
Z. Angew. Math. Phys. 65 (2014), 1127–1136
c© 2013 Springer Basel
0044-2275/14/061127-10
published online December 19, 2013
DOI 10.1007/s00033-013-0390-5

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Darboux invariants for planar polynomial differential systems
having an invariant conic

Jaume Llibre, Marcelo Messias and Alisson C. Reinol

Abstract. We characterize all the planar polynomial differential systems with a unique invariant algebraic curve given by a
real conic and having a Darboux invariant.

Mathematics Subject Classification (2010). 34C05 · 34C99.

Keywords. Polynomial differential systems · Invariant conics · Darboux integrability · Darboux invariant.

1. Introduction and statement of the main results

Real planar polynomial differential systems appear in many branches of applied mathematics, physics,
and, in general, in applied sciences. For such differential systems, the existence of a first integral deter-
mines completely their phase portrait. The first integrals depending on the time, i.e., on the independent
variable of the differential system, are called invariants. A special class of invariants is the Darboux
invariants. As we shall see the invariants instead of determining the phase portrait of the system, we
determine its α− and ω−limit sets in the compactified polynomial differential system. That is, the Dar-
boux invariants allow to describe the sets where all the orbits born or die.

In general, it is a very difficult problem to recognize when a given polynomial differential system in the
plane has or not a first integral or a Darboux invariant. The goal of this paper is to classify all polynomial
differential systems in the plane R

2 having a Darboux invariant and a unique invariant algebraic curve
given by a conic.

Let K[x, y] be the ring of the polynomials in the variables x and y with coefficients in K, where K is
either R or C. We consider the polynomial differential system in R

2 defined by

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P,Q ∈ R[x, y], P and Q are relatively prime in R[x, y], and the dot denotes derivative with respect
to the independent variable t usually called the time.

We say that m = max{deg P,deg Q} is the degree of system (1). We associate with system (1) the
vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.
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We say that the polynomial differential system (1) is integrable on an open subset U ⊂ R
2 if there

exists a nonlocally constant analytic function H : U → R, called a first integral of the system on U , which
is constant on all solution curves (x(t), y(t)) of system (1) contained in U . Clearly, H is a first integral
of system (1) if and only if XH ≡ 0 on U .

An invariant of system (1) on the open subset U of R
2 is a nonlocally constant analytic function I in

the variables x, y, and t such that I is constant on all solution curves (x(t), y(t)) of system (1) contained
in U , i.e.,

dI

dt
=

∂I

∂x
P +

∂I

∂y
Q +

∂I

∂t
= 0.

Obviously, I is a first integral of system (1) depending on the time t.
Let f ∈ C[x, y]\{0}. The algebraic curve f(x, y) = 0 is an invariant algebraic curve of system (1) if

for some polynomial K ∈ C[x, y] we have

Xf = P
∂f

∂x
+ Q

∂f

∂y
= Kf.

The polynomial K is called the cofactor of invariant algebraic curve f = 0. Note that, when K = 0, then
f is a polynomial first integral. We remark that in the definition of invariant algebraic curve f = 0, we
always allow this curve to be complex, even in the case of a real polynomial system, due to the fact that
sometimes for real polynomial systems, the existence of a real first integral can be forced by the existence
of complex invariant algebraic curves. For more details on invariant algebraic curves see [8].

Let g, h ∈ C[x, y]\{0} and assume that g and h are relatively prime in the ring C[x, y] or that h = 1.
Then, the function exp(g/h) is called an exponential factor of system (1) if for some polynomial L ∈ C[x, y]
of degree at most m − 1, we have that

X(exp(g/h)) = L exp(g/h).

We say that an invariant I is a Darboux invariant of the vector field X if it can be written as

I(x, y, t) = fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q est,

where fi = 0 are invariant algebraic curves of X for i = 1, . . . , p; Fj are exponential factors of X for
j = 1, . . . , q; λi, μj ∈ C, and s ∈ R\{0}.

The search of first integrals is a classic tool in order to describe the phase portraits of a 2-dimensional
differential system. As usual, the phase portrait of a system is the decomposition of the domain of defi-
nition of this system as union of all its orbits. Every planar polynomial differential system in R

2 can be
analytically extended to infinity, in such a way that R

2 is identified with the interior of a disc and its
boundary S

1 is identified with the infinity. This closed disc is called the Poincaré disc, for more details
see Chapter 5 of [7]. The phase portrait of any planar polynomial differential system can be drawn on
the Poincaré disc.

Let φp(t) be the solution of system (1) passing through the point p ∈ R
2, defined on its maximal

interval (αp, ωp) such that φp(0) = p. If ωp = ∞, we define the set

ω(p) = {q ∈ R
2 : there exists {tn} with tn → ∞ and φ(tn) → q when n → ∞}.

In the same way, if αp = −∞, we define the set

α(p) = {q ∈ R
2 : there exists {tn} with tn → −∞ and φ(tn) → q when n → ∞}.

The sets ω(p) and α(p) are called the ω-limit set (or simply ω-limit) and the α-limit set (or α-limit)
of p, respectively.

The Darboux invariant provides information about the ω- and α-limit sets of all orbits of system (1).
More precisely, there is the following result proved in [10], since its proof is short, we include it here for
completeness.
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Proposition 1. Let I(x, y, t) = f(x, y)est be a Darboux invariant of system (1). Let p ∈ R
2 and φp(t) be

the solution of system (1) with maximal interval (αp, ωp) such that φp(0) = p.

(a) If ωp = ∞ then ω(p)⊂ {f(x, y) = 0} ∪ S
1,

(b) If αp = −∞ then α(p)⊂ {f(x, y) = 0} ∪ S
1.

Here S
1 denotes the infinity of the Poincaré disc.

Proof. We prove statement (a), the proof of statement (b) is similar. Suppose s > 0 and let φp(t) =
(xp(t), yp(t)). Since I(x, y, t) is an invariant I(xp(t), yp(t), t) = a ∈ R for all t ∈ (αp, ωp). Then,

a = lim
t→∞ I(xp(t), yp(t), t) = lim

t→∞ f(xp(t), yp(t))est.

As limt→∞ est = ∞, we have that limt→∞ f(xp(t), yp(t)) = 0. So, by continuity and the definition of
ω-limit set, it follows that ω(p) ⊂ {f(x, y) = 0}, and for the α-limit set α(p) ∈ S

1. �

It is known that if a planar quadratic polynomial differential system has 3 invariant algebraic curves,
then this system is Darboux integrable in the sense that it has a first integral which is a Darboux function,
or it has an integrating factor given by a Darboux function; for more details see for instance, statement
(v) of Theorem 8.7 of [7]. In this paper, we only study polynomial differential systems of arbitrary degree
having an invariant algebraic curve given by a real conic, and our goal is to characterize which of these
systems have a Darboux invariant. Note that, a real conic at most can produce two invariant algebraic
curves, which can be real or complex curves.

The real conics in R
2 (i.e., conics f(x, y) = 0 where f(x, y) is a real quadratic polynomial) are classified

as ellipses (E), complex ellipses (CE), hyperbolas (H), parabolas (P), two real straight lines intersecting
at a point (LV), two real and parallel straight lines (RPL), two complex and parallel straight lines (CPL),
one double real straight line (DL), and two complex straight lines intersecting at a real point p (p).

The characterization of all quadratic systems, i.e., systems (1) with m = 2, having two real or complex
invariant straight lines taking into account their multiplicity was given in [2], and extensions to dimension
3 are given in [11].

Now, we do the characterization of all polynomial differential systems in R
2 having an invariant conic

and a Darboux invariant.

Theorem 2. (LV) Every real polynomial differential system in R
2 having a Darboux invariant and two

real invariant straight lines intersecting at a point, after an affine change of coordinates, can be written as

ẋ = xK1(x, y), ẏ = y(a + bK1(x, y)), (2)

where K1 ∈ R[x, y], a, b ∈ R and a �= 0. Moreover its Darboux invariant is I1(x, y, t) = y/(xbeat).

The polynomial differential systems in the plane having two real invariant straight lines intersect-
ing at a point always can be written (as it is also showed in the proof of Theorem 2) into the form
ẋ = xg(x, y), ẏ = yh(x, y), which are the well-known Lotka-Volterra systems. For this reason, here we
denote by LV this kind of systems.

Theorem 2 for the particular case of quadratic systems was proved in [1].

Theorem 3. (RPL) Every real polynomial differential system in R
2 having a Darboux invariant and two

real and parallel invariant straight lines, after an affine change of coordinates and a rescaling of the time,
can be written as

ẋ = x2 − 1, ẏ = Q(x, y), (3)

where Q ∈ R[x, y]. Moreover its Darboux invariant is I2(x, y, t) =

√
x + 1

x − 1
et.
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Theorem 4. (CPL) Every real polynomial differential system in R
2 having a Darboux invariant and two

complex and parallel invariant straight lines, after an affine change of coordinates and a rescaling of the
time, can be written as

ẋ = x2 + 1, ẏ = Q(x, y), (4)

where Q ∈ R[x, y]. Moreover its Darboux invariant is I3(x, y, t) = e(t+arctan(1/x)).

Theorem 5. (DL) Every real polynomial differential system in R
2 having a Darboux invariant and one

double real invariant straight line, after an affine change of coordinates and a rescaling of the time, can
be written as

ẋ = x2, ẏ = Q(x, y), (5)

where Q ∈ R[x, y]. Moreover its Darboux invariant is I4(x, y, t) = e(t+1/x).

See the definition of a double real invariant straight line or an invariant straight line of multiplicity 2
in Sect. 2.

Theorem 6. (p) Every real polynomial differential system in R
2 having a Darboux invariant and two

complex invariant straight lines intersecting at a real point, after an affine change of coordinates, can be
written either as

ẋ = (x − ay)A(x, y) − by, ẏ = (ax + y)A(x, y) + bx, (6)

where A ∈ R[x, y], a, b ∈ R, with b �= 0, and its Darboux invariant is I5(x, y, t) = (x2 +
y2)ae−2 arctan(y/x)+2bt, or as

ẋ = −yB(x, y) + cx, ẏ = xB(x, y) + cy, (7)

where B ∈ R[x, y], c ∈ R\{0}, and its Darboux invariant is I6(x, y, t) = (x2 + y2)e−2ct.

Theorems 3, 4, 5, and 6 for the particular case of quadratic systems were proved in [10].

Theorem 7. (P) Every real polynomial differential system in R
2 having a Darboux invariant and an

invariant parabola, after an affine change of coordinates, can be written as

ẋ = (y − x2)A(x, y) − C(x, y), ẏ = (y − x2)(b + 2xA(x, y)) − 2xC(x, y), (8)

where b ∈ R\{0} and A,C ∈ R[x, y]. Moreover its Darboux invariant is I7(x, y, t) = et/(y − x2)1/b.

Theorem 8. (E, CE, H) Every real polynomial differential system in R
2 having only one invariant alge-

braic curve given by either an ellipse, or a complex ellipse, or a hyperbola has no Darboux invariants.

This paper is organized as follows. In Sect. 2, we present some results of the Darboux theory of
integrability which we will use later on. In Sect. 3, we prove Theorems 2–8.

2. Darboux theory of integrability

In this section, we introduce some results on the Darboux theory of integrability which shall be used
in the next section to prove Theorems 2, 3, 4, 5, 6, 7, and 8. This kind of integrability provides a link
between the integrability of polynomial differential systems and their invariant algebraic curves. More
details about this theory can be found in [4] and [7].

The following proposition is easy to prove.

Proposition 9. For the real polynomial differential system (1), f = 0 is an invariant algebraic curve with
cofactor K if and only if f̄ = 0 is an invariant algebraic curve with cofactor K̄, where f̄ and K̄ denote
the conjugates of f and K, respectively.



Vol. 65 (2014) Planar polynomial differential systems 1131

Observe that if among the invariant algebraic curves of system (1) a complex conjugate pair f = 0 and
f̄ = 0 occurs, then the Darboux invariant has a real factor of the form fλf̄ λ̄, which is the multi-valued
real function

[(Re(f))2 + (Im(f))2]Re(λ) exp(−2 Im(λ) arctan(Im(f)/Re(f))). (9)

So, if system (1) is real, then the Darboux invariant is also real, independently of the fact of having
complex invariant curves or complex exponential factors.

The next result is proved in Proposition 8.4 of [7].

Proposition 10. Suppose f ∈ C[x, y] and let f = fn1
1 . . . fnr

r be its factorization into irreducible factors
over C[x, y]. Then for a polynomial differential system (1), f = 0 is an invariant algebraic curve with
cofactor Kf if and only if fi = 0 is an invariant algebraic curve for each i = 1, . . . , r with cofactor Kfi

.
Moreover Kf = n1Kf1 + · · · + nrKfr

.

Concerning exponential factors, the following result holds (for a proof see Proposition 8.6 of [7]).

Proposition 11. If F = exp(g/h) is an exponential factor for the polynomial differential system (1) and h
is not a constant, then h = 0 is an invariant algebraic curve and g satisfies the equation Xg = gKh+hKF ,
where Kh and KF are the cofactors of h and F , respectively.

The next result and its proof can be found in [7] (see statement (vi) of Theorem 8.7), and it explains
how to find Darboux invariants.

Proposition 12. Suppose that a polynomial differential system (1) of degree m admits p invariant algebraic
curves fi = 0 with cofactors Ki for i = 1, . . . , p, and q exponential factors Fj = exp(gj/hj) with cofactors
Lj for j = 1, . . . , q. There exist λi, μj ∈ C not all zero such that

i=1∑
p

λiKi +
j=1∑

q

μjLj = −s, (10)

for some s ∈ R\{0}, if and only if the real (multi-valued) function

fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q est

is a Darboux invariant of system (1).

The next theorem, which is due to Christopher [3] and was rediscovered by Zholadek [12], an algebraic
proof of it can be found in [6], shows that for the integrability of a polynomial differential system (1) of
degree m, we do not need many algebraic solutions when these solutions are in generic position. Then, it
is enough that the sum of their degrees can be m + 1.

Theorem 13. (Christopher–Zholadek Theorem) Let fi = 0 for i = 1, . . . , p be p irreducible algebraic
curves in C

2, and let k =
∑q

i=1 deg fi. We assume
(i) there are no points at which fi and its first derivatives all vanish,
(ii) the highest order terms of fi have no repeated factors,
(iii) no more than two curves meet at any point in the finite plane and are not tangent at these points,
(iv) no two curves have a common factor in their highest order terms,
then any polynomial vector field X of degree m tangent to all fi = 0 is of the form described bellow.

(a) If m > k − 1 then

X = Y

(
p∏

i=1

fi

)
+

p∑
i=1

hi

⎛
⎜⎜⎝

p∏
j=1,
j �=i

fj

⎞
⎟⎟⎠Xfi

, (11)

where Xfi
= (−∂fi/∂y, ∂fi/∂x) is a Hamiltonian vector field, the hi are polynomials of degree ≤ m−k+1

and Y is a polynomial vector field of degree ≤ m − k.
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(b) If m = k − 1 then

X =
p∑

i=1

αi

⎛
⎜⎜⎝

p∏
j=1,
j �=i

fj

⎞
⎟⎟⎠Xfi

,

with αi ∈ C. In this case, a Darboux first integral exists.
(c) If m < k − 1 then X ≡ 0.

It is known that if a planar polynomial differential system (1) has the invariant straight line a+bx+cy =
0, then a + bx + cy divides the polynomial

R(x, y) =

∣∣∣∣∣∣
1 x y
0 P Q
0 PPx + QPy PQx + QQy

∣∣∣∣∣∣ .
Moreover, if (a + bx + cy)k|R(x, y) and (a + bx + cy)k+1

� R(x, y), then we say that the invariant straight
line a + bx + cy = 0 has multiplicity k. For more details on the multiplicity of invariant straight lines see
[5] and [9].

The proof of the next result can be found in [6].

Lemma 14. Assume that the polynomial differential system (1) has an invariant algebraic curve f = 0
and that f satisfies condition (i) of Theorem 13. If (fx, fy) = 1, then system (1) has the following normal
form

ẋ = Af − Cfy, ẏ = Bf + Cfx

where A,B,C ∈ R[x, y], fx = ∂f/∂x, fy = ∂f/∂y. Here (fx, fy) = 1 means that the greatest common
divisor between fx and fy is 1.

3. Proof of the theorems

Now, we will prove Theorems 2, 3, 4, 5, 6, 7, and 8, which were stated in Sect. 1.

Proof of Theorem 2. (LV) Suppose that the polynomial differential system (1) has two real invariant
straight lines intersecting at a point. Then, after an affine change of coordinates, we can assume that
f1 = x = 0 and f2 = y = 0 are the invariant straight lines of system (1) intersecting at the origin with
cofactors K1 and K2, respectively. So, we have that

P
∂f1

∂x
+ Q

∂f1

∂y
= K1f1 ⇒ P = K1x.

Analogously,

P
∂f2

∂x
+ Q

∂f2

∂y
= K2f2 ⇒ Q = K2y.

Therefore, we can write system (1) as

ẋ = xK1(x, y), ẏ = yK2(x, y), (12)

where K1,K2 ∈ R[x, y].
Now, we suppose that system (12) has a Darboux invariant. By Proposition 12, there exist μ, λ ∈ C

not all zero such that from Eq. (10), we have μK1 + λK2 = −s, where s ∈ R\{0}. In particular, without
loss of generality we can consider μ, λ ∈ R and λ �= 0. Then,

K2 = − s

λ
− μ

λ
K1.
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Therefore, from system (12), we get the following system

ẋ = xK1(x, y), ẏ = − 1
λ

y(s + μK1(x, y)).

So taking a = −s/λ and b = −μ/λ, we obtain system (2). Moreover, it follows directly from Proposition
12 that the Darboux invariant of system (2) is given by I1(x, y, t) = y/(xbeat). �

Proof of Theorem 3. (RPL) Suppose that the polynomial differential system (1) has two real and paral-
lel invariant straight lines. Then, after an affine change of coordinates, we can take f1 = x − 1 = 0 and
f2 = x+1 = 0 as the invariant parallel straight lines of system (1) with cofactors K1 and K2, respectively.
So we have that

P
∂f1

∂x
+ Q

∂f1

∂y
= K1f1 ⇒ P = K1(x − 1).

Analogously,

P
∂f2

∂x
+ Q

∂f2

∂y
= K2f2 ⇒ P = K2(x + 1).

Then, P (x, y) = (x2 − 1)g(x, y), with g ∈ R[x, y]. Therefore, we can write system (1) as

ẋ = (x2 − 1)g(x, y), ẏ = Q(x, y). (13)

Now, we suppose that system (13) has a Darboux invariant. By Proposition 12, there exist μ, λ ∈ C

not all zero such that they satisfy (10). Since K1 = (x+1)g(x, y) and K2 = (x−1)g(x, y) are the cofactors
of f1 = 0 and f2 = 0, respectively, then, from (10), we have

μ(x + 1)g(x, y) + λ(x − 1)g(x, y) = −s ⇒ [μ(x + 1) + λ(x − 1)]g(x, y) = −s. (14)

Hence, g(x, y) = a ∈ R\{0}, because otherwise s = 0, which is a contradiction with the fact that system
(13) has a Darboux invariant. Then, we can write system (13) as

ẋ = a(x2 − 1), ẏ = Q(x, y).

We obtain system (3) doing the rescaling T = at, where T is the new time. So, we can take g(x, y) = 1
in Eq. (14), and then, we have that μ + λ = 0 and μ − λ = −s. Hence, λ = −μ = s/2. Then, choos-
ing s = 1, it follows directly from Proposition 12 that the Darboux invariant of system (3) is given by

I2(x, y, t) =

√
x + 1

x − 1
et. �

Proof of Theorem 4. (CPL) Suppose that the polynomial differential system (1) has two complex and
parallel invariant straight lines. Then, after an affine change of coordinates, we can take f1 = x−i = 0 and
f2 = x+ i = 0 as the invariant parallel straight lines of system (1) with cofactors K1 and K2, respectively.
Using the same arguments of the proof of the previous theorem, we can assume P (x, y) = (x2 +1)g(x, y),
with g ∈ R[x, y]. Therefore, we can write system (1) as

ẋ = (x2 + 1)g(x, y), ẏ = Q(x, y), (15)

where Q(x, y) ∈ R[x, y].
Now, we suppose that system (15) has a Darboux invariant. By Proposition 12, there exist μ, λ ∈ C

not all zero such that they satisfy (10). Since K1 = (x+ i)g(x, y) and K2 = K̄1 are the cofactors of f1 = 0
and f2 = 0 respectively, then, from (10), we have

[μ(x + i) + λ(x − i)]g(x, y) = −s. (16)

As before we have g(x, y) = a ∈ R\{0}. Then, we can write system (15) as

ẋ = a(x2 + 1), ẏ = Q(x, y).

We obtain system (4) doing the rescaling T = at, where T is the new time.
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Now, we consider μ = μ1 + iμ2, with μ1, μ2 ∈ R. From Eq. (16) note that λ = μ̄. So, we obtain
2a(μ1x − μ2) = −s, and consequently, μ1 = 0 and μ2 = s/2. It follows from Proposition 12 that the
Darboux invariant of system (4) is given by I3(x, y, t) = (x − i)(is/2)(x + i)(−is/2)est. Then, using (9), we
can replace fμ

1 f̄1
μ̄ and we obtain I3(x, y, t) = e(t+arctan(1/x)). �

Proof of Theorem 5. (DL) Suppose that the polynomial differential system (1) has one double real invari-
ant straight line. Then, after an affine change of coordinates, we can consider f = x = 0 as the double
real invariant straight line of system (1). Given a small perturbation of system (1), the invariant straight
line x = 0 bifurcates in two real and parallel straight lines f1 = x − ε = 0 and f2 = x + ε = 0. Other
possibility is that x = 0 bifurcates in two real invariant straight lines intersecting at a point, but in this
case, after doing some computations, we obtain that the polynomials P and Q of system (1) are not
relatively prime. So, from the proof of Theorem 3 (RPL), we can write system (1) as

ẋ = (x2 − ε2)g(x, y), ẏ = Q(x, y), (17)

where g ∈ R[x, y]. Then, making ε → 0, we can write system (17) as

ẋ = x2g(x, y), ẏ = Q(x, y), (18)

and note that f = x = 0 is a double real invariant straight line of system (18).
Note that, f = x = 0 has cofactor K = xg(x, y), and by Proposition 11, we have that F = e1/x is an

exponential factor of system (18) with cofactor L = −g(x, y). Suppose that system (18) has a Darboux
invariant. So, by Proposition 12, there exist μ, λ ∈ C not all zero such that

μK + λL = −s ⇒ (μx − λ)g(x, y) = −s, (19)

where s ∈ R\{0}. Using the same arguments of the proof of the previous theorems, we can take g(x, y) =
a ∈ R\{0}. Then, we can write system (18) as

ẋ = ax2, ẏ = Q(x, y).

We obtain system (5) doing the rescaling T = at, where T is the new time. So, we can take g(x, y) = 1
in Eq. (19). Then, μ = 0 and λ = s. Hence, it follows directly from Proposition 12 that the Darboux
invariant of system (5) is given by I4(x, y, t) = e(t+1/x). �

Proof of Theorem 6. (p) Suppose that the polynomial differential system (1) has two complex invari-
ant straight lines intersecting at a real point. Then, after an affine change of coordinates, we can take
f1 = x + iy = 0 and f2 = x − iy = 0 as the invariant straight lines of system (1) with cofactors K1

and K2, respectively. We denote the vector field of degree m associated with system (1) by X = (P,Q).
According to Theorem 13, we can write

X = f1f2Y + h1f2Xf1 + h2f1Xf2 ,

where Xfi
= (−∂fi/∂y, ∂fi/∂x) is a Hamiltonian vector field, h1 and h2 are polynomials of degree

≤ m − 1, and Y = (P1, Q1) is a polynomial vector field of degree ≤ m − 2. So (P,Q) = f1f2(P1, Q1) +
h1f2(−i, 1) + h2f1(i, 1) and consequently

P = (x2 + y2)P1 − (h1 + h2)y + i(h2 − h1)x,

Q = (x2 + y2)Q1 + (h1 + h2)x + i(h2 − h1)y.

Let h1(x, y) = m1(x, y)+ in1(x, y) and h2(x, y) = m2(x, y)+ in2(x, y), where m1,m2, n1, n2 ∈ R[x, y].
Then, we have that

P = (x2 + y2)P1 − y((m1 + m2) + i(n1 + n2)) + x((n1 − n2) + (m2 − m1)i),
Q = (x2 + y2)Q1 + x((m1 + m2) + i(n1 + n2)) + y((n1 − n2) + (m2 − m1)i).
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So n1 = −n2 and m1 = m2. Therefore, we can write system (1) as

ẋ = (x2 + y2)P1(x, y) − 2ym1(x, y) + 2xn1(x, y),
ẏ = (x2 + y2)Q1(x, y) + 2xm1(x, y) + 2yn1(x, y). (20)

Now, we consider m1(x, y) = M(x, y) + m and n1(x, y) = N(x, y) + n, with M(0, 0) = N(0, 0) = 0.
We can rewrite system (20) into the form

ẋ = xÂ(x, y) − yB̂(x, y) + 2(nx − my),

ẏ = yÂ(x, y) + xB̂(x, y) + 2(ny + mx), (21)

where Â(x, y) = xP1(x, y) + yQ1(x, y) + 2N(x, y) and B̂(x, y) = xQ1(x, y) − yP1(x, y) + 2M(x, y). We
suppose that system (21) has a Darboux invariant. By Proposition 12, there exist μ, λ ∈ C not all zero
such that they satisfy (10). We can show that K1 = (x − iy)(P1 + iQ1) + 2i(M + m) + 2(N + n) and
K2 = K̄1 are the cofactors of f1 = 0 and f2 = 0, respectively. Then, from Eq. (10), we have

(μ + λ)(xP1 + yQ1 + 2(N + n)) + (μ − λ)i(xQ1 − yP1 + 2(M + m)) = −s,

i.e.

(μ + λ)(Â + 2n)) + (μ − λ)i(B̂ + 2m)) = −s, (22)

So λ = μ̄. We take μ = μ1 + iμ2, where μ1, μ2 ∈ R. Then, from Eq. (22), we obtain

2μ1(Â + 2n) − 2μ2(B̂ + 2m) = −s,

which provides the following linear system

μ1Â(x, y) − μ2B̂(x, y) = 0,

μ1n − μ2m = −s

4
, (23)

in the variables μ1 and μ2.
We first consider μ2 �= 0. Then, from Eq. (23), we have that B̂(x, y) = (μ1/μ2)Â(x, y) and m =

s/(4μ2)+nμ1/μ2. We obtain system (6) replacing B̂ and m in system (21) and taking A(x, y) = Â(x, y)+
2n, a = μ1/μ2 and b = s/(2μ2). Moreover, from Proposition 12 and Eq. (9), it follows that the Darboux
invariant of system (6) is I5(x, y, t) = (x2 + y2)ae−2 arctan(y/x)+2bt.

Now, we consider μ2 = 0. Obviously, μ1 �= 0. So, from Eq. (23), we have that Â(x, y) = 0 and
n = −s/(4μ1). We obtain system (7) replacing Â and n in system (21) and taking B(x, y) = B̂(x, y)+2m
and c = −s/(2μ1). Moreover, from Proposition 12, it follows that Darboux invariant of system (7) is
I6(x, y, t) = (x2 + y2)e−2ct. �

Proof of Theorem 7. (P) Suppose that the polynomial differential system (1) has an invariant parabola.
Then, after an affine change of coordinates, we can assume that f = y − x2 = 0 is the invariant parabola
of system (1) with cofactor K. Using Lemma 14, we can write system (1) as

ẋ = (y − x2)A(x, y) − C(x, y), ẏ = (y − x2)B(x, y) − 2xC(x, y), (24)

where A,B,C ∈ R[x, y].
Now, we suppose that system (24) has a Darboux invariant. Then, from Proposition 12, there exists

μ ∈ R\{0} such that μK = −s, where s ∈ R\{0} and K = B(x, y)−2xA(x, y). Let B(x, y) = b+ B̂(x, y),
with B̂(0, 0) = 0. So b = −s/μ �= 0 and B̂(x, y) = 2xA(x, y). Replacing B(x, y) in system (24), we obtain
system (8). We get from Proposition 12 and choosing s = 1 that the Darboux invariant of system (8) is
I7(x, y, t) = et/(y − x2)1/b. �
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Proof of Theorem 8. (E, CE, H) Suppose that the polynomial differential system (1) has an invariant
ellipse. Then, after an affine change of coordinates, we can assume that f = x2 + y2 − 1 = 0 is the
invariant ellipse of system (1) with cofactor K. Using Lemma 14, we can write system (1) as

ẋ = (x2 + y2 − 1)A(x, y) − 2yC(x, y), ẏ = (x2 + y2 − 1)B(x, y) + 2xC(x, y), (25)

where A,B,C ∈ R[x, y].
It is easy to show that the cofactor of f = 0 is K = 2(Ax + By). Then, Eq. (10) of Proposition 12

becomes μK = −s, but since the polynomial μK has no independent term, the equation never holds.
Therefore, by Proposition 12, it follows that system (25) does not have Darboux invariants.

Note that, if the polynomial differential system (1) has either an invariant complex ellipse or an
invariant hyperbola, then, after an affine change of coordinates, we can consider x2 + y2 + 1 = 0 and
x2 − y2 − 1 = 0 as the invariant complex ellipse and invariant hyperbola, respectively. Analogously to
the case of invariant ellipse, we can prove that differential polynomial systems in R

2 with these invariant
conics do not have Darboux invariants. �
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