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Global regularity of 2D generalized MHD equations with magnetic diffusion
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Abstract. This paper is concerned with the global regularity of the 2D (two-dimensional) generalized magnetohydrodynamic
equations with only magnetic diffusion A28b. It is proved that when 3 > 1 there exists a unique global regular solution for this
equations. The obtained result improves the previous known ones which require that 8 > % With help of Fourier analysis,
Besov spaces and singular integral theory, some delicate estimates on the vorticity w and the current j are established to
prove our main result.
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1. Introduction

Consider the Cauchy problem of the following two-dimensional generalized magnetohydrodynamic
(GMHD) equations:

us+u-Vu=—-Vp+b-Vb— A2,

b +u-Vb=b-Vu— kA2, 1)
V-u=V-b=0, ’
u(x,0) =ug (z), b(x,0)=bp(x)

for z € R? and t > 0, where u = wu(w,t) is the velocity, b = b(z,t) is the magnetic, p = p(z,t) is
the pressure, and ug (), bo () with divug () = divbg () = 0 are the initial velocity and magnetic,
respectively. Here v, k, a, f > 0 are nonnegative constants and A is defined by

o~

AF(€) = el (&),

where A denotes the Fourier transform. In the following sections, we will use the inverse Fourier transform
V.

The global regularity of the 2D GMHD Eq. (1.1) has attracted a lot of attention and there have been
extensively studies (see [2-8,12,14-19]). It follows from [15] that the problem (1.1) has a unique global
regular solution if

azl, >0, a+p=>2.
Tran et al. [12] got a global regular solution under assumptions that
azl/2, 621 or 0<a<1/2 2a+8>2 or ax=2, pf=0.

Recently, it was shown in [7] that if 0 < « < 1/2, § > 1, 3a + 203 > 3, then the solution is globally
regular. In particular, when o = 0, 3 > %, the solution is globally regular. This was proved independently
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in [17,18]. Meanwhile, Fan et al. [5] used properties of the heat equation and presented a global regular
solution when 0 < a < %,ﬁ =1.

In this paper, we aim at getting the global regular solution of (1.1) when v =0,k > 0 and 8 > 1. For
simplicity, we let k = 1. That is, we consider

ur+u-Vu=—-Vp+b-Vb,

b +u-Vb=b-Vu— A,
V-u=V-b=0,

u(x,0) =ug (), b(x,0)=by(x).

(1.2)

Let w = —0suy + O1us and j = —0aby + O1b2 be the vorticity and the current, respectively. We will
prove that w, j € L?(0,T; L) and obtain the global regularity of the solution by the BKM type criterion
in [2]. To this end, we will take advantage of the approaches used in [5] and [7] to deal with the higher
regularity estimates of j. More precisely, using the equation satisfied by the current j, we will obtain the
estimates of |[A7j%. (t) + fg |AP+74]|2, < C with r = 3 — 1. Using the singular integral representation
of A%j with some ¢ > 0, we will obtain the estimate IVillL2(0,7;L (r2))- Then, we get the estimates of
llwl| 22 (0,7; L0 (r2)) using the particle trajectory method. In the last, we apply Besov space to prove that
(u,b) € C([0,T]; H?(R?)) with p > max{2, 3}. It should be noted that after the paper is finished, at the
almost same time, Cao et al. obtain the similar result independently using a different method (see [4]).
In comparison with result obtained in [4], it is not required that ||Vjp||L~ < co in our result. Moreover,
the proof is much more direct and concise here.

It should be remarked that the global existence and uniqueness of regular solution to (1.2) when § =1
remain open in general. In this case, the global classical solution was constructed in [8] for bounded domain
and [3] for exterior domain and half space under the assumption that the initial data is small, respectively.
Also, when v > 0,k = 0 and « = 1, the global existence and uniqueness of regular solution to (1.1) remain
unsolved except for recent results under assuming small perturbation around a steady state (see [9]).

The main result of this paper is stated as follows:

Theorem 1.1. Let § > 1 and assume that (ug,by) € HP with p > max{2,8}. Then for any T > 0, the
Cauchy problem (1.2) has a unique regular solution

(u,b) € C([0,T]; H*(R?)) and b e L*([0,T]; H**(R?)).
Remark 1.1. When a = 0,3 > 2, p > 2, the global regularity has been obtained in [7,17] and [18].

2. Preliminaries

Let us first consider the following equation

v+ APy = f
v (z,0) = vo(x).

Similar to the heat equation, we can get

v (z,t) :th—éh (:vt—ﬁy> vo(y)dy—l—o/tRZ(t—s)_}fh <(t“”:)yﬁ> £ (y,5) dyds, (2.3)

\%
where h(z) = (e_"‘2ﬁ> (x) and it has the similar properties as the heat kernel (see [10,13] and references

therein). The following lemma will be needed to prove our main result.
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Lemma 2.1. Let |l be a nonnegative integer and n = 0 be a nonnegative real number. Then

HV hHL1 + |A"R| . < C. (2.4)
Proof. First, we give the proof of the estimates of V'h.

| v'a] = Csup/ [eete e as

R2 2

— C sup / /f”’e ¥ it de | da + C / /@e S gt qe | da
[vI=t

|z|<1 | R? |z|>1 | R2

<C+Csup / (1+ |2~ / £l (1 Ag)2eimtde | da
lv|=t
|z >1 R2

< C+C sup / (14 |z*)~2 /(1 — A2 1Yt qe | da

|z >1 R?2
Next, we start to estimate A"h and let [ > 1.

[AB][ 0= {[ > ApA"h

k>—1 I

< NAGA R 4> [ ARAR s
k>0

S C Ny +C D 25D AN,
k>0

SCH+CY V|V,
k>0
<G,
where we used the nonhomogeneous Littlewood-Paley decompositions Id = >, A and Bernstein-type

inequalities (see [1,11]). O

Denote w = V+ - u = —dyu; + d1us the vorticity of the velocity fields and j = V+ - b = —yb; + 01bo
the current of the magnetic fields. Applying V*- on both sides of the Eq. (1.2), we obtain the following
equations for w and j:

wt+u-Vw=1>0-Vj, (2.5)
je+u-Vj=0b-Vw+T (Vu,Vb) — A%,
where
T (Vu, Vb) = 201b1 (Orug + Oaur) + 202us (01b2 + 0201).
Lemma 2.2. Let ug,by € H'. Then for any T >0 and 0 < t < T, we have

t
. T
lwllZ2 (8) + N11Z2 (2) +/HA5.7HL2 dr <C(T). (2.7)
0



680 Q. Jiu and J. Zhao ZAMP

The proof of Lemma 2.2 is referred to [12], and we omit it here.
The following lemma is from [7]. For completeness, we present the sketch of the proof in the following.

Lemma 2.3. Letr=03—1 and k > (. Letuo,boer Then for any T >0 and 0 < t <T, we have
A7 (¢ (/M“T <om. (2.8)

Proof. Applying A" on both sides of the Eq. (2.6), we obtain
(A"j)e + A" (u-Vj) = A"(b- Vw) + A" (T (Vu, Vb)) — A27+735. (2.9)
Multiplying (2. 9) by A"j and integrating with respect to = in R2?, we obtain
HAT]”Lz + HABMJHL /A7 (u-Vij)A"jdx + /A’" (b- Vw) A" jdx
]R?

+ / AT (Vu,Vb) A"jdx

2dt

17 is estimated as follows:

|| = /AT (u-Vj)A"jdx

/Aflv - (ug) AP jda

< ||A ' ()| e A
< Clugl| 12 HAEHJHB
<

Cllull g 41l o A5 L2

<Clullfs IVullE 195 7 ||A%5]2 A%+ 5],

< Ce||AP*7 517, + C(e) ull o @l 115 * (A%,

where we have used the following Gagliardo—Nirenberg inequalities

1 1
ull s < Cllullf2 [Vl £2 ;

lillpe < Cllillha ™ [[A%5]) %

Similarly, we can deal with I as follows:

|Is] = /Ar(b~Vw)ATjdx

= /Aflv - (bw) APFTjda

R2

1A7H9 - )| o (14775
||bw||L2 HAﬁ“JHL

<
<C
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C||b||Loo ol 2 14775
< CblIE A% 57 ol |47,
< Oc||AP*731% + O 10l 25 7 ol
where we have used the following GagliardofNirenberg inequalities
[bll~ < C B A7) 557

Now, we give estimate of I3.
|I5| = /ATT(Vu,Vb) A jdx
= / T (Vu, Vb) A*" jdx

R2
<OVl IIVbIILoo ||A2Tj||L2

<O Vull IIVbIIL”*’ ||AB”“bH5“ \J||B+T

Aﬁ+rj|‘ 5+v

<OVl g2 151l 22 7

|A[3+rj H ﬁ+r

2(8+r)
Ce || AP*7j13, + C(e) 14122 llwll 2 K

where we have used the following Gagliardo—Nirenberg inequalities

N

B+r—1 1
VO] o < CIIVbHL"” [AZF || 75

[A%7]]] . < CHJHLM

Substituting estimates of I} — I3 into (2.10), we obtain

|Aﬂ+r]” B+7 )

_ 1 1
2 dt A2 + (A < Cel[A ]+ CC6) o ol o 152 1751

2 9 2(p+r)
+C(e )Ilb\l“‘* [A%5]| 557 lwllze + C(e) ]l 72 llwll /2 L

Choosing € = %, we get

d . ‘ 2= % E
SN, + AP 5] < CC fullga ol o 152 2515 + O oI (1475757 ol

22+I)
+C(€) 417z Iwll 2" - (2.11)
By assumptions of the lemma, we have 3 > 1, r = 8 —1 > 0, and hence % 1, + < 2. Thus, due to

Lemma 2.2, we have
1A% A% 527 € LMo, 7).
Using the Gronwall’s inequality in (2.11), we obtain

|‘Ar]||iQ (t) + / HAﬂ—HAJHig dr < C(anb07T) .
0

The proof of the lemma is complete. O
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3. The proof of Theorem 1.1

In this section, we will prove our main result, Theorem 1.1. The proof is based on the local wellposedness
and a priori estimates in C([0,T]; H?(R?)). It is divided into two parts. In the first part, we will prove
that uw € L>([0,T]; H?(R?)) and b € L>([0,T); H?(R?)) N L2([0,T]; H*TA(R?)) for any T > 0. In the
second part, we prove that (u,b) € C([0,T]; H?(R?)).

Part 1. (u,b) € L>([0,T); H?(R?)) and b € L%([0,T]; H**#(R?)) for any T > 0

In this part, our aim is to utilize the BKM type criterion to deduce the global regularity of the solution
(see [2]). Namely, we will obtain the a priori estimates of w and j in L'([0,T]; L>°(R?)). There are three
steps as follows:

Step 1. w € L*(0,T; LP(R?)),j € LP(0,T;R?) for any 2 < p < c0.

The second equation in (1.1) can be rewritten as

2
b+ A%b = 0i(biu — u;b)

i=1
Due to (2.3), we have

b(x,t):/t—éh< >bo dy+//t—s ih <t_82ﬁ>23 y, s) dyds.

R2 0 R2

(3.12)

It follows from Lemmas 2.2 and 2.3, respectively, that v € L>(0,T; L?(R?)) for any 2 < p < oo and
b€ L>=(0,T; L>(R?)) by the Gagliardo-Nirenberg inequalities. Thanks to Lemma 2.1, we can get

dt
L1(R2)

<C(T)

T
98l s r) < O Vllaoeesy + Clbulararan [ o370 ()
) 4
2
dr

r#wn (<)
T28 L1(R2)

o ()

C(T)HvbOHLP(RZ) + C(T)Hb -Vu—u- Vb”Lz(O,t;LP(]}W))o (3.13)

||V2b||L2(0,t;LP(R2)) < C||Vboll e (r2)

dr

-‘rCHb -Vu—u- VbHLz(O,t;LP(R2)) /
L'(R?)

for any 2 <p < oo and t € (0,7).
Multiplying (2.5) by |w[P~2w(p > 2), and integrating with respect to x, we get

1d
5 Il < / 11931 "

< bl e 13 o [0l

Thus, we have

1d

5 Nl < 10l e 1910
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and

2 2 .12 2
lwlzy < Cllw(z, 0)l[L, + C/(HVJHLP +lwllzs)ds
0

N

t
C+c (w0}, + i, )as
0

(3.13) : 2 2
Pos o/<||b  Vu— - V|2, + [|w]2,)ds
0

t
< C+ C/(HVbHQLP lulZee + ol Z0)ds
0

t

< o+ 0/(1 +IVBI2,) ]|, ds.
0

This, combining with the Gronwall’s inequality, leads to w € L>(0,T; L?(R?)) for any 2 < p < oo.
Step 2. Vj € L*(0,T; L=(R?)).
Similar to [7], we apply A%(0 < § < min{283 — 2, p — 2}) on both sides of (2.6) to obtain
(A%5) + A%PA°) = —A%(u - Vj) + A%(b- Vw) + A°(T (Vu, Vb)). (3.14)

Thanks to Lemma 2.2 and Step 1, we have that uj, bw,and T (Vu, Vb) € LP(0,T;R?) for any 2 < p < oo.
In the same way as in Step 1, we have

Aaj(%t):/ n(25Y) ity
//t—s ﬁh(t_s)1ﬁ>(—A‘s(u-Vj)+A§(b-Vw))(y,s)dyds

0 R2

//t—s ﬁh(t )1>A5(T(Vu7Vb))(y7s)dyds

0 R2
T 5 3
. . _ 3 .
||VA6.7||L2(O,T;LP(R2)) < C||A5JOHLP(R2) /Ht 26 (Vh)< 1> de
0 t28 L1(R2)
[ ween (5)
128
= ween ()
1258

and

dt
L1(R2)

+C|ujll L2 0,7;L° (r2))

dt
L1(R2)

+C|bw|| 20,717 (r2))

O\ﬂ O\N
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dt

T
_ 345 .
+CIT (V0,9 |2y [ Ht # (A'Vh) ()
Ll(]R2)

t26
0

< CO(T)

for any 2 < p < 0o. So we can choose § small and p large enough such that Vj € L?(0,T; L°°(R?)) and
[1A%0ll» < Clijoll ze-

Step 3. w € L>(0,T; L>).

Because of the estimates of the step 2, and the following equation

w+u-Vw=1>b-Vj,

we can prove that w € L* (0,7; L) by using the particle trajectory method. By taking advantage
of the BKM type criterion for global regularity (see [2]), we have (u,b) € L>([0,T]; H?(R?)) and b €
L2([0,T]; HP*P(R?)). The proof of the first part of Theorem 1.1 is finished.

Part 2. (u,b) € C([0,T); H?(R?))

In Part 1, we have obtained (u,b) € L>([0,T]; H?(R?)). Now, we prove that (u,b) € C([0,T]; H?(R?)),
to this end, we will apply the Besov spaces and the notations are referred as in [11]. We will prove
that > - 229q(||Aqu||2Lw([O}T);LQ(RQ)) + ||Aqb||ioc([o’T);L2(R2))) < C, where we use the nonhomogeneous
Littlewood-Paley decompositions Id = >, A (see [1,11]). And we also use the following denotation
Squ = Zlgq—l Alu.

Applying A, to Eq. (1.2), we get

(Aqu)y + Sgr1u - VAgu = =VAp+ Sqi1b- VAL + (Sgp1u - VAu — Ay(u- Vu))

—(Sq11b- VA — Ay(b- Vb)) (3.15)
and
(Agb)t + Sqr1u - VAGD = (Sqq1u - VAGD — Ay(u - Vb)) — (Sq1b- VAgu — Ay(b- Vu))
+8,41b- VA — AZPAD. (3.16)
Denote

Rig = Sqr1u- VAu — Ay(u - Vu),
Ray = ~(Sys1b- VAb = A, (b- Vb)),
R3q = Sgr1u-VAD — Ay(u-Vb),
Rig = —(Sg+1b- VAu — Ag(b- Vu)).

Then, we have (see Lemma 2.5 in [11])

IRagll 2 < Ceg2™# ully,

1Ragll 2 < g2 bl 4

[Rsqll 2 < Ceg277 [ull o 0]l g0

[Ragllp2 < Ceg27 7 |[bl| g, [[ull g1 - (3.17)

Multiplying by A,u and A,b on both sides of (3.15) and (3.16), respectively, integrating with respect

to x, and summing up, we obtain
1d
55 (”AquHiQ + ||Aqb||2LQ> < /—Vqu . Aqudx + /((qu + qu)Aqu + (qu + R4q)Aqb)dl‘
RZ

]R2

+ / ((Sg1b- VAD)A u + (Syi1b- VALD)Ab)da

R2
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< (1Rugll o + 1 R2ql 2) 18 g2l o + (1Bsll o + | Bagll 2) 1AGH] 2
— 2 2
< Ceq2 (1lulif + 16150 ) 11Aqull
+ 02 ull o 1Bl g0 180l

where we have used V- u =V -b =0, (3.17) and ||¢4|[;> < 1. Due to the first part of Theorem 1.1, we
have

[l oo 0,7y 0 2y) S C5 1Bl pow 0,700 (2)) S €
Thus, we get

1d 2 _
g (8aulze + 18,013 ) < Ceg2™ (1Agullza + 1800 2)
Then, we obtain
2 2 2 2 _
AUl e (jo.1:22(R2)) F 1A oo (0. 1y:22(m2)) < [1AqUollz2 g2y + [1Agboll L2 2y + Cleg2779)? (3.18)
Multiplying (3.18) by 22°7 and summing up over g, we get

Z 2P (”AQUHiM([O,T);L?(]R?)) + ||Aqb||2Loc([o,T);L2(R2))) < Z 92 (\\AqUOHi2(R2) + HAquHi%Rz))
qg=—1 q=1

+C > cg < CllluollFro @y + Ibol 70 g2)) + C
q=1
<.

Therefore, for any € > 0, there exists N(e) such that

2 2
> 2 (U8l oryraaon + 186w oryan) | <€ (319)
g=N(e)

Thanks to the first part of Theorem 1.1, we can easily get the following estimates.

[ Vull oo (0,7 rr0-1(R2)) < C Ul oo ([0, 7,00 (R2)) 1@l oo (0,7 110 (R2))

+C VUl poe (o, 1 ®2)) 1l oo (0,7, 70— 1 (R2))
C

NN

16+ V0l oo 0,7y, 1101 (R2)) S C Nl poc (10,7500 (R2) IOl Lox (10,700 2

FC VO Loo (0.1; 1 R2)) 10l oo ((0,7); -1 (R2))

HVPHLOC([O,T);prl(]R%)

INCIN NN

C
C(llu- VUHL&([O,T);HP—I(RZ)) + b Vb“Loo([o,T);Hp—l(RZ)))
C
C

Jw- Vb”L?([O,T);HP*ﬁ(R?)) ||u||L4([O,T);L°°(]R2)) Hb”L‘*([O,T);HPJrl*B(]R?))

+C VO 24 (0,7 1 r2)) 1l oo (0,7, 10— 5 (R2))
C

<
<

- VUHLZ([O,T);Hp—ﬁ(W)) ¢ ||b||L4([0,T);L°°(lR2)) Hu”L4([O,T);HP+1*5(]R2))

+C VUl pao,1y; oo w2)) 101l Loo ([0, 7);10-5 (R2))

<C
14%70]] <

o,y ooy S [8llL2(o,ry;meve )y < C.
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Combining the above estimates with Eq. (1.2), we get

llutll oo o,y mro-1R2y) S C5 N0ell 20,7y 05 R2)) < C- (3.20)

Therefore, for any t1,t3 € [0,T) and t2 > t1,

[N

2 2
S 2200 (1gut) — Agu(tn) sy + 18,0(02) — Agb(t1) e
—1<q<N(e)

N

2

to 2
= 22p4 /atA ul(t + /@Aqb(t)dt

—1<g<
1<¢g< N(E L2(R?) ty L2(R2)

ta 2
<ta-w)i (X 2 [ 1080 dt+ [ 108003 o)
—1<g<N (¢) th th
1
2

to
<Oty —t)r | S 22(’371”/HatAq“(t)”i%W)dt

—1<g<N (e)
to %
LN OB (g, — 1) ( 22(r=F)q /Hatﬁ b(t )||2Lz(R2)dt
—1<q<N(E) t1
i 1
2 ta :
< OO (1y — 1) /Hatu Wiosay dt | +C2VO(ty — 1) /Hatb(t)”ilp_ﬁ(mdt
(3.20) L
2 N, _ )b, (3.21)

Thus,

[[ulte) = w(t)ll o gey + [16(t2) = b(E) [ o g2

N[

<C [ D2 22 (JAgulta) = Agu(t)age) + 1Agb(E2) = Agb(t1) e, )

g=—1

[V

<C Z 22/)(1 (llAqu(t2) - Aqu(tl)||2L2(]R2) + ”Aqb(tQ) - Aqb(tl)HQm(R?))

—1<g<N(e)

[N

+C |30 2200 (1Agulte) = Aqu(t) 3y + 186b(E2) = Agb(t)][}2s) )
g=N(e)

(3.19)(3.21)
< C2VOB(ty —1))? + Ce.

The proof of Theorem 1.1 is complete.
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