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The existence of normalized solutions for L2-critical constrained problems related
to Kirchhoff equations

Hongyu Ye

Abstract. In this paper, we study the existence of critical points for the following functional constrained on Sc = {u ∈
H1(RN )| |u|2 = c}:

I(u) =
a

2

∫

RN

|∇u|2 +
b

4

⎛
⎜⎝

∫

RN

|∇u|2
⎞
⎟⎠

2

− N

2N + 8

∫

RN

|u| 2N+8
N ,

where N = 1, 2, 3 and a, b > 0 are constants. The constraint problem is L2-critical. We showed that I(u) has a constraint

critical point with a mountain pass geometry on Sc if c > c∗ := (2−1b|Q|
8
N
2 )

N
8−2N , where Q is the unique positive radial

solution of −2ΔQ+( 4
N

−1)Q = |Q| 8
N Q in R

N . For 0 < c < c∗, I(u) has no critical point on Sc, and we proved the existence
of minimizers for a new perturbation functional on Sc:

Ea,b(u) =
a

2

∫

RN

|∇u|2 +
b

4

⎛
⎜⎝

∫

RN

|∇u|2
⎞
⎟⎠

2

− 1

4

∫

RN

V (x)|u|4 − N

2N + 8

∫

RN

|u| 2N+8
N .
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1. Introduction and main result

In the past years, the following nonlinear Kirchhoff equation

−
⎛
⎝a + b

∫

RN

|∇u|2
⎞
⎠Δu − |u|p−2u = λu, x ∈ R

N , λ ∈ R (1.1)

has attracted considerable attention, where N ≤ 3, a, b > 0 are constants and p ∈ (2, 2∗), 2∗ = 6 if N = 3
and 2∗ = +∞ if N = 1, 2.

Equation (1.1) is a nonlocal one as the appearance of the term
∫
RN |∇u|2 implies that (1.1) is not a

pointwise identity. This causes some mathematical difficulties which make the study of (1.1) particularly
interesting, see [1,2,4,6,7,13,17,20] and the references therein. The first line to study (1.1) is to consider
the case where λ is a fixed and assigned parameter, see [9,12,14–16,19,22,25]. In such direction, the
critical point theory is used to look for nontrivial solutions of (1.1); however, nothing can be given a
priori on the L2-norm of the solutions. Recently, since the physicists are often interested in “normalized
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solutions,” solutions with prescribed L2-norm are considered. Such solutions are obtained by looking for
critical points of the following C1 functional

Ip(u) =
a

2

∫

RN

|∇u|2 +
b

4

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− 1
p

∫

RN

|u|p (1.2)

constrained on the L2-spheres in H1(RN ):

Sc = {u ∈ H1(RN )| |u|2 = c, c > 0}.

Set
Ip,c2 := inf

u∈Sc

Ip(u). (1.3)

We see that minimizers of Ip,c2 are critical points of Ip|Sc
and the parameter λ is not fixed any longer

but appears as an associated Lagrange multiplier.
By the L2-preserving scaling and the well-known Gagliardo–Nirenberg inequality with the best con-

stant [23]: Let p ∈ [2, 2N
N−2 ) if N ≥ 3 and p ≥ 2 if N = 1, 2, then

|u|pp ≤ p

2|Qp|p−2
2

|∇u|
N(p−2)

2
2 |u|p− N(p−2)

2
2 , (1.4)

with equality only for u = Qp, where Qp is, up to translations, the unique positive ground state solution
of

− N(p − 2)
4

ΔQ +
(

1 +
p − 2

4
(2 − N)

)
Q = |Q|p−2Q, x ∈ R

N , (1.5)

it has been shown in [26] that p = 2N+8
N is L2-critical exponent for (1.3), namely for all c > 0, Ip,c2 > −∞

if p ∈ (2, 2N+8
N ) and Ip,c2 = −∞ if p ∈ ( 2N+8

N , 2∗).
When p = 2N+8

N , for simplicity, we use I(u) and Ic2 to denote I 2N+8
N

(u) and I 2N+8
N ,c2 , respectively.

Then, we have the following existing results:

Lemma 1.1. ([26], Theorem 1.1 and Theorem 1.2) For p = 2N+8
N , then

(1) Ic2 =

⎧⎨
⎩

0, 0 < c ≤ c∗ := (2−1b|Q 2N+8
N

| 8
N
2 )

N
8−2N ,

−∞ c > c∗.
(2) Ic2 has no minimizer for all c > 0.
(3) I(u) has no critical point on the constraint Sc for all 0 < c ≤ c∗.

In this paper, we look for critical points restricted to Sc for the L2-critical case p = 2N+8
N . To the best

of our knowledge, there is no paper on this respect. In the past years, there have been some works studying
similar L2-critical problems related to Schrödinger operators by adding a nonnegative perturbation term
1
2

∫
R2 V (x)|u|2 to get minimizers, see e.g., [8], where V (x) is locally bounded satisfying V (x) ≥ 0 and

lim
|x|→+∞

V (x) = +∞.

In our setting, when c ∈ (0, c∗], by Lemma 1.1 (3), in order to get critical points, we try to add a
nonpositive and lower perturbation term to the right-hand side of (1.2). Considering the effect of the
nonlocal term, we study the following perturbation functional

Ea,b(u) =
a

2

∫

RN

|∇u|2 +
b

4

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− 1
4

∫

RN

V (x)|u|4 − N

2N + 8

∫

RN

|u| 2N+8
N , (1.6)

where V (x) ∈ L∞
loc(R

N ) satisfies that

V (x) ≥ 0 and lim
|x|→+∞

V (x) = 0. (V )
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Then, we consider the associated minimization problem

ea,b(c2) = min
u∈Sc

Ea,b(u). (1.7)

It easily sees that ea,b(c2) ∈ (−∞, 0]. To state our main result, for a > 0 fixed, we introduce an equivalent
norm on H1(RN ):

‖u‖ =

⎛
⎝

∫

RN

(a|∇u|2 + u2)

⎞
⎠

1
2

, ∀ u ∈ H1(RN ),

which is induced by the corresponding inner product on H1(RN ). We recall in [21] that the following
minimum problem:

λ1 := inf

⎧⎪⎨
⎪⎩

⎛
⎝

∫

Ω

|∇u|2
⎞
⎠

2

| u ∈ H1
0 (Ω),

∫

Ω

V (x)|u|4 = 1

⎫⎪⎬
⎪⎭ > 0 (1.8)

is achieved by some φ ∈ H1
0 (Ω) with

∫
Ω

V (x)|φ|4 = 1 and φ > 0 a.e. in Ω, where Ω ⊂ R
N is a bounded

domain with smooth boundary and V (x) 
≡ 0 a.e. in Ω. Then, we get our main result as follows:

Theorem 1.2. If 0 < b ≤ 1
λ1
, then there exists a∗ > 0 small such that ea,b(c2) < 0 for all a ∈ (0, a∗) and

c ∈ (0, c∗), where c∗ is given in Lemma 1.1. Moreover, there exists a couple of solution (uc, λc) ∈ Sc ×R
−

satisfying the following equation

−
⎛
⎝a + b

∫

RN

|∇u|2
⎞
⎠Δu − V (x)u3 − |u| 8

N u = λcu, x ∈ R
N

with Ea,b(uc) = ea,b(c2).

For c > c∗, by Lemma 1.1 (2), it is impossible to look for minimizers of I on Sc. We must look for a
critical point of I with a minimax characterization. As far as we know, there is no paper to study L2-
critical constrained problems in this way, which was used in [3,10,26] to deal with L2 subcritical cases.
To this end, by Lemma 1.1 (1), we shall show that I possesses a kind of mountain pass geometry on Sc

(see e.g., [10]): There exists K(c) > 0 depending on c such that

γ(c) = inf
h∈Γ(c)

max
τ∈[0,1]

I(h(τ)) > max
h∈Γ(c)

max{I(h(0)), I(h(1))},

where
Γ(c) = {h ∈ C([0, 1], Sc)| h(0) ∈ BK(c), I(h(1)) < 0} (1.9)

and BK(c) = {u ∈ Sc| |∇u|22 ≤ K(c)}. Then, we will look for critical points of I on Sc at the level γ(c):

Theorem 1.3. For p = 2N+8
N and c > c∗, then problem (1.1) has at least one couple of solution (uc, λc) ∈

H1(RN ) × R
− with |uc|2 = c and I(uc) = γ(c).

We give the main idea in the proof of Theorems 1.2 and 1.3.
To prove Theorem 1.2, we see that Ea,b(u) is coercive on Sc if c < c∗. The main difficulty now is to

deal with a possible lack of compactness for minimizing sequences of ea,b(c2). Motivated by Lions [18],
we try to reduce our problem to the classical vanishing–dichotomy–compactness situation to check the
compactness and prove Theorem 1.2. To do so, a necessary step is to show that

ea,b(c2) < 0, (1.10)
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which can be proved by using the minimizers for (1.9) and restricting the ranges of a and b. We succeeded
in excluding the vanishing case with the help of (1.10) and the decay property of V (x) at infinity. To
avoid the dichotomy case, we need to obtain a strong version of subadditivity inequality

ea,b(c2) < ea,b(α2) + ea,b(c2 − α2), ∀ 0 < α < c. (1.11)

The scaling argument used in [26] to get the strong version of subadditivity inequality does not work
here since Ea,b(u) is no more an autonomous functional. To overcome this difficulty, we note that for
u ∈ Sc and θ > 1 the only scaling: uθ := θu can be used in our case, which also tells us why we add
the perturbation term 1

4

∫
RN V (x)u4 but not 1

2

∫
RN V (x)u2. By using (1.10) and such a scaling, we finally

prove that (1.11) holds, which requires more careful analysis.
Let us underline the difficulties in proving Theorem 1.3. First, since the mountain pass geometry on

Sc does not guarantee the boundedness of the Palais–Smale sequence, no minimax type theorem can be
directly used. To overcome this difficulty, we adopt the method introduced by Jeanjean in [10] to consider
an auxiliary functional Ĩ(u, t) : H1(RN ) × R → R as

Ĩ(u, t) =
ae2t

2

∫

RN

|∇u|2 +
be4t

4

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− Ne4t

2N + 8

∫

RN

|u| 2N+8
N .

With the help of Ĩ, we succeeded in constructing a bounded (PS)γ(c) sequence {vn} ⊂ Sc for I|Sc

satisfying that G(vn) → 0, where

G(u) := a

∫

RN

|∇u|2 + b

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− 2N

N + 4

∫

RN

|u| 2N+8
N .

Secondly, since we look for critical points on Sc, we have to show that {vn} strongly converges in H1(RN ).
We try to use the concentration-compactness principle to do so. As

(∫
RN |∇u|2)2 and

∫
RN |u| 2N+8

N behave
the same under L2-preserving scaling of u, it seems impossible to show that there exists t > 0 such that
I(ut) < 0 for all u ∈ H1(RN )\{0}, where ut(x) = t

N
2 u(tx). Then, it makes that the usual arguments

allowed us to benefit from “natural” constraints {u ∈ Sc| G(u) = 0} (see [3,10,26]) cannot be applied
here. To overcome this difficulty, we indeed notice that for any u ∈ H1(RN ) with G(u) < 0, there exists
a unique t0 ∈ (0, 1) such that G(ut0) = 0 and t1 > t0 such that I(ut1) < 0 and if we assume that vn ⇀ v
in H1(RN ), then ∫

RN

|∇vn|2 →
∫

RN

|∇v|2 ⇐⇒ vn → v in L2(RN ).

Hence, if by contradiction we just assume that
∫
RN |∇v|2 < lim

n→+∞
∫
RN |∇vn|2, it must lead to G(v) < 0,

by which we get a path in Γ(|v|2) to show that γ(|v|2) < γ(c). However, the function c �→ γ(c) is indeed
nondecreasing on (c∗,+∞), which induces a contradiction and completes the proof of the theorem. Our
method to show the monotonicity of c �→ γ(c) is quite different from [3,10,26] since no suitable manifold
can be used here. We succeeded in doing so by a more careful analysis that K(c) given in (1.9) is
nonincreasing on (c∗,+∞) and K(c) → 0 as c → +∞ and by an L2-preserving scaling of ∇u.

We also obtain a supplementary result to [26] in the spacial case p = 2, which will complete the proof
of the existence of constrained minimizers on Sc related to Kirchhoff equations.

Theorem 1.4. For any c > 0, then I2,c2 = − c2

2 and there is no minimizer for I2,c2 .

Throughout this paper, we use standard notations. For simplicity, we write
∫
Ω

h to mean the Lebesgue
integral of h(x) over a domain Ω ⊂ R

N . Lp := Lp(RN ) (1 ≤ p ≤ +∞) is the usual Lebesgue space with
the standard norm | · |p. We use “ →′′ and “ ⇀′′ to denote the strong and weak convergence in the related
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function space, respectively. C will denote a positive constant unless specified. We use “ :=′′ to denote
definitions and Br(x) := {y ∈ R

N | |x − y| < r}. We denote a subsequence of a sequence {un} as {un} to
simplify the notation unless specified.

The paper is organized as follows. In Sect. 2, we prove Theorem 1.2. In Sect. 3, we prove Theorem
1.3. In Sect. 4, we prove Theorem 1.4.

2. Proof of Theorem 1.2

In this section, we consider the case c ∈ (0, c∗) and the constrained minimization problem (1.7), where
c∗ is given in Lemma 1.1.

By the assumption (V ), V (x) is bounded a.e. in R
N , i.e., 0 ≤ V (x) ≤ V0 := |V (x)|∞ a.e. in R

N .

Lemma 2.1. For all c ∈ (0, c∗), then
(1) Ea,b(u) is bounded from below and coercive on Sc.
(2) ea,b(c2) ≤ 0.
Proof. (1) For any c ∈ (0, c∗) and u ∈ Sc, then by (1.4) there exists C > 0 such that

1
4

∫

RN

V (x)|u|4 ≤ V0C

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

N
2

and

N

2N + 8

∫

RN

|u| 2N+8
N ≤

( c

c∗
) 8−2N

N b

4

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

.

Hence,

Ea,b(u) ≥ b

4

(
1 −

( c

c∗
) 8−2N

N

)
|∇u|42 − V0C|∇u|N2 ,

which implies that Ea,b(u) is bounded from below and coercive on Sc.
(2) For any u ∈ Sc and t > 0, set ut(x) := t

N
2 u(tx), then ut ∈ Sc and

Ea,b(ut) =
at2

2

∫

RN

|∇u|2 +
bt4

4

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− tN

4

∫

RN

V (
x

t
)|u|4 − Nt4

2N + 8

∫

RN

|u| 2N+8
N .

Hence, by (V ), we see that ea,b(c2) ≤ Ea,b(ut) → 0 as t → 0+.

�

Lemma 2.2. If b ∈ (0, 1
λ1

], then there exists a∗ > 0 such that ea,b(c2) < 0 for all a ∈ (0, a∗) and c ∈ (0, c∗).
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Proof. For each c ∈ (0, c∗), let φc = cφ
|φ|2 , where φ is given in (1.8). Then, φc ∈ Sc. Hence, we have

E0,b(φc) =
c4

4|φ|42

⎡
⎢⎣b

⎛
⎝

∫

RN

|∇φ|2
⎞
⎠

2

−
∫

RN

V (x)|φ|4
⎤
⎥⎦ −

N
(

c
|φ|2

) 2N+8
N

2N + 8

∫

RN

|φ| 2N+8
N

=
c4

4|φ|42

⎡
⎢⎣b

⎛
⎝

∫

Ω

|∇φ|2
⎞
⎠

2

−
∫

Ω

V (x)|φ|4
⎤
⎥⎦ −

N
(

c
|φ|2

) 2N+8
N

2N + 8

∫

Ω

|φ| 2N+8
N

=
(bλ1 − 1)c4

4|φ|42
−

N( c
|φ|2 )

2N+8
N

2N + 8

∫

Ω

|φ| 2N+8
N < 0

if b ∈ (0, 1
λ1

]. Since Ea,b(φc) → E0,b(φc) as a → 0+, we see that there exists a∗ > 0 such that ea,b(c2) ≤
Ea,b(φc) < 0 for all 0 < a < a∗ and the lemma is proved. �

Lemma 2.3. If b ∈ (0, 1
λ1

] and a ∈ (0, a∗), where a∗ is given in Lemma 2.2, then the function c �→ ea,b(c2)
is continuous on (0, c∗).

Proof. The proof follows from Lemma 2.1 (1) and is similar to that of Theorem 2.1 in [5], so we omit
it. �

Lemma 2.4. If b ∈ (0, 1
λ1

] and a ∈ (0, a∗), then for any 0 < c < c∗,

ea,b(c2) < ea,b(α2) + ea,b(c2 − α2), ∀ 0 < α < c.

Proof. If b ∈ (0, 1
λ1

] and 0 < a < a∗, then ea,b(c2) < 0 for all 0 < c < c∗. Let {un} ⊂ Sc be a minimizing
sequence for ea,b(c2), then by Lemma 2.1, {un} is bounded in H1(RN ) and then by (V ), there exists
k1 > 0 such that ∫

RN

|un| 2N+8
N ≥ k1. (2.1)

Indeed, if
∫
RN |un| 2N+8

N → 0, then for any ε > 0, there exists n0 > 0 such that n > n0 implies that∫
RN |un| 2N+8

N < ε. By (V ), there exists R > 0 such that 0 ≤ V (x) < ε for all |x| ≥ R. Then, for n > n0,
there exist constants C1, C2 > 0 such that

∫

RN

V (x)|un|4 =
∫

BR(0)

V (x)|un|4 +
∫

RN\BR(0)

V (x)|un|4

≤ V0

∫

BR(0)

|un|4 + ε

∫

RN\BR(0)

|un|4

≤ V0C1|un|42N+8
N

+ εC2

≤ (V0C1 + C2)ε,

(2.2)

which implies that
∫
RN V (x)|un|4 → 0 by the arbitrary of ε and V (x) ≥ 0. Hence, by (1.4), we have

ea,b(c2) = lim
n→+∞ Ea,b(un) ≥ lim

n→+∞ −1
4

∫

RN

V (x)|un|4 = 0,
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which is a contradiction. Moreover, since ea,b(c2) < 0, for n large we have

b

⎛
⎝

∫

RN

|un|2
⎞
⎠

2

≤
∫

RN

V (x)|un|4 +
2N

N + 4

∫

RN

|un| 2N+8
N . (2.3)

Set uθ
n := θun with θ > 1, then uθ

n ∈ Sθc and for n large,

Ea,b(uθ
n) − θ2Ea,b(un) =

θ2

4

[
b(θ2 − 1)

⎛
⎝

∫

RN

|∇un|2
⎞
⎠

2

− (θ2 − 1)
∫

RN

V (x)|un|4

−2N(θ
8
N − 1)

N + 4

∫

RN

|un| 2N+8
N

]

:=
θ2

4
fn(θ),

where fn : [1,+∞) → R is given as

fn(t) = b(t2 − 1)

⎛
⎝

∫

RN

|∇un|2
⎞
⎠

2

− (t2 − 1)
∫

RN

V (x)|un|4 − 2N(t
8
N − 1)

N + 4

∫

RN

|un| 2N+8
N .

We easily see that fn(1) = 0 and by (2.3) and (2.1),

f ′
n(t)|t=1 = 2b

⎛
⎝

∫

RN

|∇un|2
⎞
⎠

2

− 2
∫

RN

V (x)|un|4 − 16
N + 4

∫

RN

|un| 2N+8
N

≤ −4(4 − N)
N + 4

∫

RN

|un| 2N+8
N ≤ −4(4 − N)

N + 4
k1 < 0.

(2.4)

Since

f ′′
n (t) = 2b

⎛
⎝

∫

RN

|∇un|2
⎞
⎠

2

− 2
∫

RN

V (x)|un|4 − 16(8 − N)
N(N + 4)

t
8−2N

N

∫

RN

|un| 2N+8
N ,

it follows that f ′′
n (t) is strictly decreasing on [1,+∞) and f ′′

n (t) < f ′′
n (t)|t=1 < 0 on [1,+∞) by (2.3).

Hence, we get that

Ea,b(uθ
n) − θ2Ea,b(un) =

θ2

4
fn(θ)

≤ θ2

4
[fn(0) + f ′

n(1)(θ − 1)] < −4 − N

N + 4
k1θ

2(θ − 1) < 0,

which implies that

ea,b(θ2c2) < θ2ea,b(c2)

by letting n → +∞. Then, we easily conclude our result and the lemma is proved. �
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Proof of Theorem 1.2

Proof. For any c ∈ (0, c∗), by Lemma 2.2, ea,b(c2) < 0. Let {un} ⊂ Sc be a minimizing sequence for
ea,b(c2), then by Lemmas 2.1, {un} is bounded in H1(RN ). We may assume that for some u ∈ H1(RN ),⎧⎪⎨

⎪⎩
un ⇀ u, in H1(RN ),

un → u, in Lq
loc(R

N ), q ∈ [1, 2∗),
un(x) → u(x), a.e. in R

N .

(2.5)

Moreover, u 
≡ 0. In fact, by contradiction, we just suppose that u ≡ 0, then by (V ) and (2.5), similarly
to (2.2), we have

∫
RN V (x)|un|4 → 0, which implies that ea,b(c2) ≥ 0. It is a contradiction. So α := |u|2 ∈

(0, c].
Next, we try to prove that u ∈ Sc. Just suppose that α < c, then u ∈ Sα. By (2.5), we have

|un|22 = |un − u|22 + |u|22 + on(1), (2.6)

where on(1) → 0 as n → +∞. By the Brezis–Lieb Lemma and Lemma 2.3, we see that

ea,b(c2) = lim
n→+∞ Ea,b(un) ≥ Ea,b(u) + lim

n→+∞ Ea,b(un − u) ≥ ea,b(α2) + ea,b(c2 − α2),

which contradicts Lemma 2.4. Then |u|2 = c. So u ∈ Sc and then by the Gagliardo–Nirenberg inequality
(1.4), un → u in Lp(RN ), p ∈ [2, 2∗). Hence, by (2.5),

ea,b(c2) ≤ Ea,b(u) ≤ lim
n→+∞ Ea,b(un) = ea,b(c2).

So u is a minimizer of ea,b(c2) and then u is a constraint critical point of Ea,b on Sc. Therefore, there
exists λc ∈ R such that E′

a,b(u)−λcu = 0 in H−1(RN ), i.e., (u, λc) is a couple of solution to the following
equation

−
⎛
⎝a + b

∫

RN

|∇u|2
⎞
⎠Δu − V (x)u3 − |u| 8

N u = λcu.

Moreover, the fact that Ea,b(u) < 0 shows that

λcc
2 = 〈E′

a,b(u), u〉 = 4Ea,b(u) − a

∫

RN

|∇u|2 − 4 − N

N + 4

∫

RN

|u| 2N+8
N < 0,

i.e., λc < 0. �

3. Proof of Theorem 1.3

In this section, we consider the case c > c∗. Let us first show that I possesses a mountain pass geometry
on Sc.

Lemma 3.1. For any c > c∗, there exists K(c) > 0 depending on c such that

γ(c) = inf
h∈Γ(c)

max
τ∈[0,1]

I(h(τ)) > max
h∈Γ(c)

max{I(h(0)), I(h(1))}, (3.1)

where
Γ(c) = {h ∈ C([0, 1], Sc)| h(0) ∈ BK(c), I(h(1)) < 0} (3.2)

and BK(c) = {u ∈ Sc| |∇u|22 ≤ K(c)}. Moreover, K(c) is nonincreasing on (c∗,+∞) and K(c) → 0 as
c → +∞.
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Proof. For any k > 0, set

Bk := {u ∈ Sc| |∇u|22 ≤ k}.

For any u ∈ Sc, by (1.4), we have

I(u) ≥ a

2
|∇u|22 −

( c

c∗
) 8−2N

N b

4
|∇u|42,

which implies that

I(u) ≥ a

4
|∇u|22 for all 0 < |∇u|22 ≤ k1(c) :=

a

b

(
c∗

c

) 8−2N
N

.

Since |I(u)| → 0 as |∇u|2 → 0+, there exist 0 < k0(c) < k1(c) such that

0 < sup
u∈Bk0(c)

I(u) < inf
u∈∂Bk1(c)

I(u) and I(u) > 0 for all u ∈ Bk1(c). (3.3)

Moreover, it easily sees that k1(c) → 0 as c → +∞. Then, without loss of generality, we may assume that
k0(c) is nonincreasing on (c∗,+∞).

For any t > 0, set

Qt(x) :=
ct

N
2 Q(tx)
|Q|2 ,

where Q := Q 2N+8
N

is given in (1.5). Then, Qt ∈ Sc, |∇Qt|2 = tc|∇Q|2 and

I(Qt) =
ac2

2
t2 −

[( c

c∗
) 8−2N

N − 1
]

bc4

4
t4 → −∞ as t → +∞.

Hence, there exist t1 > 0 small and t2 > 0 large such that

|∇Qt1 |22 ≤ k0(c),

|∇Qt2 |22 > k1(c) and I(Qt2) < 0.

Set K(c) := k0(c), then K(c) is nonincreasing on (c∗,+∞) and lim
c→+∞ K(c) = 0. Let

h(τ) := Q(1−τ)t1+τt2 , τ ∈ [0, 1].

Then h ∈ Γ(c), i.e., Γ(c) 
= ∅. For any h ∈ Γ(c), |∇h(0)|22 ≤ K(c) = k0(c) < k1(c) < |∇h(1)|22. Then,
there exists τ0 ∈ (0, 1) such that |∇h(τ0)|22 = k1(c), i.e., h(τ0) ∈ ∂Bk1(c). So by (3.3), we have

max
τ∈[0,1]

I(h(τ)) ≥ I(h(τ0)) ≥ inf
u∈∂Bk1(c)

I(u) > sup
u∈Bk0(c)

I(u) ≥ I(h(0)) > 0,

which implies that

γ(c) ≥ max
h∈Γ(c)

max{I(h(0)), I(h(1))}

since h ∈ Γ(c) is arbitrary. �

Remark 3.2. As it is clear from the proof of Lemma 3.1, we can assume that

sup
u∈BK(c)

I(u) <
γ(c)
2

.
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In order to obtain a bounded (PS)γ(c) sequence for I|Sc
, we define a map H(u, t) : H1(RN ) × R →

H1(RN ) as

H(u, t)(x) = e
N
2 tu(etx)

and define a C1 functional Ĩ(u, t) : H1(RN ) × R → R as

Ĩ(u, t) =
ae2t

2

∫

RN

|∇u|2 +
be4t

4

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− Ne4t

2N + 8

∫

RN

|u| 2N+8
N ,

i.e., Ĩ(u, t) = I(H(u, t)). It easily sees that for all t ∈ R, H(u, t) ∈ Sc if u ∈ Sc.

Lemma 3.3. For any c > c∗,

γ̃(c) = inf
h∈Γ̃(c)

max
τ∈[0,1]

Ĩ(h(τ))

is well defined with

Γ̃(c) = {h ∈ C([0, 1], Sc × R)| H(h(0)) ∈ BK(c), Ĩ(h(1)) < 0},

where BK(c) is given in Lemma 3.1. Moreover, γ̃(c) = γ(c).

Proof. By the definition of H(u, t), we see that Γ(c)×{0} ⊂ Γ̃(c), then Γ̃(c) 
= ∅ and γ̃(c) is well defined.
Moreover, H(Γ̃(c)) = Γ(c), which implies that γ̃(c) = γ(c). �

Denote E := H1(RN ) × R. Let E be equipped with a norm defined by

‖(u, t)‖E = (‖u‖2 + |s|2) 1
2 , ∀ (u, t) ∈ E,

which is induced by the corresponding scalar product

〈(u, t), (v, s)〉E =
∫

RN

(a∇u∇v + uv) + ts, ∀ (u, t), (v, s) ∈ E.

We recall in [24] that for any c > 0, Sc is a submanifold of H1(RN ) with codimension 1 and the tangent
space at u ∈ Sc is defined as Tu = {v ∈ H1(RN )| ∫

RN uv = 0}. The norm of the derivative of I|S(c) is
defined by

‖(I|Sc
)′(u)‖∗ = sup

v∈Tu,‖v‖=1

〈I ′(u), v〉.

Similarly, the tangent space at (u, t) ∈ Sc × R is T̃(u,t) = {(v, s) ∈ E| ∫
RN uv = 0}. The norm of the

derivative of Ĩ|Sc×R is defined by

‖(Ĩ|Sc×R)′(u, t)‖∗ = sup
(v,s)∈T̃(u,t),‖(v,s)‖E=1

〈Ĩ ′(u, t), (v, s)〉.

Lemma 3.4. For c > c∗, then there exists a sequence {vn} ⊂ Sc such that
(1) I(vn) → γ(c) as n → +∞;
(2) ‖(I|Sc

)′(vn)‖∗ → 0 as n → +∞;
(3) G(vn) → 0, where

G(u) = a

∫

RN

|∇u|2 + b

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− 2N

N + 4

∫

RN

|u| 2N+8
N ; (3.4)

(4) {vn} is bounded in H1(RN ).
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Proof. The proof is similar to that of Lemma 2.4 in [10]. We give a detailed proof here for readers’
convenience.

Let {hn} ⊂ Γ(c) satisfy max
τ∈[0,1]

I(hn(τ)) ≤ γ(c) + 1
n . Set h̃n(τ) := (hn(τ), 0), then h̃n ∈ Γ̃(c) and

max
τ∈[0,1]

Ĩ(h̃n(τ)) ≤ γ̃(c) +
1
n

since γ̃(c) = γ(c). By Proposition 2.2 in [10], there exists a sequence {(un, tn)} ⊂ Sc × R satisfying

Ĩ(un, tn) → γ̃(c), ‖(Ĩ|Sc×R)′(un, tn)‖∗ → 0 (3.5)

and

min
τ∈[0,1]

‖(un, tn) − h̃n(τ)‖E → 0.

Set vn := H(un, tn), then vn ∈ Sc. By Lemma 3.3 and (3.5), we have

I(vn) → γ(c). (3.6)

For any (w, s) ∈ H1(RN ) × R, we have

〈Ĩ ′(un, tn), (w, s)〉 = 〈I ′(vn),H(w, tn)〉 + G(vn)s. (3.7)

Let (w, s) = (0, 1) ∈ T̃(un,tn), it follows from (3.5) that

G(vn) → 0. (3.8)

For any w ∈ Tvn
, if we take s = 0 in (3.7), then we have

〈I ′(vn), w〉 = 〈Ĩ ′(un, tn), (H(w,−tn), 0)〉. (3.9)

Moreover,
w ∈ Tvn

⇐⇒ (H(w,−tn), 0) ∈ T̃(un,tn).

Then, by (3.9) and (3.5), we see that to prove that ‖(I|Sc
)′(vn)‖∗ → 0 is equivalent to show that

{(H(w,−tn), 0)} is uniformly bounded in E for n large, which is indeed ensured by the fact that

|tn| ≤ min
τ∈[0,1]

‖(un, tn) − h̃n(τ)‖E ≤ 1 for n large.

Since

I(vn) − 1
4
G(vn) =

a

4

∫

RN

|∇vn|2,

it follows from (3.6) and (3.8) that {vn} is bounded in H1(RN ). �

In order to prove Theorem 1.3, we need the following two crucial lemmas.

Lemma 3.5. The function c �→ γ(c) is nonincreasing on (c∗,+∞).

Proof. For any c∗ < c1 < c2 < +∞, it is enough to show that γ(c2) ≤ γ(c1).
Let {hn} ⊂ Γ(c1) be a sequence of paths such that

max
τ∈[0,1]

I(hn(τ)) ≤ γ(c1) +
1
n

. (3.10)

Take u ∈ BK(c2), i.e., u ∈ Sc2 and |∇u|22 ≤ K(c2). By Lemma 3.1, K(c2) ≤ K(c1). Let γn(τ) ∈
C([0, 1

2 ], BK(c1)) satisfy that γn(0) = c1
c2

u and γn( 1
2 ) = hn(0). Then, we define a new path h̃n : [0, 1] → Sc1

as follows:

h̃n(τ) =

{
γn(τ), τ ∈ [0, 1

2 ],

hn(2τ − 1), τ ∈ [ 12 , 1].
(3.11)
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It is easy to see that h̃n ∈ Γ(c1). Moreover, we conclude from Remark 3.2 that

max
τ∈[0,1]

I(h̃n(τ)) = max
τ∈[ 12 ,1]

I(h̃n(τ)) = max
τ∈[0,1]

I(hn(τ)). (3.12)

Set

gn(τ) :=
(

c2

c1

)1−N
2

h̃n

(
c1

c2
τ

)
.

Then, |gn|2 = c2, i.e., gn ∈ Sc2 and for all τ ∈ [0, 1],

∫

RN

|∇gn(τ)|2 =
∫

RN

|∇h̃n(τ)|2,
∫

RN

|gn(τ)| 2N+8
N =

(
c2

c1

) 8−2N
N

∫

RN

|h̃n(τ)| 2N+8
N . (3.13)

Hence, by (3.11) and (3.13), we have gn(0) ∈ BK(c2) and I(gn(1)) < I(h̃n(1)) < 0, so gn ∈ Γ(c2). There
exists a sequence {τn} ⊂ (0, 1) such that I(gn(τn)) = max

τ∈[0,1]
I(gn(τ)), then by (3.10)–(3.13), we have

γ(c2) ≤ max
τ∈[0,1]

I(gn(τ)) = I(gn(τn))

< I(h̃n(τn)) ≤ max
τ∈[0,1]

I(h̃n(τ))

≤ max
τ∈[0,1]

I(hn(τ)) ≤ γ(c1) +
1
n

,

which implies the conclusion by letting n → +∞. �

Lemma 3.6. For any u ∈ H1(RN ) with G(u) < 0, where G is given in (3.4), then

(1) there exists a unique 0 < t0 < 1 such that G(ut0) = 0, where ut(x) = t
N
2 u(tx).

(2) there exists t1 > t0 such that I(ut1) < 0.
(3) Moreover, I(ut0) = max

t∈[0,1]
I(utt1) = max

t>0
I(ut).

Proof. Since G(u) < 0 implies that u 
≡ 0, G(ut) > 0 if t > 0 is small. Then, it must have a unique
t0 ∈ (0, 1) such that G(ut0) = 0. Indeed, the uniqueness is ensured by the fact that G(utt0) < t4G(ut0) = 0
for all t > 1.

By G(u) < 0, we have

b

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

<
2N

N + 4

∫

RN

|u| 2N+8
N .

Then,

I(ut) =
at2

2

∫

RN

|∇u|2 +
t4

4

⎡
⎢⎣b

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− 2N

N + 4

∫

RN

|u| 2N+8
N

⎤
⎥⎦ → −∞

as t → +∞. Hence, there exists t1 > 0 large such that I(ut1) < 0. Since I(ut) > 0 for t > 0 small and
G(vt) = t ∂

∂tI(vt), we see that t1 > t0 and I(ut0) = max
t∈[0,1]

I(utt1). Moreover, we see that I(ut) < 0 for all

t > t1, which shows that I(ut0) = max
t>0

I(ut). �
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Proof of Theorem 1.3

Proof. For any c > c∗, by Lemma 3.4, there exists a bounded sequence {vn} ⊂ Sc such that

I(vn) → γ(c), ‖(I|Sc
)′(vn)‖∗ → 0 and G(vn) → 0. (3.14)

Since γ(c) > 0, by the vanishing lemma, we may assume that, up to a subsequence and up to translations,

vn ⇀ v in H1(RN ) (3.15)

for some v 
≡ 0. Moreover, there exists A ∈ R\{0} such that∫

RN

|∇vn|2 → A2. (3.16)

By (3.14), there exists a sequence {λn} ⊂ R such that

I ′(vn) − λnvn → 0 in H−1(RN ). (3.17)

Then, by (3.16), we have

λn =
〈I ′(vn), vn〉

c2
→ λc := −4 − N

2Nc2
(aA2 + bA4) < 0. (3.18)

To complete the proof, it is enough to show that∫

RN

|∇v|2 = A2 (3.19)

holds. Indeed, if (3.19) holds, then
|∇vn − ∇v|2 → 0, (3.20)

hence by the Gagliardo–Nirenberg inequality (1.4) and the boundedness of {vn},

vn → v in Lp(RN ), ∀ 2 < p < 2∗. (3.21)

Then, by (3.15), (3.17) and (3.20), we have

〈I ′(vn) − λnvn − I ′(v) − λcv, vn − v〉 → 0,

which and (3.18)–(3.21) show that vn → v in L2(RN ), i.e., vn → v in H1(RN ). So, v ∈ Sc and (v, λc) is
a couple of solution of (1.1) with I(v) = γ(c).

We next prove (3.19) by contradiction. We just suppose that
∫
RN |∇v|2 < A2. Then, α := |v|2 ∈ (0, c).

By (3.14)–(3.18), we see that v is a nontrivial critical point of the following local functional

IA(v) =
a + bA2

2

∫

RN

|∇v|2 − N

2N + 8

∫

RN

|v| 2N+8
N .

Then, v satisfies the following Pohozaev identity

PA(v) :=
(N − 2)(a + bA2)

2

∫

RN

|∇v|2 − N2

2N + 8

∫

RN

|v| 2N+8
N = 0,

hence GA(v) := N
2 〈I ′

A(v), v〉 − PA(v) = 0, i.e.,

(a + bA2)
∫

RN

|∇v|2 − 2N

N + 4

∫

RN

|v| 2N+8
N = 0.
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So G(v) < 0. By Lemma 3.6, there exists a unique t0 ∈ (0, 1) and t1 > t0 such that G(vt0) = 0 and
I(vt1) < 0, where vt(x) := t

N
2 v(tx). Then, vtt1 ∈ Γ(α). Moreover, by Lemma 3.6, I(vt0) = max

t∈[0,1]
I(vtt1).

Then, by (3.14) and (3.15), we have

γ(α) ≤ max
t∈[0,1]

I(vtt1) = I(vt0) = I(vt0) − 1
4
G(vt0)

=
at20
4

∫

RN

|∇v|2

<
a

4

∫

RN

|∇v|2

≤ lim inf
n→+∞

⎛
⎝a

4

∫

RN

|∇vn|2
⎞
⎠ = lim inf

n→+∞

[
I(vn) − 1

4
G(vn)

]
= γ(c),

which contradicts Lemma 3.5. Then, we have completed the proof of the theorem. �

4. Proof of Theorem 1.4

Proof of Theorem 1.4

Proof. The idea of the proof comes from [11].
(1) For any c > 0 and u ∈ Sc, then I2(u) ≥ − c2

2 . Set ut(x) := t
N
2 u(tx), t > 0. Then, ut ∈ Sc and

I2,c2 ≤ I2(ut) =
at2

2

∫

RN

|∇u|2 +
bt4

4

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

− 1
2

∫

RN

|u|2 → −c2

2

as t → 0+. So I2,c2 = − c2

2 .
Just suppose that there exists u ∈ Sc such that I2(u) = I2,c2 = − c2

2 , then it follows that

0 <
a

2

∫

RN

|∇u|2 +
b

4

⎛
⎝

∫

RN

|∇u|2
⎞
⎠

2

= 0,

which is a contradiction.
�
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4. Bernstain, S.: Sur une classe d’équations fonctionelles aux dérivées partielles. Bull. Acad. Sci. URSS. Sér. 4, 17–26 (1940)
5. Bellazzini, J., Siciliano, G.: Scaling properties of functionals and existence of constrained minimizers. J. Funct.

Anal. 261, 2486–2507 (2011)
6. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Global existence and uniform decay rates for the Kirchhoff–

Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6(6), 701–730 (2001)



Vol. 66 (2015) Existence of normalized solutions 1497

7. D’Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent.
Math. 108(2), 247–262 (1992)

8. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett.
Math. Phys. 104, 141–156 (2014)

9. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R
3. J.

Differ. Equ. 252, 1813–1834 (2012)
10. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. Theory T.

M. & A. 28(10), 1633–1659 (1997)
11. Jeanjean, L., Luo, T.J.: Sharp nonexistence results of prescribed L2-norm solutions for some class of Schrödinger–Poisson

and quasi-linear equations. Z. Angrew. Math. Phys. 64(4), 937–954 (2013)

12. Jin, J.H., Wu, X.: Infinitely many radial solutions for Kirchhoff-type problems in R
N . J. Math. Anal. Appl. 369, 564–

574 (2010)
13. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
14. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R

3. J.
Differ. Equ. 257, 566–600 (2014)

15. Li, G.B., Ye, H.Y.: Existence of positive solutions for nonlinear Kirchhoff type problems in R
3 with critical Sobolev

exponent. Math. Methods Appl. Sci. 37, 2570–2584 (2014)
16. Li, Y. et al.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ.

Equ. 253, 2285–2294 (2012)
17. Lions J.L.: On some questions in boundary value problems of mathmatical physics. In: Contemporary Development in

Continuum Mechanics and Partial Differential Equations, North-Holland Math. Stud., Vol. 30, North-Holland, Amster-
dam, New York, pp. 284–346 (1978)

18. Lions, P.L.: The concentration-compcatness principle in the calculus of variations. The locally compact case. I.. Ann.
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