?(R3), similar to the proof of (2.11) in [32], then (35) holds. Moreover, by (32)-(35), we have

6ltunl2|tun — ugl3 — 0.

lim ||un||§\“ = lim (up,uo)y, = lim (un,ug) = l|uol|?.
n—oo n—oo n—oo
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On the other hand, weakly lower semi-continuity of norm yields that

luo|* < lim inf [|uy, || < limsup uy [|* < lim un]f3, -
n—oo

This shows that u,, — ug in X. This completes the proof.

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

22.

23.
24.

25.

26.

. Alves, C.O., Carriao, P.C., Medeiros, E.S.: Multiplicity of solutions for a class of quasilinear problem in exterior domains

with Neumann conditions. Abstr. Appl. Anal. 3, 251-268 (2004)

. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrédinger—Poisson problem. Commun. Contemp.

Math. 10(3), 39-404 (2008)

. Azzollini, A.: Concentration and compactness in nonlinear Schrodinger—Poisson system with a general nonlinearity. J.

Differ. Equ. 249, 1746-1763 (2010)

. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrédinger-Maxwell equations. J. Math. Anal.

Appl. 345, 90-108 (2008)

. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrédinger equations with steep potential well. Commun. Contemp.

Math. 3, 549-569 (2001)

. Bartsch, T., Tang, Z.: Multibump solutions of nonlinear Schrodinger equations with steep potential well and indefinite

potential. Discrete Contin. Dyn. Syst. 33, 7-26 (2013)

. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for superlinear elliptic problems on RY. Commun. Partial

Differ. Equ. 20, 1725-1741 (1995)

. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrodinger—Maxwell equations. Topol. Methods Nonlinear

Anal. 11, 283-293 (1998)

. Brezis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence functionals. Proc. Am.

Math. Soc. 8, 486-490 (1983)

Chen, C.Y., Kuo, Y.C., Wu, T.F.: Existence and multiplicity of positive solutions for the nonlinear Schrodinger—Poisson
equations. Proc. R. Soc. Edinb. Sect. A 143, 745-764 (2013)

Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrédinger—Poisson systems. J. Differ. Equ. 248, 521—
543 (2010)

D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein—-Gordon—Maxwell and Schrédinger-Maxwell equations. Proc.
R. Soc. Edinb. Sect. 134A, 893-906 (2004)

Ding, Y.H., Szulkin, A.: Bound states for semilinear Schrodinger equations with sign-changing potential. Calc. Var.
Partial Differ. Equ. 29, 397-419 (2007)

Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)

Figueiredo, D.G.de : Positive Solutions of Semilinear Elliptic Problems, Lecture in Math. vol.
957. Springer, Berlin (1982)

Tanni, I.: Sign-changing radial solutions for the Schrédinger—Poisson—Slater problem. Topol. Methods Nonlinear
Anal. 41, 365-385 (2013)

Tanni, I., Ruiz, D.: Ground and bound states for a static Schrédinger—Poisson—Slater problem. Commun. Contemp.
Math. 14, 1250003 (2012)

Tanni, I., Vaira, G.: On concentration of positive bound states for the Schréodinger—Poisson problem with potentials. Adv.
Nonlinear Stud. 8, 573-595 (2008)

Jiang, Y., Zhou, H.: Schrédinger—Poisson system with steep potential well. J. Differ. Equ. 251, 582-608 (2011)
Kikuchi, H.: Existence and stability of standing waves for Schroédinger—Poisson—Slatere equation. Adv. Nonlinear
Stud. 7, 403-437 (2007)

Kikuchi, H.: On the existence of solutions for elliptic system related to the Maxwell-Schrodinger equations. Nonlinear
Anal. 67, 1445-1456 (2007)

Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann.
Inst. H. Poincare Anal. NonLineaire 1, 109-145 (1984)

Ruiz, D.: The Schrodinger—Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655-674 (2006)
Ruiz, D.: On the Schrédinger—Poisson—Slater System: behavior of minimizers, radial and nonradial cases. Arch. Ratl.
Mech. Anal. 198, 349-368 (2010)

Sato, Y., Tanaka, K.: Sign-changing multi-bump solutions for nonlinear Schrédinger equations with steep potential
wells. Trans. Am. Math. Soc. 361, 6205-6253 (2009)

Sun, J.: Infinitely many solutions for a class of sublinear Schrédinger—-Maxwell equations. J. Math. Anal. Appl. 390, 514—
522 (2012)



Vol. 66 (2015) On the nonlinear Schrédinger—Poisson systems 1669

27.

28.

29.

30.

31.

32.

33.

Sun, J., Chen, H., Nieto, J.J.: On ground state solutions for some non-autonomous Schrodinger—Poisson systems. J.
Differ. Equ. 252, 3365-3380 (2012)

Sun, J., Wu, T.F.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ.
Equ. 256, 1771-1792 (2014)

Ye, Y., Tang, C.: Existence and multiplicity of solutions for Schrodinger—Poisson equations with sign-changing potential.
Calc. Var. Partial Differ. Equ. doi:10.1007/s00526-014-0753-6

Wang, Z., Zhou, H.: Positive solution for a nonlinear stationary Schrodinger—Poisson system in R3. Discrete Contin.
Dyn. Syst. 18, 809-816 (2007)

Wang, Z., Zhou, H.: Positive solutions for nonlinear Schrodinger equations with deepening potential well. J. Eur. Math.
Soc. 11, 545-573 (2009)

Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrodinger-Poisson equations with steep
well potential. J. Differ. Equ. 255, 1-23 (2013)

Zhao, L., Zhao, F.: On the existence of solutions for the Schrodinger—Poisson equations. J. Math. Anal. Appl. 346, 155—
169 (2008)

Juntao Sun

School of Science

Shandong University of Technology
Zibo 255049

People’s Republic of China

e-mail: sunjuntao2008@163.com

Tsung-fang Wu

Department of Applied Mathematics
National University of Kaohsiung
Kaohsiung 811, Taiwan

e-mail: tfwu@nuk.edu.tw

(Received: March 4, 2014; revised: October 13, 2014)


http://dx.doi.org/10.1007/s00526-014-0753-6

	On the nonlinear Schrödinger--Poisson systems with sign-changing potential
	Abstract
	1. Introduction
	2. Variational setting and preliminaries
	3. Proof of Theorem 1.1
	4. Proof of Theorem 1.2
	5. Concentration for nontrivial solutions
	References




