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Effective thermal conductivity of helium II: from Landau to Gorter–Mellink regimes
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Abstract. The size-dependent and flux-dependent effective thermal conductivity of narrow channels filled with He II is
analyzed. The classical Landau evaluation of the effective thermal conductivity of quiescent He II is extended to describe
the transition to fully turbulent regime, where the heat flux is proportional to the cubic root of the temperature gradient
(Gorter–Mellink regime). To do so, we use an expression for the quantum vortex line density L in terms of the heat flux
considering the influence of the walls. From it, and taking into account the friction force of normal component against
the vortices, we compute the effective thermal conductivity as a function of the heat flux, and we discuss in detail the
corresponding size dependence.
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1. Introduction

Heat transport in small systems or in systems with microscale parts is an active frontier in technology,
transport theory, non-equilibrium thermodynamics and statistical mechanics. One of the paradigmatic
situations is the analysis of heat transport along very thin and long wires or channels, whose radius is
comparable to the mean free path of the heat carriers—as for instance in silicon nanowires with phonons
as heat carriers. In this paper, we consider a narrow channel filled with He II and analyze its transport
properties—namely its effective thermal conductivity—in terms of the heat flux and the radius.

The high thermal conductivity of superfluid liquid helium (He II) makes it an excellent coolant mate-
rial, with an important number of applications as, for instance, the refrigeration of superconducting
magnets in particle accelerators or space cryogenics [1–3]. The interest on the transport properties of
He II in thin or very thin channels (for instance, diameter from 1 mm to 50µm) was in fact an advanced
forerunner of the later general interest in microfluidics [4–15]. Here, we study the effective thermal con-
ductivity of cylindrical microchannels filled with He II, a topic of interest in refrigeration of small systems,
in the behavior of porous systems, and in the research on the effects of the walls on the quantized vortex
lines typical of superfluid turbulence, which is a topic of fundamental interest.

In the simplest computation of the effective thermal conductivity of He II, the resistance to the flow
is assumed to be due to the viscosity of the normal component [16]. This leads to a heat flux which is
proportional to the temperature gradient (Landau regime). However, when the heat flux is high enough,
quantized vortices appear and form a vortex tangle which contributes to the overall resistance of the flow
[17–23]. This implies a drastic reduction in the effective thermal conductivity, and a strong departure with
respect to Fourier’s law, since the heat flux becomes proportional to the cubic root of the temperature
gradient (the so-called Gorter–Mellink regime). In the practice, this increase in thermal resistance may
have dramatic consequences if, because of the sudden loss of cooling ability, the helium temperature
crosses the lambda temperature (about 2.17 K), and the helium is no longer a superfluid but a normal
fluid. Thus, a detailed analysis from Landau regime to Gorter–Mellink regime is relevant on practical
grounds.
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Here, instead of fully developed turbulence, a well-known topic in helium cryogenics, we focus our
interest on the transition regime from laminar or Landau regime to turbulent or Gorter–Mellink regime.
This is a topic of practical and theoretical interest, since an exact mathematical description of it is not
given often, and the physical understanding is not yet sufficiently developed, even though an attempt
was given by Arp in Ref. [7]. For instance, one of the aspects that are not yet well known is the influence
of the walls on the quantized vortex tangle of turbulent superfluid, a topic which is especially relevant in
narrow channels. This is the aim of our paper.

In particular, we are interested in analyzing an expression for an effective thermal conductivity
Keff (T,R,L, Q̇) in terms of the radius R of the cylinder, the temperature T , the vortex line density
L, and the heat current Q̇. The first arguments on the thermal conductivity of He II raised in the half
of the previous century [24–31]. In 1956, Mendelsohn reviewed the main experimental peculiarities of
He II [31], and in particular the heat conductivity in channels for zero mass flow (he also dealt with
nonzero mass flow, but here we are interested on the former one). As pointed out by Mendelsohn, heat
conductivity does not follow the classical behavior, and it seemed to depend on the applied heat flux. It
was discovered later that this dependence and the strange behavior of He II is addressed to the presence
of vortex line density. But, at that time, the quantized vortex lines were unknown, and it was observed
that the ratio between the gradient of temperature and the heat current, ΔT/Q̇, was not longer constant
for an applied heat flux higher than a critical value, and that it was proportional to the second power of
the heat current Q̇. Mendelsohn [31] proposed a theoretical expression for ΔT/Q̇ which comes from the
formula of the mutual friction force when inserted in the London’s formula, which describes the laminar
and the full turbulent regimes, but it is not so accurate nor physically clear in the transition between
both regimes. These arguments were handled by many authors some years later. In particular, in 1970,
Arp studied the laminar case and he tried to establish the rules according to which the transition from
the laminar case to the turbulent cases occurs [7]. According to Arp, the first transition occurs when the
superfluid velocity is higher than vsc = (κ/d) ln(d/(2a)), namely the critical velocity for the appearance
of the first vortex, whereas the second transition occurs when the normal component becomes turbulent,
and for this reason, he related TII turbulence to the critical value of the classical Reynolds number.

The aim of the current paper is to analyze the relation between ΔT and Q̇ in terms of the vortex line
density L in the transition between laminar and fully turbulent regimes, which are established in terms
of the quantum Reynolds number [32]. The results will be obtained in terms of the one-fluid model (with
internal variables) of extended thermodynamics [33] as well as in the two-fluid model [16,18,19]. This topic
has been considered from the experimental point of view (see, for instance, [6,22,23]), but here we relate
it to a theoretical model on the variation between L and Q̇ in narrow channels, by means of a generalized
Vinen’s equation. In this way, we show the practical usefulness of a better theoretical understanding of
the behavior of quantized vortices in narrow channels and in the complex transition regions from laminar
to fully turbulent regime. We go further than some previous papers using a generalized Vinen’s equation
[22,23], because we are able to describe both the laminar-TI turbulent transition region, as the TI-TII
turbulent transition region and the TII fully developed region. However, in contrast to Ref [23], we do not
consider the metastable region between the laminar regime and the turbulent regime shown in the Tough’s
experiments [22,23], for which a more general equation for L has to be considered (see review [34]) and
which is more difficult to observe than the regimes considered here.

In Sect. 2, we deal with the laminar situation, and we compare it with Landau and Tisza [16,35]
two-fluid model for the evaluation of the effective thermal conductivity of He II in a cylindrical channel
and evaluate such conductivity in the presence of quantum turbulence, taking into account the vortex
resistance, which for fully developed turbulence corresponds to Gorter–Mellink regime. Section 3 is the
original part of this paper: Starting from an evolution equation for the vortex line density incorporating
the effects of the walls, we propose a mathematical description of the transition regime. Section 4 is
devoted to conclusions and remarks.
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2. Effective thermal conductivity of He II in cylindrical channels

In this section, we deal with the effective thermal conductivity of He II along a cylindrical duct. We
describe heat transport in terms of the one-fluid model of extended thermodynamics [33] as well as
the Landau-Tisza two-fluid model [16,35]. The basic results of this section are already known, but it is
convenient to recall them to make this paper sufficiently self-contained and understandable for a general
reader.

If He II is globally at rest, the motion of the normal component is compensated by an opposite flow
of the superfluid component, in such a way that the net velocity of the total system vanishes, i.e., there
is no net mass flow. This requires that at any time t, ρsv̄s + ρnv̄n = 0, where v̄s and v̄n are the average
velocities of the superfluid and normal component on the transversal section of the tube, and ρs and ρn

are the corresponding densities. This situation is called counterflow in literature on He II [18,21], and the
relevant quantity here is the so-called counterflow velocity vns, given by

vns = v̄n − v̄s =
ρ

ρs
v̄n. (2.1)

The second equality of the former equation directly follows from the mentioned condition of vanishing
mass flow, namely ρnv̄n + ρsv̄s = 0. Note for further use that the heat flow is given by q̄ = ρST v̄n =
ρsSTvns, with S the entropy per unit mass.

According to the one-fluid model with the heat flux q as internal variable [33,36], in stationary
situation, neglecting the nonlinear terms in the derivatives of the fields variables, the dynamical equations
are

∇ · v = 0, (2.2)
∇ · q = 0, (2.3)

∇p − η∇2v + βTη∇2q = 0, (2.4)
λ1∇T + βT 2ηλ1∇2v − β2T 3ηλ1∇2q = σq, (2.5)

where β is a coefficient which can be related to the moments of fluctuations, σq is the production term of
the heat flux, p is pressure, η is the shear viscosity, and λ1 can be interpreted as the heat conductivity.

The last two equations can be also written

∇p − η∇2(v − βTq) = 0, (2.6)

∇p +
1

βT 2
∇T =

1
βT 2λ1

σq, (2.7)

where the production term in absence of vortices can be chosen σq = −q [33], while a more general
assumption is required to take into account of the presence of vortices.

2.1. Laminar situation: Landau regime

In this subsection, we assume that σq = −q while a more general assumption which takes into account
of the presence of vortices will be the argument of the next subsection. Thus,

∇p − η∇2(v − βTq) = 0, (2.8)

∇T + βT 2∇p = − 1
λ1

q. (2.9)

Thermal conductivity λ1 is linked to the velocity of second sound w2 by the relation ζ = λ1/τ1 =
w2

2ρcV , where cV is the constant volume specific heat and τ1 the relaxation time of the heat flux [33]
(the expression of ζ in terms of the parameters of the two-fluid model is given below Eq. (2.15)). It is
experimentally observed that λ1 is very high so that the right-hand side of the second equation in (2.9)
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may be taken as zero. When (2.9) is applied to a cylindrical pipe filled with He II, it follows that the
(2.8) is integrable along the pipe with a constant applied ∇p. In what follows, we assume that both the
pressure gradient ∇p and temperature gradient ∇T do not depend on the spatial coordinate, and that q
and v depends only on the local radius r. Then we find

v(r) − βTq(r) =
ΔpR2

4lη

[
1 − r2

R2

]
, (2.10)

where R and l are the radius and the length of the pipe, and the heat flux and velocity along the
wall have been assumed to be zero (non-slip condition). Taking into account (2.9), with vanishing right-
hand side, namely Δp = −(βT 2)−1ΔT , Δp and ΔT , respectively, being the pressure difference and the
temperature difference between the longitudinal ends of the channels, the mean value of the heat flux
over the transversal section of the pipe obtained from (2.10) may be expressed in terms of ΔT as

v̄ − βT q̄ =
ΔpR2

8lη
= − ΔTR2

8lβT 2η
. (2.11)

According to the counterflow condition v̄ = 0, we obtain

q̄ = − ΔpR2

8lβTη
=

ΔTR2

8lβ2T 3η
. (2.12)

Therefore, since the total heat flux across the transversal area is Q̇ = πR2q̄, the effective heat conductivity
according to the Fourier’s law is

Keff =
Q̇

πR2

l

ΔT
=

R2

8β2T 3η
=

R2ρ2TS2

8η
. (2.13)

We have used β = −(ρST 2)−1 [33] to make evident that (2.13) is the well-known Landau formula for
thermal conductivity [1,16,36,37]. Note that (2.13) is not a true thermal conductivity, dependent only
on the material, but a global quantity, that depends quadratically on the radius R of the cylinder, and
therefore, it is strongly reduced for thin capillaries.

2.2. Turbulent situation: Gorter–Mellink regime

Let’s now take into account the presence of quantum vortices in He II, when the heat flux becomes higher
than a threshold value. The presence of the vortices is described by the vortex length density L, and their
main effect on the flow is an internal friction between the vortices and the normal fluid [17–21].

In the one-fluid model [33,36,38], the effects of the internal friction are described through a contri-
bution to the production term σq appearing in Eq. (2.7), which is taken now as σq = −q − τ1KLq,
where K = 1

3κBHV , BHV being the dimensionless Hall-Vinen friction coefficient, κ the quantum of
circulation h/m (with m the mass of helium atom and h the Planck’s constant in such a way that
κ = 9.97 × 10−8m2/s), and τ1 the relaxation time of the heat flux. Hence, Eqs. (2.8) and (2.9) become

∇p − η∇2(v − βTq) = 0, (2.14)

∇T + βT 2∇p = − 1
λ1

q − KL

ζ
q, (2.15)

where ζ = λ1/τ1 as said below Eq. (2.9), and which in the two-fluid theory is ζ = λ1/τ1 = ρTS2ρs

ρn
.

Assuming that λ1 is very high to neglect the first term in the right-hand side of (2.15), but comparable
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to the relaxation time τ1 in such a way that ζ is finite (it also determines the second sound velocity as
said below (2.9)), Eqs. (2.14) and (2.15) reduce to

∇p − η∇2(v − βTq) = 0, (2.16)

∇T + βT 2∇p +
KL

ζ
q = 0. (2.17)

The solution of (2.16) applied to He II in a cylindrical pipe is still (2.10), and the mean value is (2.12).
By integrating the second equation of (2.17) along the pipe, we find

ΔT + βT 2Δp =
KlL̄

ζ
q̄, (2.18)

where ∇T = −ΔT/l, ∇p = −Δp/l and L̄ is the mean value of the vortex line density. In Ref. [39] the
authors studied the stability of the normal component (which is proportional to the heat flux q) proving
that the Poiseuille flow is stable when the vortex line density L is assumed to be constant inside the
channel. We do not consider in detail any dependence of L on the distance r from the wall of the channel
but only the mean value. In what follows, L stands for L̄. Then, by using (2.16), in view of the previous
identification of β as β = −(ρST 2)−1, and writing Δp in terms of q̄ one obtains

ΔT =
8ηl

R2ρ2S2T
q̄ +

KlL

ζ
q̄. (2.19)

From here, it follows that the effective thermal conductivity is

Keff =
R2ζ

8β2T 3ηζ + KLR2
. (2.20)

Equation (2.19) may also be written in terms of Q̇ as

ΔT =
8ηl

πR4ρ2S2T
Q̇ +

KlL

πR2ζ
Q̇. (2.21)

The first term corresponds to Landau regime; if one takes L ∼ Q̇2, the second term corresponds to the
Gorter–Mellink regime. We want to study the transition from one to the other.

3. Transition from Landau to Gorter–Mellink regime

Our aim is to propose a mathematical description for the transition from Landau to Gorter–Mellink
regimes. Thus, instead of directly taking L ∝ Q̇2 in (2.21), which is typical of fully developed turbulence
in wide channels, we pay attention to a more detailed relation between L and Q̇ in narrow channels in
steady state situations.

In fact, the mentioned transition implies a narrow intermediate regime (TI turbulence) [18–21], with
a relatively low vortex line density and a transition to a more developed turbulence (TII turbulence).
According to experimental results [22], a relevant quantity in such transition is the quantum Reynolds
number vnsd/κ, with vns the counterflow velocity, d the diameter of the channel and κ the quantum
of circulation. Since κ has dimensions of (length)2/time it plays in vnsd/κ a role analogous to that of
kinematical viscosity ν in classical Reynolds number V d/ν, with V the velocity [32]. In Ref. [7], Arp
instead considers the classical Reynolds number ρvnd/η (ρ, η and vn being the density and viscosity of
He II and the velocity of the normal component, respectively, and d the diameter of the channel), because
he assumes that TII turbulence is caused by the turbulence of the normal component.

For instance, in wide channels, the transition from laminar regime to the first kind of turbulence (TI
turbulence) is at quantum Reynolds number Re1 = 127 at T = 1.5 K (for Q̇ = 5× 10−4 J/s the diameter
for which this transition will be detected is d = 1,330µm, and for Q̇ = 10 × 10−4 J/s, d = 2,650µm)
[32]. A further transition to TII turbulence is found at quantum Reynolds number Re2 = 226, which
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yields the values d = 740µm (for Q̇ = 5 × 10−4 J/s) and d = 1,490µm (for Q̇ = 10 × 10−4 J/s). At
T = 1.6 K, the respective values of the mentioned critical quantum Reynolds numbers are Re1 = 112 and
Re2 = 212, and at T = 1.7 K they are Re1 = 96 and Re2 = 187. Note the dependence of these values on
the temperature. All these complexities must be taken into account in order to describe the transition
from Landau to Gorter–Mellinck regime, as we do below.

3.1. Relation between vortex length density and heat flux q in narrow channels

In order to take into account the presence of the vortex lines, the model proposed in the previous sections
needs to be completed by adding an evolution equation for the vortex line density L. It usually refers to
the classical Vinen’s equation for the evolution of L [17–21]

dL

dt
= αvvnsL

3/2 − βvκL2, (3.1)

with αv and βv dimensionless coefficients which depend on T and which are related to vortex formation
and destruction, respectively. The steady-state result of (3.1) is

L1/2 =
αv

βvκ
vns =

αv

βvκρsTS
q̄, (3.2)

leading to L ∝ q2. This corresponds to fully developed turbulence. However, Eq. (3.1) and its stationary
solution do not take into account the presence of the wall, and the stationary solution does not describe
the transition from the TI turbulent regime to the TII turbulent regime obtained experimentally by
Martin and Tough [22]. For this reason, such a transition may be described by means of a generalized
Vinen’s equation including the wall effects, which, in the simplest version is [34,38]

dL

dt
= −βvκL2 +

[
α0vns − ω′βv

κ

d

]
L3/2, (3.3)

with d the diameter of the tube, and the coefficients α0 and ω are functions of vnsd/κ, the quantum
Reynolds number and of the temperature T . The third term takes into account the effect of having a thin
tube with diameter d finite, and therefore, it modelizes the influence of the wall. For narrow channels, this
term—absent from (3.1)—becomes especially relevant, whereas it becomes negligible for wide channels.
For the aims of the present paper, we are interested in the steady state of the differential equation (3.3),
as made in the previous section, which means to assume a constant value for the vortex line density L in
the channel. This has been observed experimentally and numerically, for example, in [22,40].

Equation (3.3) has the steady-state solutions

L = 0; L1/2 =
α0

βvκ
vns − ω′

d
. (3.4)

The nonzero solution exists and is stable for vns > Vc1 = βvκω′

α0d . From the experimental results reported
in [22], it is seen that the second kind of solution has two different regimes, namely a TI turbulence for
a quantum Reynolds number Re = vnsd/κ, between Re1 and Re2 , described by [22]

L1/2 =
γTI

κ
vns − 1.48

α1

d
, (3.5)

and TII turbulence flow for Re > Re2 described by [22]

L1/2 =
γTII

κ
vns − 1.48

α2

d
, (3.6)

with γTI , γTII and αi numerical constants which depend on temperature. The parameter γTI does not
depend on the diameter of the channel as concluded by Martin and Tough’s paper [22]. The parameter
α1 instead is a weakly increasing function of the diameter d and the conclusion of Tough’s group is that
α1 � 5 for wide channels (about d = 10−3 m) and α1 � 1 for narrow channels (about d = 1.2 × 10−4
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m), and for smaller diameters we obtain it should be smaller (in Fig. 6 our model fits well the data for
α1 = −1 for d = 61µm). For the parameters γTII and α2, we do not have enough information from the
experiments and we assume they depend on T and d as γTI and α1. In Table 1, we report γTI and α1

taken from Table I in Ref. [22], whereas γTII and α2 are obtained by fitting the experimental data from
Figure 10 in Ref. [22]. The second solution in (3.4) fits the experimental data [22] in the TI regime for
α0
βv

= γTI and ω′ = 1.48α1, whereas in the TII regime for α0
βv

= γTII and ω′ = 1.48α2.
The transition from the TI turbulent regime to the TII turbulent regime can be described in (3.3) by

assuming that coefficient α0 depends on the quantum Reynolds number Re as [38]

γ0(Re) =
α0(Re)

βv
= αc (1 + c tanh [A (Re − Re2)]) (3.7)

in such a way that γ0(Re) = γTI for Re1 � Re � Re2 and γ0(Re) = γTII for Re � Re2, with
αc = γTI+γTII

2 and c = γTII−γTI

γTI+γTII
. The coefficient A is chosen to fit better the transition regime from

turbulence TI and turbulence TII. In figures below, we have chosen A = 1.47/(Reedge − Re2), where
Reedge = Vedged/κ with Vedge being the counterflow velocity which guarantees the 90 % of the codomain
of tanh between the edges of the transition interval. In Table 1 we report the difference Vedge − Vc2 from
Ref [22], which is the gap of the counterflow velocity in the transition region between TI and TII turbulent
regimes (see figures below). We use the same value both for wide and narrow channels.

Also, an expression similar to (3.7) is required for the coefficient ω′ [38]

ω′(Re) = βc (1 + c1 tanh [A (Re − Re2)]) (3.8)

with βc = 0.74(α1 + α2) and c1 = α2−α1
α1+α2

, in such a way ω′ = 1.48α1 in the TI regime and ω′ = 1.48α2 in
the TII regime.

In Fig. 1 the second solution (3.4) with (3.7) and (3.8) (the blue line) is compared with the experimental
results by Martin and Tough [22] (dots) for the TI regime (3.5) (the yellow line) and for the TII regime

Table 1. In the table temperature T (K), helium density ρ (Kg m−3), dynamic viscosity η (Kg (s m)−1), density of the
superfluid component ρs (Kg m−3), specific entropy S (J (Kg K)−1) and dimensionless parameters BHV are from [41]

T ρ η ρs γTI BHV S Vedge − Vc2

1.5 145 1.35 × 10−6 129 7.68 × 10−2 1.296 196 1.7 × 10−3

1.6 145 1.3 × 10−6 122 8.57 × 10−2 1.193 282 1.2 × 10−3

1.7 145 1.29 × 10−6 112 9.17 × 10−2 1.1 395 0.7 × 10−3

Parameter γTI is taken from Table I in Ref. [22]. The values reported here depend only on temperature and they are used
for all the figures of this paper
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Fig. 1. [Color online] Plot of L1/2 (m−1) versus the heat flux Q̇ (J/s) for three temperatures T = 1.5 K (left), T = 1.6 K
(middle) and T = 1.7 K (right). In each figure the two regimes TI (the lower one, or bordeaux) and TII (the upper one, or
yellow), given by the straight lines are compared with our solution (3.4b) with γ0 and ω′ given in (3.7) and (3.8) and for
d = 10−3 m. The experimental dots correspond to the results in Ref. [22]
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(3.6) (the bordeaux line). Plots refer to three different temperatures: T = 1.5 K (the left figure), T = 1.6 K
(the middle figure) and T = 1.7 K (the right figure).

In the next section, we directly go to the experimental results obtained by Tough and collaborators
on heat transfer in He II in cylindrical channels [22]. For high vns, Eq. (3.6) may be approximated by
L1/2 = γTIIvns, and (2.21) becomes analogous to the Mendelsohn’s proposal, but for intermediate values
of vns corresponding to Re1 < Re < Re2 and slightly above Re2, Eqs. (3.5) and (3.6), or (3.4b) must be
used.

The physical model underlying the modelization (3.7) and (3.8), is the assumption of a sudden increase
of the vortex length density in the transition TI–TII, but with laminar behavior of the normal compo-
nent. This is in contrast with Arp’s assumption that turbulence TII is due to turbulence of the normal
component. The mentioned increase in L is interpreted as the reconnection of Kelvin waves along pinned
vortex lines of TI turbulence. Such a reconnection produces a high number of free vortex loops whose
length increases with increasing heat flux in a steeper way than for TI turbulence. In fact, the discussion
about the physical nature of turbulence TII is still an open topic, as well as the transition from TI to
TII.

3.2. Quantum turbulence: explicit evaluation

In the previous sub-section, we have seen that thermal conductivity depends on the vortex line density,
which in wide channels is related to the counterflow velocity in a very direct and simple way. However, in
narrow channels, L depends also on the diameter of the channel, as shown by Tough and collaborators
in their studies over the 1980’s [22,23]. This happens when radius becomes comparable to the average
separation of vortex lines, which is of the order of L−1/2. They obtained that He II is laminar without
vortex lines, for Re < Re1 (except some remaining vortex lines of previous experiments, pinned to the
walls or formed at the λ-transition); for Re1 < Re < Re2 there is the so-called turbulence TI: a mild form
of turbulence characterized by a relatively low value of L (3.5); for Re > Re2 there is a steep increase
in L, and the value of L (3.6) increases for increasing Re. The values of the critical Reynolds numbers
depend on the temperature as well as on the diameter d of the channel and they are reported in Table 3.

In Ref. [32], we have defined the quantum Reynolds number Re =
vnsd

κ
. Now, using (3.5) we can write

the quantum Reynolds number in terms of L as

Re =
vnsd

κ
=

L1/2d + 1.48α1

γTI
. (3.9)

Martin and Tough found that in the turbulent TI regime one has L1/2d � 2.5 both in wide channels and
in narrow channels [22]. Note that, the independence of L1/2d and γTI on the diameter of the channel
shows that in the TI regime Re(d) only depends on the channel size for the mild dependence of the
parameter α1 on d, which we have commented above. In Table 3, we report the values of the Reynolds
number both for wide channels and for narrow channels at three different temperatures: The values of
Re for wide channels are taken from the experiments in Ref. [22] (and they satisfy approximately well
formula (3.9)), whereas the values for the narrow channels are obtained using formula (3.9) and α1 = 1.

The second transition from TI to TII turbulent regimes occurs for Re2 which still satisfy formula (3.9)
but for L1/2d � 10 as obtained by the Tough’s group [22] [see their formula (19) and the corresponding
Figure 12].

It’s worth to note that the second transition from TI to TII turbulent regime in experiments shown
in Figure 11 of Ref. [23] at T = 1.6 K (reported in our Fig. 5) does not satisfy Re2 = 134, but Re2 = 101
(which is the value used to fit the data in Fig. 5).

The explanation of this steep increase of L is still open to debate because there isn’t a definitive
proof, even experimentally, of what these two states, TI and TII, are. But, it is worth mentioning two
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different possible explanations: the one proposed by two of us in Ref. [38] and the one proposed by Melotte
and Barenghi in Ref. [7,42]. The former interpreted the steep increase of L at Re2 as the beginning of
vortex reconnection, namely, to the production of a high number of free vortex loops as a consequence
of the crossing and cutting and recombining of vortex lines that in turbulence TI were most of them
pinned to the walls [43]. The increase of L in turbulence TI, instead, is basically due to Kelvin wave
excitations in pinned vortex lines. The second proposal, instead, of Melotte and Barenghi [42] explains
this transition to the TII state as a consequence of the transition from laminar to turbulence flow for the
normal component. However, the critical velocity for superfluid turbulence is of one order smaller than
the critical velocity for the normal component. Of course, each proposal does not preclude the other one,
and a combined interplay of the two proposals is also possible.

The description of ΔT in terms of Q̇ will be

ΔT =
8ηl

πR4ρ2S2T
Q̇ for Re < Re1; (3.10)

ΔT =
8ηl

πR4ρ2S2T
Q̇ +

Kl

ζ

[
γ0

κρsTS

Q̇

πR2
− ω′

2R

]2
Q̇

πR2
, for Re > Re1; (3.11)

where

γ0 =
γTI + γTII

2

(
1 +

γTII − γTI

γTII + γTI
tanh [A (Re − Re2)]

)
(3.12)

ω′ = 0.74(α1 + α2)
(

1 +
α2 − α1

α1 + α2
tanh [A (Re − Re2)]

)
(3.13)

where Re can be expressed in terms of Q̇ by Re = 2vnsR
κ = 2Q̇

κρsTSπR and A =
1.47κ

d(Vedge − Vc2)
can be

evaluated assuming that the 90% of the codomain of tanh is between the edges of the transition interval
(the values are shown in Table 1 and are taken from the Martin and Tough’s experiments in wide channels

Table 2. In this table we report the different values of α1, γTII and α2 used in our figures for different T and d

T d α1 γTII α2

Wide channels
1.5 1,000µm 5.1 13.57 × 10−2 4.04
1.6 1,000µm 4.7 16.67 × 10−2 8.38
1.7 1,000µm 5 17.14 × 10−2 4.4
Narrow channels
1.6 126µm 1 8.8 × 10−2 0
1.6 61µm −1 8.8 × 10−2 −2
1.7 50µm −1 10 × 10−2 −2

Wide channels refer to d of the order 1,000µm or higher, and narrow channels to d of the order of 100µm or smaller

Table 3. In the table the critical quantum Reynolds numbers Re1 for the appearance of TI turbulent regime and Re2 for
the appearance of TII turbulent regime for three temperatures are reported both in wide and narrow channels from the

Martin and Tough’s experiments [22] and formula (3.9)

T 1.5 K 1.6 K 1.7 K

Wide channels
Re1 127 112 96
Re2 226 212 187

Narrow channels

Re1 52 46 43
Re2 149 134 125

Wide channels refer to d of the order 1,000µm or higher, and narrow channels to d of the order of 100µm or smaller
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but used also for narrow channels). From the second term in the rhs of Eq. (3.11), one obtains the critical
value Q̇c = ω′κρsTSπR

2γ0
. In all the figures plotted in this paper, we use the values of Table 1 for both

narrow and wide channels, and the values in Tables 2 and 3 for, respectively, wide and narrow channels.
These expressions for the vortex line density in narrow channels allow to obtain the effective thermal

conductivity, which now depends not only on the radius but also on the applied heat current Q̇

Keff-turb =
Tρ2S2R2ζ

8ηζ + KTρ2S2R2
(

γ0
κρsTS

Q̇
πR2 − ω′

2R

)2 , (3.14)

where the relation Q̇ = πR2q = πR2ρsTSvns has been used, and consequently the ratio between
Keff-Landau and Keff-turb becomes

Keff-Landau

Keff-turb
= 1 +

KR2ρ2S2T

8ηζ

(
γ0

κρsTS

Q̇

πR2
− ω′

2R

)2

. (3.15)

We apply our results (3.10)–(3.11) and (3.15) to the experiments of Martin and Tough [22], who made
systematic measurements on heat transfer in He II in cylindrical channels. We take d = 1,000µm, l = 10
cm and T = 1.5 K, T = 1.6 K and T = 1.7 K. In Tables 1, 2 and 3, the values of the parameters used in
the calculations are reported. Thermal conductivities (3.15) from the Martin and Tough’s experiments
are drawn in Fig. 2 for three different temperatures (T = 1.5 K, T = 1.6 K and T = 1.7 K) against the
heat current Q̇. For the same values, the ratio ΔT/Q̇ versus Q̇ is plotted in Fig. 3 for (3.10)–(3.11) in
order to compare it to the experimental data from [31].

The same expression (3.15) is then plotted in Fig. 4 at two fixed applied heat flux: Q̇ = 5 × 10−4 J/s
and Q̇ = 10 × 10−4 J/s for Re > Re1. For these plots, we used the values of the tables corresponding
to wide channels, because we do not know the exact dependence of some coefficients (i.e., α1) on the
diameter d of the channel. It is worth to note that we plotted the ratio (3.15) also for the values of the
coefficients in the tables corresponding to narrow channels and the behavior of the figures is only slightly
different than that shown in Fig. 4, and for this reasons, we have avoided to report. Since we don’t know
the exact expression for α1 in terms of the diameter d of the channels in (3.9) we write vns in terms of the

T 1.5 K

T 1.6 K

T 1.7 K

0.0000 0.0005 0.0010 0.0015 0.0020
Q0

20

40

60

80

100

Keff Landau

Keff turb

Fig. 2. The behaviour of the ratio between thermal conductivity in superfluid helium without and with vortices (3.15)

against the applied heat current Q̇ (J/s) in the Martin and Tough’s experiment for diameter d = 1,000µm at three different
temperatures, T = 1.5 K (solid line), T = 1.6 K (dashed line) and T = 1.7 K (dot-dashed line). The transition between the

TI turbulence to TII turbulence is clearly visible in the elbow of the plot
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Fig. 3. Behaviour of the ratio ΔT/Q̇ (K s/J) versus Q̇ (J/s) according to (3.11) in superfluid helium in the TI and TII
regimes. Data are from the Martin and Tough’s experiment for radius 1,000µm at three different temperatures: T = 1.5 K
(solid line), T = 1.6 K (dashed line) and T = 1.7 K (dot-dashed line)
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Fig. 4. Behaviour of the ratio between thermal conductivity in He II without and with vortices according to (3.15) against

the radius of the channel (m). The blue line refers to an applied heat current Q̇ = 5 × 10−4 J/s whereas the red lines refers

to an applied heat current Q̇ = 10−3 J/s. Each case is considered for three temperatures: T = 1.5 K (solid line), T = 1.6
K (dashed line) and T = 1.7 K (dot-dashed line)

heat current Q̇ , namely Re = 2Q̇
κρsTSπR . Then, the turbulent status for an applied heat current in terms

of the radius of the channel can be established. Indeed, from 2Q̇
κρsTSπR > Re1, we find R < 2Q̇

κρsTSπRe1
,

namely the narrower is the tube the higher is the turbulent vortex line density L. Figure 4 shows that in
channels with small diameter the effective thermal conductivity is small and decreases with the diameter.
Note that in Fig. 4, a cutoff in the radius of the channel has to be considered because for diameter small
enough the quasiparticle of superfluid helium cannot flow through the narrow channel and a ballistic
regime is reached, which will not be discussed here [6,44].

For the critical Reynolds number Re1 considered in wide channels, the critical radius corresponding
to the applied heat currents Q̇ = 5 × 10−4 J/s and Q̇ = 10 × 10−4 J/s are, respectively: rc = 660µm
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Fig. 5. The results of Eqs. (3.10) and (3.11) are plotted in order to reproduce the experimental data of Figure 11 in Ref. [23]
for d = 124µm at T = 1.6 K. The values of the parameters used are reported in the Tables 1, 2 and 3 (γTI = 8.57 × 10−2,
α1 = 1 is that proposed by Martin and Tough, and γTII = 8.8 × 10−2 and α2 = 0 are the values which better fit the
experimental data)

0 5. 10 6 0.00001 0.000015 0.00002 0.000025 0.00003 0.000035
Q
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0.020
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T

Fig. 6. The results of Eqs. (3.10) and (3.11) are plotted in order to reproduce the experimental data of Figure 14 in Ref. [23]
for d = 61µm at T = 1.6 K. The values of the parameters used are reported in the Tables 1, 2 and 3 (γTI = 8.57 × 10−2,
α1 = −1 is the best fit of the data, γTII = 8.8 × 10−2 and α2 = −2)

and rc = 1,330µm (for T = 1.5 K); rc = 750µm and rc = 1,500µm (for T = 1.6 K); rc = 440µm and
rc = 880µm (for T = 1.7 K).

In Figs. 6 and 7 of the Arp’s paper, the author plots ΔT versus Q̇ at two temperatures (T = 1.5 K
and T = 1.9 K) for different diameters of the channel but in the laminar case. More precisely, the author
estimates the two critical thermal heat flux for the appearance of the mutual friction effects due to the
presence of quantized vortices. For Arp, the transition from the laminar case to the turbulent case is ruled
in good approximation by the critical superfluid velocity vsc = (κ/d) ln(d/(2a)) with d the diameter of
the channel and a = 10−10 m the empirical vortex core. If we rewrite the critical Reynolds number Re1 =
vnsd/κ in terms of the critical velocity vsc used by Arp we find Re1 = (ρ/ρn)vscd/κ = (ρ/ρn) ln(d/(2a)),
which depends on the temperature by the ratio ρ/ρn. This expression for Re1 is a possible theoretical
choice, which would confirm our calculations (see second and third paragraphs of Sect. 3) in the decrease
of Re1 versus the temperature T .

In Fig. 5, we have reported the experimental data of Figure 11 of Ref.[23] at T = 1.60 K in a narrow
channel of d = 126µm (dots) and Eq. (3.10) (straight line) and Eq. (3.11) (curve). Our equations fit quite
well the experimental data. In these plots, the values of α1 and γTI are those proposed by Tough’s group
with α1 = 1 in narrow channels and for γTI the same value adopted in wide channels (confirming the
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Fig. 7. Behaviour of the ratio ΔT/Q̇ (K s/J) versus Q̇ (J/s) according to (3.11) in He II for a microchannel filled with
helium II with diameter 50µm at T = 1.7 K
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Fig. 8. The behaviour of the ratio between thermal conductivity in He II without and with vortices according to (3.15)

against the applied heat current Q̇ (J/s) in a micro channel with a diameter of 50µm at T = 1.7 K. The transition between
the TI turbulence to TII turbulence is clearly visible in the elbow of the plot

independence of the diameter d of the channel). The value of α2 (α2 = 0) and γTII (γTI = 8.8 × 10−2)
are chosen in order to fit the data. A further note is that the first transition satisfies formula (3.9), but
not the second transition for which the value Re2 = 101 has been obtained. The difference Vedge − Vc2 is
kept equal to that in wide channels.

Then, we have taken into account the experimental data from Figure 14 of Ref. [23] at T = 1.6 K for
a narrower channel d = 61µm (see Fig. 6). In this experiment only, the TI turbulent regime is found, so
the values of α2 and γTII cannot be estimated from the experiments. According to our results, γTI is
still that for wide channels, whereas for α1 the value α1 = −1 has to be taken. From the expression (3.9),
we find Re1 = 12 (which confirms the first transition) and Re2 = 99. For the coefficient γTII , we have
chosen the same value used in Fig. 5, while for α2 a tentative value is taken (α2 = −2). The difference
Vedge − Vc2 is still the same that for wide channel.

In Figs. 7 and 8, the corresponding numerical results found in our model have been plotted for
d = 50µm. There, we have used the value γTI of the wide channel, and a value slightly higher for
γTII . The values of α1 and α2 are the same used for the channel of diameter d = 61µm. The Reynolds
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numbers are again calculated according to formula (3.9), obtaining Re1 = 11 and Re2 = 93. The difference
Vedge − Vc2 is the same that for wide channel. Heat transfer in He II in tubes of this order of size has
been explored experimentally in [15]. As already pointed out, this choice of α1 agrees with the prediction
that α1 is a slowly increasing function of the diameter of the channel.

These estimations as well as the graphics plotted in Fig. 4 show that the higher is the heat current the
higher is the radius corresponding to the transition between all these regimes. Furthermore, the effective
thermal conductivity drops down in the TI turbulent regime and much more in the TII regime. Thus,
in order to cool down the temperature of a device, it is convenient to choose channels which show an
effective thermal conductivity closer to the Landau’s estimations. For a fixed heat current, this means
that the radius of the channels has to be large enough in order to be in L = 0 regime or in the TI regime.
Another observation is that these features depend on the temperature, and graphics show that lower
temperature are preferable.

4. Conclusions

In Sect. 3 of this paper, we have established theoretically a more complete relation between ΔT and Q̇,
and the corresponding effective thermal conductivity of microchannels filled with He II in absence of net
mass convection (counterflow situation). To do that, we have taken into consideration the resistance force
due to quantized vortex tangle arising for high enough heat flux and, instead of assuming that L ∼ q2, as
it follows from Vinen’s equation (3.1), we have taken more detailed approach. This is based on Eq. (3.3),
generalizing (3.1) through a term related to the influence of the walls on the vortex lines. This equation,
and the behavior (3.7), (3.8) for their coefficients, yields an explicit mathematical model for the effective
thermal conductivity of He II between Landau and Gorter–Mellink regimes. Unfortunately, this is not
a simple expression, but it allows to bridge the gap between the two mentioned well-known regimes by
means of an explicit physical model.

Since our aim was also to describe the full transition from laminar to fully turbulent regime by
proposing the evolution equation (3.3) for L, it is worth to recall an analogous attempt carried out by
Childers and Tough in 1976 [23]. Their aim was restricted to describe the transition from laminar regime
to TI regime, with attention to the existence of two branches for L as function of Q̇, the upper one being
the usually observed one, and the lower one being metastable. Childers and Tough [23] wrote for the
evolution equation for L

dL

dt
= AL3/2vns

[
1 − α

L1/2d

]
− βvκL2 (4.1)

where A = 1
2χ1B

ρn

ρ . Equation (4.1) is similar to our equation (3.3), except for the second term having the
form Lvnsd

−1 instead of our third term proportional to L3/2κd−1. Both terms have the same dimensions
and have the diameter d of the channel at the denominator in order to take into account the presence of
the walls. Childers and Tough’s proposal describes well the transition from laminar to TI regime, and the
metastable solution of L, which is not described by our model, but it does not describe the TII turbulence.
In contrast, our model describes the transition among the three states (laminar, turbulent TI and TII).
This is so, in fact, because of the dependence (3.7) and (3.8) of the coefficient γ0(Re) and ω′(Re) on the
quantum Reynolds number, which is necessary to go from the smaller slope of the line corresponding to
TI turbulence to the steeper slope of the line corresponding to fully developed TII turbulence. For more
exhaustive studies on the metastable solution between laminar and turbulent regimes, we also address
the reader to the review [34].

This method cannot be extended to arbitrary narrow channels, because when the width of the channels
becomes comparable or smaller than the mean free path of the heat carriers, the regime becomes ballistic
and phonon collisions with the walls, rather than with rotons or with themselves, become the dominant
factor [5,6,14,44]. Another aspect limiting the flow of heat from solid walls to liquid helium is the Kapitza
conductance of the interface [45], but we do not deal with this topic here.
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Note that, we have used as a relevant parameter in our description the Reynolds quantum number
vnsd/κ instead of the classical Reynolds number vnd/ν. This is a difference with Arp’s analysis, which
assumed that turbulence TII corresponds to the setting of turbulence in the normal component, instead
of assuming a sudden increase of vortex length density as the consequence of vortex line reconnection.

From a practical perspective, our paper indicates that, for a given amount of helium, better contact
is achieved between a solid and the bulk He II if the contact is made through a few wider channels rather
than many narrow channels. This is already known and experimentally confirmed [1,7]. For instance, for
a certain given heat flux density, a large channel or ten small channels are used, all of them in laminar
regime, the temperature difference is larger in the large channel (proportional to the square of the radius).
However, this is no longer so in the turbulent regime. Thus, an understanding of the transition regime
may be especially useful in cooling systems with high heat loads.

This may be useful for practical purposes. In particular, the present analysis shows the interest of
Eq. (3.3) generalizing the usual Vinen’s equation to take into account the effects of the walls. Such equation
describes in a natural way the transition from laminar to turbulent TI state and, if it is complemented
with (3.7) and (3.8), it also describes the transition from TI to TII turbulence. As it has been shown
here, Eq. (3.3) is deeply related to the more practical topic of the effective thermal conductivity of narrow
tubes filled with He II [1].
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Universitat Autònoma de Barcelona
08193 Bellaterra
Catalonia
Spain

D. Jou
Institut d’Estudis Catalans
Carme 47
08001 Barcelona
Catalonia
Spain
e-mail: david.jou@uab.cat

M. S. Mongiov̀ı
Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica
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