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the heat conduction is given by Green and Naghdi’s theory. We establish the well-posedness and the stability of the system
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1. Introduction

The issue of existence and stability of Timoshenko systems has attracted a great deal of attention in
the last decades. From a physical or engineering point of view, Timoshenko theory is an improvement
of Euler–Bernoulli theory. Indeed, in the Euler–Bernoulli beam theory, it is assumed that plane cross-
sections that are perpendicular to the axis of the beam remain plane and perpendicular to the axis after
deformation, which implies that the transverse shear strain is zero. When the rotational inertia and the
transverse shear are significant in the beam model, one has to use rather the Timoshenko theory. The
transverse vibrations of the beam depend in general on its geometrical properties (its length, size and
shape, cross-section, moment of inertia, shear coefficient) and its mechanical properties (density, Young’s
modulus, modulus of rigidity). To be more precise, we have the following model, which was developed by
Timoshenko on [1] in 1921,

ρutt(x, t) = (K(ux(x, t) − ϕ(x, t)))x, in (0, L) × (0,+∞)
Iρϕtt(x, t) = (EIϕx(x, t))x + K(ut(x, t) − ϕ(x, t)), in (0, L) × (0,+∞), (1.1)

together with boundary conditions of the form

EIϕx|x=L
x=0 = 0, (ux − ϕ)|x=L

x=0 = 0,

where u(x, t) is the transverse displacement, ϕ(x, t) is the rotational angle of the beam, ρ denotes the
mass density, Iρ is the moment of mass inertia, EI is the rigidity coefficient, K is the shear modulus of
elasticity, and L is the length of the beam.

Due to a surrounding flow of wind, gas or fluid, the beam is subject to mechanical vibrations. These
vibrations are of course undesirable because of their damaging and destructing nature. To reduce these
harmful vibrations, several control mechanisms have been designed. This is achieved either by incorporat-
ing into the structure a smart material actuator as piezoceramic or by acting inside or at the free edges of
the beam. Several researchers employed different types of damping mechanisms to stabilize these systems
and to obtain precise rates of decay. For internal or boundary frictional damping, we quote, among others,

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-014-0475-9&domain=pdf


1500 M. Kafini et al. ZAMP

the work of Kim and Renardy [2], Raposo et al. [3], Soufyane and Wehbe [4], Rivera and Racke [5,6], and
Mustafa and Messaoudi [7]. Regarding Timoshenko systems for material with “finite” or “infinite” mem-
ory, we refer to Ammar-Khodja et al. [8], Guesmia and Messaoudi [9], and Fernández Sare and Rivera [10].

For stabilization via heat dissipation, Rivera and Racke [11] established several exponential decay
results for linear Timoshenko systems coupled with the classical heat equation, in which the heat flux
is given by Fourier’s law. Since this theory predicts an infinite speed of heat propagation, to overcome
this physical paradox, many theories have emerged. One of which, given by Green and Naghdi [12–14],
suggests replacing Fourier’s law by so- called thermoelasticity of type III for heat conduction modeling
thermal disturbances as wave-like pulses traveling at finite speed. See [15] for more details.

Taking into account Green and Naghdi’s theory, a Timoshenko system of thermoelasticity of type III
of the form

ρ1ϕtt − K (ϕx + ψ)x = 0 in (0,∞) × (0, 1) ,
ρ2ψtt − bψxx + K (ϕx + ψ) + βθx = 0 in (0,∞) × (0, 1) ,
ρ3θtt − δθxx + γψttx − kθtxx = 0 in (0,∞) × (0, 1) ,

(1.2)

where ϕ,ψ, and θ are functions of (x, t) which model the transverse displacement of the beam, the rotation
angle of the filament, and the difference temperature respectively, was studied by Messaoudi and Said-
Houari [16], and an exponential decay result in the case of equal wave speeds

(
K
ρ1

= b
ρ2

)
was proved. The

case of nonequal speeds
(

K
ρ1

�= b
ρ2

)
was studied later by Messaoudi and Fareh [17], and a polynomial decay

result was proved for solutions with smooth initial data. A decay result, where a viscoelastic damping of
the form

∫ t

0
g(t− s)θxx(s)ds is acting in the third equation instead of the strong heat dissipation −kθtxx,

was also established by Kafini [18].
Time delays arise in many applications because most phenomena naturally depend not only on the

present state but also on some past occurrences. In recent years, the control of PDEs with time delay
effects has become an active area of research, see for example [19] and references therein.

In many cases, it was shown that delay is a source of instability unless additional conditions or control
terms are used, see [20]. Therefore, the stability issue of systems with delay is of theoretical and practical
great importance.

For the system of wave equation with locally distributed damping of the form
⎧
⎨
⎩

utt(x, t) − �u(x, t) + a0ut(x, t) + aut(x, t − τ) = 0, in Ω × (0,∞)
u(x, t) = 0, x ∈ Γ0, t > 0
∂u
∂v (x, t) = 0, x ∈ Γ1, t > 0,

(1.3)

it is well-known, in the absence of delay (a = 0, a0 > 0), that the system is exponentially stable, see
[21]. In the presence of delay (a > 0), Nicaise and Pignotti [22] examined (1.3) and proved, under the
assumption that the weight of the feedback with delay is smaller than the one without delay (a < a0),
that the energy is exponentially stable. For the opposite case, they produced a sequence of delays for
which the corresponding solution is instable. The same results were obtained for the case of boundary
delay, see also [23] for the treatment to this problem in more general abstract form. When the delay term
in (1.3) is replaced by the distributed delay

τ2∫

τ1

a(s)ut(x, t − s)ds,

exponential stability results have been obtained in [24] under the condition
∫ τ2

τ1
a(s)d < a0.
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Introducing a delay term in the internal feedback of the thermoelastic system may turn a well-behaved
system into a wild one. For instance, contrary to the exponential stability of the classical thermoelastic
system without delay, Racke [25] proved that, any constant delay makes the system instable.

In this work, we are concerned with the following Timoshenko system of thermoelasticity of type III
with delay of the form⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1φtt − K (φx + ψ)x + μ1φt(x, t) + μ2φt(x, t − τ) = 0 in (0, 1) × (0,∞)
ρ2ψtt − bψxx + K (φx + ψ) + βθtx = 0 in (0, 1) × (0,∞)
ρ3θtt − δθxx + γψtx − kθtxx = 0 in (0, 1) × (0,∞) ,
θ (., 0) = θ0, θt (., 0) = θ1, ψ (., 0) = ψ0, ψt (., 0) = ψ1,
φ (., 0) = φ0, φt (., 0) = φ1,
φt (x, t − τ) = f0 (x, t − τ) , t ∈ (0, τ) ,
φ (0, t) = φ (1, t) = ψ (0, t) = ψ (1, t) = θx (0, t) = θx (1, t) = 0, ∀t ≥ 0,

(1.4)

where ρ1, ρ2, ρ3,K, b, k, β, γ, δ, μ1 are positive constants, μ2 is a real number, and τ > 0 represents the
time delay. We prove, under suitable conditions on the initial data that the energy decays exponentially
in the case of equal wave speeds in spite of the existence of the delay. The second part of our result is
the case of nonequal speeds which is of much importance because practically or physically the speeds are
not necessarily equal. In that case, we prove that the energy decays polynomially.

In [26], the well-posedness and stability of the same system (1.4) without delay and with infinite
memory considered in the first or second equation of Timoshenko system was proved, and general decay
estimates were obtained depending on the growth of the kernel function at infinity and the wave speeds.
In [27], the exponential stability of an abstract hyperbolic system with a discrete time delay and an
infinite memory was proved under the assumption that the kernel function converges exponentially to
zero and the weight of the delay is small enough. The system considered in [27] is not dissipative due
to the fact that the unique considered dissipation is generated by the infinite memory. More results are
found in [28,29] and [30].

2. Preliminaries

As in [24], we introduce the new variable

z(x, ρ, t) = φt(x, t − τρ), x ∈ (0, 1), ρ ∈ (0, 1), t > 0.

Thus, we have

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ (0, 1), ρ ∈ (0, 1), t > 0.

So, problem (1.4) is equivalent to⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1φtt − K (φx + ψ)x + μ1φt(x, t) + μ2z(x, 1, t) = 0 in (0, 1) × (0,∞)
ρ2ψtt − bψxx + K (φx + ψ) + βθtx = 0 in (0, 1) × (0,∞)
ρ3θtt − δθxx + γψtx − kθtxx = 0 in (0, 1) × (0,∞)
τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in (0,∞) × (0, 1) × (0, 1)
φ (., 0) = φ0, φt (., 0) = φ1, z (x, 0, t) = φt (x, t) ,
θ (., 0) = θ0, θt (., 0) = θ1, ψ (., 0) = ψ0, ψt (., 0) = ψ1

φ (0, t) = φ (1, t) = ψ (0, t) = ψ (1, t) = θx (0, t) = θx (1, t) = 0
z(x, ρ, 0) = f0(x,−ρτ), x ∈ (0, 1), ρ ∈ (0, 1).

(2.1)

In order to be able to use Poincaré’s inequality for θ , we introduce

θ (x, t) = θ (x, t) − t

1∫

0

θ1 (x) dx −
1∫

0

θ0 (x) dx.
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Then by (2.1)3 we have

1∫

0

θ (x, t) dx = 0, ∀t ≥ 0.

In this case, Poincaré’s inequality is applicable for θ and, furthermore,
(
φ, ψ, θ, z

)
satisfies the same

equations and boundary conditions of (2.1). In what follows, we will work with θ but, for convenience,
we write θ instead of θ.

We will assume that

μ1 ≥ |μ2| (2.2)

and show the well-posedness of the problem and that this condition is sufficient to prove the uniform
decay of the solution energy.

3. Well-posedness of the problem

In this section, we give the existence and uniqueness result for problem (2.1) using the semigroup theory.
We will use the following standard L2(0, 1) space with the scalar product and norm denoted by

〈u, v〉L2(0,1) =

1∫

0

u v dx, ‖u‖22 =

1∫

0

|u|2 dx,

respectively. Introducing the vector function U(t) = (φ, ϕ, ψ, u, θ, v, z)T , where ϕ = φt, u = ψt, and v =
θt, system (2.1) can be re-written as

⎧
⎨
⎩

d
dt

U(t) + AU(t) = 0, t > 0,

U(0) = U0 = (φ0, φ1, ψ0, ψ1, θ0, θ1, f0)T ,
(3.1)

where the linear operator A : D(A) ⊂ H −→ H is defined by

AU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ϕ

−K

ρ1
(φx + ψ)x +

μ1

ρ1
ϕ +

μ2

ρ1
z(., 1)

−u

− b

ρ2
ψxx +

K

ρ2
(φx + ψ) +

β

ρ2
vx

−v

− δ

ρ3
θxx +

γ

ρ3
ux − k

ρ3
vxx

1
τ zρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, we introduce

L2
�(0, 1) =

⎧
⎨
⎩w ∈ L2(0, 1) :

1∫

0

w(s)ds = 0,

⎫
⎬
⎭

H1
� (0, 1) = H1(0, 1) ∩ L2

�(0, 1),
H2

� (0, 1) =
{
w ∈ H2(0, 1) : wx(0) = wx(1) =0

}
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and the energy space

H = H1
0 (0, 1) × L2(0, 1) × H1

0 (0, 1) × L2(0, 1) × H1
� (0, 1) × L2

�(0, 1) × L2
(
(0, 1), L2(0, 1)

)
.

For a positive constant ξ satisfying{
γτ |μ2| < ξ < γτ (2μ1 − |μ2|) if μ1 > |μ2|
ξ = γτ |μ2| = γτμ1 if μ1 = |μ2| (3.1∗)

we equip H with the inner product
〈
U , Ũ

〉
H

= γ

1∫

0

{
ρ1ϕϕ̃ + ρ2uũ + K (φx + ψ)

(
φ̃x + ψ̃

)
+ bψxψ̃x

}
dx

+β

1∫

0

(
ρ3vṽ + δθxθ̃x

)
dx + ξ

1∫

0

1∫

0

z(x, ρ)z̃(x, ρ)dρdx.

The domain of A is

D(A) =
{U ∈ H | φ, ψ ∈ H2(0, 1) ∩ H1

0 (0, 1), θ, v ∈ H1
� (0, 1), ϕ, u ∈ H1

0 (0, 1),
δθ + kv ∈ H2

� (0, 1), z, zρ ∈ L2
(
(0, 1), L2(0, 1)

)
, z(x, 0) = ϕ(x)

}
.

and it is dense in H.
We have the following existence and uniqueness result:

Theorem 3.1. Assume U0 ∈ H and (2.2) holds. Then, there exists a unique solution U ∈(R+,H) of problem
(2.1). Moreover, if U0 ∈ D(A) then U ∈ C(R+,D(A)) ∩ C1 (R+,H) .

Proof. We use the semigroup approach. So, we prove that A is a maximal monotone operator. First, we
prove that A is monotone. For any U ∈ D(A), we have

(AU ,U)H = γμ1

1∫

0

ϕ2dx + βk

1∫

0

v2
xdx + γμ2

1∫

0

ϕz(., 1)dx +
ξ

τ

1∫

0

1∫

0

zzρdρdx. (3.2)

By using Young’s inequality, the third term in the right-hand side of (3.2) gives

−μ2

1∫

0

ϕz(., 1)dx ≤ |μ2|
2

1∫

0

ϕ2dx +
|μ2|
2

1∫

0

z2(., 1)dx.

Also, using integration by parts and the fact that z(x, 0) = ϕ(x), the last term in the right-hand side of
(3.2) gives

1∫

0

1∫

0

zzρdρdx = −1
2

1∫

0

ϕ2dx +
1
2

1∫

0

z2(., 1)dx.

Consequently, (3.2) yields

(AU ,U)H ≥ 1
2τ

(γτ(2μ1 − |μ2|) − ξ)

1∫

0

ϕ2dx +
1
2τ

(ξ − γτ |μ2|)
1∫

0

z2(., 1)dx + βk

1∫

0

v2
xdx

and by using (3.1∗), we get

(AU ,U)H ≥ m0

⎛
⎝

1∫

0

ϕ2dx +

1∫

0

z2(., 1)dx

⎞
⎠ + kβ

1∫

0

v2
xdx,
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for some constant m0 ≥ 0. Thus, A is monotone. Next, we prove that the operator I + A is surjective.
Given F = (f1, f2, f3, f4, f5, f6, f7)T ∈ H, we prove that there exists a unique U ∈ D(A) such that

(I + A)U = F. (3.3)

That is, ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϕ + φ = f1 in H1
0 (0, 1)

−K (φx + ψ)x + (μ1 + ρ1) ϕ + μ2z(., 1) = ρ1f2 in L2(0, 1)
−u + ψ = f3 in H1

0 (0, 1)
−bψxx + K (φx + ψ) + βvx + ρ2u = ρ2f4 in L2(0, 1)
−v + θ = f5 in H1

� (0, 1)
−δθxx + γux − kvxx + ρ3v = ρ3f6 in L2

�(0, 1)
zρ + τz = τf7 in L2

(
(0, 1), L2(0, 1)

)

(3.4)

Using (3.4)7 and the fact that z(x, 0) = ϕ(x), we get

z(x, ρ) = ϕ(x)e−τρ + τe−τρ

ρ∫

0

eτsf7(x, s)ds. (3.5)

In order to solve (3.4), we consider the following variational formulation

B ((φ, ψ, θ), (φ1, ψ1, θ1)) = G (φ1, ψ1, θ1) , (3.6)

where B :
[
H1

0 (0, 1) × H1
0 (0, 1) × H1

� (0, 1)
]2 −→ R is the bilinear form defined by

B ((φ, ψ, θ), (φ1, ψ1, θ1))

= γK

1∫

0

(φx + ψ) (φ1x + ψ1) dx + β (δ + k)

1∫

0

θxθ1xdx + bγ

1∫

0

ψxψ1xdx

+ρ2γ

1∫

0

ψψ1dx + βγ

1∫

0

θxψ1dx + βρ3

1∫

0

θθ1dx + βγ

1∫

0

θ1ψxdx

+γ
(
μ1 + ρ1 + μ2e

−τ
) 1∫

0

φφ1dx

and G :
[
H1

0 (0, 1) × H1
0 (0, 1) × H1

� (0, 1)
] −→ R is the linear functional given by

G (φ1, ψ1, θ1) = γρ1

1∫

0

f2φ1dx + γ (μ1 + ρ1)

1∫

0

f1φ1dx + γρ2

1∫

0

f4ψ1dx

+γβ

1∫

0

f5xψ1dx + γρ2

1∫

0

f3ψ1dx + βρ3

1∫

0

f6θ1dx + βρ3

1∫

0

f5θ1dx

+γβ

1∫

0

f3xθ1dx + βk

1∫

0

f5xθ1xdx − γτμ2e
−τ

1∫

0

φ1

1∫

0

eτsf7(x, s)ds.

Now, for V = H1
0 (0, 1) × H1

0 (0, 1) × H1
� (0, 1) equipped with the norm

‖φ, ψ, θ‖2V = ‖ (φx + ψ) ‖22 + ‖φ‖22 + ‖ψx‖22 + ‖θ‖22 + ‖θx‖22,
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using integration by parts, we have,

B ((φ, ψ, θ), (φ, ψ, θ)) = γK

1∫

0

(φx + ψ)2 dx + γ
(
μ1 + ρ1 + μ2e

−τ
) 1∫

0

φ2dx

+β (δ + k)

1∫

0

θ2xdx + bγ

1∫

0

ψ2
xdx + ρ2γ

1∫

0

ψ2dx

+βρ3

1∫

0

θ2dx ≥ α0 ‖φ, ψ, θ‖2V ,

for some α0 > 0. Thus, B is coercive.
On the other hand, using Cauchy-Schwarz and Poincaré’s inequalities, we obtain

|B ((φ, ψ, θ), (φ1, ψ1, θ1))|
≤ γK ‖φx + ψ‖2 ‖φ1x + ψ1‖2 + γb ‖ψx‖2 ‖ψ1x‖2 + γ

∣∣μ1 + ρ1 + μ2e
−τ

∣∣ ‖φ‖2 ‖φ1‖2
+γρ2 ‖ψ‖2 ‖ψ1‖2 + γβ ‖θx‖2 ‖ψ1‖2 + β (δ + k) ‖θx‖2 ‖θ1x‖2 + βρ3 ‖θ‖2 ‖θ1‖2
+γβ ‖ψx‖2 ‖θ1‖2

≤ c (‖φx + ψ‖2 + ‖φ‖2 + ‖ψx‖2 + ‖θ‖2 + ‖θx‖2) ×
(‖φ1x + ψ1‖2 + ‖φ1‖2 + ‖ψ1x‖2 + ‖θ1‖2 + ‖θ1x‖2)

≤ c ‖φ, ψ, θ‖V ‖φ1, ψ1, θ1‖V .

Similarly

|G (φ1, ψ1, θ1)|
≤ c

(
‖f1‖H1

0 (0,1) + ‖f2‖2 + ‖f3‖H1
0 (0,1) + ‖f4‖2 + ‖f5‖H1

�(0,1) + ‖f6‖2 + ‖f7‖L2((0,1),L2(0,1))

)

×
(
‖φ1‖H1

0 (0,1) + ‖ψ1‖H1
0 (0,1) + ‖θ1‖H1∗(0,1)

)

≤ c ‖φ1, ψ1, θ1‖V .

Consequently, Lax–Milgram lemma guarantees the existence of a unique

(φ, ψ, θ) ∈ H1
0 (0, 1) × H1

0 (0, 1) × H1
� (0, 1)

satisfying

B ((φ, ψ, θ), (φ1, ψ1, θ1)) = G (φ1, ψ1, θ1) ∀ (φ1, ψ1, θ1) ∈ V. (3.7)

The substitution of φ, ψ and θ into (3.4)1,(3.4)3 and (3.4)5 yields

(ϕ, u, v) ∈ H1
0 (0, 1) × H1

0 (0, 1) × H1
� (0, 1).

Moreover, if we take (φ1, θ1) ≡ (0, 0) ∈ H1
0 (0, 1) × H1

� (0, 1) in (3.7), we get

K

1∫

0

(φx + ψ) ψ1dx + b

1∫

0

ψxψ1xdx + ρ2

1∫

0

ψψ1dx + β

1∫

0

θxψ1dx

= ρ2

1∫

0

f4ψ1dx + β

1∫

0

f5xψ1dx + ρ2

1∫

0

f3ψ1dx.
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By recalling (3.4)3 and (3.4)5, we arrive at

K

1∫

0

(φx + ψ) ψ1dx + b

1∫

0

ψxψ1xdx + ρ2

1∫

0

ψψ1dx + β

1∫

0

θxψ1dx

= ρ2

1∫

0

f4ψ1dx + β

1∫

0

(θx − vx)ψ1dx + ρ2

1∫

0

(ψ − u)ψ1dx.

Hence, we obtain

b

1∫

0

ψxψ1xdx =

1∫

0

[ρ2f4 − K (φx + ψ) − βvx − ρ2u] ψ1dx, ∀ψ1 ∈ H1
0 (0, 1). (3.8)

By noting that

[ρ2f4 − K (φx + ψ) − βvx − ρ2u] ∈ L2(0, 1),

then

ψ ∈ H2(0, 1) ∩ H1
0 (0, 1)

and, consequently, (3.8) takes the form

b

1∫

0

[−ψxx + K (φx + ψ) + βvx + ρ2u − ρ2f4]ψ1dx = 0 ∀ψ1 ∈ H1
0 (0, 1). (3.9)

Therefore, we obtain

−ψxx + K (φx + ψ) + βvx + ρ2u = ρ2f4.

This gives (3.4)4. Similarly, if we take (ψ1, θ1) ≡ (0, 0) ∈ H1
0 (0, 1) × H1

� (0, 1) in (3.7), we can show that

φ ∈ H2(0, 1) ∩ H1
0 (0, 1)

and (3.4)2 are satisfied. Also, if we take (φ1, ψ1) ≡ (0, 0) ∈ H1
0 (0, 1) × H1

0 (0, 1) in (3.7), then using (3.4)3
and (3.4)5, we get

δθxx + kvxx = ρ3f6 − γux − ρ3v in L2
�(0, 1),

and we conclude that

(δθ + kv) ∈ H2(0, 1).

Furthermore, it is obvious from

δθx + kvx = ρ3

x∫

0

f6dx − γu − ρ3

x∫

0

vdx,

that

(δθx + kvx) (0) = (δθx + kvx) (1) = 0.

Thus, we get

(δθ + kv) ∈ H2
� (0, 1).

Finally, it follows, from (3.5), that

z(x, 0) = ϕ(x) and z, zρ ∈ L2
(
(0, 1), L2(0, 1)

)
.

Hence, there exists a unique U ∈ D(A) such that (3.3) is satisfied. Therefore, A is a maximal monotone
operator. Consequently, the well-posedness result follows from the Hille–Yosida theorem. (see [31]) �
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The associated solution energy is given by

E (t) = E (t, φ, ψ, θ, z)

=
γ

2

⎛
⎝

1∫

0

ρ1φ
2
t + ρ2ψ

2
t + K |φx + ψ|2 + bψ2

x

⎞
⎠ dx (3.10)

+
β

2

1∫

0

(
ρ3θ

2
t + δθ2x

)
dx +

ξ

2

1∫

0

1∫

0

z2(x, ρ, t)dρdx,

where, as in (3.1∗),
{

γτ |μ2| < ξ < γτ (2μ1 − |μ2|) if μ1 > |μ2|
ξ = γτ |μ2| = γτμ1 if μ1 = |μ2| (3.11)

The following lemma shows that the associated energy is decreasing in time.

Lemma 3.1. Let (φ, ψ, θ, z) be the solution of (2.1). Then, for some C ≥ 0,

E′ (t) ≤ −βk

1∫

0

θ2txdx − C

1∫

0

(
φ2

t + z2(x, 1, t)
)
dx ≤ 0. (3.12)

Proof. Multiplying equation (2.1)1 by γφt, (2.1)2 by γψt and (2.1)3 by βθt and integrating over (0, 1)
and (2.1)4 by (ξ/τ)z and integrating over (0, 1) × (0, 1) with respect to ρ and x summing up, we get

1
2

d
dt

⎡
⎣

1∫

0

γ
(
ρ1φ

2
t + ρ2ψ

2
t + K |φx + ψ|2 + bψ2

x

)
+ β

(
ρ3θ

2
t + δθ2x

)
⎤
⎦ dx

+
ξ

2
d
dt

1∫

0

1∫

0

z2(x, ρ, t)dρdx (3.13)

= −βk

1∫

0

θ2txdx − γμ1

1∫

0

φ2
t dx − ξ

τ

1∫

0

1∫

0

zzρ(x, ρ, t)dρdx − γμ2

1∫

0

φtz(x, 1, t)dx.

We, now, estimate the last two terms of the right-hand side of (3.13) as follows.

− ξ

τ

1∫

0

1∫

0

zzρ(x, ρ, t)dρdx = − ξ

2τ

1∫

0

1∫

0

∂

∂ρ
z2(x, ρ, t)dρdx

=
ξ

2τ

1∫

0

(
z2(x, 0, t) − z2(x, 1, t)

)
dx =

ξ

2τ

⎛
⎝

1∫

0

φ2
t dx −

1∫

0

z2(x, 1, t)dx

⎞
⎠ ,

−γμ2

1∫

0

φtz(x, 1, t)dx ≤ γ |μ2|
2

⎛
⎝

1∫

0

φ2
t dx +

1∫

0

z2(x, 1, t)dx

⎞
⎠ .

We conclude, then,

dE(t)
d

≤ −βk

1∫

0

θ2txdx − γ

(
μ1 − ξ

2τγ
− |μ2|

2

) 1∫

0

φ2
t dx − γ

(
ξ

2τγ
− |μ2|

2

) 1∫

0

z2(x, 1, t)dx.
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Using (3.11), we have, for some C ≥ 0,

E′ (t) ≤ −βk

1∫

0

θ2txdx − C

1∫

0

(
φ2

t + z2(x, 1, t)
)
dx ≤ 0.

�

4. Decay of solutions

In this section, we state and prove our stability result.

Theorem 4.1. Suppose that μ1 ≥ |μ2|. Then the energy E (t) satisfies ∀t > 0,

E (t) ≤ CE (0) e−αt, if
ρ1
K

=
ρ2
b

,

E (t) ≤ C (E1 (0) + E2 (0)) t−1, if
ρ1
K

�= ρ2
b

. (4.1)

In order to prove this result, we introduce various functionals and prove several lemmas.
We note here that the functionals I1, J and the function q (x) , used in Lemma 4.4, were first introduced

in [8]. Similarly, the function I3 was first introduced in [22].

Lemma 4.1. Let (φ, ψ, θ, z) be the solution of (2.1). Then the functional

I1(t) :=

1∫

0

(ρ1φtω + ρ2ψtψ) dx

satisfies, ∀ε1 > 0,

I
′
1(t) ≤

(
− b

2
+ ε1 (μ1 + |μ2|)

) 1∫

0

ψ2
xdx +

(
ε1ρ1 +

μ1

4ε1

) 1∫

0

φ2
t dx (4.2)

+
(

ρ2 +
ρ1
4ε1

) 1∫

0

ψ2
t dx +

β2

2b

1∫

0

θ2txdx +
|μ2|
4ε1

1∫

0

z2(x, 1, t)dx,

where

ω(x, t) = −
x∫

0

ψ(y, t)dy + x

1∫

0

ψ(y, t)d. (4.3)

Proof. By differentiating I1 and using Eq. (2.1), we conclude that

I
′
1(t) : = −b

1∫

0

ψ2
xdx + ρ2

1∫

0

ψ2
t dx − K

1∫

0

ψ2dx − β

1∫

0

ψθtxdx

+K

1∫

0

ω2
xdx + ρ1

1∫

0

φtωtdx − μ1

1∫

0

φtωdx − μ2

1∫

0

ωz(x, 1, t)ωdx.
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By exploiting the inequalities

1∫

0

ω2
xdx ≤

1∫

0

ψ2dx ≤
1∫

0

ψ2
xdx

1∫

0

ω2
t dx ≤

1∫

0

ω2
txdx ≤

1∫

0

ψ2
t dx,

and Young’s inequality, the result follows. �

Lemma 4.2. Let (φ, ψ, θ, z) be a solution of (2.1). Then the functional

I2 (t) := ρ2ρ3

1∫

0

ψt (x, t)

x∫

0

θt (y, t) dydx − δρ2

1∫

0

θxψdx,

satisfies, ∀ε2 > 0,

I
′
2 (t) ≤ −ρ2γ

2

1∫

0

ψ2
t dx + ε2

1∫

0

ψ2
xdx + ε2

1∫

0

φ2
xdx + C (ε2)

1∫

0

θ2txdx.

Proof. Using Eq. (2.1) we get

d
dt

⎛
⎝ρ2ρ3

1∫

0

ψt (x, t)

x∫

0

θt (y, t) dydx

⎞
⎠

=

1∫

0

ρ2ψt

x∫

0

(δθxx − γψtx + kθtxx) dydx

+

1∫

0

(bψxx − K (φx + ψ) − βθtx)

x∫

0

ρ3θt (y, t) dydx

=

1∫

0

ρ2ψt (δθx − γψt + kθtx) dx − ρ3K

1∫

0

ψ

x∫

0

θt (y, t) dydx

−ρ3b

1∫

0

θtψxdx + ρ3K

1∫

0

θtφdx + βρ3

1∫

0

θ2t dx

+

⎡
⎣ρ3

⎛
⎝

x∫

0

θt (y, t) dy

⎞
⎠ (bψx − Kφ − βθt)

⎤
⎦

x=1

x=0

.

By recalling that θ stands for θ, we have

1∫

0

θt (y, t) dy =
d
dt

1∫

0

θ (y, t) dy = 0,
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consequently
⎡
⎣ρ3

⎛
⎝

x∫

0

θt (y, t) dy

⎞
⎠ (bψx − Kφ − βθt)

⎤
⎦

x=1

x=0

= 0.

Thus, we obtain

I
′
2 (t) = −γρ2

1∫

0

ψ2
t dx − δρ2

1∫

0

ψθtxdx + kρ2

1∫

0

θtxψtdx

−Kρ3

1∫

0

x∫

0

θt (y, t) dyψdx + bρ3

1∫

0

θtψxdx

−Kρ3

1∫

0

θtφdx + βρ3

1∫

0

θ2t dx.

The assertion of the lemma then follows, using Young’s and Poincare’s inequalities. �

Lemma 4.3. Let (φ, ψ, θ, z) be a solution of (2.1). Then the functional

J (t) := ρ2

1∫

0

ψt (φx + ψ) dx + ρ2

1∫

0

ψxφtdx

satisfies,

J
′
(t) ≤ [bφxψx]x=1

x=0 − K

2

1∫

0

(φx + ψ)2 dx + ρ2

1∫

0

ψ2
t dx +

β2

2K

1∫

0

θ2txdx

+
ρ2μ

2
1

2ρ1

1∫

0

φ2
t dx +

ρ2
ρ1

1∫

0

ψ2
xdx +

ρ2μ
2
2

2ρ1

1∫

0

z2(x, 1, t)dx

+
(

ρ2K

ρ1
− b

) 1∫

0

ψx (φx + ψ)x dx. (4.4)

Proof. A differentiation of J (t), using (2.1) and integration by parts, gives

J
′
(t) = [bφxψx]x=1

x=0 +
(

ρ2K

ρ1
− b

) 1∫

0

ψx (φx + ψ)x dx − K

1∫

0

(φx + ψ)2 dx

−β

1∫

0

(φx + ψ) θtxdx + ρ2

1∫

0

ψ2
t dx − ρ2μ1

ρ1

1∫

0

φtψxdx

−ρ2μ2

ρ1

1∫

0

ψxz(x, 1, t)dx. (4.5)

Young’s inequality leads to (4.4). �
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Next, to handle the boundary terms, appearing in (4.4), we exploit the following function

q (x) = 2 − 4x, x ∈ (0, 1) .

Lemma 4.4. Let (φ, ψ, θ, z) be a solution of (2.1). Then we have, ∀ε3 > 0,

[bφxψx]x=1
x=0 ≤ −ε3

K

d
dt

1∫

0

ρ1qφtφxdx − bρ2
4ε3

d
dt

1∫

0

qψtψxdx

+3ε3

1∫

0

φ2
xdx +

(
ε3 +

3b2

4ε3
+

b2

4ε33

) 1∫

0

ψ2
xdx

+
ρ2b

2ε3

1∫

0

ψ2
t dx +

K2

4
ε3

1∫

0

(φx + ψ)2 dx +
β2

4ε3

1∫

0

θ2txdx

+
(

2ρ1ε3
K

+
μ2
1

ε3

) 1∫

0

φ2
t dx +

μ2
2

ε3

1∫

0

z2(x, 1, t)dx. (4.6)

Proof. By using Young’s inequality, we easily see that, ∀ε3 > 0,

[bφxψx]x=1
x=0 ≤ ε3

[
φ2

x (1) + φ2
x (0)

]
+

b2

4ε3

[
ψ2

x (1) + ψ2
x (0)

]
. (4.7)

Also,

d
dt

1∫

0

bρ2qψtψxdx =
b2

2
[
qψ2

x

]x=1

x=0
− b2

2

1∫

0

qxψ2
xdx − ρ2b

2

1∫

0

qxψ2
t dx

−Kb

1∫

0

qψx (φx + ψ) dx − βb

1∫

0

qψxθtxdx, (4.8)

which gives

d
t

1∫

0

bρ2qψtψxdx ≤ −b2
[
ψ2

x (1) + ψ2
x (0)

]
+ 3b2

1∫

0

ψ2
xdx

+2ρ2b

1∫

0

ψ2
t dx + ε23K

2

1∫

0

(φx + ψ)2 dx

+
b2

ε23

1∫

0

ψ2
xdx + β2

1∫

0

θ2txdx. (4.9)
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Similarly, we have

d
dt

1∫

0

ρ1qφtφxdx ≤ −K
[
φ2

x (1) + φ2
x (0)

]

+ (2ε3 + 3K)

1∫

0

φ2
xdx + K

1∫

0

ψ2
xdx (4.10)

+2ρ1

1∫

0

φ2
t dx +

μ2
1

ε3

1∫

0

φ2
t dx +

μ2
2

ε3

1∫

0

z2(x, 1, t)dx.

A combination of (4.7)–(4.10) then yields the desired result. �

Lemma 4.5. Let (φ, ψ, θ, z) be a solution of (2.1). Then, the functional

Θ (t) :=

1∫

0

(
ρ3θtθ +

k

2
θ2x + γψxθ

)
dx,

satisfies, ∀ε2 > 0,

Θ
′
(t) ≤ −δ

1∫

0

θ2xdx + ε2

1∫

0

ψ2
xdx +

(
γ2

4ε2
+ ρ3

) 1∫

0

θ2t dx. (4.11)

Proof. A simple differentiation, using equation (2.1)3 and Young’s inequality gives the result. �

Lemma 4.6. Let (φ, ψ, θ, z) be a solution of (2.1). Then the functional

I3 (t) :=

1∫

0

1∫

0

e−2τρz2(x, ρ, t)dρdx,

satisfies, for some m0 > 0,

I
′
3 (t) ≤ −m0

1∫

0

1∫

0

z2(x, ρ, t)dρdx − c

τ

1∫

0

z2(x, 1, t)dx +
1
τ

1∫

0

φ2
t dx. (4.12)

Proof. Direct differentiation of I3, using (2.1)4, gives

I
′
3 (t) = −2

τ

1∫

0

1∫

0

e−2τρzzρ(x, ρ, t)dρdx

= −2

1∫

0

1∫

0

e−2τρz2(x, ρ, t)dρdx − 1
τ

1∫

0

1∫

0

∂

∂ρ

(
e−2τρz2(x, ρ, t)

)
dρdx

≤ −m0

1∫

0

1∫

0

z2(x, ρ, t)dρdx − 1
τ

1∫

0

1∫

0

∂

∂ρ

(
e−2τρz2(x, ρ, t)

)
dρdx.

Simple integration of the last term gives the result. �
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Proof of Theorem 4.1. To finalize the proof, we define the Lyapunov functional L as follows

L(t) : = NE(t) + N1I1(t) + N2I2(t) + J(t) + Θ(t) + I3 (t)

+
bρ2
4ε3

1∫

0

qψtψxdx +
ε3
K

1∫

0

ρ1qφtφxdx,

where N,N1, N2 are positive constants to be chosen properly later.
A combination of (3.12) , (4.2) , (4.4) , (4.6) , (4.11) , (4.12) and using of

1∫

0

θ2t dx ≤
1∫

0

θ2txdx,

1∫

0

φ2
xdx ≤ 2

1∫

0

(φx + ψ)2 dx + 2

1∫

0

ψ2
xdx,

we arrive at

L′ (t) ≤
[
−βkN + N1

β2

2b
+ N2C(ε2)

β2

4ε3
+

γ2

4ε2
+ ρ3

] 1∫

0

θ2txdx

+
[
N1

(
− b

2
+ ε1 (μ1 + |μ2|)

)
+ 3ε2N2 +

ρ1
ρ2

+
3b2

4ε3
+

b2

4ε33
+ 7ε3

] 1∫

0

ψ2
xdx

+
[
−NC + N1

(
ε1ρ1 +

μ1

4ε1

)
+

ρ2μ
2
1

2ρ1
+

(
2ρ1ε3

K
+

μ2
1

ε3

)
+

1
2τ

] 1∫

0

φ2
t dx

+
[
−N2ρ2γ

2
+ N1

(
ρ2 +

ρ1
4ε1

)
+ ρ2 +

ρ2b

2ε3

] 1∫

0

ψ2
t dx (4.13)

+
[
−K

2
+

(
K2

4
+ 6

)
ε3 + 2N2ε2

] 1∫

0

(φx + ψ)2 dx − δ

1∫

0

θ2xdx

+
[
−NC − c

2τ
+ N1

|μ2|
4ε1

+
μ2
2

ε3
+

ρ2μ
2
2

2ρ1

] 1∫

0

z2(x, 1, t)dx − m0

1∫

0

1∫

0

z2(x, ρ, t)dρdx

+
(

ρ2K

ρ1
− b

) 1∫

0

ψx (φx + ψ)x dx.

At this point, we choose our constants carefully. First, take

ε3 ≤ K

2

(
K2

4
+ 6

)−1

, ε1 ≤ b

2 (μ1 + |μ2|) .

Now, select N1 large enough such that

−N1

(
b

2
− ε1 (μ1 + |μ2|)

)
+

ρ1
ρ2

+
3b2

4ε3
+

b2

4ε33
+ 7ε3 = k1 < 0,

and then N2 large so that

−N2ρ2γ

2
+ N1

(
ρ2 +

ρ1
4ε1

)
+ ρ2 +

ρ2b

2ε3
< 0.



1514 M. Kafini et al. ZAMP

Next, pick ε2 so small that

k1 + 3ε2N2 < 0, −K

2
+

(
K2

4
+ 6

)
ε3 + 2N2ε2 < 0.

Finally, choose N so large that

−βkN + N1
β2

2b
+ N2C(ε2) +

β2

4ε3
+

γ2

4ε2
+ ρ3 < 0,

−NC + N1

(
ε1ρ1 +

μ1

4ε1

)
+

ρ2μ
2
1

2ρ1
+

(
2ρ1ε3

K
+

μ2
1

ε3

)
+

1
2τ

< 0,

−NC − c

2τ
+ N1

|μ2|
4ε1

+
μ2
2

ε3
+

ρ2μ
2
2

2ρ1
< 0,

and, further, for some β1, β2 > 0, we have

β1E(t) ≤ L(t) ≤ β2E(t), t ≥ 0. (4.14)

Therefore, (4.13) becomes

L′ (t) ≤ −η1

1∫

0

(
θ2t + θ2xt + ψ2

x + ψ2
t + φ2

t + (φx + ψ)2
)

dx

−m0

1∫

0

1∫

0

z2(x, ρ, t)dρdx +
(

ρ2K

ρ1
− b

) 1∫

0

ψx (φx + ψ)x dx

≤ −C1E (t) +
(

ρ2K

ρ1
− b

) 1∫

0

ψx (φx + ψ)x dx, (4.15)

where η1, C1 are two positive constants.
Up to this point, we have to distinguish two cases.

Case 1: ρ1
K = ρ2

b

In this case, (4.15) takes the form

L′ (t) ≤ −C1E (t) .

Using (4.14), we get, for α = C1/β2,

L′ (t) ≤ −αL (t) , ∀t ≥ 0. (4.16)

A simple integration of (4.16) over (0, t) leads to

L (t) ≤ L (0) e−αt, ∀t ≥ 0.

Recalling (4.14), we obtain (4.1)1. �

Case 2: ρ1
K �= ρ2

b

This case is more important from the physical point of view, where waves are not necessarily of equal
speeds. Let

E (t) = E (t, φ, ψ, θ, z) = E1 (t)

denotes the first-order energy defined in (3.10), and

E2 (t) = E (t, φt, ψt, θt, zt)
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denotes the second-order energy. Then, we have

E′
2 (t) ≤ −βk

1∫

0

θ2ttxdx − C

1∫

0

(
φ2

tt + z2t (x, 1, t)
)
dx. (4.17)

Let k0 = ρ2K
ρ1

− b. The last term in (4.15) can be handled, using (2.1)1 and Young’s inequality, as follows.

k0

1∫

0

ψx (φx + ψ)x dx =
k0
K

⎛
⎝

1∫

0

ψxφttdx + μ1

1∫

0

ψxφtdx + μ2

1∫

0

ψxz(x, 1, t)dx

⎞
⎠

≤ k0
K

⎛
⎝ 1

4ε

1∫

0

φ2
ttdx + ε

1∫

0

ψ2
xdx + ε

1∫

0

φ2
t dx +

1
4ε

1∫

0

z2(x, 1, t)dx

⎞
⎠ ,

for any ε > 0. In addition, from (3.10), we have

εk0
K

1∫

0

(
φ2

t + ψ2
x

)
dx ≤ 2εk0

γK

(
1
ρ1

+
1
b

)
E1(t).

Thus, (4.15) becomes

L′ (t) ≤
[
−C1 +

2εk0
γK

(
1
ρ1

+
1
b

)]
E1 (t) +

k0
4εK

1∫

0

(
φ2

tt + z2(x, 1, t)
)
dx. (4.18)

By choosing ε small enough, (4.18) becomes

L′ (t) ≤ −C2E1 (t) +
k0

4εK

1∫

0

(
φ2

tt + z2(x, 1, t)
)
dx, (4.19)

for some C2 > 0.
If we set

F (t) = L (t) + N3 (E1 (t) + E2 (t)) , (4.20)

then it is easy to see that, for large N3 > 0, there exist two positive constants c1 and c2 such that

c1 (E1 (t) + E2 (t)) ≤ F (t) ≤ c2 (E1 (t) + E2 (t)) . (4.21)

Exploiting (3.12),(4.17), and (4.19), we obtain

F ′(t) = L′ (t) + N3 (E′
1 (t) + E′

2 (t))

≤ −C2E1 (t) +
k0

4εK

1∫

0

(
φ2

tt + z2(x, 1, t)
)
dx

+N3

⎡
⎣−βk

1∫

0

θ2txdx − C

1∫

0

(
φ2

t + z2(x, 1, t)
)
dx

⎤
⎦ (4.22)

+N3

⎡
⎣−βk

1∫

0

θ2ttxdx − C

1∫

0

(
φ2

tt + z2t (x, 1, t)
)
dx

⎤
⎦

≤ −C2E1 (t) +
(

k0
4εK

− N3C

) 1∫

0

φ2
ttdx +

(
k0

4εK
− N3C

) 1∫

0

z2(x, 1, t)dx.
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We choose N3 large enough so that (4.21) remains valid and, further,

F ′(t) ≤ −C2E1 (t) . (4.23)

Integrating (4.23) over (0, t), yields
t∫

0

E1 (r) dr ≤ 1
C3

(F (0) − F (t)) ≤ 1
C3

F (0) ≤ c2
C3

(E1 (0) + E2 (0)) , ∀t > 0. (4.24)

Using the fact that

(tE1 (t))′ = tE′
1 (t) + E1 (t) ≤ E1 (t)

and (4.24), we get

tE1 (t) ≤ c2
C3

(E1 (0) + E2 (0)) ,

which is the desired result (4.1)2. This completes the proof. �
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