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Abstract. This article addresses the mathematical analysis of a model for the irreversible solidification process of certain
materials by taking in consideration the effects of natural convection in molten regions. Such a model consists of a highly
nonlinear system of partial differential equations coupled to a doubly nonlinear differential inclusion. The existence of weak–
strong solutions for the system is proved, and certain mathematical effects of advection on the regularity of the solutions
are discussed.

Mathematics Subject Classification. 35K55 · 35K59 · 35B65 · 35R35 · 35Q35 · 80A22.

Keywords. Irreversible phase transitions · Singular Stokes equations · Convection · Existence of solutions.

1. Introduction

The purpose of the present article is to investigate the existence of solutions to the following system

ut − Δu + ∇P + K(h(ω))(u + ρut) = ζθ in Qml, (1)
θt + ωt − Δθ − Δpθ + u · ∇θ = g(x, t) in Q, (2)
ωt + α(ωt) − Δω − Δqω + κu · ∇ω � θ + f(ω) in Q, (3)

θ =
∂ω

∂ν
= 0, u = 0 on ∂Ω × (0, T ), (4)

∇ · u = 0 in Qml, (5)
u + ρut = 0 in Qs, (6)
θ(., 0) = θ0, ω(., 0) = ω0, u(., 0) = u0 in Ω, (7)

where 0 < T < +∞; Ω ⊂ R
N , for N = 2, 3 or 4, is an open-bounded domain with a C2-boundary

∂Ω, Q = Ω × (0, T ), and ν represents the outer unit normal vector to the boundary ∂Ω.
This is a model for the process of irreversible solidification that occurs to certain materials such as

glue, organic matter or some types of polymers; in fact, once such materials change from liquid to solid,
they cannot reverse the process. Although assuming slow flow of molten material, the present model
also takes in consideration the effects of natural convection, by including suitable advection terms in the
energy and phase equations.

A brief description of the model and the related literature will be given in Sect. 2. Here, we just observe
that in this context, Eq. (1) is a modified Stokes system; the unknown u denotes the macroscopic velocity
of the material, and P is the related hydrostatic pressure; the convection term is not present because
we are assuming slow flow. Equation (2) is an energy balance equation; the unknown θ is related to the
temperature; an advection term for the temperature is included. Equation (3) governs the material phases;
ω is the so-called phase-field variable and indicates the physical phase of the material; an advection term
for the phase may also be included (depending on the value of κ ≥ 0, which is a given constant).

In Eq. (1), the term ζθ is the buoyancy force due to thermal differences given by the Boussinesq’s
approximation.
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To explain the role of the last term in the left-hand side of Eq. (1), we first remark that the scalar
function h(.) is a given smooth function depending on the material being considered and relating the solid
fraction and the phase-field variable: h(ω(x, t)) gives the solid fraction at (x, t). In this way, it is natural
to assume that h is a smooth real increasing function such that h(z) = 0 when z ≤ 0 and h(z) = 1 when
z ≥ 1.

Hence, it is also natural to consider the following important a priori unknown space-time phase regions:

Qs = {(x, t) ∈ Q : h(ω(x, t)) = 1}, the solid region,

and

Qml = {(x, t) ∈ Q : 0 ≤ h(ω(x, t)) < 1}, the non-solid region.

We stress that since the first equation (1) only holds in Qml, and this region depends on ω, system
(1)–(7) is indeed a free-boundary problem.

The Carman–Kozeny type term K(h(ω))(u+ρut), with ρ a given positive constant, brings a singularity
to the velocity equation in the transition layers from non-solid to solid regions, since it is required that

lim
s→1−

K(s) = +∞.

This term describes the friction forces acting on the flow through the non-solid region and acts as a
penalization in mushy regions.

The operators Δp and Δq are the p and q-Laplacian, respectively,

Δpθ = div(|∇θ|p−2∇θ) and Δqω = div(|∇ω|q−2∇ω), p, q > 2.

In Eq. (3), α ⊂ R
2 is a maximal monotone operator with α(0) � 0. A restriction on the domain of

α, denoted D(α), furnishes the irreversibility of the phase transitions; in fact, by imposing that D(α) =
[0,+∞), it follows that ωt is nonnegative for any possible solution, which guarantees that the transition
occurs only on one direction (from liquid to solid, for instance).

Main contributions, mathematical difficulties and comparisons

The contributions of the present work are twofold.
First, regarding modeling aspects of the phenomenon, we observe that we are assuming slow flow of

molten material, and thus, the convective inertial forces are small compared with viscous forces, which
leads to a Stokes type Eq. (1). However, the transport effects of such flow on the energy and the phase are
taken in consideration by the inclusion of suitable advection terms in both the temperature equation and
the phase-field inclusion. Therefore, the present model is more realistic and extends a previously studied
one in [9], where a two-dimensional version of (1)–(7) is considered for the case when advection in the
phase-field equation is neglected. Moreover, regarding the spatial dimension, we are able to analyze the
2D, 3D and 4D cases. Further, we consider that flow through mushy regions is governed by a modified
Darcy’s law, which also takes into the account the effects of the acceleration of the fluid (see [34, p. 275] or
[35, Sect. 4]). As we will explain in Sect. 2, the present Carman–Kozeny multiplier, namely u+ρut, acts as
a relaxation factor, allowing a smooth decay of the velocity once a portion of the material becomes solid,
instead of forcing it to become immediately zero as in the case of the usual Carman–Kozeny term, which
corresponds to the case ρ = 0. The main mathematical advantage in the present case, corresponding to
ρ > 0, is that now we will be able to prove that u is more regular in time.

We remark that there are some works presenting mathematical analyses of solidification problems that
take into account the effects of fluid motion. Without the intention of being complete, we cite [6,11,31],
where reversible solidification with convection for alloys is investigated. Let us stress that the main
reason to consider convection is that fluid motion interferes in the formation of the so-called dendrites,
a microscopic phenomenon regarding the internal geometry of the material. The understanding of such
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phenomenon is a key issue to estimate a possible final pattern for the material. For further details,
we also refer to [4] or [8], where the effects of natural convection are investigated by means of numerical
simulations. We notice that the inclusion of convection in the model brings several new technical difficulties
to an already hard problem.

Second, from the mathematical point of view, the analysis of (1)–(7) is more delicate than its pre-
vious versions in [6,9,11,31], mostly due that Eq. (3) includes a non-monotone perturbation to a dou-
bly nonlinear differential inclusion. Actually, the techniques used to handle α(ωt) and its interactions
with −Δqω might be undermined by the low regularity of the convective term u · ∇ω. Further, one
issue is that we cannot include extra hypotheses to the operator α (as extra coerciveness within certain
Banach spaces to apply certain abstract theories, see [2]), since this may cause a loss of its physical
role/interpretation. To overcome these difficulties, we introduce a different approximation from the usual
one used to treat doubly nonlinear differential inclusions like (3). Loosely speaking, it is a consequence
of the fact that we have to deal with the time derivative of (3) in order to control an appropriate
norm for the approximations of α(.), namely ατ (.), where τ > 0 is a regularization parameter. Usu-
ally, this norm is chosen to be the L2-norm, but due to the singular character of (1), there only holds
(u · ∇ω)t ∈ Ls, where 1 < s < 2. Thus, we have to handle the low regularity of u · ∇ω by iden-
tifying the graph α(.) ⊂ R

2 as a maximal monotone operator in Ls′ × Ls, for 1 < s < 2, instead
of L2 × L2. More precisely, it is usual to consider a linear perturbation of the inverse of α, namely,
ατ (x) = (γτ (x) + τx)−1 (for example, see [9,10,14]), where γτ is the Yosida’s regularization for γ = α−1.
Instead, we set ατ (x) = (γτ (x) + τ |x|s−2x)−1, a nonlinear monotone perturbation of the inverse. By this
choice, we include enough coercivity on the approximations, what allow us to pass to the limit in the
approximate versions of (3) (see the proof of Theorem 3.2). To the best of our knowledge, this sort of
approximation has not been considered in the literature and might be useful in other situations. There-
fore, this approach provides a new tool that may be applied to other problems involving highly nonlinear
terms.

Additionally, we investigate the effects of u·∇ω regarding the regularity for solutions of (3). Indeed, by
using tools of fractional regularity theory for p-Laplacian like equations (see [10,19]), we prove that there
exists relevant gain of regularity for the solutions when κ = 0, which we briefly call “the non-advective
case.” This indicates a measure for the loss of regularity due to the presence of an advective term in the
doubly nonlinear inclusion (3) and partially shows how the regularity of solutions might be improved in
absence of non-monotone perturbations.

Plan of the paper

In Sect. 2, we give a brief description of the model. In Sect. 3, we introduce the basic notations and state
our main results. A discrete version of the model is discussed in Sect. 4, whereas the associated time-
dependent approximations and the derivation of their a priori estimates are done in Sect. 5. Section 6 is
then devoted to the application of the previous estimates to obtain convergences of approximate solutions
that are fundamental to our purposes. Section 7 is reserved to the proof of existence of solutions of system
(1)–(7) (Theorem 3.2), and, finally, in Sect. 8, we explain how to improve the regularity of solutions in
the case where there is no convection in the phase-field inclusion.

2. Brief description of the model

As we have remarked in the Introduction, system (1)–(7) may be seen as a model for solidification when
the phase transition is irreversible and the flow in molten region is slow.

The interpretation of the system as a model for irreversibility is a consequence of the combination
between a proper description for this sort of solidification and a rather standard approach to model the
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flow in the melt, which has been used both in the applied (computational) problems and in mathematical
analyses.

Concerning the flow in the melt, following the main ideas of Ahmad [1], Beckermann et al. [4,5], Blanc
et al. [6], Caginalp et al. [16], Voller et al. [34,35], among others, we coupled a diffuse interface model
for phase transitions with a singular system for the fluid motion. In this approach, the flow is modeled
as if the medium in the transition (mushy) layers was a type of porous media, with porosity related to
the phase-field variable and decreasing to zero in solid regions. This brings up a singular equation for
fluid motion, which can be a singular Navier–Stokes equation ([9,12,31]) or some modification of it, for
instance, in which the effective fluid viscosity depends on the gradient of the velocity ([11]). In the present
case, since we are considering slow flows, the approach leads to a singular Stokes equation.

This sort of fluid equations is referred as singular due to the inclusion of a Carman–Kozeny type term,
which is related to friction forces due to flow through the non-solid region. It acts as a penalization due
to a singularity at s = 1: lims→1− K(s) = +∞. It is important to remark that, with the usual form of
the Carman–Kozeny term, which corresponds to ρ = 0 and is reduced to K(h(ω))u, it forces the velocity
to satisfy u = 0 in the solid region Qs; that is, any portion of the material that becomes solid must
immediately come to full stop. This brings very serious mathematical difficulties in proving estimates
for the time derivative of the velocity, ut, in any region including parts of the transition layer from the
non-solid region, Qml, to the solid one, Qs; (see either [9] or [11], where local estimates in regions away
from these transition layers are obtained). Differently, the model considered in the present work assumes
that the flow through mushy regions is governed by a modified Darcy’s law, which also takes into account
effects of the acceleration of the fluid (see [34, p. 275] or [35, Sect. 4]). In this case, the present Carman–
Kozeny multiplier, namely u + ρut, with ρ > 0, forces the velocity to satisfy u + ρut = 0 in Qs, implying
the exponential decay in time for the velocity after a portion of the material becomes solid instead of
requiring it immediate full stop as in the case of the usual Carman–Koseny term (ρ = 0). As we will see,
the present form of this term will allow us to obtain suitable estimates for ut.

The present approach to the irreversibility is similar to the ones in Blanchard et al. [7], Frémond et.
al [22], Bonfanti et al. [14], Bonetti [13], Colli et al. [18], Laurençot et al. [29], Luterotti et al. [30]. They
deal with inclusions related to:

ωt + α(ωt) + β(ω) − Δω � θ + f(ω) in Q,

where α and β are maximal monotone operators. A restriction on the domain of α then furnishes the
irreversibility of the phase transition. Indeed, by imposing that the domain D(α) = [0,+∞), the term
ωt is forced to be nonnegative, which guarantees that the transition occurs only on one direction (from
liquid to solid, for instance). In Eq. (3), we have the same sort of maximal operator α.

Another aspect to be observed in the previously mentioned articles is that in most of them the
phase-field variable ω has a direct physical meaning; it is exactly the solid fraction distribution in the
material, which naturally requires that 0 ≤ ω ≤ 1. This condition is attained by imposing that the
domain D(β) = [0, 1], guaranteeing the proper physics requirement and also automatically a suitable
L∞-estimate for ω in space and time. By contrasting the last equation with (3), we observe that, besides
having now the advective term κu · ∇ω due to the flow transport, we have a term −Δqω in (3) instead
of β. We do not have such β because our ω has not a direct physical meaning; in fact, as we previously
explained, the solid fraction in our case is given by h(ω), and thus, we cannot require an estimate as
0 ≤ ω ≤ 1. However, as we will see, once q is chosen large enough, the term −Δqω will act at least in
part as β(·), furnishing a L∞-estimate for ω just in the space variable; moreover, such term in (3) will
give information regarding ∇ω that will be employed to control the advective terms. Of course, from
the mathematical point of view, there is also a price to be paid: q-Laplacian like equations provide poor
information regarding higher order regularity of their solutions.

As for the derivation of (3), we use the following standard approach: consider a free-energy functional
depending on



Vol. 66 (2015) A Mathematical analysis of fluid motion 789

E(t) =
∫

Ω

E(ω(x, t),∇ω(x, t), θ(x, t))dx

with the volumetric free-energy density E = E(ω, p1, . . . , pN , θ) where pi = ∂xi
ω for i = 1, . . . , N . Then,

the corresponding Allen–Cahn equation for the evolution of the phase-field ω is:

ωt + ∇ · (ωu) + λ
δE

δω
+ F = 0, (8)

where λ is a (small) positive parameter, F is a source/drain term adequate to each specific situation and
δE
δω is the variational derivative of E, which is given by

δE

δω
= ∂ωE −

N∑
i=1

∂xi
∂pi

E.

In the absence of the source/drain term, this equation guarantees that the associated free-energy E(t)
decays along the time.

Next, we take the free-energy density of form

E(ω,∇ω, θ) = W (ω) − aθω +
ν

2
|∇ω|2 +

ν1

q
|∇ω|q,

(this means that to the classical (total) free-energy, which has already the L2-norm of ∇ω, its Lq-norm
is also included) with a, ν and ν1 positive constants, W (ω) a bulk functional suitable for the material
being considered (for instance, a double-well potential) and F = α(ωt), with α(·) a maximal monotone
operator with domain D(α) = [0,+∞) as before (for instance, the extension of the subdifferential of the
indicator function of the interval [0,+∞), I[0,+∞)). By taking for simplicity of exposition all the constants
to be 1, recalling that we are assuming incompressible flows, and performing the required computations,
from (8) we get exactly (3) with f(ω) = −W ′(ω) in the case κ = 1 (the inclusion appears since α(·) may
be a multivalued operator); the case κ = 0 is an approximation for the case that the time scale of the
solidification process is faster than the time scale of the flow.

As for (2), it is obtained by approximations; our intention here is to clarify exactly which approxima-
tions were considered. We start with the simplified form of the internal energy balance:

et + ∇ · (eu) + ∇ · q = g,

where the internal terms for heat production were neglected. Next, the internal energy is approximated
by e = Cθ + �ω, with C a positive constant related to the volumetric specific heat of the material
and � a positive constant related to the latent heat. As for the heat flux, we assume that is of form
q = (k1+k2|∇θ|p−2)∇θ, with k1 and k2 positive constants; that is, we assume the heat diffusion coefficient
is given by k1+k2|∇θ|p−2 and thus increases as the temperature gradient increases. This sort of situation,
although in a different physical context, was considered earlier; see for instance, Dimova and Meyer-
Spasche [21]. Again for simplicity of exposition, by taking all the constants to be 1, recalling that we are
assuming incompressible flows, and performing the required computations, we get Eq. (2).

Before finishing this section, let us mention that it is a delicate issue to decide how to take into
consideration, both in physically sound and in mathematically feasible manner, the effects of fluid motion
in an irreversible solidification process. In the present work, by analogy with [4,6,9,11,12,34,35], those
effects are considered by coupling a modified Stokes system, (1), with a system which describes the phase
transition, (2)–(3). In addition, its mathematical analysis is even more delicate, since we have to handle the
interaction between a singular free-boundary problem with a doubly nonlinear differential inclusion. Since
these two opposing situations bring several major mathematical difficulties to the analysis, it is common
to neglect the effects of the material flow while investigating irreversible solidification; for instance, in
[7,13,14,18,29,30] the macroscopical velocity of the material is supposed to be zero and thus the effects
of fluid motion were not taken into account.
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3. Notations and main results

First, we fix some basic notation. Let Ω ⊂ R
N be a bounded domain with ∂Ω of class C2. For 1 ≤ p ≤ ∞

and 0 ≤ s ≤ ∞, we denote by W s,p(Ω) the standard Sobolev-Slobodeckii spaces. The so-called Nikolskii
spaces are denoted by N σ,r, where σ = 1 + δ, 0 < δ < 1, and r ≥ 2. The reader is referred to [25, Chap.
1] for further details concerning Sobolev-Slobodeckii spaces and to [28, Sect. 8.2] for Nikolskii spaces.

In order to handle fluid equations, the following functional spaces of divergence-free vector fields are
introduced:

V(Ω) = {φ ∈ (C∞
0 (Ω))N : ∇ · φ = 0 in Ω},

Hr = V(Ω)
(Lr)N

, r > 1,

V = V(Ω)
(W 1,2)N

.

As usual, H2 is denoted just by H.
For the sake of simplicity, we employ the same notations for scalars, vectors in R

N and matrices in
R

N2
. For instance, we denote by “.” both the inner product in R

N and the tensor product in R
N2

; the
norms on (W s,p(Ω))N and W s,p(Ω) are indicated by ‖.‖W s,p ; we write u ∈ L2(Ω), even when u is a vector
field, meaning that all of its components are in L2(Ω), and so on. Naturally, the difference will be clear
from the context. Also to simplify the notations, we omit the dependences of the spaces on Ω.

Next, we state our main hypotheses:

(H1) Ω ⊂ R
N , N = 2, 3 or 4, is an bounded domain with ∂Ω of class C2;

(H2) α ⊂ R
2 is a maximal monotone operator such that α(0) � 0; its domain is given by D(α) = [0,+∞);

(H3) f : R → R, f is a Lipschitz continuous function with f(0) = 0;
(H4) g : Q → R, g belongs to L2(0, T ;L2);
(H5) K : [0, 1) → R, K ≥ 0, K(0) = 0, K ∈ C1([0, 1)), K ′(x) ≥ 0 and lim

x→1−
K(x) = +∞;

(H6) h : R → R is a C1(R)-increasing function such that h(z) = 0 when z ≤ 0 and h(z) = 1 when z ≥ 1
(and thus 0 ≤ h(z) ≤ 1, ∀z ∈ R);

(H7) ρ > 0 and κ ≥ 0. In order to simplify the notation, without loosing any mathematical generality,
from now on we fix ρ = 1;

(H8) Let

q > N and p > max
{

4,
2q

q − 2

}
;

we take the initial data such that

u0 ∈ V, θ0 ∈ W 1,p
0 and ω0 ∈ W 2,q.

We remark that the previous conditions on p and q are justified by the coupling between Eqs. (2) and
(3), and by phase-field/velocity or temperature/velocity interactions. Indeed, they guarantee the validity
of certain key algebraic inequalities (see Lemma 4.1).

(H9) Consider the auxiliary maximal monotone graph defined by γ = α−1 ⊂ R
2, and a proper convex

lower semicontinuous function Γ : R → [0,+∞], with Γ(0) = 0, such that ∂Γ = γ.
Assume, moreover, the following technical hypothesis on the initial data:

Γ(θ0 + f(ω0) + Δω0 + Δqω0 − κu0 · ∇ω0) ∈ L1.

The previous operators γ and Γ will play a important role in the derivation of certain key energy
estimates (see Lemma 5.3).

The reader is refereed to [3,15,32] for detailed information on maximal monotone operators, subdif-
ferentials and related topics.

Next, we define the concept of solutions we will consider in this work.
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Definition 3.1. A quadruple (u, θ, ω, η) is a solution of (1)–(7) when

• u ∈ C([0, T ];H) ∩ L∞(0, T ;V ) ∩ W 1,2(0, T ;H),
• θ ∈ C([0, T ];Lp) ∩ L∞(0, T ;W 1,p

0 ) ∩ W 1,2(0, T ;L2),
• ω ∈ C([0, T ];C(Ω)) ∩ L∞(0, T ;W 1,q) ∩ W 1,2(0, T ;W 1,2) ∩ W 1,∞(0, T ;L2),
• η ∈ L2(0, T ;Ls), for some 1 < s ≤ 2,

and they satisfy
T∫

0

∫

Ω

ut · φ + ∇u · ∇φ + K(h(ω))(u + ut) · φ =

T∫

0

∫

Ω

ζθ · φ, (9)

θt + ωt − Δθ − Δpθ + u · ∇θ = g a.e. in Q, (10)
η + ωt − Δω − Δqω + κu · ∇ω = θ + f(ω) a.e. in Q, (11)

∀φ ∈ L2(0, T ;V ) with compact support in Qml = {(x, t) ∈ Q : 0 ≤ h(ω(x, t)) < 1}, and also

η ∈ α(ωt) ⊂ L2(0, T ;Ls), (12)

u + ut = 0 a.e. in Qs = {(x, t) ∈ Q : h(ω(x, t)) = 1}, (13)

u(., 0) = u0, θ(., 0) = θ0, ω(., 0) = ω0 a.e in Ω. (14)

Remark: Observe that this type of solution is more regular in time than the ones considered in
corresponding models with the usual Carman–Kozeny approximation (see the discussion in Sect. 2 and
[9, Thm. 2.1], for instance). This is due to the present multiplier term attached to the singularity K,
which allows us to obtain a suitable global estimate for ut and not just local ones from the transition
layers between non-solid and solid regions. On the other hand, notice that in the phase-field equation, we
now deal with L2(0, T ;Ls), for some 1 < s ≤ 2, with s related to the non-monotone perturbation κu ·∇ω.
Indeed, when κ > 0, we have 1 < s < 2, since (κu · ∇ω)t belongs to L2(0, T ;Ls), where 1 < s < 2 when
N = 2, 6

5 ≤ s ≤ min
{

3
2 , 2q

q+2

}
when N = 3, and s = 4

3 when N = 4. In the case that κ = 0, we recover
the case s = 2.

The main results of this paper concern the existence and regularity of solutions to system (1)–(7).

Theorem 3.2. Suppose that

1 < s < 2 if N = 2, and
2N

N + 2
≤ s ≤ min

{ N

N − 1
,

2q

q + 2

}
if N = 3, 4. (15)

Under hypotheses (H1)–(H9), there exists a solution to (1)–(7) given by the quadruple (u, θ, ω, η).

It turns out that under an extra hypothesis, the solutions are indeed more regular. In fact, we expose
a measure for the effect of convection in the phase-field inclusion on the solutions of (1)–(7).

Theorem 3.3. Under hypotheses (H1)–(H9), suppose additionally that κ = 0 and ∂Ω ∈ C3. Then there
exists a solution to (1)–(7) satisfying

η ∈ α(ωt) ⊂ L2(0, T ;L2) (16)

and

ω ∈ L∞(0, T ;W 2,2) ∩ L∞(0, T ;N 1+2/q;q). (17)

Notice that besides improving the space Ls to L2, we also obtain extra fractional regularity for ω
due to the following continuous embedding of Niikolski spaces into Sobolev-Slobodeckii spaces (see, for
instance, [26, Lem. 2.1]):

N 1+2/q,q ↪→ W 1,q.
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This is not a surprise since it is well known that convection terms with low regularity coefficients have a
weakening character regarding regularity for the solutions of general nonlinear partial differential equa-
tions.
Some technical remarks:

(i) As it will be clear in the next sections, we are led to work with the space Ls′ × Ls, with 1 < s < 2,
as the functional framework for the multivalued operator α(·) due to the way we approximate it
by using suitable regularizations ατ . In fact, the usual alternative Hilbertian framework W 1,2 ×
(W 1,2)′ cannot be used due to the presence of q-Laplacian term (q = 2 in our case). Another
alternative would be the functional framework given by W 1,q × (W 1,q)′ , q > N , together with
a modified Yosida approximations for α(·). However, in this setting, we still had to identify the
corresponding limit terms as belonging to the multivalued operator α(·), and for this, a strong
estimate for the approximated solutions (namely, ω′

τ in W 1,q, cf. Lemma 5.2) would be required;
but the nonlinearities of the problem prevent us to obtain such estimate. Anyway, even if a weaker
functional framework approach could be used for the present problem, we emphasize that our
approach provides better regularity for the elements of multivalued operator since our regularization
guarantees that η belongs to a Lebesgue space.

(ii) The existence of local in time solutions in the case of homogeneous Neumann boundary conditions
for the temperature can be handled with minor adaptations of the arguments presented in the fol-
lowing sections (see Remark 5.2). However, more serious technical difficulties appear when one tries
to prove a corresponding global in time existence of solutions in this case; in fact, Poincaré inequal-
ity was strongly used in the arguments for global existence for homogeneous Dirichlet boundary
conditions; since we were not able to circumvent its use in the Neumann case, we do not know
whether the existing local solutions are global. As for non-homogeneous boundary conditions, tech-
nical difficulties appear even in the Dirichlet case since the standard change of variables usually
used to reduce the problem to the homogeneous case cannot be easily applied to (2) due to its
nonlinear pattern.

(iii) We do not know whether uniqueness of solutions hold for the present problem. The main difficulty
in proving such a result appears when one tries to compare the flow velocities associated with two
possible solutions with same initial conditions; since we have a free-boundary value problem, the
corresponding fluid equations hold in different subsets of Q, and we cannot proceed as usual to get
a equation for the difference of the velocities.

4. Preliminary results and an auxiliary problem

We begin with a technical lemma which will be used repeatedly along the text. As its proof follows by
straightforward computations, we omit it.

Lemma 4.1. Let q > N and p > max
{

4,
2q

q − 2

}
; then there exists r such that

max
{

2p

p − 2
,

2q

q − 2

}
≤ r < min

{
p,

2N

N − 2

}
. (18)

(in particular, r > 2,
1
2

+
1
p

+
1
r

≤ 1 and
1
2

+
1
q

+
1
r

≤ 1 ) and

V ↪→↪→ Hr.

We stress that the compactness result of Lemma 4.1 will be only used in the proof of existence of
solutions for the discretized problem. The restriction on r allows to apply the Hölder’s inequality when
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estimating convective terms. Moreover, it comes from the interplay between the temperature and the
velocity field (see proof of Lemma 5.1).

It is worth to notice that the convective term vanishes∫

Ω

u · ∇ψψ = 0, when ψ ∈ W 1,2 and u ∈ V, (19)

which, in particular, implies that∫

Ω

u · ∇ψφ = −
∫

Ω

u · ∇φψ, when ψ, φ ∈ W 1,2 and u ∈ V. (20)

We now recall two algebraic inequalities that will be used frequently along the paper.
The first one is a key tool for proving the monotonicity of the p-Laplacian. Let p ≥ 2. For all a, b ∈

R
N , N ∈ N, it holds

(|a|p−2a − |b|p−2b) · (a − b) ≥ C|a − b|p, (21)

where C depends only upon p (see, [20, Lem. 4.4]). The other one is valid for any k > 1 and a, b ∈
R

N , N ∈ N,

|a|k−2a · (a − b) ≥ |a|k
k

− |b|k
k

, (22)

and follows from the Young’s inequality.

4.1. An auxiliary problem: time discretization

Due to the nonlinear term regarding the time derivative of the phase-field unknown, namely α(ωt), it is
natural to introduce a time-discrete version of (1)–(7).

Let 0 < τ < 1 and M ∈ N be such that
Mτ = T,

which by definition are the discretization parameters; the auxiliary discretized in time problem is based
on the following:
Iterative scheme:

Given

ui−1 ∈ V, θi−1 ∈ W 1,p
0 and ωi−1 ∈ W 1,q,

find

ui ∈ V, θi ∈ W 1,p
0 and ωi ∈ W 1,q

such that
ui − ui−1

τ
− Δui + Kτ (ωi)

(
ui +

ui − ui−1

τ

)
= ζθi in V ′, (23)

θi − θi−1

τ
+

ωi − ωi−1

τ
− Δθi − Δpθi + ui · ∇θi = gi in W−1,p′

, (24)

ωi − ωi−1

τ
+ ατ

(
ωi − ωi−1

τ

)
− Δωi − Δqωi + κui · ∇ωi

= θi + f(ωi) in (W 1,q)
′
, (25)

ui = 0, θi =
∂ωi

∂ν
= 0 on ∂Ω. (26)
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The iteration starts with the initial conditions u0, θ0 and ω0 given in (H8). The terms gi are defined
by

gi =
1
τ

τi∫

τ(i−1)

g(x, s) ds,

while
Kτ (x) = Kext(h(x) − τ), x ∈ R, (27)

where Kext is the extension of K defined on (−∞, 1) by letting Kext(x) = 0 when x < 0.
The definition of ατ , a special approximation for α, is more delicate.

Definition of ατ :
Initially, we introduce γτ , the standard Yosida’s regularization of γ = α−1 (see [3,15] for further

information). Moreover, notice that

Fτ : R → R, where Fτ (x) = γτ (x) + τ |x|s−2x, 1 < s ≤ 2,

is maximal monotone, differentiable a.e. and bijective. Indeed, γτ and |I|s−2I are both maximal monotone
and continuous, so that Fτ is maximal monotone. Moreover, we readily check that Fτ is one to one, and
since it is coercive, then Fτ is also surjective (see Barbu [3, Cor. 2.3]). In this way, we set

ατ = (γτ + τ |I|s−2I)−1, (28)

which is also bijective and differentiable a.e.. This choice will be justified when obtaining a priori estimates
to system (23)–(26) (see Sect. 5).

We remark certain important properties for ατ :

ατ (0) = 0 and ατ (.) is maximal monotone,

due to the very definition of γ, γτ and (H2). Consequently, there holds

ατ (x)x ≥ 0.

Additionally, with a straightforward adaptation of [3, Prop. 2.3], we prove that ατ is locally Lipschitz
continuous. More precisely, it holds

|ατ (x)| ≤ C
|x| 1

s−1

τ
1

s−1
(29)

and

|ατ (x) − ατ (y)| ≤ C

τ
1

s−1
|x − y|(|x| 2−s

s−1 + |y| 2−s
s−1

)
. (30)

These two properties are only used in the proof of existence of solution for the discretized problem. For
the reader’s convenience, we give proofs for both inequalities.

Let xτ = (γτ + τ |I|s−2I)−1x and yτ = (γτ + τ |I|s−2I)−1y and observe that

x = γτ (xτ ) + τ |xτ |s−2xτ .

Thus, as γτ (xτ )xτ ≥ 0, we infer (29).
In addition, notice that

γτ (xτ ) − γτ (yτ ) + τ
(|xτ |s−2xτ − |yτ |s−2yτ

)
= x − y

Then, by multiplying the previous identity by xτ − yτ , we obtain that

|xτ − yτ |2(|xτ | + |yτ |)2−s ≤ C

τ
|x − y||xτ − yτ |,
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since (see [17, p .3])

(|xτ |s−2xτ − |yτ |s−2yτ

)
(xτ − yτ ) ≥ C

|xτ − yτ |2(|xτ | + |yτ |)2−s .

In particular, as ατ (x) = xτ and ατ (y) = yτ , by combining (29) and the last estimate we obtain (30).
We also observe that, by Moreau’s proposition ([32, Prop. 1.8, p. 162]), for each τ there exists a proper

lower semicontinuous function Γτ such that

Γτ : R → (0,∞] is Fréchet differentiable,
∂Γτ = γτ and 0 ≤ Γτ (x) ≤ Γ(x), ∀x ∈ R. (31)

Since our purpose is to let τ → 0 in order to reobtain (1)–(7), we can fix an upper bound for τ > 0;
so in the following, we always assume that τ ≤ 1.

The next result proves the existence of solutions of the previously described iterative scheme. As the
proof is a straightforward application of Leray–Schauder’s fixed point theorem, we only sketch it.

Proposition 4.2. Given ui−1 ∈ V, θi−1 ∈ W 1,p
0 and ωi−1 ∈ W 1,q, for τ > 0 sufficiently small, there exist

ui ∈ V, θi ∈ W 1,p
0 and ωi ∈ W 1,q satisfying (23)–(26).

Proof. To apply the Leray–Schauder’s fixed point theorem, we introduce the Banach space B = Hr ×
Lp × L

2
s−1 , where r is given by Lemma 4.1 and 1 < s ≤ 2. For every 0 ≤ λ ≤ 1, we define the operator

Tλ : B → B by

Tλ(u, θ, ω) = (ū, θ̄, ω̄),

where (ū, θ̄, ω̄) is the unique solution of

ū

τ
− Δū + λ

[
Kτ (ω)

(
u +

u − ui−1

τ

)]
= λζθ +

ui−1

τ
in V ′, (32)

θ̄

τ
+ λ

ω

τ
− Δθ̄ − Δpθ̄ + u · ∇θ̄ = λ

[
gi +

θi−1

τ
+

ωi−1

τ

]
in W−1,p′

,

ω̄

τ
+ λατ

(
ω − ωi−1

τ

)
− Δω̄ − Δqω̄ + κu · ∇ω̄ (33)

= λ

[
θ + f(ω) +

ωi−1

τ

]
in (W 1,q)′, (34)

ū = 0, θ̄ =
∂ω̄

∂ν
= 0 on ∂Ω. (35)

We first observe that Tλ is well defined for every 0 ≤ λ ≤ 1. Indeed, clearly

• λ

[
− Kτ (ω)

(
u +

u − ui−1

τ

)
+ ζθ

]
+

ui−1

τ
∈ L2;

• λ

[
ωi−1

τ
− ω

τ
+ gi +

θi−1

τ

]
= ḡ ∈ L2;

• λ

[
− ατ

(
ω − ωi−1

τ

)
+ θ + f(ω) +

ωi−1

τ

]
∈ L2.

Notice that by [24, Thm. 5.1, p.80], there exists a unique ū ∈ V satisfying (32). The existence of θ̄ follows
by a standard iterative scheme (see [27] pp. 5–12). Indeed, given θ̄n−1 ∈ W 1,p

0 , with θ̄0 = θ0, consider
θ̄n ∈ W 1,p

0 such that
θ̄n

τ
− Δθ̄n − Δpθ̄

n = ḡ − u · ∇θ̄n−1 ∈ L2,
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which exists by Prop.1 in [10]. Moreover, by taking θ̄n as a multiplier and by using Hölder’s inequality,
there follows that

1
τ

∫

Ω

|θ̄n|2 +
∫

Ω

|∇θ̄n|p ≤ C(ḡ, ‖u‖r
Hr

) +
1
8

∫

Ω

|∇θ̄n−1|p.

Then, by interpolation,

‖θ̄n‖W 1,p
0

≤ C(ḡ, u, θ0),

so that, there exists θ̄ ∈ W 1,p
0 , for which, up to subsequences, θ̄n ⇀ θ̄ in W 1,p

0 .
In addition, the combination of Lemma 4.1 and identity (19) leads to∣∣∣∣∣

∫

Ω

u · ∇θ̄n−1θ̄n −
∫

Ω

u · ∇θ̄ θ̄

∣∣∣∣∣ ≤ C(ḡ, ‖u‖Hr
, θ0)‖θ̄n − θ̄‖L2 .

However, −Δp is maximal monotone in W 1,p
0 , thus, by combining the so-called Minty’s trick (see [3, Cor.

2.4]) and the last inequality, we see that θ̄ is the unique weak solution of (33).
We obtain a unique ω̄ ∈ W 1,q satisfying (34) in a analogous manner. Hence, remarking that W 1,q ↪→

L
2

s−1 , we see that Tλ is well defined for 0 ≤ λ ≤ 1.
We check the hypotheses of Leray–Schauder’s theorem in five steps.

Step 1. Let λ = 0. The existence and uniqueness of u ∈ V, θ ∈ W 1,p
0 and ω ∈ W 1,q such that

T0(u, θ, ω) = (u, θ, ω),

follows directly from the previous argument.
Step 2. We claim that Tλ is continuous in B for every λ ∈ [0, 1] fixed. Suppose that (un, θn, ωn) → (u, θ, ω)
in B. Let (ūn, θ̄n, ω̄n) and (ū, θ̄, ω̄) be such that

(ūn, θ̄n, ω̄n) = Tλ(un, θn, ωn) and (ū, θ̄, ω̄) = Tλ(u, θ, ω).

We will take the difference between the systems associated with (ūn, θ̄n, ω̄n) and (ū, θ̄, ω̄). Indeed,
observe that for un or u, we obtain different versions of (32), which are associated with ūn or ū. The
difference between them provides another equation. Next, by multiplying this resulting equation by ūn−ū
and integrating over Ω, one obtains∫

Ω

1
τ

|ūn − ū|2 + |∇ūn − ∇ū|2

≤ λ

∫

Ω

[
Kτ (ω)

(
u +

u − ui−1

τ

)
+ ζ(θn − θ)

]
· (ūn − ū)

−λ

∫

Ω

Kτ (ωn)
(
un +

un − ui−1

τ

)
· (ūn − ū). (36)

But observe that,∫

Ω

[
Kτ (ω)

(
u +

u − ui−1

τ

)
− Kτ (ωn)

(
un +

un − ui−1

τ

)
+ ζ(θn − θ)

]
· (ūn − ū)

≤ 1
4τ

‖ūn − ū‖2
H + Cτ‖θn − θ‖2

L2 + Cτ

∥∥∥∥Kτ (ω)
(
u − un +

u − un

τ

)∥∥∥∥
2

L2

+Cτ

∥∥∥∥
(
Kτ (ωn) − Kτ (ω)

)(
un +

un − ui−1

τ

)∥∥∥∥
2

L2

, (37)
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which follows by adding and subtracting
∫

Ω

Kτ (ω)
(
un +

un

τ

)
· (ūn − ū).

Moreover, since Kτ is Lipschitz continuous

∥∥∥∥
(
Kτ (ωn) − Kτ (ω)

)(
un +

un − ui−1

τ

)∥∥∥∥
2

L2

≤ Cτ

∥∥∥∥(ωn − ω)
(
un +

un − ui−1

τ

)∥∥∥∥
2

L2

≤ Cτ‖ωn − ω‖2
Lq

∥∥∥∥un +
un − ui−1

τ

∥∥∥∥
2

Hr

≤ Cτ‖ωn − ω‖2
Lq , (38)

since 1/q + 1/r < 1/2 and un is bounded in Hr.
Thus, recalling that Kτ is bounded, combining (36), (37) and (38) yields the following

‖ū − ūn‖2
V ≤ Cτ

(‖u − un‖2
Hr

+ ‖θn − θ‖2
L2 + ‖ωn − ω‖2

Lq

)
, (39)

which goes to zero as n → +∞.
Next, we employ similar arguments to the other two equations. Consider the equation obtained by

subtracting Eqs. (33) related to θ̄n and θ̄. By multiplying the result by θ̄n − θ̄, using the algebraic
inequality (21) and Hölder’s inequality applied to the convective term, one obtains

1
τ

∫

Ω

|θ̄n − θ̄|2 + C

∫

Ω

|∇θ̄n − ∇θ̄|p

≤ λ

τ

∫

Ω

|ωn − ω||θ̄n − θ̄| +
∫

Ω

un · ∇θ̄n(θ̄n − θ̄) − u · ∇θ̄(θ̄n − θ̄)

≤ Cτ,ε‖ωn − ω‖2
L2 +

ε

2
‖θ̄n − θ̄‖2

L2 +
∫

Ω

|(un − u) · ∇(θ̄n − θ̄)θ̄|

≤ Cτ,ε‖ωn − ω‖2
L2 + ε‖∇θ̄n − ∇θ̄‖p

Lp + Cε‖un − u‖p′
Hr

‖θ̄‖p′

L2 ,

where we used (19) and (20).
Thus, by choosing ε ∈ (0,min{τ/2, C/2}), we get

1
2τ

∫

Ω

|θ̄n − θ̄|2 +
C

2

∫

Ω

|∇θ̄n − ∇θ̄|p ≤ Cτ‖ωn − ω‖2
L2 + C‖un − u‖p′

Hr
‖θ̄‖p′

L2 .

In particular, by interpolation, there follows

‖θ̄n − θ̄‖W 1,p → 0 as n → +∞. (40)

Next, consider the equation obtained after subtracting (34) for ω̄ from (34) for ω̄n. By multiplying
the result by ω̄n − ω̄, integrating over Ω and using that f is Lipschitz, we are lead to
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1
τ

∫

Ω

|ω̄n − ω̄|2 + C

∫

Ω

|∇ω̄n − ∇ω̄|q

≤ C(f, τ)
∫

Ω

(
|ωn − ω| + |θn − θ| + |ωn − ω|(|ωn| 2−s

s−1 + |ω| 2−s
s−1

))|ω̄n − ω̄|

− κ

∫

Ω

u · ∇(ω̄n − ω̄)ω̄ − un · ∇(ω̄n − ω̄)ω̄n,

where (30) was employed.
By treating the convective terms as before and using again the Hölder’s inequality, we arrive at

1
2τ

‖ω̄n − ω̄‖2
L2 +

(C

2
− ε

)
‖∇ω̄n − ∇ω̄‖q

Lq

≤ Cτ

(
‖ωn − ω‖2

L
2

s−1
+ ‖θn − θ‖2

L2 + ‖un − u‖q′
Hr

‖ω̄‖q′

L2

)
, (41)

since

‖ωn‖
L

2
s−1

+ ‖ω‖
L

2
s−1

≤ C, ∀n ∈ N.

Hence, from (39), (40) and (41), there follows that Tλ is continuous in B.
Step 3. We will show that Tλ is a compact operator for any λ ∈ [0, 1] fixed. Since V × W 1,p

0 × W 1,q is
compactly embedded in B, is it enough to prove that Tλ : B → V × W 1,p

0 × W 1,q is bounded. This is
achieved by performing standard energy estimates, so we omit the details.
Step 4. We claim that Tλ is uniformly continuous with respect to λ on bounded subsets of B. Indeed, let
A ⊂ B,A bounded, λl ∈ [0, 1], l = 1 or 2 and (u, θ, ω) ∈ A. Then, take (ūl, θ̄l, ω̄l) = Tλl

(u, θ, ω) and fix
ū = ū2 − ū1, θ̄ = θ̄2 − θ̄1 and ω̄ = ω̄2 − ω̄1.

Now, consider (32) given by l = 1 and 2 and take the difference between them. After that, by
multiplying the result by ū and integrating over Ω, we get∫

Ω

1
τ

|ū|2 + |∇ū|2 ≤ |λ1 − λ2|
∫

Ω

(
|Kτ (ω)|

∣∣∣∣u +
u − ui−1

τ

∣∣∣∣ + |ζθ|
)

≤ C(A, τ)|λ1 − λ2|.
In similar way, by using inequality (21) for both p and q, we obtain∫

Ω

1
τ

|θ̄|2 + C|∇θ̄|p ≤ C(A, τ)|λ1 − λ2|,
∫

Ω

1
τ

|ω̄|2 + C|∇ω̄|q ≤ C(A, τ)|λ1 − λ2|.

Hence, from the previous estimates and interpolation, the claim is proved.
Step 5. Finally, we focus on the estimates for the set of fixed points of Tλ. In this way, set (u, θ, ω) =
Tλ(u, θ, ω) and consider the corresponding Eqs. (32)–(35), properly modified.

By multiplying (32) by u and integrating over Ω, there follows∫

Ω

1
2τ

|u|2 + |∇u|2 ≤ Cτ + C‖θ‖2
L2 , (42)

since (H5) and (27) imply that ‖Kτ (.)‖L∞ ≤ Cτ and
∫

Ω

Kτ (ω)u2 ≥ 0.
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Next, multiplying (33) by θ, (34) by (ω − ωi−1)/τ , adding the result and integrating over Ω lead to
∫

Ω

1
τ

|θ|2 +
1

2τ2
|ω|2 + |∇θ|p +

1
4τ

|∇ω|2 +
1
qτ

|∇ω|q

≤ Cτ + C

∫

Ω

|ω|2 + |θ|2 +
C

τ

∫

Ω

|u|2 + |ω|2, (43)

where we have used (19), algebraic inequality (22), that ατ (x)x ≥ 0, that ωi−1 ∈ L∞, and the Hölder’s
inequality.

Hence, gathering (42) and (43), and by taking τ > 0 sufficiently small, there follows that

‖u‖2
V + ‖θ‖p

Lp + ‖ω‖2
L2 + ‖∇ω‖q

Lq ≤ C,

from which we deduce that

‖u‖Hr
+ ‖θ‖Lp + ‖ω‖

L
2

s−1
≤ C.

Therefore, by combining Steps 1–5, we can apply Leray–Schauder’s theorem and conclude that there
exists (u, θ, ω) ∈ V × W 1,p

0 × W 1,q such that T1(u, θ, ω) = (u, θ, ω).
By setting ui = u, θi = θ e ωi = ω, the result follows. �
For the temperature and phase-field discretized equations, the next result is better:

Proposition 4.3. Let (ui, θi, ωi) be given by Proposition 4.2. Then, Eqs. (24) and (25) hold almost every-
where in Ω.

Proof. Observe that (25) may be written as
∫

Ω

(1 + |∇ωi|q−2)∇ωi · ∇ξ =
∫

Ω

Fiξ, ∀ξ ∈ W 1,q

where

Fi = θi + f(ωi) − ωi − ωi−1

τ
− ατ

(
ωi − ωi−1

τ

)
− κui · ∇ωi.

Since p, q > N , by the Sobolev embedding, W 1,p
0 , W 1,q ↪→ L∞. So that, by (H3), (29), the Hölder’s

inequality and the choice of r (see Lemma 4.1), we have that Fi ∈ Lσ for some σ ≥ 2.
Therefore,

div
(
(1 + |∇ωi|q−2)∇ωi

) ∈ Lσ ⊂ Lq′
.

Next, since (1 + |∇ωi|q−2)∇ωi ∈ Lq′
, by applying [23, Thm. III.2.2], we have

∫

Ω

(1 + |∇ωi|q−2)∇ωi · ∇ξ =
∫

Ω

−Δωiξ − Δqωiξ,∀ξ ∈ W 1,q.

For the proof that (24) is satisfied almost everywhere in Ω, we observe that

Gi = gi − θi − θi−1

τ
− ωi − ωi−1

τ
− ui · ∇θi ∈ Lσ, σ ≥ 2,

and proceed analogously as before. �
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5. Time-dependent approximations and a priori estimates

After analyzing the previous time-discrete version of the problem, we move forward to the time-dependent
case. This is done by introducing auxiliary functions and investigating the approximate versions of (1)–(7).

Let τ > 0 be given by Proposition 4.2. We consider auxiliary functions uτ and ūτ defined by

uτ : [0, T ] → V,

uτ (t) = ui, (i − 1)τ ≤ t ≤ iτ, i = 0, . . . ,M,

ūτ : [0, T ] → V,

ūτ (t) =
(

ui − ui−1

τ

)
(t − (i − 1)τ) + ui−1, (i − 1)τ ≤ t ≤ iτ, i = 1, . . . , M.

The time derivative of ūτ is denoted by ū′
τ .

Analogously, we define θτ , θ̄τ , ωτ , ω̄τ , and gτ .
By Proposition 4.3, system (23)–(25) can be written as∫

Ω

ū′
τ · φ + ∇uτ · ∇φ + Kτ (ωτ )(uτ + ū′

τ ) · φ =
∫

Ω

ζθτ · φ ∀φ ∈ V, (44)

θ̄′
τ + ω̄′

τ − Δθτ − Δpθτ + uτ · ∇θτ = gτ , a.e. in Q, (45)

ω̄′
τ + ατ (ω̄′

τ ) − Δωτ − Δqωτ + κuτ · ∇ωτ = θτ + f(ωτ ) a.e. in Q. (46)

Moreover,

∇ · uτ = ∇ · ūτ = 0 in Q,

uτ (., 0) = ūτ (., 0) = u0 a.e. in Ω, (47)

θτ (., 0) = θ̄τ (., 0) = θ0 in Ω,

ωτ (., 0) = ω̄τ (., 0) = ω0 in Ω.

The main goal in this section is to obtain estimates, independent of τ > 0, for the unknowns under
consideration. We begin with the following lemma.

Lemma 5.1. There exists C = C(Ω, T, p, q, f, g, u0, θ0, ω0) > 0, not depending on τ > 0, such that

‖ū′
τ‖L2(0,T ;H) + ‖uτ‖L∞(0,T ;V ) ≤ C, (48)

‖θ̄′
τ‖L2(0,T ;L2) + ‖θτ‖L∞(0,T ;W 1,p

0 ) ≤ C, (49)

‖ω̄′
τ‖L2(0,T ;L2) + ‖ωτ‖L∞(0,T ;W 1,q) ≤ C, (50)

T∫

0

∫

Ω

Kτ (ωτ )|uτ + ū′
τ |2 ≤ C. (51)

Proof. By multiplying (24) by θi, (25) +ωi by (ωi−ωi−1)/τ , integrating over Ω and adding the resulting
equations, we obtain ∫

Ω

|θi|2
2τ

− |θi−1|2
2τ

+ |∇θi|p +
|ωi|2
2τ

− |ωi−1|2
2τ

+
∣∣∣∣ωi − ωi−1

2τ

∣∣∣∣
2

+
1
τ

∫

Ω

|∇ωi|2
2

− |∇ωi−1|2
2

+
|∇ωi|q

q
− |∇ωi−1|q

q

≤ C

∫

Ω

|θi|2 + |gi|2 + |ωi|2 − κui · ∇ωi
ωi − ωi−1

τ
, (52)
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where we employed (19), algebraic inequality (22), the fact that ατ (x)x ≥ 0 and (H3).
By the choice of r done in Lemma 4.1, we can apply the Hölder’s inequality in the convective term;

so we have ∫

Ω

ui · ∇ωi
ωi − ωi−1

τ
≤ C

(∫

Ω

|ui|r
)1/r(∫

Ω

|∇ωi|q
)1/q( ∫

Ω

∣∣∣∣ωi − ωi−1

τ

∣∣∣∣
2)1/2

≤ C

(∫

Ω

|ui|r + |∇ωi|q
)

+
1
2

∫

Ω

∣∣∣∣ωi − ωi−1

2τ

∣∣∣∣
2

+ C. (53)

Then, plugging (53) into (52) leads to
∫

Ω

|θi|2
τ

− |θi−1|2
τ

+ |∇θi|p +
|ωi|2

τ
− |ωi−1|2

τ
+

∣∣∣∣ωi − ωi−1

2τ

∣∣∣∣
2

+
1
τ

∫

Ω

|∇ωi|2 − |∇ωi−1|2 +
2
q
|∇ωi|q − 2

q
|∇ωi−1|q

≤ C

(
1 +

∫

Ω

|θi|2 + |gi|2 + |ωi|2 + |ui|r + |∇ωi|q
)

.

Now, recall that M is a discretization parameter such that Mτ = T . So, by multiplying the previous
inequality by τ and adding from i = 1 to m ≤ M , we obtain

∫

Ω

|θm|2 + |ωm|2 + |∇ωm|q +
m∑

i=1

τ |∇θi|p +
m∑

i=1

τ

∣∣∣∣ωi − ωi−1

τ

∣∣∣∣
2

≤ C

(
1 +

∫

Ω

m∑
i=1

τ
(|θi|2 + |gi|2 + |ωi|2 + |ui|r + |∇ωi|q

))
. (54)

In this way, by the definition of θτ , ωτ and uτ , one finds

‖θτ (t)‖2
L2 + ‖ωτ (t)‖2

L2 + ‖∇ωτ (t)‖q
Lq

≤ C
(
1 + ‖θτ‖2

L2(0,t;L2) + ‖ωτ‖2
L2(0,t;L2) + ‖∇ωτ‖q

Lq(0,t;Lq) + ‖uτ‖r
Lr(0,t;Lr)

)
,

for 0 < τ < 1/2 and a.e. t in [0, T ]. Thus, by Gronwall’s lemma,

‖θτ (t)‖2
L2 + ‖ωτ (t)‖2

L2 + ‖∇ωτ (t)‖q
Lq ≤ C

(
1 + ‖uτ‖r

Lr(0,t;Lr)

)
, (55)

where C = C(T, q, f, g, u0, θ0, ω0) > 0.
From (54) and (55), we have that

‖∇θτ‖p
Lp(0,t;Lp) + ‖ω̄′

τ‖2
L2(0,t;L2) ≤ C

(
1 + ‖uτ‖r

Lr(0,t;Lr)

)
. (56)

Next, we multiply (23) by (ui + (ui − ui−1)/τ), integrate over Ω, and use algebraic inequality (22), to
arrive at ∫

Ω

|ui|2
2τ

− |ui−1|2
2τ

+
∣∣∣∣ui − ui−1

2τ

∣∣∣∣
2

+ |∇ui|2 +
∫

Ω

|∇ui|2
2τ

− |∇ui−1|2
2τ

+
∫

Ω

Kτ (ωi)
∣∣∣∣ui +

ui − ui−1

τ

∣∣∣∣
2

≤ C

∫

Ω

|θi|2 + |ui|2.
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Once again, multiplying the last equation by τ and adding from i = 1 to m ≤ M lead to
∫

Ω

|um|2 + |∇um|2 +
m∑

i=1

τ

∣∣∣∣ui − ui−1

τ

∣∣∣∣
2

+
m∑

i=1

τ |∇ui|2

+
m∑

i=1

τ

∫

Ω

Kτ (ωi)
∣∣∣∣ui +

ui − ui−1

τ

∣∣∣∣
2

≤ C
(
1 +

∫

Ω

m∑
i=1

τ
(|ui|2 + |θi|2

))
.

By proceeding in the same way as was done to obtain (55) and (56), we get

‖uτ (t)‖2
L2 + ‖∇uτ (t)‖2

L2 + ‖ū′
τ (t)‖2

L2(0,t;L2) +

t∫

0

∫

Ω

Kτ (ωτ )|uτ + ū′
τ |2

≤ C
(
1 + ‖θτ‖2

L2(0,t;L2)

)
. (57)

Finally, we multiply (24) by (θi − θi−1)/τ and integrate over Ω. Recalling the choice of r in Lemma
4.1 and proceeding similarly as before, we obtain

∫

Ω

∣∣∣∣θi − θi−1

2τ

∣∣∣∣
2

+
|∇θi|2

2τ
− |∇θi−1|2

2τ
+

|∇θi|p
pτ

− |∇θi−1|p
pτ

≤ C

(
1 +

∫

Ω

|gi|2 + |ui|r + |∇θi|p +
∣∣∣∣ωi − ωi−1

τ

∣∣∣∣
2
)

.

By multiplying by τ > 0, adding from i = 1 to m ≤ M , and using estimate (56), we get

‖θ̄′
τ‖2

L2(0,t;L2) + ‖∇θτ (t)‖2
L2 + ‖∇θτ (t)‖p

Lp ≤ C
(
1 + ‖uτ‖r

Lr(0,t;Lr)

)
, (58)

a.e. t in [0, T ]. In particular, we have

‖θτ (t)‖2
L2 + ‖∇θτ (t)‖p

Lp ≤ C
(
1 + ‖∇uτ‖r

L∞(0,t;L2)

)
,

which combined with (57) leads to

‖θτ (t)‖2
L2 + ‖∇θτ (t)‖p

L2 ≤ ‖θτ (t)‖2
L2 + C‖∇θτ (t)‖p

Lp ≤ C
(
1 + ‖θτ‖r

L2(0,t;L2)

)
. (59)

Then, by applying the Poincaré’s inequality and recalling that r < p (see (18)), we obtain

‖∇θτ (t)‖2
L2 ≤ C

(
1 + ‖∇θτ‖

2r
p

L2(0,t;L2)

) ≤ C
(
1 + ‖∇θτ‖2

L2(0,t;L2)

)
.

In this fashion, by Gronwall’s lemma, we prove that there holds, for a.e. t in [0, T ],

‖∇θτ (t)‖2
L2 ≤ C,

where C = C(T, p, q, f, g, u0, θ0, ω0) > 0. Now, by Poincaré’s inequality we have

‖θτ‖2
L2(0,t;L2) ≤ C.

Thus, (48) and (51) follow from (57) and the previous estimate. Further, (49) and (50) are a consequence
of (48), (55), (56) and (58). �

Remark 5.2. Let us observe that all the previous results, except Lemma 5.1, are still valid if we assume
homogeneous Neumann boundary conditions for the temperature. However, in this case we can obtain a
local version of Lemma 5.1 by means of simple adaptations of the arguments. Indeed, firstly observe that
by (59) we get that

‖θτ (t)‖2
L2 ≤ C

(
1 + ‖θτ‖r

L2(0,t;L2)

)
.
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Next, since r > 2, the Gronwall’s Lemma implies the existence of a certain T ∗, such that 0 < T ∗ ≤ T ,
and

‖θτ (t)‖L2 ≤ C a.e in [0, T ∗]

where C = C(T ∗, T, p, q, f, g, u0, θ0, ω0) > 0.
This estimate and the argument presented in Lemma 5.1 then provide local versions of (48)–(51),

which combined with the subsequent results of this paper, imply the existence of a local solution to (1)–(7)
for homogeneous Neumann boundary conditions for the temperature θ.

Next, we obtain estimates for the time derivative of ωτ , which will be important when controlling
approximations of α(ωt).

Lemma 5.3. There exists C = C(Ω, T, p, q, f, g, u0, θ0, ω0) > 0, not depending on τ > 0, such that

‖ω̄′
τ‖L∞(0,T ;L2) + ‖∇ω̄′

τ‖L2(0,T ;L2) ≤ C, (60)
M∑
i=1

∫

Ω

|∇ωi − ∇ωi−1|q
τ

≤ C. (61)

Proof. Let us fix

ξi = ατ

(ωi − ωi−1

τ

)
, for i ≥ 1. (62)

Then, given i ≥ 2, from Eq. (25) associated with i, we subtract the same Eq. (25) but now associated
with i − 1. After that, we multiply the result by (ωi − ωi−1)/τ and integrate over Ω, to obtain

∫

Ω

(
ωi − ωi−1

τ
+ ξi − ωi−1 − ωi−2

τ
− ξi−1

)
ωi − ωi−1

τ
+

|∇ωi − ∇ωi−1|2
τ

+ C

∫

Ω

|∇ωi − ∇ωi−1|q
τ

+ κ

∫

Ω

ui · ∇ωi
ωi − ωi−1

τ
− ui−1 · ∇ωi−1

ωi − ωi−1

τ

≤ C

∫

Ω

|θi − θi−1|2
τ

+
|ωi − ωi−1|2

τ
, (63)

where we employed (H3) and algebraic inequality (21).
To estimate the convective terms in (63), we first rewrite them by adding and subtracting ui−1 ·

∇ωi(ωi − ωi−1)/τ , and using property (19). Then, by the Hölder’s inequality, we obtain
∫

Ω

ui · ∇ωi
ωi − ωi−1

τ
− ui−1 · ∇ωi−1

ωi − ωi−1

τ

=
∫

Ω

(ui − ui−1) · ∇ωi
ωi − ωi−1

τ

≤ C

τ

(∫

Ω

|ui − ui−1|2
)1/2( ∫

Ω

|∇ωi|q
)1/q( ∫

Ω

|ωi − ωi−1|r
)1/r

.

Next, observe that from (50), ‖∇ωi‖Lq ≤ C for every i, with C > 0 independent on τ > 0. Hence, by
using the embedding W 1,2 ↪→ Lr and the Young’s inequality, we arrive at
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∫

Ω

ui · ∇ωi
ωi − ωi−1

τ
− ui−1 · ∇ωi−1

ωi − ωi−1

τ

≤
∫

Ω

C
|ui − ui−1|2

τ
+

|ωi − ωi−1|2
2τ

+
|∇ωi − ∇ωi−1|2

2τ
. (64)

Moreover, by recalling the definitions of ατ in (28) and Γτ in (31), direct calculations lead to

γτ (ξi) + τ |ξi|s−2ξi =
ωi − ωi−1

τ
(65)

and ∫

Ω

Γτ (ξi) − Γτ (ξi−1) ≤
∫

Ω

γτ (ξi)(ξi − ξi−1). (66)

Thus, by using (65) in (66) yields∫

Ω

Γτ (ξi) − Γτ (ξi−1) + τ |ξi|s−2ξi(ξi − ξi−1) ≤
∫

Ω

(
ξi − ξi−1

)ωi − ωi−1

τ
,

and algebraic inequality (22) gives∫

Ω

Γτ (ξi) − Γτ (ξi−1) +
τ

s
|ξi|s − τ

s
|ξi−1|s ≤

∫

Ω

(
ξi − ξi−1

)ωi − ωi−1

τ
. (67)

Let us remark that the previous inequality is valid for any i ≥ 1.
Therefore, gathering (64) and (67) in (63), we end up with∫

Ω

Γτ (ξi) − Γτ (ξi−1) +
τ

s
|ξi|s − τ

s
|ξi−1|s +

|ωi − ωi−1|2
τ2

− |ωi−1 − ωi−2|2
τ2

+
∫

Ω

|∇ωi − ∇ωi−1|2
τ

+
|∇ωi − ∇ωi−1|q

τ

≤ C

∫

Ω

|ui − ui−1|2
τ

+
|θi − θi−1|2

τ
+

|ωi − ωi−1|2
τ

.

So, by adding from i = 2 to m ≤ M and using (48)–(50), we get
∫

Ω

Γτ (ξm) +
τ

s
|ξm|s +

∣∣∣∣ωm − ωm−1

τ

∣∣∣∣
2

+
m∑

i=1

∫

Ω

τ

∣∣∣∣∇ωi − ∇ωi−1

τ

∣∣∣∣
2

+
|∇ωi − ∇ωi−1|q

τ

≤ C

(
1 +

∫

Ω

Γτ (ξ1) +
τ

s
|ξ1|s +

∣∣∣∣ω1 − ω0

τ

∣∣∣∣
2

+
|∇ω1 − ∇ω0|

τ
+

|∇ω1 − ∇ω0|q
τ

)
. (68)

Now, we have to estimate the right-hand side of (68). First recall that in (62) we have set ξi for i ≥ 1,
so that we need to choose properly ξ0. Indeed, fix

ξ0 = θ0 + f(ω0) + Δω0 + Δqω0 − κu0 · ∇ω0 ∈ Ls (69)
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by hypothesis (H8), (see [10, Rmk. 1]).
By multiplying (25) for i = 1 by (ω1 − ω0)/τ and integrating over Ω, we obtain∫

Ω

(
ω1 − ω0

τ
+ ατ

(ω1 − ω0

τ

))
ω1 − ω0

τ
+ (1 + |∇ω1|q−2)∇ω1 · ∇ω1 − ∇ω0

τ

+κ

∫

Ω

u1 · ∇ω1
ω1 − ω0

τ
=

∫

Ω

(θ1 + f(ω1))
ω1 − ω0

τ
.

Thence, by adding and subtracting
∫
Ω

ξ0(ω1 − ω0)/τ (which is well defined since ω1 − ω0 ∈ L∞), using

(19), algebraic inequality (21) and arranging terms, we deduce
∫

Ω

(ξ1 − ξ0) · ω1 − ω0

τ
+

∣∣∣∣ω1 − ω0

τ

∣∣∣∣
2

+
|∇ω1 − ∇ω0|2

τ
+

|∇ω1 − ∇ω0|q
τ

≤
∫

Ω

|θ1 − θ0|2
τ

+ C
|ω1 − ω0|2

τ
− κ(u1 − u0) · ∇ω0

ω1 − ω0

τ
. (70)

To estimate the convective term, notice that as q > N and ω0 ∈ W 2,q, we have that ∇ω0 ∈ L∞. Thus,
by using Hölder’s and Young’s inequalities, there follows∫

Ω

(u1 − u0) · ∇ω0
ω1 − ω0

τ
≤ C

∫

Ω

|u1 − u0|2
τ

+
|ω1 − ω0|2

τ
. (71)

To obtain a lower bound for the first term appearing in (70), we use (67) for i = 1. Thus, plugging
(71) into (70) yields

∫

Ω

Γτ (ξ1) +
τ

s
|ξ1|s +

∣∣∣∣ω1 − ω0

τ

∣∣∣∣
2

+
|∇ω1 − ∇ω0|2

τ
+

|∇ω1 − ∇ω0|q
τ

≤ C
(∫

Ω

|θ1 − θ0|2
τ

+
|ω1 − ω0|2

τ
+

|u1 − u0|2
τ

+ Γτ (ξ0) +
τ

s
|ξ0|s

)

≤ C
(
1 +

∫

Ω

Γ(ξ0) +
τ

s
|ξ0|s

)
, (72)

where we have used (31) and estimates (48)–(50). Notice that the last expression is finite due to (H9)
and (69). Therefore, by combining (68) and (72), we prove (60) and (61). �

The last results of this section concern estimates that will be used while proving the identification of
the element of α(ωt).

It is worth to observe at this point that convection in the phase-field equation plays a key role. When
such convection is omitted, it is possible to obtain a rather regular solution; with the convection term,
the solutions are weaker, but this weakening is not severe since such solutions remain in Lebesgue spaces.

Lemma 5.4. Suppose that (15) holds. Then, there exists C > 0, not depending on τ > 0, such that

‖ατ (ω̄′
τ )‖L∞(0,T ;Ls) ≤ C, (73)

‖Δωτ + Δqωτ‖L∞(0,T ;Ls) ≤ C. (74)

Proof. We proceed analogously as in the proof of Lemma 5.3; we let i ≥ 2 and again subtract the
Eqs. (25) associated with i and i − 1; but this time we set



806 J. L. Boldrini, L. H. de Miranda and G. Planas ZAMP

ξ̂i = ατ

(
ωi − ωi−1

τ

)
+

ωi − ωi−1

τ

and take |ξ̂i|s−2ξ̂i as multiplier.
By using algebraic inequality (22), we get

∫

Ω

|ξ̂i|s
s

− |ξ̂i−1|s
s

+
(
(1 + |∇ωi|q−2)∇ωi − (1 + |∇ωi−1|q−2)∇ωi−1

)
· ∇(|ξ̂i|s−2ξ̂i)

+ κ

∫

Ω

(
ui · ∇ωi − ui−1 · ∇ωi−1

)|ξ̂i|s−2ξ̂i

≤
∫

Ω

((
θi − θi−1

)
+

(
f(ωi) − f(ωi−1)

))|ξ̂i|s−2ξ̂i. (75)

For the sake of clarity, we analyze (75) term by term.
To begin, we focus on delicate estimates on convective terms. Observe that by the choice of s in (15),

1
q

+
1
2

+
s − 1

s
≤ 1.

Moreover, since s ≤ N

N − 1
, there exists σ > 2 such that

1
σ

+
1
2

+
s − 1

s
≤ 1 and V ↪→ Lσ.

Thenceforth, by Hölder’s inequality,∫

Ω

∣∣∣∣ui · ∇ωi − ui−1 · ∇ωi−1

∣∣∣∣|ξ̂i|s−1

= τ

∫

Ω

∣∣∣∣ui − ui−1

τ
· ∇ωi + ui−1 · ∇ωi − ∇ωi−1

τ

∣∣∣∣|ξ̂i|s−1

≤ Cτ

(∥∥∥∥ui − ui−1

τ

∥∥∥∥
L2

‖∇ωi‖Lq‖ξ̂i‖s−1
Ls + ‖ui−1‖Lσ

∥∥∥∥∇ωi − ∇ωi−1

τ

∥∥∥∥
L2

‖ξ̂i‖s−1
Ls

)
.

Thus, by using estimates (48) and (50), and Young’s inequality, there follows∣∣∣∣
∫

Ω

(
ui · ∇ωi − ui−1 · ∇ωi−1

)
|ξ̂i|s−2ξ̂i

∣∣∣∣

≤ τC

(∥∥∥∥ui − ui−1

τ

∥∥∥∥
L2

‖ξ̂i‖s−1
Ls +

∥∥∥∥∇ωi − ∇ωi−1

τ

∥∥∥∥
L2

‖ξ̂i‖s−1
Ls

)

≤ τC

(
1 +

∥∥∥∥ui − ui−1

τ

∥∥∥∥
2

L2

+
∥∥∥∥∇ωi − ∇ωi−1

τ

∥∥∥∥
2

L2

+ ‖ξ̂i‖s
Ls

)
. (76)

Next, we turn to dissipative terms. Indeed, notice that∫

Ω

(
(1 + |∇ωi|q−2)∇ωi − (1 + |∇ωi−1|q−2)∇ωi−1

)
· ∇(|ξ̂i|s−2ξ̂i)

= (s − 1)
∫

Ω

|ξ̂i|s−2
(
(1 + |∇ωi|q−2)∇ωi − (1 + |∇ωi−1|q−2)∇ωi−1

)
· ∇ξ̂i.
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However,

∇ξ̂i =
(
1 + α′

τ (ω̄′
τ )

)∇ωi − ∇ωi−1

τ

and, by algebraic inequality (21)
(
(1 + |∇ωi|q−2)∇ωi − (1 + |∇ωi−1|q−2)∇ωi−1

)
·
(∇ωi − ∇ωi−1

τ

)
≥ 0.

Then, as α′
τ (.) ≥ 0 a.e., there follows that∫

Ω

(
(1 + |∇ωi|q−2)∇ωi − (1 + |∇ωi−1|q−2)∇ωi−1

)
· ∇(|ξ̂i|s−2ξ̂i) ≥ 0. (77)

Finally, we investigate the terms on the right-hand side of (75). Recalling that f(.) is Lipschitz
continuous by (H3), we get∫

Ω

∣∣∣∣
(
θi − θi−1

)
+

(
f(ωi) − f(ωi−1)

)∣∣∣∣|ξ̂i|s−1

≤ Cτ

∫

Ω

∣∣∣∣θi − θi−1

τ

∣∣∣∣|ξ̂i|s−1 +
∣∣∣∣ωi − ωi−1

τ

∣∣∣∣|ξ̂i|s−1

≤ Cτ

(
1 +

∥∥∥∥θi − θi−1

τ

∥∥∥∥
2

L2

+
∥∥∥∥ωi − ωi−1

τ

∥∥∥∥
2

L2

+ ‖ξ̂i‖s
Ls

)
, (78)

where we have used the Hölder’s inequality.
Thus, combining (75)–(78) leads to

∫

Ω

|ξ̂i|s
s

− |ξ̂i−1|s
s

≤ τC

(
1 +

∥∥∥∥ui − ui−1

τ

∥∥∥∥
2

L2

+
∥∥∥∥θi − θi−1

τ

∥∥∥∥
2

L2

+
∥∥∥∥ωi − ωi−1

τ

∥∥∥∥
2

W 1,2

+ ‖ξ̂i‖s
Ls

)
,

where i ≥ 2.
By summing from i = 2 to m ≤ M and using the estimates (48), (49) and (60), we end up with

∫

Ω

|ξ̂m|s ≤ C +
∫

Ω

|ξ̂1|s + C

m∑
i=1

τ

∫

Ω

|ξ̂i|s. (79)

To obtain a bound for the Ls norm of ξ̂i by using Gronwall’s lemma, we must look for an estimate to
ξ̂1. To this end, consider (25) for i = 1 and rewrite it in the form

ξ̂1 − Δω1 + Δω0 − Δqω1 + Δqω0 + κu1 · ∇ω1 − κu0 · ∇ω0

= θ1 − θ0 + f(ω1) − f(ω0) + ξ0, (80)

recalling that

ξ0 = θ0 + f(ω0) + Δω0 + Δqω0 − κu0 · ∇ω0 ∈ Ls (see (69)).

Observe that (76), (77) and (78) remain true for i = 1. Hence, by multiplying (80) by |ξ̂1|s−2ξ̂1 and
by integrating over Ω, there follows that

∫

Ω

|ξ̂1|s ≤ τC

(
1 +

∥∥∥∥u1 − u0

τ

∥∥∥∥
2

L2

+
∥∥∥∥θ1 − θ0

τ

∥∥∥∥
2

L2

+
∥∥∥∥∇ω1 − ∇ω0

τ

∥∥∥∥
2

W 1,2

+ ‖ξ̂1‖s
Ls

)
.
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Estimates (48), (49) and (60), give us∫

Ω

|ξ̂1|s ≤ C + τC‖ξ̂1‖s
Ls .

Thus, for 0 < τ < 1/2C, we end up with ∫

Ω

|ξ̂1|s ≤ C. (81)

We are now ready to prove (73). Indeed, plugging (81) into (79) yields

‖ω̄′
τ + ατ (ω̄′

τ )‖s
Ls ≤ C

(
1 +

t∫

0

‖ω̄′
τ + ατ (ω̄′

τ )‖s
Ls

)
,

which by Gronwall’s lemma implies

‖ω̄′
τ + ατ (ω̄′

τ )‖L∞(0,T ;Ls) ≤ C.

From this last result and (60), we conclude that (73).
Finally, (74) follows from Eq. (46) and estimate (73). �

6. Convergences

From the estimates established in the previous section, we obtain certain convergences for the approximate
functions and vector fields, which allow us to prove the existence of solutions for (1)–(7), according to
Definition 3.1.

We start with weak and weak-star convergences, once they are straightforward consequences of Lem-
mas 5.1, 5.3 and 5.4.

Proposition 6.1. There exist u, θ, ω and Ψ such that, up to subsequences, as τ → 0

uτ
∗
⇀ u in L∞(0, T ;V ), (82)

θτ
∗
⇀ θ in L∞(0, T ;W 1,p

0 ), (83)

ωτ
∗
⇀ ω in L∞(0, T ;W 1,q), (84)

ū′
τ ⇀ ut in L2(0, T ;H), (85)

θ̄′
τ ⇀ θt in L2(0, T ;L2), (86)

ω̄′
τ

∗
⇀ ωt in L∞(0, T ;L2), (87)

ω̄′
τ ⇀ ωt in L2(0, T ;W 1,2), (88)

−Δpθτ
∗
⇀ Ψ in L∞(0, T ;W−1,p′

). (89)

Moreover, if (15) holds, there exist η and Φ such that, up to subsequences, as τ → 0

ατ (ω̄′
τ ) ∗

⇀ η in L∞(0, T ;Ls), (90)

−Δωτ − Δqωτ
∗
⇀ Φ in L∞(0, T ;Ls). (91)

Some strong convergences are required to pass to the limit in the approximate problem. We compile
them in the following proposition.
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Proposition 6.2. There holds that, up to subsequences, as τ → 0

uτ → u in L∞(0, T ;H), (92)
ūτ → u in C([0, T ];H), (93)
θτ → θ in L∞(0, T ;L2) (94)
θ̄τ → θ in C([0, T ];L2), (95)

ωτ → ω in L∞(0, T ;C(Ω)) ∩ L∞(0, T ;W 1−ε,q), (96)

ω̄τ → ω in C([0, T ];C(Ω)) ∩ C([0, T ];W 1−ε,q). (97)

Proof. Since we have obtained estimates regarding different kinds of approximations for the unknowns
(step functions and linear approximations), we must combine them in order to obtain further information
on the approximations. Indeed, we claim that, as τ → 0,

uτ − ūτ → 0 in L∞(0, T ;H), (98)
θτ − θ̄τ → 0 in L∞(0, T ;L2), (99)
ωτ − ω̄τ → 0 in L∞(0, T ;W 1,q). (100)

To prove (98), notice that ‖uτ −ūτ‖H ≤ ‖ui−ui−1‖H and observe that ui−ui−1 =
∫ iτ

(i−1)τ

ui − ui−1

τ
ds,

then use estimate (48). For (99), we proceed analogously by using (49). The proof of (100) is a little
different by the lack of estimates for ω̄′

τ in W 1,q. However, this is handled by using estimates (60) and
(61) (for details see [10, Prop. 3]).

Since (96) is a direct consequence of (97) and (100), we concentrate now in (97). Notice that the
definitions of ω̄τ and ωτ combined with (50) lead to

‖ω̄τ‖L∞(0,T ;W 1,q) ≤ C,

with C independent on τ > 0.
However, as q > N , there exists ε > 0, sufficiently small, such that

1 − ε − N/q > 0.

In this way, due to [25, Thm 1.4.3.2 and 1.4.4.1], there holds

W 1,q ↪→↪→ W 1−ε,q ↪→ C(Ω) ↪→ L2.

So, since ω̄′
τ is bounded in L2(0, T ;L2) by (50), we can apply [33, Cor. 4] and conclude

ω̄τ → ω in C([0, T ];W 1−ε,q) ∩ C([0, T ];C(Ω̄)).

Similar arguments prove (92)–(95). �

7. Proof of Theorem 3.2: existence of solutions

In this section, the essential tools developed in the previous sections will be employed for proving Theo-
rem 3.2.

Let us remark that the regularity established in Definition 3.1 for u, θ, ω and η follows from Proposi-
tions 6.1 and 6.2. We prove that Eqs. (9)–(11) are satisfied by passing to the limit in the approximate
system (44)–(46).

We split the proof in five steps.
Step 1. Let us consider Eq. (44). Let φ ∈ L2(0, T ;V ) be such that supp φ ⊂⊂ Qml = {(x, t) : 0 ≤

h(ω(x, t)) < 1}, which is an open set because ω ∈ C(Q).
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Then, by (85), (82), and (94) one obtains that, as τ → 0,
T∫

0

∫

Ω

ū′
τ · φ →

T∫

0

∫

Ω

ut · φ,

T∫

0

∫

Ω

∇uτ · ∇φ →
T∫

0

∫

Ω

∇u · ∇φ, (101)

T∫

0

∫

Ω

ζθτ · φ →
T∫

0

∫

Ω

ζθ · φ.

We claim that, as τ → 0,

Kτ (h(ωτ )) = Kext(h(ωτ ) − τ) → K(h(ω)) uniformly a.e. in supp φ. (102)

Indeed, on the one hand, observe that by (96) ωτ→ ω uniformly a.e. in (0, T ) × Ω. Then, by (H6), as
τ → 0,

h(ωτ )→ h(ω) uniformly a.e. in supp φ.

On the other hand, fix δ > 0 such that h(ω(x, t)) ≤ 1−2δ, for every (x, t) ∈ supp φ; so there exists τ1 > 0
such that for every 0 < τ ≤ τ1,

h(ωτ (x, t)) ≤ 1 − δ a.e. in supp φ

and then, for any τ > 0 such that 0 < τ ≤ τ1

h(ωτ (x, t)) − τ ∈ [−τ1, 1 − δ] a.e. in supp φ.

Finally, as by construction Kext is uniformly continuous in [−τ1, 1 − δ], the claim is proved.
Hence, from (92), (85) and (102), we find that

T∫

0

∫

Ω

Kτ (h(ωτ ))(uτ + ū′
τ ) · φ →

T∫

0

∫

Ω

K(h(ω))(u + ut) · φ. (103)

Thus, by taking τ → 0 in Eq. (44), from (101) and (103), we conclude that Eq. (9) is satisfied.
Step 2. We now consider Eq. (45). Let ψ ∈ Lp(0, T ;W 1,p

0 ). As τ → 0, by (83), (86) and (87), we have
T∫

0

∫

Ω

(θ̄′
τ + ω̄′

τ )ψ →
T∫

0

∫

Ω

(θt + ωt)ψ,

T∫

0

∫

Ω

∇θτ · ∇ψ →
T∫

0

∫

Ω

∇θ · ∇ψ. (104)

Moreover, it is straightforward to check that, as τ → 0
T∫

0

∫

Ω

gτψ →
T∫

0

∫

Ω

gψ. (105)

Thus, by (83) and (92) there follows that
T∫

0

∫

Ω

uτ · ∇θτψ →
T∫

0

∫

Ω

u · ∇θψ. (106)
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Futher, we focus on the identification of the p-Laplacian. Indeed, notice that by (89), there exists
Ψ ∈ Lp′

(0, T ;W−1,p′
) such that, as τ → 0,

T∫

0

〈−Δpθτ , ψ〉 =

T∫

0

∫

Ω

|∇θτ |p−2∇θτ · ∇ψ →
T∫

0

〈Ψ, ψ〉 , (107)

for all ψ ∈ Lp(0, T ;W 1,p), where 〈 , 〉 denotes the duality product between W 1,p
0 and W−1,p′

.
Additionally, we have that

T∫

0

∫

Ω

(θ̄′
τ + ω̄′

τ )θτ →
T∫

0

∫

Ω

(θt + ωt)θ by (94), (86) and (87),

T∫

0

∫

Ω

gτθτ →
T∫

0

∫

Ω

gθ by (94) ,

lim sup
τ→0

−
T∫

0

∫

Ω

|∇θτ |2 ≤ −
T∫

0

∫

Ω

|∇θ|2 by (83).

Thus, by multiplying Eq. (45) by θτ and using the previous convergences, we arrive at

lim sup
τ→0

T∫

0

〈−Δpθτ , θτ 〉 ≤
T∫

0

〈Ψ, θ〉 .

Hence, recalling that −Δp is an maximal monotone operator on Lp(0, T ;W 1,p
0 ) × Lp′

(0, T ;W−1,p′
), by

[3, Cor. 2.4], we have that
Ψ = −Δpθ. (108)

From (104)–(108), we can pass to the limit in Eq. (45), leading to
T∫

0

∫

Ω

(θt + ωt)ψ + (1 + |∇θ|p−2)∇θ · ∇ψ + u · ∇θψ =

T∫

0

∫

Ω

gψ,

for any ψ ∈ Lp(0, T ;W 1,p). Now, by an argument similar to that used in the proof of Proposition 4.3,
there follows that

θt + ωt − Δθ − Δpθ + u · ∇θ = g a.e. in Q

and (10) holds.
Step 3. At this step, we consider Eq. (46). Initially, observe that given ξ ∈ Lq(0, T ;W 1,q), we obtain

the following convergences, as τ → 0,
T∫

0

∫

Ω

(ατ (ω̄′
τ ) + ω̄′

τ )ξ →
T∫

0

∫

Ω

(η + ωt)ξ by (87) and (90),

T∫

0

∫

Ω

∇ωτ · ∇ξ + κuτ · ∇ωτ ξ →
T∫

0

∫

Ω

∇ω · ∇ξ + κu · ∇ωξ by (92) and (96),

T∫

0

∫

Ω

(θτ + f(ωτ ))ξ →
T∫

0

∫

Ω

(θ + f(ω))ξ by (94) and (96),
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where we have used that f(.) is Lipschitz continuous by (H3).
For the identification of the q-Laplacian, notice that by proceeding as it was done to obtain (107)–

(108), we prove the convergence

−Δqωτ
∗
⇀ −Δqω em L∞(0, T ; (W 1,q)′),

and in particular, we have that
T∫

0

∫

Ω

|∇ωτ |q−2∇ωτ · ∇ξ →
T∫

0

〈−Δqω, ξ〉,

where now 〈 , 〉 represents the duality product between W 1,q and (W 1,q)′.
The previous convergences allow us to pass to the limit in (46) and obtain

T∫

0

∫

Ω

ηξ + ωtξ + (1 + |∇ω|q−2)∇ω · ∇ξ + κu · ∇ωξ =

T∫

0

∫

Ω

(θ + f(ω))ξ,

for any ξ ∈ Lq(0, T ;W 1,q). Once again, by a straightforward adaptation of Proposition 4.3, we infer that

η + ωt − Δω − Δqω + κu · ∇ω = θ + f(ω) a.e. in Q, (109)

and (11) holds.
Step 4. We identify η by employing the so-called Minty’s trick.
Notice that

lim sup
τ→0

−
T∫

0

∫

Ω

|ω̄′
τ |2 ≤ −

T∫

0

∫

Ω

ω2
t by (87). (110)

Moreover, from (88), (92), (94) and (96)

T∫

0

∫

Ω

uτ · ∇ωτ ω̄′
τ = −

T∫

0

∫

Ω

uτ · ∇ω̄′
τωτ →

T∫

0

∫

Ω

u · ∇ωωt,

T∫

0

∫

Ω

(f(ωτ ) + θτ )ω̄′
τ →

T∫

0

∫

Ω

(f(ω) + θ)ωt. (111)

By using algebraic inequality (22), we have that

T∫

0

∫

Ω

|∇ωτ |q−2∇ωτ · ∇ω̄′
τ =

M∑
i=1

τ

∫

Ω

|∇ωi|q−2∇ωi · ∇ωi − ∇ωi−1

τ

≥
∫

Ω

|∇ωM |q
q

−
∫

Ω

|∇ω0|q
q

=
‖∇ω̄τ (T )‖q

Lq

q
− ‖∇ω0‖q

Lq

q
.

From (84) and (97), ω̄τ (T ) ⇀ ω(T ) in W 1,q as τ → 0, then we find that

lim inf
τ→0

T∫

0

∫

Ω

|∇ωτ |q−2∇ωτ · ∇ω̄′
τ ≥ ‖∇ω(T )‖q

Lq

q
− ‖∇ω0‖q

Lq

q
. (112)
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Similarly, we have that

lim inf
τ→0

T∫

0

∫

Ω

∇ωτ · ∇ω̄′
τ ≥ ‖∇ω(T )‖2

L2

2
− ‖∇ω0‖2

L2

2
. (113)

Thus, by taking ξ = ω̄′
τ in Eq. (46), integrating in time, and combining (110)-(113), there follows

lim sup
τ→0

T∫

0

∫

Ω

ατ (ω̄′
τ )ω̄′

τ

≤
T∫

0

∫

Ω

(f(ω) + θ)ωt − ω2
t − κu · ∇ωωt

− ‖∇ω(T )‖2
L2

2
+

‖∇ω0‖2
L2

2
− ‖∇ω(T )‖q

Lq

q
+

‖∇ω0‖q
Lq

q
. (114)

We claim that Υ(ω(.)) =
∫

Ω

|∇ω(.)|2
2

+
|∇ω(.)|q

q
: Ls′ → R ∪ {+∞} is absolutely continuous in [0, T ]

and that it holds

−
T∫

0

∫

Ω

(Δω + Δqω)ωt =
‖∇ω(T )‖2

L2

2
− ‖∇ω0‖2

L2

2
+

‖∇ω(T )‖q
Lq

q
− ‖∇ω0‖q

Lq

q
. (115)

Indeed, this follows by a direct adaptation of [18, Prop. 4.2] when ωt ∈ L2(0, T ;Ls′
) and −(Δω +Δqω) ∈

L2(0, T ;Ls). Observe that s is such that W 1,2 ↪→ Ls′
(see (15)).

Thus, by multiplying (109) by ωt, after an integration over Q, and using (115), we arrive at

T∫

0

∫

Ω

ηωt =

T∫

0

∫

Ω

(f(ω) + θ)ωt − ω2
t − κu · ∇ωωt

− ‖∇ω(T )‖2
L2

2
+

‖∇ω0‖2
L2

2
− ‖∇ω(T )‖q

Lq

q
+

‖∇ω0‖q
Lq

q
. (116)

Hence, by comparing (114) and (116), we conclude that

lim sup
τ→0

T∫

0

∫

Ω

ατ (ω̄′
τ )ω̄′

τ ≤
T∫

0

∫

Ω

ηωt. (117)

Next, recall that (see (28))

ατ = (γτ + τ |I|s−2I)−1,

and fix ητ = ατ (ω̄′
τ ), so that

γτ (ητ ) + τ |ητ |s−2ητ = ω̄′
τ .

Now, as γτ (ητ )ητ + τ |ητ |s = ητ ω̄′
τ , from estimative (73) there follows that

lim sup
τ→0

T∫

0

∫

Ω

γτ (ητ )ητ ≤
T∫

0

∫

Ω

ηωt.
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By using again estimate (73), we obtain that

τ |ητ |s−2ητ → 0 in L2(0, T ;Ls′
).

Therefore, as W 1,2 ↪→ Ls′
(see (15)), the combination of (88) and (90) entails that

γτ (ητ ) ⇀ ωt in L2(0, T ;Ls′
) and ητ ⇀ η in L2(0, T ;Ls), (118)

Hence, by [3, Cor. 2.4], we conclude that

ωt ∈ γ(η) or equivalently η ∈ α(ωt);

thus (12) is also satisfied.
Step 5. At this final step, we prove that both Eq. (13) and the initial conditions (14) hold. Indeed, as

ωτ → ω uniformly a.e. in Q,

h(ωτ ) → 1 uniformly a.e. in Qs, by (H6).

From (H5) and by the definition of Kτ , there follows that

Kτ (h(ωτ )) → +∞ uniformly a.e. in Qs.

By combining the last convergence with the estimate (51), we infer ‖uτ + ū′
τ‖L2(Qs) → 0, as τ → 0.

Hence, convergences (92) and (85) furnish

u + ut = 0 a.e. in Qs,

so that (13) is satisfied.
Finally, the initial data (14) follow directly from (47) and convergences (93), (95) and (97). The proof

of Theorem 3.2 is then complete. �

8. Improved regularity for the non-advective case

In this section, we assume that κ = 0, and thus, there is no convective term in the phase-field inclusion.
We use the same notations as in the proof of Theorem 3.2.

Let us remark that, in this case, we can take s = 2 in the definition of ατ (cf. (28)) and can follow
all the arguments in previous sections, which are in fact simplified. Moreover, we obtain better estimates
and convergences for the approximations.

We start by improving estimates (90) and (91) in the following lemma.

Lemma 8.1. There exists C > 0, not depending on τ > 0, such that

‖ατ (ω̄′
τ )‖L∞(0,T ;L2) ≤ C, (119)

‖Δωτ + Δqωτ‖L∞(0,T ;L2) ≤ C. (120)

Proof. The argument for proving both (119) and (120) is a direct adaptation of the proof of Lemma 5.4.
Indeed, since κ = 0, we just need to consider ξ̂i as the multiplier and proceed analogously. �

It turns out that it is possible to obtain extra fractional regularity for the solutions of (1)–(7). This
is due to the application of certain tools regarding regularity theory and p-Laplacian operators, which
will require ∂Ω ∈ C3 (cf. [10, Lem. 1]). To the best of our knowledge, it is unknown whether this
regularity can be obtained for the full model when κ = 0. The reader is referred to [10] for further
details.
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Lemma 8.2. There exists C > 0, not depending on τ > 0, such that

‖ωτ‖L∞(0,T ;N 1+2/q,q) + ‖ωτ‖L∞(0,T ;W 2,2) ≤ C. (121)

Proof. Since κ = 0, Eq. (46) becomes

ω̄′
τ + ατ (ω̄′

τ ) − Δωτ − Δqωτ = θτ + f(ωτ ) a.e. in Q.

Thus, by [10, Lem. 7], we have the estimate

‖ωτ‖q
L∞(0,T ;N 1+2/q,q)

+ ‖ωτ‖2
L∞(0,T ;W 2,2)

≤ C
(‖f(ωτ ) + θτ‖2

W 1,2(0,T ;L2) + ‖ω0‖2
W 2,2 + ‖ω0‖2p

W 1,2q + ‖ω0‖p
W 2,q

)
.

By (H3) and (H8), combined with (49) and (50), we conclude the proof. �

Proof of Theorem 3.3.

Essentially, we use the extra information given in the last two lemmas in order to improve the regularity
of both ω and η.

Indeed, it is clear that (17) is consequence of estimate (121). The identification of η follows by the
Minty’s trick as in Step 4 of the proof of Theorem 3.2, but now from (119)–(120), we can take s = s′ = 2.
In this way, (118) becomes

γτ (ητ ) ⇀ ωt in L2(0, T ;L2) and ητ ⇀ η in L2(0, T ;L2)

which combined with (117), gives (16). The proof of Theorem 3.3 is finished.
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Lúıs H. de Miranda
Departamento de Matemática
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