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Twisted stacked central configurations for the spatial nine-body problem
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Abstract. In this article, we study the existence of the twisted stacked central configurations for the nine-body problem.

More precisely, the position vectors x1, x2, x3, x4 and x5 are at the vertices of a square pyramid Σ; the position vectors
x6, x7, x8 and x9 are at the vertices of a square Π; the square (x1, x2, x3, x4) and the square (x6, x7, x8, x9) have twisted
angle π/4.
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1. Introduction and main results

The Newtonian n-body problem [1–3] consists in the study of a system formed by n punctual bod-
ies located at x1, x2, . . . , xn, xi ∈ Rd, d = 2, 3 with positive masses m1,m2, . . . ,mn interacting among
themselves by their mutual gravitational attraction according to Newtonian law:

miẍi = −
n∑

j=1,j �=i

mimj(xi − xj)
r3ij

, (1.1)

for i = 1, 2, . . . , n. Here rij = |xi − xj | is the Euclidean distance between xi and xj .
The space of configuration is defined by

X = {(x1, . . . , xn) ∈ (Rd)n : xi �= xj for all i �= j},

while the center of mass is given by

c = (m1x1 + · · · + mnxn)/M,

where M = m1 + · · · + mn is the total mass.
At a given instant t = t0, the n bodies are in a central configuration [4,5] if there exists λ �= 0 such

that

− λ(xi − c) =
n∑

j=1,j �=i

mj(xj − xi)
r3ij

, i = 1, 2, . . . , n. (1.2)

Two central configurations are said to be equivalent if one can be transformed to the other by a scalar
multiplication and a rotation. So, we can study the classes of central configurations defined by the above
equivalence relation.

There are several reasons why central configurations are of special importance in the study of the
n-body problem, see [3–10] for details.

In 2005, for five-body problem, Hampton [11] provides a new family of planar central configurations
called stacked central configurations, completed by Llibre and Mello [12]. Mello, Chaves, Fernandes and
Garcia [13] consider the Stacked central configurations for the spatial six-body problem. Zhang and Zhou
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Fig. 1. Twisted stacked central configurations for the spatial nine-body problem

[14] showed the existence of double pyramidal central configurations of N +2-body problem. The authors
[15–17] provided new examples of stacked central configurations for the spatial seven-body problem.

In this paper, we find new classes of stacked spatial central configurations for the nine-body problem
which have five bodies at the vertices of a square pyramid and the other four bodies are located at the
vertices of a square. More precisely, the spatial central configurations considered here satisfy (see Fig. 1):
the position vectors x1, x2, x3, x4 and x5 are at the vertices of a square pyramid Σ; the position vectors
x6, x7, x8 and x9 are at the vertices of a square Π; the square (x1, x2, x3, x4) and the square(x6, x7, x8, x9)
have twisted angle π/4.

We can assume

x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (−1, 0, 0), x4 = (0,−1, 0), x5 = (0, 0, h),

x6 =

(√
2

2
x,

√
2

2
x, y

)
, x7 =

(
−

√
2

2
x,

√
2

2
x, y

)
,

x8 =

(
−

√
2

2
x,−

√
2

2
x, y

)
, x9 =

(√
2

2
x,−

√
2

2
x, y

)
,

(1.3)

where x > 0, y ∈ R and y �= 0, the positive constant h satisfies the equation

2
r315

=
1

r312
+

1
r313

,

(see [14]), that is, h ≈ 1.26276522.
The main results of this paper are the following.
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Fig. 2. The regions D1 and D2

Theorem 1.1. Consider the spatial configurations according to Fig. 1, in order that the nine mass points
are in a central configuration, the following statements are necessary:
1. The masses m1,m2,m3 and m4 must be equal;
2. The masses m6,m7,m8 and m9 must be equal.

Theorem 1.2. Let

D1 = {(x, y)|a11 < 0, a12 > 0, a13 < 0, a21 > 0, a23 < 0},

D2 = {(x, y)|a11 > 0, a12 < 0, a13 > 0, a21 < 0, a23 > 0},

which can be seen in Fig. 2, where a11, a12, a13, a21, a23 are defined in (2.11). Under the assumption
(1.3) and the necessary statements in Theorem 1.1, there exist some points in T−1(0) ∩ (D1 ∪ D2) and
accordingly the positive masses m1,m5,m6, such that the nine bodies form a spatial central configuration
(see Fig. 1), where T is defined in (2.8).

2. Proof of Theorem 1.1

From Eq. (1.2), it is easy to obtain

λ(xi − xj) = (mi + mj)dij(xi − xj) +
∑

k �=i,j

[dik(xi − xk) − djk(xj − xk)] (2.1)

where dij = 1/r3ij . Taking the wedge product of Eq. (2.1) with the vector xi − xj we get [7,18]

fij =
∑

k �=i,j

mk(dik − djk)Δijk = 0,

where Δijk = (xi − xj) ∧ (xi − xk). The above equations, in the particular case of a planar central
configuration, are known as the Laura–Andoyer equations, and the bi-vector Δijk is simply twice the
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oriented area of the triangle (qi, qj , qk). Taking the wedge product of Eq. (2.1) with (xi − xj) ∧ (xj − xl),
we get (see equation (6), p. 295 of [7] and the references therein)

fijk =
n∑

l=1,l �=i,j,k

ml(dil − djl)Δijkl = 0, (2.2)

for 1 ≤ i < j ≤ n, k = 1, . . . , n, k �= i, j. Here, Δijkl = (xi − xj) ∧ (xi − xk) · (xi − xl). Thus, Δijkl gives
six times the signed volume of the tetrahedron formed by the bodies with positions xi, xj , xk and xl;
Eq. (2.2) is a system of n(n − 1)(n − 2)/2 equations, which are called Dziobek–Laura–Andoyer equations
([16]). For the nine-body problem, the system of Eq. (2.2) provides 252 equations. According to Fig. 1,
our class of configurations with nine bodies must satisfy

r12 = r23 = r34 = r14 =
√

2, r13 = r24 = 2,

r67 = r78 = r89 = r69 =
√

2x, r68 = r79 = 2x,

r16 = r19 = r26 = r27 = r37 = r38 = r48 = r49 =
√

x2 −
√

2x + 1 + y2,

r17 = r18 = r28 = r29 = r36 = r39 = r46 = r47 =
√

x2 +
√

2x + 1 + y2,

r15 = r25 = r35 = r45 =
√

1 + h2,

r56 = r57 = r58 = r59 =
√

x2 + (y − h)2. (2.3)

Due to the assumption (1.3) and the definition of Δijkl, we have several symmetries in the signed volumes.
By using the symmetries and the properties of Δijkl, we obtain the following results.

Lemma 2.1. In order to have a spatial central configuration according to Fig. 1, a necessary condition is
that the masses m1,m2,m3 and m4 must be equal.

Proof. It is sufficient to consider the equations f678 = 0, f681 = 0 and f786 = 0.

f678 = (m1 − m3)(d16 − d17)Δ6,781 = 0,

f681 = (m2 − m3)(d26 − d28)Δ6,812 = 0,

f786 = (m2 − m4)(d27 − d28)Δ7,862 = 0.

For our class of central configurations, we have d16 −d17 = d26 −d28 = d27 −d28 �= 0, Δ6,781 = Δ7,862 �= 0
and Δ6,812 �= 0. So, the above equations hold if and only if m1 = m2 = m3 = m4. So the statement 1 of
Theorem 1.1 is proved. �

Lemma 2.2. If the configuration according to Fig. 1 is a central configuration, a necessary condition is
that the masses m6,m7,m8 and m9 must be equal.

By the symmetries of the configurations studied here, Lemma 2.2 can be easily obtained. The proof
of Theorem 1.1 is completed.

Due to Lemmas 2.1 and 2.2, henceforth, we restrict the set of admissible masses to

m1 = m2 = m3 = m4 = α, m6 = m7 = m8 = m9 = β.
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In order to study the given twisted stacked central configurations, it is sufficient to study the following 4
equations:

f152 = β((d16 − d56)(Δ1,526 + Δ1,529) + (d17 − d57)(Δ1,527 + Δ1,528)) = 0, (2.4)
f164 = α(d12 + d13 − d16 − d17)Δ1,642

+m5(d15 − d56)Δ1,645 + β(d17 − d16)Δ1,647 = 0, (2.5)
f165 = α((d12 + d13 − d16 − d17)Δ1,653 + (d16 − d17)Δ1,654)

+β((d17 − d16)Δ1,657 + (d16 + d17 − d67 − d68)Δ1,658) = 0, (2.6)
f561 = α((d15 − d16)Δ5,612 + (d15 − d17)Δ5,613 + (d15 − d17)Δ5,614)

+β((d56 − d67)Δ5,617 + (d56 − d68)Δ5,618 + (d56 − d67)Δ5,619) = 0. (2.7)

If we write

f152 = βT = β((d16 − d56)(Δ1,526 + Δ1,529) + (d17 − d57)(Δ1,527 + Δ1,528)) = 0,

it follows that

T = (d16 − d56)(Δ1,526 + Δ1,529) + (d17 − d57)(Δ1,527 + Δ1,528) = 0. (2.8)

So in the following, we restrict our central configurations in the set T−1(0).

Lemma 2.3. According to our assumptions and in the set T−1(0), the system of Eq. (2.2) is satisfied if
the Eqs. (2.5) and (2.6) are satisfied.

Proof. Under the assumptions (1.3), we have

T = (d16 − d56)(2y +
√

2hx − 2h) + (d17 − d56)(2y −
√

2hx − 2h) = 0,

that is,

4(y − h)d56 = 2(y − h)(d16 + d17) +
√

2hx(d16 − d17). (2.9)

Substituting Eq. (2.9) into Eq. (2.7), we obtain the equation −f165 = 0.
Hence, in the set T−1(0), f165 = 0 implies f561 = 0. This completes the proof. �

From Lemma 2.3, in order to study central configurations according to Fig. 1 in the set T−1(0), it is
sufficient to study the following two equations:

f164 = 0, f165 = 0. (2.10)
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Denote by A = (aij) the matrix of the coefficients of the homogeneous linear system in the variables
α,m5, β defined by Eq. (2.10). Thus,

a11 = (d12 + d13 − d16 − d17)Δ1,642

= 2y

(
1

2
√

2
+

1
8

− 1
(x2 − √

2x + 1 + y2)
3
2

− 1
(x2 +

√
2x + 1 + y2)

3
2

)
,

a12 = (d15 − d56)Δ1,645 = (y − h)
(

1
(1 + h2)

3
2

− 1
(x2 + (y − h)2)

3
2

)
,

a13 = (d17 − d16)Δ1,647 =
√

2xy

(
1

(x2 +
√

2x + 1 + y2)
3
2

− 1
(x2 − √

2x + 1 + y2)
3
2

)
,

a21 = (d12 + d13 − d16 − d17)Δ1,653 + (d16 − d17)Δ1,654

=
√

2hx

(
1
8

+
1

2
√

2
− 1

(x2 − √
2x + 1 + y2)

3
2

− 1
(x2 +

√
2x + 1 + y2)

3
2

)

+(y − h)
(

1
(x2 +

√
2x + 1 + y2)

3
2

− 1
(x2 − √

2x + 1 + y2)
3
2

)
,

a22 = 0,

a23 = (d17 − d16)Δ1,657 + (d16 + d17 − d67 − d68)Δ1,658

= hx2

(
1

(x2 +
√

2x + 1 + y2)
3
2

− 1
(x2 − √

2x + 1 + y2)
3
2

)

−
√

2x(y − h)
(

1
(x2 +

√
2x + 1 + y2)

3
2

+
1

(x2 − √
2x + 1 + y2)

3
2

− 1
8x3

− 1
2
√

2x3

)
. (2.11)

Let x =

⎛

⎝
α

m5

β

⎞

⎠ . Then, in order to get the spatial central configuration as in Fig. 1, we need to find

positive solution α,m5, β of the following system:

Ax = 0. (2.12)

2.1. The existence of spatial central configurations

In order to prove the existence of positive solutions of (2.12) in the set T−1(0), it is sufficient to prove
that the entries in each row of A change the signs. So, if the entries of some row of A have the same signs,
there are no admissible masses such that the bodies are in a central configuration according to Fig. 1.

Proof of Theorem 1.2. Since the rank of matrix A is two in the set T−1(0), there are nontrivial solutions
of (2.12) in the set T−1(0).

Firstly, we prove the existence of spatial central configurations for some points in the set D1 (see
Fig. 2). In order to prove the existence of positive solutions of (2.12) in the set T−1(0), the entries
a21, a23 of the second line in the matrix A should have opposite signs. Thus, we consider the following
set D1, where D1 is surrounded by curves x = 0, y = 0, a21 = 0 and a23 = 0.

In the set D1, the entries of the matrix A have the following signs: a21 > 0, a23 < 0 (see Figs. 3, 4);
a11 < 0, a12 > 0 for D1 ⊂ E1, where E1 is surrounded by curves x = 0, y = 0, a11 = 0, a12 = 0, and in
which y > 0 (see Figs. 5, 6, 7); a13 < 0 for d17 − d16 < 0 for all x > 0. In short, the signs of the entries
of the matrix A restricted to the set D1 are the following:

A =
(− + −

+ 0 −
)

.
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Fig. 3. The curve a21 = 0
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Fig. 4. The curve a23 = 0
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Fig. 5. The regions E1 and E2
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Fig. 6. The curve a11 = 0



Vol. 66 (2015) Twisted stacked central configurations for the spatial nine-body problem 1337

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

x

y

+

+
−

−

Fig. 7. The curve a12 = 0

In the rest of the proof, we show that the set T−1(0) has intersection with the set D1. We consider
the subset of D1 :

L1 = {(x, y) : x = 0.3, 0 < y < 0.44917949}.

Obviously, L1 is a segment with endpoints

P1 = (0.3, 0), P2 = (0.3, 0.44917949).

(See Fig. 8). Evaluating the function T at these points, we have

T (P1) = −2.99580811 < 0, T (P2) = 2.67822008 > 0.

Thus, there exists a point P0(x0, y0) ∈ L1, such that T (P0) = 0. So, at the point P0, we have nontrivial
positive solutions of (2.12). By continuity of the entries of the matrix A, an interval I1 containing x0 such
that for each x ∈ I1, there exists y with (x, y) ∈ T−1(0) ∩ D1, we have positive solutions of (2.12).

Secondly, we prove the existence of spatial central configurations according to Fig. 1 for some points
in the set D2 (see Fig. 2). In order to prove the existence of positive solutions of (2.12) in the set T−1(0),
the entries a21, a23 of the second line in the matrix A should have opposite signs. Thus, we consider the
following set D2, where D2 is surrounded by curves y = 0, a21 = 0, a23 = 0, and in which y < 0.

In the set D2, the entries of the matrix A have the following signs: a21 < 0, a23 > 0 (see Figs. 3, 4);
a11 > 0, a12 < 0 for D2 ⊂ E2, where E2 is surrounded by curves x = 0, y = 0, a11 = 0, a12 = 0, and in
which y < 0 (see Figs. 5, 6, 7); a13 > 0 for d17 − d16 is negative for all x > 0. In short, the signs of the
entries of the matrix A restricted to the set D2 are the following:

A =
(

+ − +
− 0 +

)
.

In the rest, the proof we show that the set T−1(0) has intersection with the set D2. We consider the
subset of D2 :

L2 = {(x, y) : x = 1.3,−0.36022766 < y < 0}.
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Obviously, L2 is a segment with endpoints

Q1 = (1.3, 0), Q2 = (1.3,−0.36022766),

(See Fig. 8). Evaluating the function T at these points, we have

T (Q1) = 0.08596624 > 0, T (Q2) = −0.78277013 < 0.

Thus, there exists a point Q0 = (x′
0, y

′
0) ∈ L2, such that T (Q0) = 0. So, at the point Q0, we have nontrivial

positive solutions of (2.12). By continuity of the entries of the matrix A, an interval I2 containing x′
0 such

that for each x ∈ I2, there exists y with (x, y) ∈ T−1(0) ∩ D2, we have positive solutions of (2.12).
Thus, the proof of Theorem 1.2 is completed. �

Remarks. In order to give some information about the values of the masses and positions at P0(x0, y0) ∈
L1, we consider

α = m1 = m2 = m3 = m4 = 1.

From numerical evaluations with eight decimal round-off coordinates, we have

x0 = 0.3, y0 = 0.26887870.

Thus,

m5 = 1.32808529, β = m6 = m7 = m8 = m9 = 0.03177623.

In order to give some information about the values of the masses and positions at Q0(x′
0, y

′
0) ∈ L2,

we consider

α = m1 = m2 = m3 = m4 = 1.

From numerical evaluations with eight decimal round-off coordinates, we have

x′
0 = 1.3, y′

0 = −0.02823851.

Thus,

m5 = 1.88854183, β = m6 = m7 = m8 = m9 = 2.24996397.
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