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Abstract. We use a general energy method to prove the optimal time decay rates of the solutions to the compressible Navier–
Stokes–Korteweg system in the whole space. In particular, the optimal decay rates of the higher-order spatial derivatives
of solutions are obtained.
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1. Introduction

In this paper, we consider the compressible Navier–Stokes–Korteweg system for (x, t) ∈ R
3 × R

+

∂tρ + div(ρu) = 0, (1.1)
∂t(ρu) + div(ρu ⊗ u) + ∇p(ρ) − μΔu − (μ + λ)∇divu = κρ∇Δρ. (1.2)

This equation system governs the motions of the compressible isothermal viscous capillary fluids, where
ρ(t, x)andu(t, x) represent the density and velocity of the fluid, respectively, for all (x, t) ∈ R

3 × (0,+∞),
and the smooth function p = p(ρ) is the pressure satisfying p′(ρ) > 0 for ρ > 0. The constants μ, λ are
the viscosity coefficients, and κ is the capillary coefficient, which satisfied the following condition:

μ > 0, λ +
2
3
μ ≥ 0, κ > 0.

We supplement the system by the initial data

ρ|t=0 = ρ0, u|t=0 = u0. (1.3)

The formulation of the theory of capillarity with diffuse interfaces was first introduced by Korteweg [15]
and derived rigorously by Dunn and Serrin [2]. Recently, there is some mathematical theory concerning
the compressible Navier–Stokes–Korteweg system. More precisely, Danchin and Desjardins [5] established
the existence and uniqueness of solutions in the critical Besov spaces. Hattori and Li [12,13] proved the
local existence and global existence of classical solutions in Sobolev space. Bresch et al. [1] and Haspot [9]
considered the global existence of weak solutions for the compressible Navier–Stokes–Korteweg system.
Kotschote [16] proved the local existence of the strong solutions. Wang and Tan [36] and Tan et al. [32]
established the optimal decay rates of the global classical solutions and the optimal decay rates of the
global strong solutions without external force, respectively. Li [23] proved the global existence and opti-
mal decay rate of smooth solutions with potential external force. As is well known, for the compressible
Navier–Stokes equations, i.e., κ = 0, many important progresses have been made on the existence and
the convergence rates of solutions, see [3,4,6,7,10,11,16–19,22,24,25,30,33,37] and the reference therein
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for instance. Among them, when there is no force, Matsumura and Nishida obtained the optimal L2

convergence rate for the compressible viscous and heat conductive fluid in R
3 in [26]

‖(ρ − ρ̄, u, θ − θ̄)(t)‖L2 ≤ C0(1 + t)− 3
4 , t ≥ 0. (1.4)

If the small initial disturbance belongs to H3 ∩ L1, Ponce in [28] gave the optimal Lp convergence rate

‖∇k(ρ − ρ̄, u, θ − θ̄)(t)‖L2 ≤ C0(1 + t)− 3
2 (1− 1

p )− k
2 , t ≥ 0, (1.5)

for 2 ≤ p ≤ ∞ and 0 ≤ k ≤ 2. If the small initial disturbance belongs to Hs ∩ W s,1 with sufficient large
integer s, the optimal Lp, 1 ≤ p < 2 convergence rates were also obtained by using the Green function
in [18,22,36]. When an external potential force is existing, the optimal Lp, 2 ≤ p < 6 decay rate of the
solutions and the optimal L2 decay rate of the first-order derivatives were obtained in a series of papers
[6,7,33]. When there is a self-consist electric potential force, i.e., for the compressible Navier–Stokes–
Poisson equations, recently, H.-L. Li et al. proved the global existence and optimal decay rates of the
solutions in [21]. It was showed that the rotating effect of electric field makes the momentum of the
compressible Navier–Stokes–Poisson equations decay at a slower rate. Finally, the long-time decay rate
of global solutions for half-space and exterior domain or the general external force were obtained, and we
refer to the papers [4,5,17,19,20,30] for instance.

In this paper, by using a general energy method, we will obtain the optimal time decay rates of the
solutions to the problem (1.1)–(1.3) when the initial data are small perturbations of given constant state
(ρ̄, θ̄). The study is motivated by Guo and Wang [8], where the authors develop a pure energy method
for proving the optimal time decay rates of the solutions for the compressible Navier–Stokes equations.
Recently, the method has wide range of applications. Wang used the method to study the Vlasov–Poisson–
Boltzmann system and the Navier–Stokes–Poisson equations, see [34,35]. Tan and Wang [31] considered
the MHD equation by using this method. In our proof, the negative Sobolev norms are shown to be
preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates
with minimum derivative counts and interpolations among them without linear decay analysis.

Main results of this paper are stated as the following theorem.

Theorem 1.1. Assume that (ρ0 − ρ̄) ∈ HN+1, u ∈ HN for an integer N ≥ 3. Then, there exists a constant
δ0 such that if

‖ρ0 − ρ̄‖H4 + ‖u0‖H3 ≤ δ0, (1.6)

then there exists a unique global solution (ρ, u) of the Cauchy problem (1.1)–(1.3) satisfying that for all
t ≥ 0,

‖(ρ − ρ̄)(t)‖2
HN+1 + ‖u(t)‖2

HN +

t∫

0

‖∇ρ(s)‖2
HN+1 + ‖∇u(s)‖2

HN ds ≤ C(‖ρ0 − ρ̄‖2
HN+1 + ‖u0‖2

HN ).

(1.7)

If further, (ρ0 − ρ̄, u0) ∈ Ḣ−s for some s ∈ [0, 3
2 ), then

‖Λ−s(ρ − ρ̄)‖2
L2 + ‖Λ−su‖2

L2 + ‖Λ−s∇(ρ − ρ̄)‖2
L2 ≤ C0, (1.8)

and

‖∇l(ρ − ρ̄)(t)‖2
HN−l+1 + ‖∇lu(t)‖2

HN−l ≤ C0(1 + t)−(l+s) for l = 0, . . . , N − 1. (1.9)

Remark 1.2. The constraint s < 3/2 comes from applying Lemma 2.5 to estimate the nonlinear terms
when doing the negative Sobolev estimates via Λ−s, for when s ≥ 3/2, the nonlinear estimates would not
work.

Remark 1.3. Notice that we only assume that the lower-order Sobolev norm of initial data is small, while
the higher-order Sobolev norm can be arbitrarily large.
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From Sect. 3, we will use the pure energy estimates method to present the proof of Theorem 1.1.
However, we will be not able to close the energy estimates at each l−th level as the heat equation. This
is essentially caused by the “degenerate” dissipative structure of the nonlinear homogenous system of
(1.1)–(1.3), when using the energy method. More precisely, the linear energy identity of the problem
reads as: for l = 0, . . . , N,

1
2

d
dt

∫

R3

|∇l�|2 + |∇lu|2 + κ|∇l+1�|2dx +
∫

R3

μ|∇∇lu|2 + (μ + λ)|div∇lu|2dx = 0. (1.10)

The constraint of λ and μ implies that there exists a constant σ0 > 0 such that
∫

R3

μ|∇∇lu|2 + (μ + λ)|div∇lu|2dx ≥ σ0‖∇l+1u‖2
L2 . (1.11)

Note that (1.10) and (1.11) only give the dissipative estimate for u. To rediscover the dissipative estimate
for �, we will use the linearized equations of (1.1)–(1.3) via constructing the interactive energy functional
between u and ∇� to deduce

d
dt

∫

R3

∇lu · ∇∇l�dx + C(‖∇l+1�‖2
L2 + ‖∇l+2�‖2

L2) � ‖∇l+1u‖2
L2 . (1.12)

This implies that to get the dissipative estimate for �, it requires us to do the energy estimates (1.10) at the
l-th level. To get around this obstacle, the idea is to construct some energy functionals Em

l (t), 1 ≤ m ≤ N
and 0 ≤ l ≤ m − 1,

Em
l (t) ∼

∑
l≤k≤m

‖[∇k�(t),∇k∇�(t),∇ku(t)]‖2
L2 , (1.13)

which has a minimum derivative count l. We will then close the energy estimates at each l-th level in weak
sense by deriving the Lyapunov-type inequality for these energy functionals in which the corresponding
dissipation (Dm

l (t)) can be related to the energy Em
l (t) by the Sobolev interpolation. This can be easily

established for the linear homogeneous problem along our analysis; however, for the nonlinear problem
(2.1)–(2.3), it is much more complicated due to the nonlinear estimates. This is the second point of this
paper that we will extensively and carefully use the Sobolev interpolation of the Gagliardo–Nirenberg
inequality between high- and low-order spatial derivatives to bound the nonlinear terms by

√
E3
0 (t)Dm

l (t)
that can be absorbed. When deriving the negative Sobolev estimates, we need to restrict that s < 3/2 in
order to estimate Λ−s acting on the nonlinear terms by using the Hardy–Littlewood–Sobolev inequality,
and also we need to separate the cases that s ∈ (0, 1/2] and s ∈ (1/2, 3/2). Once these estimates are
obtained, Theorem 1.1 follows by the interpolation between negative and positive Sobolev norms.

The rest of this paper is devoted to prove Theorem 1.1. We briefly introduce the strategy of the proof.
In Sect. 3, it suffices to derive (1.7). Then, the global existence will follow in a standard way as in [23] by
the local existence, a priori estimates and the continuity argument. Finally, we use the energy estimates
to deduce the Lyapunov-type energy inequality, then combining it with Lemma 4.1 to prove (1.8) and
(1.9).

Notation. In this paper, Lp, Hs denote the usual Lp and Sobolev spaces on R
3, with norms ‖.‖Lp and

‖.‖Hs , respectively. ∇l with l ∈ Z
+ stands for the usual spatial derivatives of order l. Λ−s with s > 0

is defined in Definition 2.1 of Sect. 2. We use Ḣs denoting the homogeneous Sobolev spaces on R
3 with

norm ‖.‖Ḣs defined by (2.8). We use C to denote the constant depending only on the physical coefficient
but may vary and C0 to denote the constant depending additionally on the initial data.
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2. Preliminaries

Before we present the energy estimates method, we should now recall the following useful Lemmas which
we will use extensively.

First, we will review the Sobolev interpolation of the Gagliardo–Nirenberg inequality which we will
use much often.

Lemma 2.1. Let 0 ≤ s, α ≤ l, and then we have

‖∇αf‖Lp ≤ ‖∇sf‖1−θ
Lq ‖∇lf‖θ

Lr , (2.1)

where α satisfies the following equation:

α

3
− 1

p
=

(
s

3
− 1

q

)
(1 − θ) +

(
l

3
− 1

r

)
θ. (2.2)

Proof. This is a special case of [27, pp. 125, Theorem].
Then, we shall recall the following estimate Lemmas to estimate the L∞ norm of the spatial derivatives

of h and f defined by (3.4) �

Lemma 2.2. If ‖�‖H2 ≤ 1, and g(�) is a smooth function of � with bounded derivatives of any order, then
for any integer m ≥ 1, we have

‖∇m(g(�))‖L∞ ≤ ‖∇m�‖1/4
L2 ‖∇m+2�‖3/4

L2 . (2.3)

Proof. See [8, Lemma 3.1]. �

Lemma 2.3. (Commutator Estimate) Let m ≥ 1 be an integer, and then the commutator which is defined
by the following

[∇m, f ]g := ∇m(fg) − f∇mg, (2.4)

can be bounded by

‖[∇m, f ]g‖Lp ≤ ‖∇f‖Lp1 ‖∇m−1g‖Lp2 + ‖∇mf‖Lp3 ‖g‖Lp4 , (2.5)

where p, p2, p3 ∈ (1,+∞) and

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4

. (2.6)

Proof. See [14, Lemma 3.1 ]. �

Then, in order to establish the negative Sobolev estimates, we should review the following useful
lemmas related to the negative Sobolev norms. But let us first introduce some necessary definitions.

Definition 2.1. The operator Λs, for s ∈ R, is defined by

Λsg(x) =
∫

R

|ξ|sĝ(ξ)e2πix·ξdξ, (2.7)

where ĝ is the Fourier transform of g.

Definition 2.2. Ḣs is defined as the homogeneous Sobolev space of g, with the following norm:

‖g‖Ḣs := ‖Λsg‖L2 = ‖|ξ|sĝ‖L2 . (2.8)

The index s can be nonpositive real numbers. However, for convenience, we will change the index to
be ẁith s ≥ 0, in this case. We will employ the following special Sobolev interpolation that related the
negative index s:
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Lemma 2.4. Let s ≥ 0 and l ≥ 0, and then we have

‖∇lg‖L2 ≤ ‖∇l+1g‖1−θ
L2 ‖g‖θ

Ḣ−s , where θ =
1

l + s + 1
. (2.9)

Proof. By the Parseval theorem, the definition of (2.8) and Hölder’s inequality, we have

‖∇lg‖L2 = ‖|ξ|lĝ‖L2 ≤ ‖|ξ|l+1ĝ‖1−θ
L2 ‖|ξ|−sĝ‖θ

L2 = ‖∇l+1g‖1−θ
L2 ‖g‖θ

Ḣ−s . (2.10)

�

If s ∈ (0, 3),Λ−sg defined by (2.7) is the Riesz potential. The Hardy–Littlewood–Sobolev theorem
implies the following Lp type inequality for the Riesz potential:

Lemma 2.5. Let 0 < s < 3, 1 < p < q < ∞, 1/q + s/3 = 1/p, and then

‖Λ−sg‖Lq ≤ ‖g‖Lp . (2.11)

Proof. See [29, pp. 119, Theorem 1]. �

3. Energy estimates

To accomplish the energy estimates on the nonlinear problem of (1.1)–(1.3), we set � := ρ − 1 and
reformulate them as

∂t� + divu = −div(�u), (3.1)
∂tu−μΔu−(μ + λ)∇divu+∇� − κ∇Δ� = −(u · ∇)u − h(�)(μΔu + (μ + λ)∇divu) − f(�)∇�, (3.2)

(�, u)|t=0 = (�0, u0), (3.3)

where the two nonlinear functions of � are defined by

h(�) :=
�

� + 1
, and f(�) =

p′(� + 1)
� + 1

− 1. (3.4)

And moreover, in order to derive the priori energy estimates for the equivalent problem (3.1)–(3.3),
we assume a priori that for sufficiently small δ > 0,√

E3
0 (t) = ‖�(t)‖H4 + ‖u(t)‖H3 ≤ δ. (3.5)

This together with Sobolev’s inequality implies in particular, and we obtain

1
2

≤ � + 1 ≤ 2. (3.6)

Hence, we immediately have

|h(�)|, |f(�)| ≤ C|�| and |h(k)(�)|, |f (k)(�)| ≤ C, ∀k ≥ 1. (3.7)

Next, we will start to exhibit the first type of energy estimates including the dissipation estimate for
u.

Lemma 3.1. If
√

E3
0 (t) ≤ δ, then for k = 0, 1, . . . , N − 1, we have

d
dt

∫

R3

|∇k�|2 + |∇ku|2 + κ|∇k+1�|2dx + C‖∇k+1u‖2
L2 �

√
E3
0 (‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2). (3.8)
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Proof. Applying ∇k to (3.1), (3.2) and multiplying those two resulting identities by ∇k� and ∇ku,
respectively, summing them up and then integrating the equation over R

3 by parts, we obtain:
1
2

d
dt

∫

R3

|∇k�|2 + |∇ku|2dx +
∫

R3

μ|∇k+1u|2 + (μ + λ)|∇kdivu|2dx +
∫

R3

κ∇kdivu · ∇kΔ�dx

=
∫

R3

−∇k(div(�u)) · ∇k� − ∇k((u · ∇)u + h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�)∇kudx. (3.9)

We can first estimate the left-hand side of (3.9). For the second term, we have∫

R3

μ|∇k+1u|2 + (μ + λ)|∇kdivu|2dx ≥ σ0‖∇k+1u‖2
L2 , (3.10)

since μ > 0 and λ + 2
3μ ≥ 0. �

For the third term, by the continuity Eq. (3.1) and integrating over R
3 by parts, we can obtain the

following: ∫

R3

κ∇kdivu · ∇kΔ�dx =
∫

R3

κ∇k(−∂t� − div(�u)) · ∇kΔ�dx

=
∫

R3

κ∇k+1(∂t� + div(�u)) · ∇k+1�dx

=
1
2

d
dt

∫

R3

κ|∇k+1�|2dx +
∫

R3

κ∇k+1(�divu + u · ∇�)∇k+1�dx.

(3.11)

In light of (3.10) and (3.11), we can rewrite (3.9) as:
1
2

d
dt

∫

R3

|∇k�|2 + |∇ku|2 + κ|∇k+1�|2dx + σ0‖∇k+1u‖2
L2

≤ −
∫

R3

κ∇k+1(�divu + u · ∇�)∇k+1�dx +
∫

R3

−∇k(div(�u)) · ∇k�

−∇k((u · ∇)u + h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�)∇kudx.

(3.12)

Then, we shall estimate each term in the right-hand side of (3.12). The key point is that we will carefully
interpolate the spatial derivatives between the higher-order derivatives and the lower-order ones to bound
these nonlinear terms by the right-hand side of (3.8). Firstly, we should consider one special situation,
when k = 0.

Let k = 0, and by integrating by parts, we can get from (3.12) as
1
2

d
dt

∫

R3

|�|2 + |u|2 + κ|∇�|2dx + σ0‖∇u‖2
L2

� −
∫

R3

κ∇(�divu + u · ∇�)∇�dx

−
∫

R3

div(�u)� + ((u · ∇)u + h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�)udx

�
∫

R3

κ(�divu + u · ∇�)∇2�dx −
∫

R3

(�divu + u · ∇�)� + ((u · ∇)u

+h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�)udx
:= I1 + I2 + I3 + I4 + I5 + I6.

(3.13)
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For the term I1, by Höder’s, Minkowshi’s, Sobolev’s and Young’s inequality, we obtain

I1 :=
∫

R3

κ(�divu + u · ∇�)∇2�dx � (‖�‖L6‖∇u‖L2 + ‖u‖L6‖∇�‖L2)‖∇2�‖L3

� (‖∇�‖L2‖∇u‖L2 + ‖∇u‖L2‖∇�‖L2)‖∇2�‖L3 � (‖∇u‖2
L2 + ‖∇�‖2

L2)‖∇2�‖H1

�
√

E3
0 (‖∇u‖2

L2 + ‖∇�‖2
L2).

(3.14)

Similarly, we can bound I2 and I3 by

I2 := −
∫

R3

(�divu + u · ∇�)�dx � (‖�‖L3‖∇u‖L2 + ‖u‖L3‖∇�‖L2)‖�‖L6

� (‖�‖H1‖∇u‖L2 + ‖u‖H1‖∇�‖L2)‖∇�‖L2

�
√

E3
0 (‖∇u‖2

L2 + ‖∇�‖2
L2).

(3.15)

I3 := −
∫

R3

(u · ∇)u · udx � ‖u‖L3‖∇u‖L2‖u‖L6 � ‖u‖H3‖∇u‖L2‖∇u‖L2 �
√

E3
0‖∇u‖2

L2 . (3.16)

For the term I4, from the Eq. (3.7), we know that

I4 := −
∫

R3

h(�)(μΔu)udx =
∫

R3

μ∇u · ∇(h(�)u)dx

=
∫

R3

μ∇u · (h′(�)∇� · u + h(�)∇u)dx

� ‖∇u‖L3‖∇�‖L2‖u‖L6 + ‖∇u‖L3‖h(�)‖L6‖∇u‖L2

� ‖u‖H3‖∇�‖L2‖∇u‖L2 + ‖u‖H3‖∇�‖L2‖∇u‖L2

�
√

E3
0 (‖∇�‖2

L2 + ‖∇u‖2
L2).

(3.17)

Similarly, for the term I5, we have

I5 := −
∫

R3

h(�)(μ + λ)∇divu · udx =
∫

R3

(μ + λ)divu · ∇(h(�) · u)dx

=
∫

R3

(μ + λ)divu · (h′(�)∇� · u + h(�)∇u)dx

� ‖∇u‖L3(‖∇�‖L2‖u‖L6 + ‖�‖L6‖∇u‖L2)
� ‖u‖H3(‖∇�‖L2‖∇u‖L2)

�
√

E3
0 (‖∇�‖2

L2 + ‖∇u‖2
L2).

(3.18)

By Sobolev’s inequality, we can bound the term I6 as

I6 := −
∫

R3

f(�)∇�udx � ‖f(�)‖L3‖∇�‖L2‖u‖L6

� ‖�‖H4‖∇�‖L2‖∇u‖L2 �
√

E3
0 (‖∇�‖2

L2 + ‖∇u‖2
L2).

(3.19)

From (3.13) to (3.19), we can get that for k = 0,

d
dt

∫

R3

|�|2 + |u|2 + κ|∇�|2dx + C‖∇u‖2
L2 �

√
E3
0 (‖∇�‖2

L2 + ‖∇u‖2
L2), (3.20)

which means that k = 0 satisfied the form in (3.8).
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Next, we should estimate all the terms of the right-hand side of (3.12), when k ≥ 1 and set

−
∫

R3

κ∇k+1(�divu + u · ∇�)∇k+1�dx +
∫

R3

−∇k(div(�u)) · ∇k�

−∇k[(u · ∇)u + h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�]∇kudx
:= J1 + J2 + J3 + J4 + J5 + J6.

(3.21)

First, for the term J1, employing the Leibniz formula and by Hölder’s inequality, we obtain the fol-
lowing:

J1 := −
∫

R3

κ∇k+1(�divu)∇k+1�dx

= −
∫

R3

∑
0≤l≤k+1

κCl
k+1∇l�∇k−l+2u∇k+1�dx

�
∑

0≤l≤k+1

‖∇l�∇k−l+2u‖L2‖∇k+1�‖L2 .

(3.22)

To estimate the first factor above, we take the L3-norm on the term with less number of derivatives.
Hence, if l ≤ [k+1

2 ], together with the Sobolev interpolation of Lemma 2.1, we have

‖∇l�∇k−l+2u‖L2 � ‖∇l�‖L3‖∇k−l+2u‖L6

� ‖∇α�‖1− l−2
k−1

L2 ‖∇k+1�‖
l−2
k−1

L2 ‖∇2u‖
l−2
k−1

L2 ‖∇k+1u‖1− l−2
k−1

L2 ,
(3.23)

where α comes from the adjustment of the index between the energy and the dissipation, and it is defined
by

l

3
− 1

3
=

(
α

3
− 1

2

)(
1 − l − 2

k − 1

)
+

(
k + 1

3
− 1

2

)
l − 2
k − 1

=⇒ α = 2 +
k − 1

2(k − l + 1)
∈ [2, 3), since 0 ≤ l ≤ k + 1

2
. (3.24)

Hence, by the definition of the energy E3
0 (t) and Young’s inequality, we obtain that for l ≤ [k+1

2 ],

‖∇l�∇k−l+2u‖L2 �
√

E3
0 (‖∇k+1�‖L2 + ‖∇k+1u‖L2). (3.25)

If [k+1
2 ] + 1 ≤ l ≤ k (if k < [k+1

2 ] + 1, then it is nothing in this case, and hereafter, etc.), we have

‖∇l�∇k−l+2u‖L2 � ‖∇l�‖L6‖∇k−l+2u‖L3

� ‖∇2�‖1− l−1
k−1

L2 ‖∇k+1�‖
l−1
k−1

L2 ‖∇αu‖
l−1
k−1

L2 ‖∇k+1u‖1− l−1
k−1

L2

�
√

E3
0 (‖∇k+1�‖L2 + ‖∇k+1u‖L2),

(3.26)

where α is defined by

k − l + 2
3

− 1
3

=
(

α

3
− 1

2

)
l − 1
k − 1

+
(

k + 1
3

− 1
2

)(
1 − l − 1

k − 1

)

=⇒ α = 2 +
k − 1

2(l − 1)
∈ [2, 3), since

k + 1
2

< l ≤ k + 1. (3.27)

In light of (3.25) and (3.26), by Cauchy’s inequality, we deduce from (3.22) that

J1 �
√

E3
0 (‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2). (3.28)
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Next, for the term J2, we utilize the commutator notation (3.4) to rewrite it as

J2 := −
∫

R3

κ∇k+1(u · ∇�)∇k+1�dx

= −
∫

R3

κ(u · ∇∇k+1� + [∇k+1, u]∇�)∇k+1�dx

:= J21 + J22.

(3.29)

By integrating by part, by Sobolev’s inequality, we have

J21 := −
∫

R3

κu · ∇∇k+1� · ∇k+1�dx = −
∫

R3

κu · ∇|∇k+1�|2
2

dx

=
1
2

∫

R3

κdivu|∇k+1�|2dx

� ‖∇u‖L∞‖∇k+1�‖2
L2 �

√
E3
0‖∇k+1�‖2

L2 .

(3.30)

We use the commutator estimate of Lemma 2.3 and Sobolev’s inequality to bound

J22 := −
∫

R3

κ([∇k+1, u]∇�) · ∇k+1�dx � ‖[∇k+1, u]∇�‖L2‖∇k+1�‖L2

� (‖∇u‖L∞‖∇k+1�‖L2 + ‖∇k+1u‖L2‖∇�‖L∞)‖∇k+1�‖L2

�
√

E3
0 (‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2).

(3.31)

In light of (3.30) and (3.31), we find

J2 �
√

E3
0 (‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2). (3.32)

Now, we estimate the term J3. By integrating by parts, by Hölder’s, Minkowshi’s and Sobolev’s inequal-
ities, we obtain

J3 :=
∫

R3

−∇k(div(�u)) · ∇k�dx =
∫

R3

∇k−1(div(�u)) · ∇k+1�dx

� ‖∇k(�u)‖L2‖∇k+1�‖L2 = ‖
∑

0≤l≤k

Cl
k∇l�∇k−lu‖L2‖∇k+1�‖L2

�
∑

0≤l≤k

‖∇l�∇k−lu‖L2‖∇k+1�‖L2 .

(3.33)

If l ≤ [k
2 ], by Hölder’s inequality and Lemma 2.1, we have

‖∇l�∇k−lu‖L2‖ � ‖∇l�‖L3‖∇k−lu‖L6

� ‖∇α�‖1− l
k

L2 ‖∇k+1�‖ l
k

L2‖∇u‖ l
k

L2‖∇k+1u‖1− l
k

L2 ,
(3.34)

where α is defined by
l

3
− 1

3
=

(
α

3
− 1

2

)(
1 − l

k

)
+

(
k + 1

3
− 1

2

)
l

k

=⇒ α = 2 − k

2(k − l)
∈

[
1,

3
2

]
, since 0 ≤ l ≤ k

2
. (3.35)

If [k
2 ] + 1 ≤ l ≤ k, by Hölder’s inequality and Lemma 2.1 again, we have

‖∇l�∇k−lu‖L2‖ � ‖∇l�‖L6‖∇k−lu‖L3

� ‖�‖1− l+1
k+1

L2 ‖∇k+1�‖
l+1
k+1

L2 ‖∇αu‖
l+1
k+1

L2 ‖∇k+1u‖1− l+1
k+1

L2 ,
(3.36)
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where α is defined by

k − l

3
− 1

3
=

(
α

3
− 1

2

)
l + 1
k + 1

+
(

k + 1
3

− 1
2

)(
1 − l + 1

k + 1

)

=⇒ α =
k + 1

2(l + 1)
∈ [

1
2
, 1), since

k + 1
2

≤ l ≤ k. (3.37)

In light of (3.34) and (3.36), by Young’s inequality, we deduce from (3.33) that

J3 �
√

E3
0 (‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2). (3.38)

Next, we estimate the term J4. By Hölder’s and Sobolev’s inequality, we obtain

J4 :=
∫

R3

−∇k((u · ∇)u) · ∇kudx =
∫

R3

∇k−1((u · ∇)u) · ∇k+1udx

=
∑

0≤l≤k−1

Cl
k−1

∫

R3

∇lu · ∇k−lu · ∇k+1udx

�
∑

0≤l≤k−1

‖∇lu · ∇k−lu‖L2‖∇k+1u‖L2 .

(3.39)

If l ≤ [k−1
2 ], by Hölder’s inequality and Lemma 2.1, we have

‖∇lu · ∇k−lu‖L2 � ‖∇lu‖L3‖∇k−lu‖L6

� ‖∇αu‖1− l
k

L2 ‖∇k+1u‖ l
k

L2‖∇u‖ l
k

L2‖∇k+1u‖1− l
k

L2

= ‖∇αu‖1− l
k

L2 ‖∇u‖ l
k

L2‖∇k+1u‖L2

�
√

E3
0‖∇k+1u‖L2 ,

(3.40)

where α is defined as (3.35), but

α = 2 − k

2(k − l)
∈ (1,

3
2
], since 0 ≤ l ≤ k − 1

2
. (3.41)

If [k−1
2 ] + 1 ≤ l ≤ k − 1, by Hölder’s inequality and Lemma 2.1 again, we have

‖∇lu · ∇k−lu‖L2 � ‖∇lu‖L6‖∇k−lu‖L3

� ‖∇u‖1− l
k

L2 ‖∇k+1u| l
k

L2‖∇αu‖ l
k

L2‖∇k+1u‖1− l
k

L2

= ‖∇u‖1− l
k

L2 ‖∇αu‖ l
k

L2‖∇k+1u‖L2

�
√

E3
0‖∇k+1u‖L2 ,

(3.42)

where α is defined as (3.37), but

α =
k + 1

2(l + 1)
∈

(
1
2
, 1

)
, since

k

2
≤ l ≤ k − 1. (3.43)

In light of (3.40) and (3.42), we deduce from (3.39) that

J4 �
√

E3
0‖∇k+1u‖2

L2 . (3.44)

Next, we estimate the term J5. We do the approximation to simplify the presentations by

J5 :=
∫

R3

−∇k[h(�)(μΔu + (μ + λ)∇divu)]∇kudx ≈ −
∫

R3

∇k(h(�)∇2u) · ∇kudx. (3.45)
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Since k ≥ 1, we can integrate by parts to have

J5 ≈
∫

R3

∇k−1(h(�)∇2u) · ∇k+1udx

�
∑

0≤l≤k−1

∫

R3

∇lh(�) · ∇k−l+1u · ∇k+1udx

�
∑

0≤l≤k−1

‖∇lh(�)∇k−l+1u‖L2‖∇k+1u‖L2 .

(3.46)

In order to estimate the first term in (3.46), we shall discuss it in the following cases:
i) For l = 0, since |h(�)| ≤ C|�|, by Höder’s and Sobolev’s inequalities, we have

‖h(�) · ∇k+1u‖L2 � ‖h(�)‖L∞‖∇k+1u‖L2

� ‖�‖L∞‖∇k+1u‖L2 � ‖∇�‖L2‖∇k+1u‖L2

�
√

E3
0‖∇k+1u‖L2 .

(3.47)

ii) For l = 1, since |h(k)(�)| ≤ C, for any k ≥ 1, we have

‖∇h(�) · ∇ku‖L2 � ‖h
′
(�) · ∇� · ∇ku‖L2

� ‖h
′
(�) · ∇�‖L3‖∇ku‖L6 � ‖∇2�‖L2‖∇k+1u‖L2

�
√

E3
0‖∇k+1u‖L2 .

(3.48)

iii) For 2 ≤ l ≤ k − 1, by Lemma 2.2, we have

‖∇lh(�)‖L∞ � ‖∇l�‖1/4
L2 ‖∇l+2�‖3/4

L2

� (‖�‖1− l
k+1

L2 ‖∇k+1�‖
l

k+1

L2 )1/4(‖�‖1− l+2
k+1

L2 ‖∇k+1�‖
l+2
k+1

L2 )3/4

� ‖�‖1− 2l+3
2(k+1)

L2 ‖∇k+1�‖
2l+3

2(k+1)

L2 .

(3.49)

From the above inequality, and by Lemma 2.1 and Young’s inequality, we have

‖∇lh(�)∇k−l+1u‖L2 � ‖∇lh(�)‖L∞‖∇k−l+1u‖L2

� ‖�‖1− 2l+3
2(k+1)

L2 ‖∇k+1�‖
2l+3

2(k+1)

L2 ‖∇k−l+1u‖L2

� ‖�‖1− 2l+3
2(k+1)

L2 ‖∇k+1�‖
2l+3

2(k+1)

L2 ‖∇αu‖
2l+3

2(k+1)

L2 ‖∇k+1u‖1− 2l+3
2(k+1)

L2

�
√

E3
0 (‖∇k+1�‖L2 + ‖∇k+1u‖L2),

(3.50)

where α is defined by

k − l + 1
3

− 1
2

=
(

α

3
− 1

2

)
2l + 3

2(k + 1)
+

(
k + 1

3
− 1

2

)(
1 − 2l + 3

2(k + 1)

)

=⇒ α =
3(k + 1)
2l + 3)

< 3, since 2 ≤ l ≤ k − 1.
(3.51)

In light of (3.47), (3.48) and (3.50), we deduce from (3.46) that

J5 �
√

E3
0 (‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2). (3.52)
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Finally, we can estimate the last term J6 in the same way as J5. Since k ≥ 1, we can integrate by parts
to have

J6 := −
∫

R3

∇k(f(�)∇�)∇kudx =
∫

R3

∇k−1(f(�)∇�)∇k+1udx

=
∑

0≤l≤k−1

Cl
k−1

∫

R3

∇lf(�) · ∇k−l� · ∇k+1udx

�
∑

0≤l≤k−1

‖∇lf(�) · ∇k−l�‖L2‖∇k+1u‖L2 .

(3.53)

In order to estimate the first term above, we also need to discuss in the following cases:
i) For l = 0, since |f(�)| ≤ C|�|, by Höder’s and Sobolev’s inequalities, we have

‖f(�) · ∇k�‖L2 � ‖f(�)‖L3‖∇k�‖L6

� ‖�‖L3‖∇k�‖L6 � ‖∇�‖L2‖∇k+1�‖L2

�
√

E3
0‖∇k+1�‖L2 .

(3.54)

ii) For 1 ≤ l ≤ k − 1, by Lemma 2.2, we have

‖∇lf(�) · ∇k−l�‖L2 � ‖∇lf(�)‖L∞‖∇k−l�‖L2

� ‖∇l�‖1/4
L2 ‖∇l+2�‖3/4

L2 ‖∇k−l�‖L2

� (‖�‖1− l
k+1

L2 ‖∇k+1�‖
l

k+1

L2 )1/4(‖�‖1− l+2
k+1

L2 ‖∇k+1�‖
l+2
k+1

L2 )3/4‖∇k−l�‖L2

� ‖�‖1− 2l+3
2(k+1)

L2 ‖∇k+1�‖
2l+3

2(k+1)

L2 ‖∇α�‖
2l+3

2(k+1)

L2 ‖∇k+1�‖1− 2l+3
2(k+1)

L2

�
√

E3
0‖∇k+1�‖L2 ,

(3.55)

where α is defined by

k−l

3
− 1

2
=

(
α

3
− 1

2

)
2l + 3

2(k + 1)
+

(
k + 1

3
− 1

2

) (
1 − 2l + 3

2(k + 1)

)

=⇒ α=
k + 1
2l + 3

<3, since 1≤ l≤k − 1.

(3.56)

In light of (3.54) and (3.55), we deduce from (3.53) that

J6 �
√

E3
0 (‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2). (3.57)

Plugging the estimates for I1 ∼ I6 and J1 ∼ J6, i.e., (3.20),(3.28),(3.32),(3.38),(3.44),(3.52),(3.57) into
(3.12), we get (3.8).

For the next lemma, we will give the dissipative estimate for �, via constructing the interactive energy
function between u and ∇�.

Lemma 3.2. If
√

E3
0 ≤ δ, then for k = 0, 1, . . . , N , we have

d
dt

∫

R3

∇ku · ∇∇k�dx + C(‖∇k+1�‖2
L2 + ‖∇k+2�‖2

L2) � ‖∇k+1u‖2
L2 . (3.58)
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Proof. Applying ∇k to (3.2) and then multiplying the resulting equation by ∇∇k� under L2 inner prod-
uct, we can obtain∫

R3

|∇∇k�|2dx − κ

∫

R3

∇k∇Δ� · ∇∇k�dx

= −
∫

R3

∇k∂tu · ∇∇k�dx +
∫

R3

μ∇kΔu · ∇∇k� + (μ + λ)∇k∇divu · ∇∇k�dx

−
∫

R3

∇k(u · ∇u + h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�) · ∇∇k�dx

� −
∫

R3

∇k∂tu · ∇∇k�dx −
∫

R3

μ∇k+1u · ∇k+2� + (μ + λ)∇k+1u · ∇k+2�dx

+
∫

R3

∇k−1(u · ∇u + h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�) · ∇k+2�dx

� −
∫

R3

∇k∂tu · ∇∇k�dx + C‖∇k+1u‖L2‖∇k+2�‖L2 + ‖∇k−1(u · ∇u

+h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�)‖L2‖∇k+2�‖L2 .

(3.59)

Notice that the first term in the right-hand side of (3.59) involves the time derivative; thus, by the
continuity Eq. (3.1) and integrating by parts for both the t− and x− variables, we can get that

−
∫

R3

∇k∂tu · ∇∇k�dx = − d
dt

∫

R3

∇ku · ∇∇k�dx +
∫

R3

∇ku · ∇∇k∂t�dx

= − d
dt

∫

R3

∇ku · ∇∇k�dx −
∫

R3

∇kdivu · ∇k∂t�dx

= − d
dt

∫

R3

∇ku · ∇∇k�dx +
∫

R3

∇kdivu · ∇k(divu + div(�u))dx

= − d
dt

∫

R3

∇ku · ∇∇k�dx + ‖∇kdivu‖2
L2 +

∫

R3

∇kdivu · ∇kdiv(�u)dx.

(3.60)

By applying Hölder’s inequality, Leibniz formula and Minkowshi’s inequality to the last term of the right
side of (3.60), we have∫

R3

∇kdivu · ∇kdiv(�u)dx � ‖∇k+1(�u)‖L2‖∇k+1u‖L2 �
∑

0≤l≤k+1

‖∇l�∇k−l+1u‖L2‖∇k+1u‖L2 . (3.61)

If 0 ≤ l ≤ [k+1
2 ], by Lemma 2.1, we have

‖∇l�∇k−l+1u‖L2 � ‖∇l�‖L3‖∇k−l+1u‖L6

� ‖∇α�‖1− l−1
k

L2 ‖∇k+1�‖
l−1

k

L2 ‖∇u‖
l−1

k

L2 ‖∇k+1u‖1− l−1
k

L2

�
√

E3
0 (‖∇k+1�‖L2 + ‖∇k+1u‖L2),

(3.62)

where α is defined by

l

3
− 1

3
=

(
α

3
− 1

2

)
×

(
1 − l − 1

k

)
+

(
k + 1

3
− 1

2

)
× l − 1

k

=⇒ α = 1 +
k

2(k − l + 1)
∈ [

5
4
, 2) since 0 ≤ l ≤ k + 1

2
.

(3.63)
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While for l > [k+1
2 ] + 1 (then k − l + 1 ≤ [k+1

2 ]), in the same way above, we have

‖∇l�∇k−l+1u‖L2 � ‖∇l�‖L6‖∇k−l+1u‖L3

� ‖∇�‖1− l
k

L2 ‖∇k+1�‖ l
k

L2‖∇αu‖ l
k

L2‖∇k+1u‖1− l
k

L2

�
√

E3
0 (‖∇k+1�‖L2 + ‖∇k+1u‖L2),

(3.64)

where α is defined by
k − l + 1

3
− 1

3
=

(
α

3
− 1

2

)
× l

k
+

(
k + 1

3
− 1

2

)
×

(
1 − l

k

)

=⇒ α = 1 +
k

2l
∈ [

5
4
, 2) since

k + 1
2

< l ≤ k + 1.

(3.65)

Thus, in light of (3.62) and (3.64), we can deduce from (3.61) that∫

R3

∇kdivu · ∇kdiv(�u)dx �
√

E3
0 (‖∇k+1�‖L2 + ‖∇k+1u‖L2). (3.66)

Plugging the above inequality into (3.60), we can obtain that

−
∫

R3

∇k∂tu · ∇∇kdx ≤ − d
dt

∫

R3

∇ku · ∇∇k�dx + C‖∇k+1u‖2
L2 + C

√
E3
0‖∇k+1�‖2

L2 . (3.67)

�
Next, for the last term of the right-hand side of (3.59), notice that it has been already proved in the

proof of Lemma 3.1 that

‖∇k−1(u · ∇u + h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�)‖L2

�
√

E3
0 (‖∇k+1�‖L2 + ‖∇k+1u‖L2).

(3.68)

As to the left-hand side of (3.59), by integrating by parts, the second term of it can be rewritten as

− κ

∫

R3

∇k∇Δ� · ∇∇k�dx = κ

∫

R3

∇k+2� · ∇k+2�dx = κ‖∇k+2�‖2
L2 . (3.69)

Consequently, by (3.67)–(3.69), together with Cauchy’s inequality, since
√

E3
0 ≤ δ is small, we can

then deduce (3.58) from (3.59).

4. Negative Sobolev estimates

In this section, we will derive the evolution of the negative Sobolev norms of the solution to the problem
(3.1)–(3.3). In order to estimate the nonlinear terms, we need to restrict ourselves to that s ∈ (0, 3

2 ).

Lemma 4.1. If
√

E3
0 ≤ δ, then for s ∈ (0, 1

2 ], we have

d
dt

∫

R3

|Λ−s�|2 + |Λ−su|2 + κ|Λ−s∇�|2dx + C‖∇Λ−su‖2
L2

� (‖�‖2
H3 + ‖∇u‖2

H1)(‖Λ−s�‖L2 + ‖Λ−su‖L2 + κ‖Λ−s∇�‖L2),
(4.1)

and for s ∈ (1
2 , 3

2 ), we have

d
dt

∫

R3

|Λ−s�|2 + |Λ−su|2 + κ|Λ−s∇�|2dx + C‖∇Λ−su‖2
L2

� ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s(‖Λ−s�‖L2 + ‖Λ−su‖L2 + κ‖Λ−s∇�‖L2).

(4.2)
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Proof. Applying Λ−s to (3.1) and (3.2), and multiplying those two resulting identities by Λ−s�andΛ−su,
respectively, summing them up and then integrating this equation over R

3 by parts, we have

1
2

d
dt

∫

R3

|Λ−s�|2 + |Λ−su|2dx +
∫

R3

μ|∇Λ−su|2 + (μ + λ)|divΛ−su|2dx

= κ

∫

R3

Λ−s∇Δ� · Λ−sudx +
∫

R3

Λ−s(−�divu − u · ∇�)Λ−s�dx

−
∫

R3

Λ−s(u · ∇u + h(�)(μΔu + (μ + λ)∇divu) + f(�)∇�) · Λ−sudx

:= W1 + W2 + W3 + W4 + W5 + +W6.

(4.3)

�

Firstly, we should bound the left-hand side of (4.3). For the second term, we have
∫

R3

μ|∇Λ−su|2 + (μ + λ)|divΛ−su|2dx ≥ σ0‖∇Λ−su‖2
L2 . (4.4)

In order to estimate the nonlinear terms in the right-hand side of (4.3), we shall use the estimate (2.11)
of Riesz potential in Lemma 2.5. This forces us to require that s ∈ (0, 3

2 ). If s ∈ (0, 1
2 ], then 1/2+ s/3 < 1

and 3/s ≥ 6. For the first term, by the continuity Eq. (3.1) and by integrating by parts, we get

W1 := κ

∫

R3

Λ−s∇Δ� · Λ−sudx = κ

∫

R3

Λ−s∇� · Λ−s∇(divu)dx

= κ

∫

R3

Λ−s∇� · Λ−s∇(−∂t� − div(�u))dx

= −κ

∫

R3

Λ−s∇� · Λ−s∇∂t�dx − κ

∫

R3

Λ−s∇� · Λ−s∇div(�u)dx

≤ −1
2

d
dt

∫

R3

κ|Λ−s∇�|2dx + κ‖Λ−s∇�‖L2‖Λ−s∇div(�u)‖L2 .

(4.5)

In order to estimate the term W1, by employing the Leibniz formula and Minkowshi’s inequality, we
should first estimate that

‖Λ−s∇div(�u)‖L2 � ‖Λ−s(∇2(�u))‖L2

� ‖Λ−s(�∇2u)‖L2 + ‖Λ−s(∇� · ∇u)‖L2 + ‖Λ−s(∇2� · u)‖L2

:= S1 + S2 + S3.
(4.6)

If s ∈ (0, 1
2 ], by the Lemmas 2.5 and 2.1, we have

S1 := ‖Λ−s(�∇2u)‖L2 � ‖�∇2u‖
L

1
1/2+s/3

� ‖�‖
L

3
s
‖∇2u‖L2

� ‖∇�‖ 1
2+s

L2 ‖∇2�‖ 1
2 −s

L2 ‖∇2u‖L2

� ‖�‖2
H3 + ‖∇u‖2

H1 .

(4.7)

S2 := ‖Λ−s(∇� · ∇u)‖L2 � ‖∇� · ∇u‖
L

1
1/2+s/3

� ‖∇�‖
L

3
s
‖∇u‖L2

� ‖∇2�‖ 1
2+s

L2 ‖∇3�‖ 1
2 −s

L2 ‖∇u‖L2

� ‖�‖2
H3 + ‖∇u‖2

H1 .

(4.8)
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S3 := ‖Λ−s(∇2� · u)‖L2 � ‖∇2� · u‖
L

1
1/2+s/3

� ‖∇2�‖L2‖u‖
L

3
s

� ‖∇2�‖L2‖∇u‖ 1
2+s

L2 ‖∇2u‖ 1
2 −s

L2

� ‖�‖2
H3 + ‖∇u‖2

H1 .

(4.9)

From (4.6) to (4.9), we can get that for s ∈ (0, 1
2 ],

‖Λ−s∇div(�u)‖L2 � ‖�‖2
H3 + ‖∇u‖2

H1 . (4.10)

And this together with (4.5), we can obtain that for s ∈ [0, 1
2 ],

W1 := κ

∫

R3

Λ−s∇Δ� · Λ−sudx � −1
2

d
dt

∫

R3

κ|Λ−s∇�|2dx + κ(‖�‖2
H3 + ‖∇u‖2

H1)‖Λ−s∇�‖L2 . (4.11)

For the second term, we can apply Lemmas 2.5 and 2.1, Hölder’s as well as Young’s inequalities to
have

W2 := −
∫

R3

Λ−s(�divu)Λ−s�dx � ‖Λ−s(�divu)‖L2‖Λ−s�‖L2

� ‖�divu‖
L

1
1/2+s/3

‖Λ−s�‖L2 � ‖�‖L3/s‖∇u‖L2‖Λ−s�‖L2

� ‖∇�‖1/2+s
L2 ‖∇2�‖1/2−s

L2 ‖∇u‖L2‖Λ−s�‖L2

� (‖∇�‖2
H1 + ‖∇u‖2

L2)‖Λ−s�‖L2 .

(4.12)

Similarly, we can bound the remaining terms by

W3 := −
∫

R3

Λ−s(u · ∇�)Λ−s�dx � ‖Λ−s(u · ∇�)‖L2‖Λ−s�‖L2

� ‖∇u‖1/2+s
L2 ‖∇2u‖1/2−s

L2 ‖∇�‖L2‖Λ−s�‖L2

� (‖∇u‖2
H1 + ‖∇�‖2

L2)‖Λ−s�‖L2 .

(4.13)

W4 := −
∫

R3

Λ−s(u · ∇u)Λ−sudx � ‖Λ−s(u · ∇u)‖L2‖Λ−su‖L2

� ‖∇u‖1/2+s
L2 ‖∇2u‖1/2−s

L2 ‖∇u‖L2‖Λ−su‖L2

� ‖∇u‖H1‖∇u‖L2‖Λ−su‖L2

� ‖∇u‖2
H1‖Λ−su‖L2 .

(4.14)

W5 := −
∫

R3

Λ−s(h(�)(μΔu + (μ + λ)∇divu))Λ−sudx

� ‖Λ−s(h(�)(μΔu + (μ + λ)∇divu))‖L2‖Λ−su‖L2

� ‖Λ−s(h(�)(μΔu + (μ + λ)∇divu))‖
L

1
1/2+s/3

‖Λ−su‖L2

� ‖�‖L3/s‖∇2u‖L2‖Λ−su‖L2

� ‖∇�‖1/2+s
L2 ‖∇2�‖1/2−s

L2 ‖∇2u‖L2‖Λ−su‖L2

� (‖∇�‖2
H1 + ‖∇2u‖2

L2)‖Λ−su‖L2 .

(4.15)
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W6 := −
∫

R3

Λ−s(f(�)∇�) · Λ−sudx � ‖Λ−s(f(�)∇�)‖L2‖Λ−su‖L2

� ‖�‖L3/s‖∇�‖L2‖Λ−su‖L2

� ‖∇�‖1/2+s
L2 ‖∇2�‖1/2−s

L2 ‖∇�‖L2‖Λ−su‖L2

� ‖∇�‖2
H1‖Λ−su‖L2 .

(4.16)

Now, if s ∈ (1/2, 3/2), we shall estimate each term on the right-hand side of (4.3) in a different way.
Since s ∈ (1/2, 3/2), we have that 1/2 + s/3 < 1 and 2 < 3/s < 6. For the first term W1, we should
estimate each term in (4.6). Then, by Lemmas 2.5 and 2.1, we obtain

S1 := ‖Λ−s(�∇2u)‖L2 � ‖�∇2u‖
L

1
1/2+s/3

� ‖�‖
L

3
s
‖∇2u‖L2

� ‖�‖s− 1
2

L2 ‖∇�‖ 3
2 −s

L2 ‖∇2u‖L2

� ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s.

(4.17)

S2 := ‖Λ−s(∇� · ∇u)‖L2 � ‖∇� · ∇u‖
L

1
1/2+s/3

� ‖∇�‖
L

3
s
‖∇u‖L2

� ‖�‖ s
2 − 1

4
L2 ‖∇2�‖ 5

4 − s
2

L2 ‖u‖ s
2 − 1

4
L2 ‖∇αu‖ 5

4 − s
2

L2

� ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s,

(4.18)

where α is defined by

1
3

− 1
2

= −1
2

(
s

2
− 1

4

)
+

(
α

3
− 1

2

) (
5
4

− s

2

)

=⇒ α =
4

5 − 2s
∈ (1, 2), since s ∈

(
1
2
,
3
2

)
. (4.19)

S3 := ‖Λ−s(∇2� · u)‖L2 � ‖∇2� · u‖
L

1
1/2+s/3

� ‖∇2�‖L2‖u‖
L

3
s

� ‖∇2�‖L2‖u‖s− 1
2

L2 ‖∇u‖ 3
2 −s

L2

� ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s.

(4.20)

From (4.6), (4.17), (4.18) and (4.20), we can obtain that for s ∈ ( 1
2 , 3

2 )

‖Λ−s∇div(�u)‖L2 � ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s. (4.21)

This together with (4.5), we obtain that for s ∈ (1
2 , 3

2 )

W1 := κ

∫

R3

Λ−s∇Δ� · Λ−sudx � −1

2

d

dt

∫

R3

κ|Λ−s∇�|2dx + κ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s‖Λ−s∇�‖L2 .

(4.22)

For the second term, by Lemmas 2.5 and 2.1 again, we obtain that

W2 := −
∫

R3

Λ−s(�divu)Λ−s�dx � ‖Λ−s(�divu)‖L2‖Λ−s�‖L2

� ‖�divu‖
L

1
1/2+s/3

‖Λ−s�‖L2 � ‖�‖L3/s‖∇u‖L2‖Λ−s�‖L2

� ‖�‖s−1/2
L2 ‖∇�‖3/2−s

L2 ‖∇u‖L2‖Λ−s�‖L2

� ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s‖Λ−s�‖L2 .

(4.23)

Similarly, we can bound the remaining terms by
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W3 := −
∫

R3

Λ−s(u · ∇�)Λ−s�dx � ‖u‖s−1/2
L2 ‖∇u‖3/2−s

L2 ‖∇�‖L2‖Λ−s�‖L2

� ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s‖Λ−s�‖L2 .

(4.24)

W4 := −
∫

R3

Λ−s(u · ∇u)Λ−sudx � ‖u‖s−1/2
L2 ‖∇u‖3/2−s

L2 ‖∇u‖L2‖Λ−su‖L2

� ‖(�, u)‖s− 1
2

L2 ‖∇u‖ 5
2 −s

L2 ‖Λ−s�‖L2 .

(4.25)

W5 := −
∫

R3

Λ−s(h(�)(μΔu + (μ + λ)∇divu))Λ−sudx

� ‖�‖s−1/2
L2 ‖∇�‖3/2−s

L2 ‖∇2u‖L2‖Λ−su‖L2

� ‖(�, u)‖s− 1
2

L2 (‖�‖H2 + ‖∇u‖H1)
5
2 −s‖Λ−s�‖L2 .

(4.26)

W6 := −
∫

R3

Λ−s(f(�)∇�) · Λ−sudx � ‖�‖s−1/2
L2 ‖∇�‖3/2−s

L2 ‖∇�‖L2‖Λ−s�‖L2

� ‖(�, u)‖s− 1
2

L2 ‖∇�‖ 5
2 −s

L2 ‖Λ−s�‖L2 .

(4.27)

Consequently, in light of the estimates of W1, W2, W3, W4, W5, W6 both in the case of s ∈ (0, 1/2]
and s ∈ (1/2, 3/2), together with (4.4), we can deduce (4.1) and (4.2) from (4.3) seperately.

5. Proof of Theorem 1.1

In this section, with all the energy estimates that we have derived in the previous two sections, we are
able to prove Theorem 1.1 with the assistance of the Sobolev interpolation.

In order to prove (1.7), we need to close the energy estimates at each l−th level in weak sense. For
convenience, we should first rewrite (3.8) of Lemma 3.1 as

d
dt

(‖∇k�‖2
L2 + ‖∇k+1�‖2

L2 + ‖∇ku‖2
L2) + C‖∇k+1u‖2

L2 ≤
√

E3
0 (‖∇k+1�‖2

L2 + ‖∇k+1u‖2
L2). (5.1)

Then, let N ≥ 3 and 0 ≤ l ≤ m − 1 with 1 ≤ m ≤ N . Summing up the estimates (5.1) for from k = l to
m, since we assume the priori

√
E3
0 ≤ δ is sufficiently small, we obtain

d
dt

(
∑

l≤k≤m+1

‖∇k�‖2
L2 +

∑
l≤k≤m

‖∇ku‖2
L2) + C1

∑
l+1≤k≤m+1

‖∇ku‖2
L2 � C2δ

∑
l+1≤k≤m+1

‖∇k�‖2
L2 . (5.2)

Then summing up the estimates (3.58) of Lemma 3.2 for from k = l to m, we have

d
dt

∑
l≤k≤m

∫

R3

∇ku · ∇∇k�dx + C3

∑
l+1≤m+2

‖∇k�‖2
L2 � C4

∑
l+1≤k≤m+1

‖∇ku‖2
L2 . (5.3)

Multiplying (5.3) by 2C2δ/C3, adding the resulting inequality with (5.2), since δ > 0 is small enough, we
can deduce that there exists a constant C5 > 0 such that for 0 ≤ l ≤ m,

d
dt

{∑
l≤k≤m+1 ‖∇k�‖2

L2 +
∑

l≤k≤m ‖∇ku‖2
L2 + 2C2δ

C3

∑
l≤k≤m

∫
R3

∇ku · ∇∇k�dx

}

+C5

{∑
l+1≤k≤m+2 ‖∇k�‖2

L2 +
∑

l+1≤k≤m+1 ‖∇ku‖2
L2

}
� 0.

(5.4)
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We define

Em
l (t) := C−1

5

⎛
⎝ ∑

l≤k≤m+1

‖∇k�‖2
L2 +

∑
l≤k≤m

‖∇ku‖2
L2 +

2C2δ

C3

∑
l≤k≤m

∫

R3

∇ku · ∇∇k�dx

⎞
⎠ . (5.5)

Since δ is so small that Em
l (t) can be equivalent to ‖∇l�‖2

Hm+1−l + ‖∇lu‖2
Hm−l , then we may reformulate

(5.4) as
d
dt

Em
l (t) + ‖∇l+1�‖2

Hm+1−l + ‖∇l+1u‖2
Hm−l ≤ 0, (5.6)

where 0 ≤ l ≤ m − 1.
Now, let l = 0 and m = 3 in (5.6), and then integrating the equation directly in time, we get

‖�(t)‖2
H4 + ‖u(t)‖2

H3 � E3
0 (t) ≤ E3

0 (0) � ‖�0‖2
H4 + ‖u0‖2

H3 . (5.7)

By a standard continuity argument, this closes the priori estimates (3.5) if at the initial time, we
assume that ‖�0‖2

H4 + ‖u0‖2
H3 ≤ δ0 is sufficiently small. This in turn allows us to take l = 0 and m = N

in (5.6) to get
d
dt

EN
0 (t) + ‖∇�‖2

HN+1 + ‖∇u‖2
HN ≤ 0. (5.8)

Then, by integrating it directly in time, we can obtain (1.7).
Next, we turn to prove (1.8) and (1.9) of Theorem 1.1. However, we are not able to prove them for

all s ∈ [0, 3/2) at one time, because, in Sect. 4, we have proved that the negative Sobolev estimates of
the problem (3.1)–(3.3) have different bounded forms in the case s ∈ (0, 1

2 ] and s ∈ ( 1
2 , 3

2 ). As a result,
we have to present the proof separately.

Firstly, let us prove them for s ∈ [0, 1/2].
To begin, we define the notation

E−s(t) := ‖Λ−s�(t)‖2
L2 + ‖Λ−su(t)‖2

L2 + κ‖Λ−s∇�(t)‖2
L2 . (5.9)

With this notation, (4.1) can be rewritten as
d
dt

E−s(t) + C‖∇Λ−su‖2
L2 � (‖�‖2

H3 + ‖∇u‖2
H1)

√
E−s(t). (5.10)

Then, integrating (5.10) in time, and by the bound (1.7), we obtain that for s ∈ (0, 1/2],

E−s(t) � E−s(0) + C

t∫

0

(‖�‖2
H3 + ‖∇u‖2

H1)
√

E−s(τ)dτ

� C0

(
1 + sup

0≤τ≤t

√
E−s(τ)

)
.

(5.11)

This implies (1.8) for s ∈ [0, 1/2], that is,

‖Λ−s�(t)‖2
L2 + ‖Λ−su(t)‖2

L2 + κ‖Λ−s∇�(t)‖2
L2 � C0. (5.12)

If l = 0, 1, . . . , N − 1, by Lemma 2.4, we have

‖∇lf‖L2 ≤ ‖∇l+1f‖1−θ
L2 ‖Λ−sf‖θ

L2 , and θ = 1/(l + 1 + s)

=⇒ ‖∇l+1f‖L2 ≥ C‖Λ−sf‖− 1
l+s

L2 ‖∇lf‖1+ 1
l+s

L2 . (5.13)

By this fact and (5.12), we may find

‖∇l+1�‖2
L2 + ‖∇l+1∇�‖2

L2 + ‖∇l+1u‖2
L2 ≥ C0(‖∇l�‖2

L2 + ‖∇l∇�‖2
L2 + ‖∇lu‖2

L2)1+
1

l+s . (5.14)

This implies that for l = 0, 1, . . . , N − 1, we have

‖∇l+1�‖2
HN−l+1 + ‖∇l+1u‖2

HN−l ≥ C0(‖∇l�‖2
HN−l+1 + ‖∇lu‖2

HN−l)1+
1

l+s . (5.15)
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This together with (5.6) in the case of m = N , we can obtain the following time differential inequality
d
dt

EN
l (t) + C0(EN

l (t))1+
1

l+s ≤ 0, for l = 0, 1, . . . , N − 1. (5.16)

Solving this inequality directly, we can get

EN
l (t) ≤ C0(1 + t)−(l+s), for l = 0, 1, . . . , N − 1. (5.17)

This implies (1.9) that for s ∈ [0, 1/2],

‖∇l�‖2
HN−l+1 + ‖∇lu‖2

HN−l ≤ C0(1 + t)−(l+s), for l = 0, 1, . . . , N − 1. (5.18)

Now, we can present the proof of (1.8) and (1.9) in the case of s ∈ (1/2, 3/2). Although the arguments
for the case s ∈ [0, 1/2] cannot be applied to this case directly, we can deduce them from what we have
proved for (1.8) and (1.9) with s = 1/2, since we have �0, u0 ∈ Ḣ−1/2 (since Ḣ−s ∩ L2 ⊂ Ḣ−s′

for any
s′ ∈ [0, s]). Then, we have the following decay result:

‖∇l�(t)‖2
HN−l+1 + ‖∇lu(t)‖2

HN−l ≤ C0(1 + t)−(l+1/2), for l = 0, 1, . . . , N − 1. (5.19)

Hence, by (5.19), we deduce from (4.2) that for s ∈ (1/2, 3/2),

E−s(t) � E−s(0) + C

t∫

0

‖(�, u)‖s−1/2
L2 (‖�‖H2 + ‖∇u‖H1)5/2−s

√
E−s(τ)dτ

� C0 + C0

t∫

0

(1 + τ)−(7/4−s/2)dτ sup
0≤τ≤t

√
E−s(τ)

� C0(1 + sup
0≤τ≤t

√
E−s(τ)).

(5.20)

This implies (1.8) for s ∈ (1/2, 3/2), that is,

‖Λ−s�(t)‖2
L2 + ‖Λ−su(t)‖2

L2 + κ‖Λ−s∇�(t)‖2
L2 � C0. (5.21)

Now that we have proved (5.21), we may repeat the arguments leading to (1.9) for s ∈ [0, 1/2] to
prove that they hold also for s ∈ (1/2, 3/2).
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