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Abstract. We study the effect of surface elasticity on an arc-shaped crack in a linearly elastic isotropic homogeneous material
under antiplane shear deformation. The surface mechanics is incorporated by using a continuum-based surface/interface
model of Gurtin and Murdoch. We obtain a complete solution by reducing the problem to two decoupled first-order Cauchy-
type singular integro-differential equations. It is shown that different from the case of a straight crack, the stresses exhibit
both the weak logarithmic and the strong square root singularities at the tips of the arc crack.
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1. Introduction

When the ratio of surface/interface area to volume becomes appreciable at the nanoscales, surface elastic-
ity should be incorporated in the deformation analysis of nano-structured materials. One of the most suc-
cessful theories of surface/interface elasticity is the Gurtin–Murdoch surface model proposed by Gurtin,
Murdoch and co-workers [3–5]. The Gurtin–Murdoch model is equivalent to the assumption of a surface
as a thin and stiff membrane perfectly bonded to the bulk material [2,13,16]. Among other applications,
the Gurtin–Murdoch model has been incorporated into the analysis of crack problems [1,7–11]. It was
conjectured very recently that the use of Gurtin–Murdoch model can suppress the traditional strong
square root singularity to a weak logarithmic one [6,17]. In fact, the existence of the logarithmic sin-
gularity can be confirmed from the asymptotic behaviors of ψ(ξ) near the crack tips obtained by [1]. A
numerical justification of the logarithmic singularity can be found in [12].

So far, the Gurtin–Murdoch theory has only been used in the analysis of straight cracks. We notice
that the curvature-dependent surface tension has been incorporated in the modeling of curvilinear plane
strain cracks by using Muskhelishvili’s complex variable method [18,19]. This work endeavors to study
the contribution of the Gurtin–Murdoch surface elasticity to the antiplane deformation of an isotropic
plane containing a mode III arc-shaped crack. The existence of nonzero curvature of the arc crack with
surface effects will make the problem rather difficult to handle. In order to overcome this difficulty, we
introduce a linear fractional transformation which conformally maps the arc crack onto a straight slit.
The boundary value problem in the mapped plane can be formulated by considering a distribution of line
dislocations and line forces on the straight slit. The problem is finally reduced to two decoupled first-
order Cauchy singular integro-differential equations which can be numerically solved by using Chebyshev
polynomials and a modified collocation method. Our analysis indicates that the stresses exhibit both
the weak logarithmic and the strong square root singularities at the tips of the arc crack, which is
quite different from the case of a mode III straight crack in which only the weak logarithmic singularity
is present [6–8,17]. The existence of the additional square root singularity can be deduced from the
asymptotic analysis for an interface crack under antiplane shear [15]. In this case, ρ = 1/2 is also a
solution to Eq. (28) in [15] and will lead to the square root singularity.
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2. Bulk and surface elasticity

2.1. The bulk elasticity

In a fixed rectangular coordinate system xi (i = 1, 2, 3), let ui, σij and εij be, respectively, the displace-
ment, stress and strain in an isotropic elastic bulk material. The equilibrium equations and stress–strain
law are

σij,j = 0, σij = 2μεij + λεkkδij , εij =
1
2
(ui,j + uj,i), (1)

where λ and μ are Lame constants, δij is the Kronecker delta.
For the antiplane shear deformation of an isotropic elastic material, the two shear stress components

σ31 and σ32, the out-of-plane displacement w = u3(x1, x2) and the stress function φ can be expressed in
terms of a single analytic function g(z) of the complex variable z = x1 + ix2 as

σ32 + iσ31 = μg
′
(z), μ−1φ + iw = g(z). (2)

In addition, the stress components can be expressed in terms of the stress function φ as

σ31 = −φ,2, σ32 = φ,1. (3)

Let t and n be the tangential and normal directions of a curve Γ . Then, the stress components in the
orthogonal coordinates formed by t and n are

σ3t = −∂φ

∂n
= μ

∂w

∂t
, σ3n =

∂φ

∂t
. (4)

2.2. The surface elasticity

The equilibrium conditions on the surface incorporating interface/surface elasticity can be expressed as
[3,5,14]

[σαjnjeα] + σs
αβ,βeα = 0, (tangential direction)

[σijninj ] = σs
αβκαβ , (normal direction) (5)

where α, β = 1, 2; ni is the unit normal vector to the surface, [∗] denotes the jump of the quantities across
the surface, σs

αβ is the surface stress tensor, and καβ is the curvature tensor of the surface. In addition,
the constitutive equations on the isotropic surface are given by

σs
αβ = σ0δαβ + 2(μs − σ0)εs

αβ + (λs + σ0)εs
γγδαβ + σ0∇su, (6)

where εs
αβ is the surface strain tensor, σ0 is the surface tension, λs and μs are the two surface Lame

parameters, and ∇s is the surface gradient.

3. A mode III arc-shaped crack with surface elasticity

Consider the antiplane shear deformation of a linearly elastic solid containing a mode III arc-shaped crack.
The two crack tips are located at z = ±a, and the midpoint of the arc crack is located at z = ih, (h > 0),
as shown in Fig. 1. The crack faces are traction free, and the solid is subjected to remote uniform antiplane
shear stresses σ∞

31 and σ∞
32 .

It follows from Eq. (5) that the boundary conditions on the crack faces can be written as

σs
3t,t + (σ3n)+ − (σ3n)− = 0, on the upper crack face, (7a)

σs
3t,t + (σ3n)+ − (σ3n)− = 0, on the lower crack face, (7b)
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Fig. 1. Mode III arc-shaped crack with its two tips located at z = ±a and its midpoint at z = ih.

where the subscripts t and n denote the tangential and normal directions of the arc crack as shown in
Fig. 1, (σ3n)− in Eq. (7a) and (σ3n)+ in Eq. (7b) are zero. By making use of Eq. (6) and assuming a
coherent interface (εs

αβ = εαβ), we can further express Eqs. (7a, 7b) into

(σ3n)+ = − (μs − σ0) u+
3,tt, on the upper crack face, (8)

(σ3n)− = (μs − σ0) u−
3,tt, on the lower crack face, (9)

which are equivalent to

(σ3n)+ + (σ3n)− = − (μs − σ0)
(
u+

3,tt − u−
3,tt

)
,

(σ3n)+ − (σ3n)− = − (μs − σ0)
(
u+

3,tt + u−
3,tt

)
. (10)

In order to solve the boundary value problem, we first introduce the following linear fractional mapping
function

z = ω(ξ) =
a(aξ + ih)
ihξ + a

, ξ = ω−1(z) =
a(h + iz)
hz + ia2

, (11)

which conformally maps the arc-shaped crack in the physical z-plane onto a straight slit in the ξ-plane.
More specifically, the two crack tips z = ±a are mapped onto the two tips ξ = ±1 of the slit, the midpoint
of the arc crack z = ih is mapped to ξ = 0, and z = ∞ is mapped to ξ = ia/h. It is more convenient to
discuss the problem in the ξ-plane because the slit just lies on the real axis in the ξ-plane. In the following
analysis, let g(ξ) = g(ω(ξ)) = g(z).

We can formulate the boundary value problem in the ξ-plane by considering a distribution of line
dislocations with density a · b(ξ) and line forces with density a · f(ξ) on the straight slit −1 ≤ Re {ξ} ≤
1, Im {ξ} = 0. Consequently, the analytic function g(ξ) can be written into the following form

g(ξ) =
a

2π

1∫

−1

[
b(η) − iμ−1f(η)

]
ln
(

ξ − η

ihξ + a

)
dη +

σ∞
32 + iσ∞

31

μ
ω(ξ). (12)

By using the following auxiliary conditions which will be proved later,
1∫

−1

b(η)dη = 0,

1∫

−1

f(η)dη = 0, (13)

Equation (12) simplifies to

g(ξ) =
a

2π

1∫

−1

[
b(η) − iμ−1f(η)

]
ln(ξ − η)dη +

σ∞
32 + iσ∞

31

μ
ω(ξ). (14)
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It is deduced from the above expression that

g
′
+(ξ) = −a

[
ib(ξ) + μ−1f(ξ)

]

2
+

a

2π

1∫

−1

b(η) − iμ−1f(η)
ξ − η

dη +
σ∞

32 + iσ∞
31

μ

a(a2 + h2)
(ihξ + a)2

, (15)

g
′
−(ξ) =

a
[
ib(ξ) + μ−1f(ξ)

]

2
+

a

2π

1∫

−1

b(η) − iμ−1f(η)
ξ − η

dη +
σ∞

32 + iσ∞
31

μ

a(a2 + h2)
(ihξ + a)2

, (16)

where the subscript “+” means the limiting value by approaching the slit from the upper half plane, the
subscript “−” means the limiting value by approaching the slit from the lower half plane.

By imposing the boundary conditions in Eq. (10) and making use of Eq. (4), we obtain the following
hyper-singular integro-differential equations

− 1
π

1∫

−1

b̂(η)
η − ξ

dη + 2(1 + ĥ2)Re

{
eiψ

(iĥξ + 1)2

}

=
Se

1 + ĥ2

[
2ĥ2ξb̂(ξ) + (1 + ĥ2ξ2)b̂′(ξ)

]
,

−1 < ξ < 1, (17)

1 + ĥ2ξ2

π(1 + ĥ2)

1∫

−1

f̂(η)
(ξ − η)2

dη − 2ĥ2ξ

π(1 + ĥ2)

1∫

−1

f̂(η)
ξ − η

dη − 1
Se

f̂(ξ) = 4ĥRe

{
eiψ

(iĥξ + 1)2

}

,

−1 < ξ < 1, (18)

where

Se =
μs − σ0

aμ
,

ĥ =
h

a
, b̂(ξ) =

μb(ξ)
T

, f̂(ξ) =
f(ξ)
T

,

σ∞
32 + iσ∞

31 = Teiψ, (19)

with T and ψ the magnitude and phase angle of σ∞
32 + iσ∞

31 .
More precisely, Eq. (17) is a Cauchy singular integro-differential equation, whereas Eq. (18) is a

hyper-singular integral equation.
Equation (17) is equivalent to

1∫

−1

I(η)
η − ξ

dη = − πSe

1 + ĥ2
(1 + ĥ2ξ2)I

′
(ξ) − 2π(1 + ĥ2)ξRe

{
eiψ

iĥξ + 1

}
− πk, −1 < ξ < 1, (20)

where k is an unknown real constant to be determined, and

I(ξ) = −
ξ∫

−1

b̂(η)dη. (21)

Equation (18) is equivalent to

1 + ĥ2ξ2

π(1 + ĥ2)

1∫

−1

f̂(η)
η − ξ

dη − 1
Se

ξ∫

−1

f̂(η)dη = 4ĥξRe
{

eiψ

iĥξ + 1

}
− 2 sin ψ, −1 < ξ < 1. (22)
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It is simply deduced that

Δw = w+ − w− = −a

ξ∫

−1

b(η)dη =
aT

μ
I(ξ), σ+

3n − σ−
3n = − af(ξ)

|ω′(ξ)| , −1 < ξ < 1. (23)

Thus, the single valuedness of the displacement and balance of force for a contour surrounding the crack
surface will lead to the conditions in Eq. (13).

The original boundary value problem has now been reduced to two decoupled first-order Cauchy
singular integro-differential equations in Eqs. (20) and (22) with the following auxiliary conditions

I(−1) = I(1) = 0, (24)
1∫

−1

f̂(η)dη = 0. (25)

4. Solution to the singular integro-differential equations

By using the inverse operator T−1 defined below to Eq. (20),

T−1ψ(ξ) =
1

π
√

1 − ξ2

1∫

−1

ψ(η)dη − 1

π2
√

1 − ξ2

1∫

−1

√
1 − η2ψ(η)

η − ξ
dη, −1 < ξ < 1, (26)

we obtain

√
1 − ξ2I(ξ) =

1
π

1∫

−1

I(η)dη +
1
π

1∫

−1

√
1 − η2

[
Se

1+ĥ2 (1 + ĥ2η2)I
′
(η) + 2(1 + ĥ2)ηRe

{
eiψ

iĥη+1

}
+ k
]

η − ξ
dη,

−1 < ξ < 1, (27)

The two unknown functions I(ξ) and f̂(ξ) are approximated as

I(ξ) =
N∑

m=0

cmTm(ξ), (28)

f̂(ξ) =
1

√
1 − ξ2

N∑

m=0

dmTm(ξ), (29)

where Tm(ξ) represents the mth Chebyshev polynomial of the first kind. It is observed that I(ξ) is finite
at ξ = ±1, whereas f̂(ξ) exhibits square root singularity at ξ = ±1.

Substituting Eq. (28) into Eq. (27) and utilizing the following identities

dTm(ξ)
dξ

= mUm−1(ξ), (30)

4ξ2Um(ξ) =

⎧
⎨

⎩

Um+2(ξ) + Um(ξ), m = 0
Um+2(ξ) + 2Um(ξ), m = 1
Um+2(ξ) + 2Um(ξ) + Um−2(ξ), m > 1

(31)

1∫

−1

Tm(η)dη =
{

1+(−1)m

1−m2 , m �= 1,

0, m = 1,
(32)
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1∫

−1

Um(η)
√

1 − η2

η − ξ
dη = −πTm+1(ξ), (33)

1∫

−1

η
√

1 − η2

(η − ξ)(iĥη + 1)
dη =

1

1 + iĥξ

⎛

⎝ξ

1∫

−1

√
1 − η2

η − ξ
dη +

1∫

−1

√
1 − η2

iĥη + 1
dη

⎞

⎠

=
π

1 + iĥξ

(

−ξ2 +

√
1 + ĥ2 − 1

ĥ2

)

, (34)

with Um(x) being the mth Chebyshev polynomial of the second kind, we can finally arrive at

N∑

m=0

cmTm(ξ)
(√

1 − ξ2 +
Sem

1 + ĥ2

)

+
Seĥ

2

4(1 + ĥ2)

{

c1 [T1(η) + T3(η)] + 2c2 [2T2(η) + T4(η)] +
N∑

m=3

mcm [Tm+2(η) + 2Tm(η) + Tm−2(η)]

}

−
N∑

m=0,m �=1

1 + (−1)m

π(1 − m2)
cm + kξ = 2(1 + ĥ2)

(

−ξ2 +

√
1 + ĥ2 − 1

ĥ2

)

Re
{

eiψ

1 + iĥξ

}
. (35)

Substituting Eq. (29) into Eq. (22), utilizing the following identities

1∫

−1

Tm(η)

(η − ξ)
√

1 − η2
dη = πUm−1(ξ), (36)

and performing the incomplete integrals, we arrive at

1
Se

d0(cos−1 ξ − π) +
N∑

m=1

dm

[
(1 + ĥ2ξ2)Um−1(ξ)

1 + ĥ2
+

1
Sem

sin(m cos−1 ξ)

]

= 4ĥξRe
{

eiψ

iĥξ + 1

}
− 2 sin ψ.

(37)
If we select the collocation points given by ξ = − cos

(
iπ
N

)
for i = 1, 2, . . . , N , Eqs. (35), (24), (37) and

(25) reduce to the following sets of linear algebraic equations

N∑

m=0

(−1)mcm cos
(

miπ

N

)
⎡

⎣

√

1 −
(

cos
(

iπ

N

))2

+
Sem

1 + ĥ2

⎤

⎦

+
Seĥ

2

4(1 + ĥ2)

⎧
⎪⎪⎨

⎪⎪⎩

−c1

[
cos
(

iπ
N

)
+ cos

(
3iπ
N

)]
+ 2c2

[
2 cos

(
2iπ
N

)
+ cos

(
4iπ
N

)]

+
N∑

m=3
(−1)mmcm

[
cos
(

i(m+2)π
N

)
+ 2 cos

(
miπ
N

)
+ cos

(
i(m−2)π

N

)]

⎫
⎪⎪⎬

⎪⎪⎭

−
N∑

m=0,m �=1

1 + (−1)m

π(1 − m2)
cm − k cos

(
iπ

N

)

= 2(1 + ĥ2)

[

−
(

cos
(

iπ

N

))2

+

√
1 + ĥ2 − 1

ĥ2

]
cos ψ − ĥ cos

(
iπ
N

)
sin ψ

1 + ĥ2
(
cos
(

iπ
N

))2 , i = 1, 2, . . . , N,

N∑

m=0

cm = 0,
N∑

m=0

(−1)mcm = 0, (38)
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− d0

Se

iπ

N
+

N∑

m=1

(−1)m−1 sin
(

miπ

N

)[
1 + ĥ2

(
cos
(

iπ
N

))2

1 + ĥ2

1
sin
(

iπ
N

) +
1

Sem

]

dm

= −4ĥ cos
(

iπ

N

)
cos ψ − ĥ cos

(
iπ
N

)
sin ψ

1 + ĥ2
(
cos
(

iπ
N

))2 − 2 sin ψ, i = 1, 2, . . . , N − 1,

− d0

Se
π +

N∑

m=1

mdm = 4ĥ
cos ψ + ĥ sin ψ

1 + ĥ2
− 2 sin ψ,

d0 = 0. (39)

The (N + 2) unknowns cm, (m = 0, 1, 2, . . . , N) and k can be uniquely determined by solving Eq.
(38) which contains (N +2) independent equations, the other (N +1) unknowns dm, (m = 0, 1, 2, . . . , N)
can be uniquely determined by solving Eq. (39) which contains (N + 1) independent equations.

5. The stress field

By substituting the following expression of g
′
(ξ)

ω′ (ξ)
into Eq. (2)

g
′
(ξ)

ω′(ξ)
=

T (iĥξ + 1)2

2πμ(1 + ĥ2)

1∫

−1

−I
′
(η) − if̂(η)
ξ − η

dη +
σ∞

32 + iσ∞
31

μ
, (40)

we arrive at the full-field stress field as

σ32 + iσ31 =
T (iĥξ + 1)2

2π(1 + ĥ2)

1∫

−1

−I
′
(η) − if̂(η)
ξ − η

dη + σ∞
32 + iσ∞

31 . (41)

σ3n and σ3t are distributed along the circle
∣
∣
∣z + a2−h2

2h i
∣
∣
∣ = a2+h2

2h where the arc crack is located as
follows:

σ3n =
T (1 + ĥ2ξ2)

2π(1 + ĥ2)

1∫

−1

I
′
(η)

η − ξ
dη +

(1 − ĥ2ξ2)σ∞
32 + 2ĥξσ∞

31

1 + ĥ2ξ2
, ξ < −1or ξ > 1,

σ3t =
T (1 + ĥ2ξ2)

2π(1 + ĥ2)

1∫

−1

f̂(η)
η − ξ

dη +
(1 − ĥ2ξ2)σ∞

31 − 2ĥξσ∞
32

1 + ĥ2ξ2
, ξ < −1 or ξ > 1, (42)

(σ3n)+ = −TSe(1+ĥ2ξ2)

2(1+ĥ2)2

[
2ĥ2ξI

′
(ξ) + (1 + ĥ2ξ2)I

′′
(ξ)
]

− T (1+ĥ2ξ2)

2(1+ĥ2)
f̂(ξ),

(σ3n)− = −TSe(1+ĥ2ξ2)

2(1+ĥ2)2

[
2ĥ2ξI

′
(ξ) + (1 + ĥ2ξ2)I

′′
(ξ)
]

+ T (1+ĥ2ξ2)

2(1+ĥ2)
f̂(ξ),

− 1 < ξ < 1, (43)

(σ3t)+ = T
2Se

ξ∫

−1

f̂(η)dη + T (1+ĥ2ξ2)

2(1+ĥ2)
I

′
(ξ),

(σ3t)− = T
2Se

ξ∫

−1

f̂(η)dη − T (1+ĥ2ξ2)

2(1+ĥ2)
I

′
(ξ),

− 1 < ξ < 1. (44)

Because g
′
(ξ)

ω′ (ξ)
exhibits the following singular behaviors at ξ = ±1



1994 X. Wang ZAMP

g
′
(ξ)

ω′(ξ)
=

T

2πμ

1 + iĥ

1 − iĥ

(
N∑

m=0

m2cm

)

ln(ξ − 1) − iT
2
√

2μ

1 + iĥ

1 − iĥ

(
N∑

m=0

dm

)
1√

ξ − 1
+ O(1), as ξ → 1,

g
′
(ξ)

ω′(ξ)
=

T

2πμ

1 − iĥ

1 + iĥ

(
N∑

m=0

(−1)mm2cm

)

ln(ξ + 1)

− T

2
√

2μ

1 − iĥ

1 + iĥ

(
N∑

m=0

(−1)mdm

)
1√

ξ + 1
+ O(1), as ξ → −1, (45)

the stress components σ31 and σ32 exhibit both the weak logarithmic and the strong square root singu-
larities at the two crack tips z = ±a, which is quite different from the case of a mode III straight crack
in which only the weak logarithmic singularity is present [6–8,17].

It is further deduced from Eqs. (42), (28) and (29) that the two stress components σ3n and σ3t are
singularly distributed near the two crack tips as

σ3n = T
2π

(
N∑

m=0
m2cm

)
ln(ξ − 1) + O(1), as ξ − 1 → 0+,

σ3t = − T
2
√

2

(
N∑

m=0
dm

)
1√
ξ−1

+ O(1), as ξ − 1 → 0+,

(σ3n)+ = −(σ3n)− = − T
2
√

2

(
N∑

m=0
dm

)
1√
1−ξ

+ O(1), as ξ − 1 → 0−,

(σ3t)+ = O(1), (σ3t)− = O(1), as ξ − 1 → 0−,

σ3n = T
2π

(
N∑

m=0
(−1)mm2cm

)
ln |ξ + 1| + O(1), as ξ + 1 → 0−,

σ3t = T
2
√

2

(
N∑

m=0
(−1)mdm

)
1√

|ξ+1| + O(1), as ξ + 1 → 0−,

(σ3n)+ = −(σ3n)− = − T
2
√

2

(
N∑

m=0
(−1)mdm

)
1√
1+ξ

+ O(1), as ξ + 1 → 0+,

(σ3t)+ = O(1), (σ3t)− = O(1), as ξ + 1 → 0+.

(46)

It is observed from the above expression that σ3n outside the crack only exhibits the weak logarithmic
singularity, σ3n on the crack faces only exhibits the strong square root singularity; whereas σ3t outside
the crack only exhibits the strong square root singularity, σ3t is bounded everywhere on the crack faces.

6. Numerical results and discussion

It is observed from the analysis in Sect. 5 that the complete stress field can be obtained once the two
functions I(ξ) and f̂(ξ) are determined. In this section, we first present the closed-form expressions of
I(ξ) and f̂(ξ) for the two extreme cases Se = 0 and Se → ∞. Then, we illustrate our numerical results of
I(ξ) and f̂(ξ) obtained by solving Eqs. (38) and (39) and compare the numerical results with the exact
solutions for Se = 0 and Se → ∞.

6.1. The classical solutions

When Se = 0, the following exact solution can be derived

g(ξ) =
1
2

aT

μ

1 + ĥ2

ĥ2

⎡

⎣ eiψ

ξ − i
ĥ

− e−iψ

ξ + i
ĥ

+
eiψ
√

ξ2 − 1

i
√

1
ĥ2 + 1

(
ξ − i

ĥ

) − e−iψ√ξ2 − 1

i
√

1
ĥ2 + 1

(
ξ + i

ĥ

)

⎤

⎦ . (47)
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It is simply derived from the above expression that

Δw =
2aT

μ

√
1 + ĥ2

√
1 − ξ2Im

{
eiψ

ĥξ − i

}
, Δφ = 0, −1 < ξ < 1. (48)

A comparison of Eq. (48) with Eq. (23) leads to the following closed-from expressions of I(ξ) and f̂(ξ)

I(ξ) = 2
√

1 + ĥ2
√

1 − ξ2Im
{

eiψ

ĥξ − i

}
, f̂(ξ) = 0, −1 < ξ < 1. (49)

On the other extreme end, when Se → ∞, the crack becomes a rigid line inclusion. In this case, the
following exact solution can be derived

g(ξ) =
1
2

aT

μ

1 + ĥ2

ĥ2

⎡

⎣ eiψ

ξ − i
ĥ

+
e−iψ

ξ + i
ĥ

+
eiψ
√

ξ2 − 1

i
√

1
ĥ2 + 1

(
ξ − i

ĥ

) +
e−iψ√ξ2 − 1

i
√

1
ĥ2 + 1

(
ξ + i

ĥ

)

⎤

⎦ . (50)

It is simply derived from the above expression that

Δw = 0, Δφ = 2aT

√
1 + ĥ2

√
1 − ξ2Re

{
eiψ

ĥξ − i

}
, −1 < ξ < 1. (51)

A comparison of Eq. (51) with Eq. (23) leads to the following closed-from expressions of I(ξ) and f̂(ξ)

I(ξ) = 0, f̂(ξ) =
2
√

1 + ĥ2

√
1 − ξ2

Re

{
eiψ(−iξ + ĥ)

(ĥξ − i)2

}

, −1 < ξ < 1. (52)

6.2. Numerical results

We illustrate in Figs. 2 and 3 the distributions of I(ξ) and f̂(ξ) for different values of ĥ with Se = 1 and
ψ=0 (or equivalently σ∞

31 = 0). It is observed that when ĥ = 0, I(ξ) is just the result for a straight crack,
and meanwhile, f̂(ξ) ≡ 0. Both I(ξ) and f̂(ξ) are even functions of ξ when ψ = 0. The parameter ĥ exerts
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a significant influence on both I(ξ) and f̂(ξ). Because ∂Δw
∂t = 1

|ω′ (ξ)|
∂Δw
∂ξ = aT

μ
I

′
(ξ)

|ω′ (ξ)| and
∣
∣
∣ω

′
(±1)

∣
∣
∣ = a,

we have at the two crack tips that ∂Δw
∂t = T

μ I
′
(±1). This result implies that the crack-tip opening angle

can be simply determined by I
′
(±1). Consequently, it is observed from Fig. 2 that the crack-tip opening

angles for different values of ĥ with Se being fixed are very close and are less than π/2. As observed in
Fig. 3, f̂(ξ) is nonzero for an arc-shaped crack with ĥ �= 0. This fact implies that both line dislocation
and line force solutions are needed to simulate an arc crack with surface elasticity. Illustrated in Figs. 4
and 5 are distributions of I(ξ) and f̂(ξ) for different values of ĥ with Se = 1 and ψ = π/2 (or equivalently
σ∞

32 = 0). It is observed from the two figures that (i) I(ξ) and f̂(ξ) are odd functions of ξ; (ii) I(ξ) ≡ 0,
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whereas f̂(ξ) �= 0 when ĥ = 0; (iii) the crack-tip opening angle is an increasing function of ĥ and is less
than π/2; and (iv) the geometric parameter ĥ exerts a significant influence on the distribution of both
I(ξ) and f̂(ξ). In particular, f̂(±1) = 0 when ĥ = 1.5906 as shown in Fig. 5. This fact implies that the
stresses only exhibit the weak logarithmic singularity at the two crack tips under the loading phase angle
of ψ = π/2 for some judicially chosen values of ĥ and Se.

Figures 6, 7, 8, 9 show the distributions of I(ξ) and f̂(ξ) for different values of Se with ĥ = 1 and
ψ = 0, π/2. It is observed that an increase in Se will suppress the magnitude of I(ξ), or equivalently
the crack opening displacement Δw (see Eq. (23)) and meanwhile enhance the magnitude of f̂(ξ). It is
observed from Figs. 6 and 8 that the crack-tip opening angle is a decreasing function of Se and that it
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is less than π/2 for Se = 0.1, 0.5, 1 and is almost π/2, which is the value for a crack without surface
elasticity, for Se = 0.001 ≈ 0. The distributions of I(ξ) for Se = 0.001 in Figs. 6 and 8 match quite well
the exact solution in Eq. (49) for Se = 0, whereas those of f̂(ξ) for Se = 1000 in Figs. 7 and 9 match
quite well the exact solution in Eq. (52) for Se → ∞.

7. Conclusions

In this work, the Gurtin–Murdoch model has been incorporated into the analysis of a mode III arc-shaped
crack. First, a linear fractional transformation (11) is introduced to map the arc crack onto a straight slit in
the ξ-plane. Second, the boundary value problem is formulated in the ξ-plane by considering a distribution
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of line dislocations and line forces on the straight slit and is finally reduced to two decoupled first-order
Cauchy singular integro-differential equations in Eqs. (20) and (22). The Chebyshev polynomials and
collocation method are then utilized to numerically solve Eqs. (20) and (22). The analysis indicates that
(i) the near-tip stresses exhibit both logarithmic and square root singularities; (ii) σ3n outside the arc
crack only exhibits the logarithmic singularity, σ3n on the crack surfaces only exhibits the square root
singularity; and (iii) σ3t outside the arc crack only exhibits square root singularity, whereas σ3t on the
crack surfaces are bounded. Numerical results are presented to illustrate the effects of the geometric
parameter ĥ, the size-dependent parameter Se and the loading phase angle ψ on the two functions I(ξ)
and f̂(ξ).
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