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1. Introduction

In this paper, we are concerned with periodic solutions of Duffing equations

x′′ + g(x) = p(t), (1.1)

where g : (0,+∞) → R is locally Lipschitz continuous and has a singularity at the origin, p : R → R is
continuous and 2π periodic.

The periodic problem of differential equations with singularities has been widely studied with an
increasing interest lately because of their background in applied sciences [1–15]. For example, the oscil-
lation problem of a spherical thick shell made of an elastic material can be modeled by singular Duffing
equations [3]. The focusing system of an electron beam immersed in a periodic magnetic field can be also
modeled by this kind equations [5].

The opening work on the existence of periodic solutions of the second order differential equations with
singularities was done by Lazer and Solimini [16], in which the equations

x′′ − 1
xγ

= p(t)

were studied. It was proved in [16] that if γ ≥ 1, then this equation has at least one positive 2π-periodic
solution if and only if

2π∫

0

p(t)dt < 0.

From then on, the existence of periodic solutions of equations with the strong singularities (γ ≥ 1) was
widely studied.
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Del Pino et al. [4] studied the existence of periodic solutions of equations

x′′ + g(t, x) = 0, (1.2)

where g : R × R+ → R is continuous and 2π-periodic in t. Assume that there exist positive constants
η1, η2, δ and γ ≥ 1 such that

η1

xγ ≤ −g(t, x) ≤ η2

xγ , (1.3)

where t ∈ [0, 2π], 0 < x < δ. Moreover, there exists an integer n ≥ 0 such that, for t ∈ [0, 2π],

n2

4
< lim inf

x→+∞
g(t, x)

x
≤ lim sup

x→+∞
g(t, x)

x
<

(n + 1)2

4
. (1.4)

It was proved in [4] that Eq. (1.2) has at least one positive periodic solution under conditions (1.3) and

(1.4). This result implies that if β ≥ 0 and β �= n2

4 , n ∈ N and γ ≥ 1 then equation

x′′ + βx − 1
xγ

= p(t) (1.5)

has at least one positive 2π-periodic solution. Meanwhile, they raised one open problem: What conditions
should be imposed on p(t) to ensure the existence of 2π-periodic solutions of Eq. (1.5) in the case that

β = n2

4 for n ∈ N, which is usually called the resonant case. Wang and Ma [17] studied this problem.
They considered more general equations as follows:

x′′ +
1
4
n2x + g(x) = p(t), (1.6)

where n ≥ 1 is an integer. Assume that g satisfies the singular condition
η1

xγ ≤ −g(x) ≤ η2

xγ , x ∈ (0, δ), (1.7)

where η1, η2, δ and γ ≥ 1 are positive constants; moreover, g satisfies the limit condition

lim
x→+∞ g(x) = g(+∞). (1.8)

When (1.7) and (1.8) hold, it was proved in [17] that Eq. (1.6) has at least one 2π-periodic solution
provided that the following condition is satisfied,

4g(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt �= 0, ∀θ ∈ R.

One aim of this paper is to further study the existence of periodic solutions of Eq. (1.6). Assume that
g satisfies
(h1) limx→0+ g(x) = −∞,

and the primitive function G of g satisfies
(h2) limx→0+ G(x) = +∞, (G(x) =

∫ x

1
g(s)ds).

Meanwhile, the following condition holds,

(h3) limx→0+
G(x)
g(x) = 0.

Moreover, we assume that the condition as follows is satisfied,
(h4) g(x) is bounded for x ∈ [1,+∞) and G satisfies

lim
x→+∞

G(x)
x

= G(+∞).
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Conditions (hi)(i = 1, 2, 3) generalize condition (1.7). It is easy to check that if g satisfies (1.7), then
conditions (hi)(i = 1, 2, 3) hold. On the other hand, we can easily find functions g which satisfy conditions
(hi)(i = 1, 2, 3), but these functions g do not satisfy (1.7). For example, let us define

g(x) =
ln x

x
, x ∈ (0,+∞).

By a direct calculation, we get

G(x) =
1
2
(ln x)2, x ∈ (0,+∞).

Therefore, we have

lim
x→0+

g(x) = −∞, lim
x→0+

G(x) = +∞

and

lim
x→0+

G(x)
g(x)

= 0.

Hence, g(x) = lnx/x satisfies conditions (hi) (i = 1, 2, 3). However, it is not hard to check that (1.7) is
not satisfied.

By using phase-plane analysis method and topological degree argument, we obtain the following result.

Theorem 1.1. Assume that conditions (hi)(i = 1, 2, 3, 4) hold. Then, Eq. (1.6) has at least one positive
2π-periodic solution provided that the following condition holds,

4G(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt �= 0, ∀θ ∈ R. (1.9)

Remark 1.1. Conditions (h1) and (h2) do not imply condition (h3). When conditions (h1) and (h2) hold,
we have

lim sup
x→0+

G(x)
g(x)

= 0.

In fact, let us define f(x) = lnG(x) for x > 0 small enough. Since limx→0+ G(x) = +∞, we have
limx→0+ f(x) = +∞. We claim lim infx→0+ f ′(x) = −∞. Otherwise, there exists A > 0 such that

f ′(x) ≥ −A, x ∈ (0, 1),

which implies

f(x) ≤ f(1) + A(1 − x), x ∈ (0, 1).

This contradicts with the fact limx→0+ f(x) = +∞. Therefore, we get lim infx→0+
g(x)
G(x) = −∞, which,

together with conditions (h1) and (h2), implies lim supx→0+
G(x)
g(x) = 0.

But, in general, we do not have

lim inf
x→0+

G(x)
g(x)

= 0.

For example, let us set

aj =
1

j + 1
− 1

(j + 1)3
, bj =

1
j + 1

, cj =
1

j + 1
+

1
(j + 1)3

, (j = 1, 2, . . .).
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It is easy to check that cj+1 < aj and bj ln bj > −1, (j = 1, 2, . . .). Define a function g : (0, 1] → R as
follows,

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + aj ln bj

aj(bj − aj)
(x − bj) + ln bj , x ∈ [aj , bj ], j = 1, 2, . . . ,

1 + cj ln bj

cj(bj − cj)
(x − bj) + ln bj , x ∈ [bj , cj ], j = 1, 2, . . . ,

− 1
x

, x ∈ (0, 1]\ ∪∞
j=1 [aj , cj ].

Set

Aj =
(

aj ,− 1
aj

)
, Bj = (bj , ln bj), Cj =

(
cj ,− 1

cj

)
.

Let us denote by Sj the area of the triangle ΔAjBjCj . Obviously, we have

Sj ≤ 2
j3

[
(j + 1)3

j2 + 2j
− ln(j + 1)

]
.

Since

lim
j→∞

1
j

[
(j + 1)3

j2 + 2j
− ln(j + 1)

]
= 1,

we know that the positive term series Σ∞
j=1Sj is convergent. Set S = Σ∞

j=1Sj . Then, we have

− ln bj − S < G(bj) < − ln bj , (j = 1, 2, . . .).

Consequently, we get

lim
j→∞

G(bj)
g(bj)

= lim
j→∞

G(bj)
ln bj

= −1,

which implies

lim inf
x→0+

G(x)
g(x)

≤ −1.

Therefore, conditions (h1) and (h2) cannot imply (h3).
If the limit

(h5) limx→+∞ g(x) = g(+∞)
exists and is finite, then we can easily derive

lim
x→+∞

G(x)
x

= g(+∞).

Consequently, we obtain the following corollary.

Corollary 1.1. Assume that conditions (hi)(i = 1, 2, 3, 5) hold. Then, Eq. (1.6) has at least one positive
2π-periodic solution provided that the following condition holds,

4g(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt �= 0, ∀θ ∈ R. (1.10)

Remark 1.2. Condition (1.9) or (1.10) can be compared with the well-known Lazer–Leach condition

2|g(+∞) − g(−∞)| −
2π∫

0

p(t) sin(θ + nt)dt �= 0, θ ∈ R, (1.11)
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where g : R → R is continuous, the limits limx→+∞ g(x) = g(+∞), limx→−∞ g(x) = g(−∞) exist and
are finite. According to [18], if condition (1.11) is satisfied, then equation

x′′ + n2x + g(x) = p(t)

has at least one 2π-periodic solution.

When g(x) is bounded for sufficiently large x > 0 and condition (h4) or (h5) is not satisfied, we can
also deal with the periodic solutions of Eq. (1.6). In this case, we introduce notations as follows,

g(+∞) = lim inf
x→+∞ g(x), g(+∞) = lim sup

x→+∞
g(x).

We can prove the following theorem.

Theorem 1.2. Assume that conditions (hi)(i = 1, 2, 3) hold and g(x) is bounded for x ∈ [1,+∞). Then,
Eq. (1.6) has at least one positive 2π-periodic solution provided that either

4g(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt > 0, ∀θ ∈ R

or

4g(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt < 0, ∀θ ∈ R

holds.

Remark 1.3. In [17], the multiplicity of periodic solutions of Eq. (1.1) was proved under condition (1.7)
and some other conditions. Analogous results can also be proved when (1.7) is replaced with conditions
(hi)(i = 1, 2, 3) by using the similar methods as in the present paper and [17].

Remark 1.4. In the following, for convenience and brevity, we move the singular point 0 to the point −1.
In fact, we can take a transformation x = u + 1 to achieve this aim. We shall consider singular equations
as follows:

x′′ +
1
4
n2x + g(x) = p(t), (1.6′)

where g : (−1,+∞) → R is continuous and has a singularity at x = −1. We now assume that the
following conditions hold,

(h′
1) limx→−1+ g(x) = −∞,

(h′
2) limx→−1+ G(x) = +∞, (G(x) =

∫ x

0
g(s)ds),

(h′
3) limx→−1+

G(x)
g(x) = 0.

Next, we shall deal with the existence of periodic solutions of Eq. (1.6′) under conditions (h′
i) (i = 1, 2, 3)

and (h4) or (h5).

Throughout this paper, we always use R and N to denote the real number set and the natural number
set, respectively. For a multivariate function ζ, the notation ζ = o(1) (or o(1/c)) always means that, for
c → ∞, ζ → 0 (or c · ζ → 0) holds uniformly with respect to other variables, whereas ζ = O(1) always
means that ζ is bounded for c large enough.
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2. Preliminary lemmas

Consider the equivalent equation of Eq. (1.6′),

x′ = y, y′ = −1
4
n2x − g(x) + p(t). (2.1)

we shall perform some phase-plane analyses for Eq. (1.6′) when conditions (h′
i)(i = 1, 2, 3) and (h4) or

(h5) hold. Let (x(t), y(t)) = (x(t, x0, y0), y(t, x0, y0)) be the solution of (2.1) through the initial point

x(0, x0, y0) = x0, y(0, x0, y0) = y0.

Lemma 2.1. Assume that conditions (h′
i)(i = 1, 2) hold and g(x) is bounded for x ∈ [0,+∞). Then, every

solution (x(t), y(t)) of system (2.1) exists uniquely on the whole t-axis.

Proof. Define a potential function

V (x, y) =
1
2
y2 +

1
8
n2x2 + G(x).

Set

V (t) =
1
2
y2(t) +

1
8
n2x2(t) + G(x(t)).

Then, we have

V ′(t) = y(t)y′(t) + 1
4n2x(t)x′(t) + g(x(t))x′(t) = y(t)p(t) ≤ 1

2y2(t) + 1
2p2(t).

From (h′
2) and the boundedness of g on the interval (0,+∞) we know that there exists a constant M > 0

such that
1
8
n2x2 + G(x) + M > 0, x ∈ (−1,+∞).

Hence,

V ′(t) ≤ 1
2
y2(t) +

1
8
n2x2(t) + G(x(t)) +

1
2
p2(t) + M ≤ V (t) + M ′,

where M ′ = M + 1
2M2

0 ,M0 = max{|p(t)| : t ∈ [0, 2π]}. Then, for any finite T > 0, we have

V (t) ≤ V (0)eT + M ′(eT − 1), t ∈ [0, T ).

Therefore, there is no blow-up for (x(t), y(t)) in any finite interval [0, T ). Furthermore, (x(t), y(t)) exists
on the interval [0,+∞). Similarly, we can prove that (x(t), y(t)) exists on the interval (−∞, 0]. The
uniqueness of the solution (x(t), y(t)) follows directly from the local Lipschitzian condition on g. �

To depict the position of orbit (x(t), y(t)) of Eq. (2.1), we introduce a function ζ : (−1,+∞)×R → R,

ζ(x, y) = x2 + y2 +
1

(1 + x)2
.

Lemma 2.2. ([3]) Assume that conditions (h′
i)(i = 1, 2) hold and g(x) is bounded for x ∈ [0,+∞). Then,

for any 	 > 0, there exists 	0 > 0 sufficiently large such that, for ζ(x0, y0) ≥ 	2
0,

ζ(x(t), y(t)) ≥ 	2, t ∈ [0, 4π],

where (x(t), y(t)) is the solution of (2.1) through the initial point (x0, y0).

From Lemma 2.2, we know that if ζ(x0, y0) is large enough, then x2(t) + y2(t) > 0, t ∈ [0, 4π]. Let us
take a transformation as follows,

x = r cos θ, y =
n

2
r sin θ.
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Under this transformation, Eq. (2.1) becomes⎧⎨
⎩

dθ
dt

= −n
2 − 2

nrg(r cos θ) cos θ + 2
nrp(t) cos θ,

dr
dt

= − 2
ng(r cos θ) sin θ + 2

np(t) sin θ.
(2.2)

For simplicity, we denote by (r(t), θ(t)) = (r(t, r0, θ0), θ(t, r0, θ0)) the solution of Eq. (2.2) satisfying the
initial condition (r(0), θ(0)) = (r0, θ0). We define the Poincaré map P as follows,

P : (r0, θ0) → (r1, θ1) = (r(2π, r0, θ0), θ(2π, r0, θ0)),

with x0 = r0 cos θ0 > −1, y0 = r0 sin θ0.

Lemma 2.3. Assume that conditions (h′
i)(i = 1, 2) hold and g(x) is bounded for x ∈ [0,+∞). Then, there

exist R0 > 0 and ω > 0 such that, for ζ(x0, y0) ≥ R2
0,

θ′(t) ≤ −ω < 0, t ∈ [0, 4π].

Proof. From (h′
1), we know that there exist ν > 0 and −1 < σ < 0 such that

g(x) − p(t)
x

≥ ν, x ∈ (−1, σ), t ∈ R.

Therefore, if −1 < x(t) < σ, t ∈ [0, 4π], then

θ′(t) ≤ −n

2
− 2

n
ν cos2 θ ≤ −n

2
. (2.3)

On the other hand, since g(x) is bounded on the interval [σ,+∞), we know from Lemma 2.2 that there
exists R0 > 0 large enough such that, if ζ(x0, y0) ≥ R2

0 and x(t) ∈ [σ,+∞), t ∈ [0, 4π], then
|g(x(t))| + |p(t)|

r(t)
≤ n

4
.

Consequently,

θ′(t) ≤ −n

2
+

|g(x(t))| + |p(t)|
r(t)

| cos θ(t)| ≤ −n

4
. (2.4)

From (2.3) and (2.4), we get the conclusion of Lemma 2.3. �
Lemma 2.4. Assume that conditions (h′

i)(i = 1, 2) hold and g(x) is bounded for x ∈ [0,+∞). Then, for
c → +∞, the estimate

r(t) = c + O(1)

holds uniformly with respect to t ∈ [0, 4π] satisfying cos θ(t) ≥ 0 and (r0, θ0) ∈ R+ × S1 satisfying
(r0 cos θ0,

n
2 r0 sin θ0) ∈ Γc : 1

2y2 + F (x) = F (c), F (x) = 1
8n2x2 + G(x).

Proof. Let (x(t), y(t)) be the solution of Eq. (2.1) through the initial point (x0, y0) with x0 =
r0 cos θ0, y0 = n

2 r0 sin θ0. From the proof of Lemma 2.1, we know that there exists a positive constant M
such that F (x) + M > 0, x ∈ (−1,+∞). Set

u(t) =
√

y2(t) + 2F (x(t)) + M.

Then, we have

u′(t) =
p(t)y(t)√

y2(t) + 2F (x(t)) + M
.

Therefore, for any t, s ∈ [0, 4π], we get

|u(t) − u(s)| ≤ D =

4π∫

0

|p(t)|dt.
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Furthermore,

u(0) − D ≤ u(t) ≤ u(0) + D, t ∈ [0, 4π],

which implies √
2F (c) + M − D ≤ u(t) ≤

√
2F (c) + M + D, t ∈ [0, 4π].

Since F (x) is strictly increasing for x > 0 large enough, we know that, for c large enough, there exist two
constants a = a(c), b = b(c) with 0 < a < c < b such that√

2F (c) + M − D =
√

2F (a) + M,
√

2F (c) + M + D =
√

2F (b) + M.

Then, we get √
2F (a) + M ≤ u(t) ≤

√
2F (b) + M, t ∈ [0, 4π], (2.5)

and √
2F (b) + M −

√
2F (a) + M = 2D. (2.6)

According to (2.6), we know that there exists ξ ∈ (a, b) such that

b − a =
2D
√

2F (ξ) + M

F ′(ξ)
=

4D
√

n2ξ2 + 8G(ξ) + 4M
n2ξ + 4g(ξ)

.

Since g is bounded on the interval [0,+∞), we know that there exists a positive constant ζ such that for
c > 0 large enough,

|b − a| ≤ ζ. (2.7)

From (2.5), we get

2F (a) ≤ y2(t) + 2F (x(t)) ≤ 2F (b), t ∈ [0, 4π], (2.8)

which yields F (x(t)) ≤ F (b), t ∈ [0, 4π]. Since F (x) is increasing for x > 0 large enough, we know that,
for cos θ(t) ≥ 0 and c large enough,

0 ≤ x(t) = r(t) cos θ(t) ≤ b, t ∈ [0, 4π].

It follows from (2.8) that

n2a2 + 8G(a) ≤ 4y2(t) + n2x2(t) + 8G(x(t)) ≤ n2b2 + 8G(b), t ∈ [0, 4π].

Therefore, we get

n2a2 + 8G(a) ≤ n2r2(t) + 8G(r(t) cos θ(t)) ≤ n2b2 + 8G(b), t ∈ [0, 4π],

which implies

a2 +
8
n2

[G(a) − G(r(t) cos θ(t))] ≤ r2(t) ≤ b2 +
8
n2

[G(b) − G(r(t) cos θ(t))] , t ∈ [0, 4π]. (2.9)

As g is bounded on the interval [0,+∞), there exist two positive constants c1, c2 such that |G(x)| ≤ c1x+c2

for x ∈ [0,+∞). Hence, we get that, for t ∈ [0, 4π] and cos θ(t) ≥ 0,

|G(r(t) cos θ(t))| ≤ c1b + c2. (2.10)

From (2.9) and (2.10), we obtain

a2 − 8
n2

[(c1(a + b) + 2c2)] ≤ r2(t) ≤ b2 +
16
n2

(c1b + c2), t ∈ [0, 4π].

According to (2.7), we know that there exists a positive constant α such that, for cos θ(t) ≥ 0 and c large
enough,

c2 − αc ≤ r2(t) ≤ c2 + αc, t ∈ [0, 4π].
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Consequently, we have that, for c → +∞,

r(t) = c + O(1)

holds uniformly for t ∈ [0, 4π] satisfying cos θ(t) ≥ 0 and (r0, θ0) ∈ R+×S1 satisfying (r0 cos θ0,
n
2 r0 sin θ0)

∈ Γc. �

Lemma 2.5. Assume that conditions (h′
i) (i = 1, 2, 3) hold and g(x) is bounded for x ∈ [0,+∞). Let

(x(t), y(t)) be a solution of system (2.1) with (x0, y0) ∈ Γc (which is defined in Lemma 2.4) satisfying

x(t1) = 0, x(t2) = 0,

and

x(t) < 0, t ∈ (t1, t2).

Then, for c → +∞, the estimate

t2 − t1 =
4
nc

+ o

(
1
c

)

holds uniformly with respect to (x0, y0) ∈ Γc.

Proof. At first, we know from [14] that, for c → +∞,

t2 − t1 = o(1)

holds uniformly for (x0, y0) ∈ Γc. Next, we shall give a more delicate estimate to t2 − t1. To this end, we
put ourselves into the same situation as in the proof of Lemma 2.4. Set

f(x) = F ′(x) =
1
4
n2x + g(x), x ∈ (−1,+∞).

Without loss of generality, we assume that

f(x) < 0, x ∈ (−1, 0).

From conditions (h′
1) and (h4), we know that F (x) is increasing for x > 0 large enough and F (x) is

decreasing for |x + 1| small enough. On the other hand, it follows from conditions (h′
2) and (h4) that

lim
x→+∞ F (x) = +∞, lim

x→−1+
F (x) = +∞.

Therefore, for any c > 0 sufficiently large, there exists a unique −1 < d(c) < 0 such that

F (d(c)) = F (c).

Consequently, there are two constants −1 < d(b) < d(a) < 0 satisfying

F (d(a)) = F (a), F (d(b)) = F (b),

where a and b are given in the proof of Lemma 2.4. From (2.8), we have

2F (d(a)) ≤ y2(t) + 2F (x(t)) ≤ 2F (d(b)), t ∈ [0, 4π].

Hence,

2(F (a) − F (x(t))) ≤ y2(t) ≤ 2(F (d(b)) − F (x(t))). (2.11)

Let ta, t∗ ∈ [t1, t2] satisfying ta < t∗, x(ta) = d(a), y(ta) ≤ 0 and −1 < x(t∗) < 0, y(t∗) = 0. In what
follows, we shall estimate ta − t1 and t∗ − ta, respectively.

From (2.11), we know that, for t ∈ [t1, ta],√
2(F (a) − F (x(t))) ≤ −x′(t) ≤

√
2(F (d(b)) − F (x(t))),
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which implies
0∫

d(a)

dx√
2(F (d(b)) − F (x))

≤ ta − t1 ≤
0∫

d(a)

dx√
2(F (d(a)) − F (x))

. (2.12)

Set

I1 =

0∫

d(a)

dx√
2(F (d(a)) − F (x))

=

0∫

d(a)

dx√
2(F (a) − F (x))

,

and

I2 =

d(a)∫

d(b)

dx√
2(F (d(b)) − F (x))

=

d(a)∫

d(b)

dx√
2(F (b) − F (x))

.

Next, we shall estimate I1 and I2. Since g(x) is locally Lipschitz continuous, we know that g(x) is
differentiable almost everywhere in the interval (−1, 0) and g′(x) is Lebesgue integrable on any closed
sub-interval of (−1, 0). From the expression of I1, we have

F (a)I1 =
√

2
2

0∫

d(a)

F (a)dx√
F (a) − F (x)

.

It follows from [1] that

F (a)I1 =
√

2

0∫

d(a)

P (x)
√

F (a) − F (x)dx,

where

P (x) =
1
2

+ W ′(x), W (x) =
F (x)
F ′(x)

=

1
8
n2x2 + G(x)

1
4
n2x + g(x)

, x ∈ (−1, 0).

Hence,

√
F (a)I1 =

√
2

0∫

d(a)

P (x)

√
1 − F (x)

F (a)
dx.

Obviously, we have W (0) = 0. According to conditions (h′
3), we get

lim
x→−1+

W (x) = 0.

By using Lebesgue dominated convergent theorem and the fact lima→+∞ d(a) = −1, we get

lim
a→+∞

√
F (a)I1 = lim

a→+∞
√

2

0∫

d(a)

P (x)

√
1 − F (x)

F (a)
dx =

√
2

0∫

−1

P (x)dx =
√

2
2

.

Therefore,

I1 =

√
1

2F (a)
+ o

(
1√
F (a)

)
, a → +∞.
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Since F (a) = 1
8n2a2 + G(a), we obtain

I1 =
2
na

+ o

(
1
a

)
, a → +∞.

Recalling a < c < b and |b − a| ≤ l, we know

I1 =
2
nc

+ o

(
1
c

)
, c → +∞. (2.13)

We now estimate I2. From the expression of I2, we have

F (b)I2 =
√

2
2

d(a)∫

d(b)

F (b)dx√
F (b) − F (x)

.

From [1], we get

F (b)I2 =
√

2

d(a)∫

d(b)

P (x)
√

F (b) − F (x)dx −
√

2(F (b) − F (a))
F (d(a))
2f(d(a))

.

Thus, we have

√
F (b)I2 =

√
2

d(a)∫

d(b)

P (x)

√
1 − F (x)

F (b)
dx −

√
2
(

1 − F (a)
F (b)

)
F (d(a))
2f(d(a))

.

Since a = a(c) < c < b = b(c), |b − a| ≤ l and limc→+∞ a(c) = +∞, limc→+∞ b(c) = +∞ and
lima→+∞ d(a) = −1, limb→+∞ d(b) = −1, we infer from condition (h′

3) that

lim
c→+∞

F (d(a))
f(d(a))

= lim
c→+∞

n2d2(a) + 8G(d(a))
2n2d(a) + 8g(d(a))

= 0. (2.14)

From the boundedness of g on the interval [0,+∞), we obtain

lim
c→+∞

F (a)
F (b)

= lim
c→+∞

n2a2 + 8G(a)
n2b2 + 8G(b)

= 1. (2.15)

Hence, we know from (2.14) and (2.15) that

lim
c→+∞

√
F (b)I2 = lim

c→+∞
√

2

d(a)∫

d(b)

P (x)

√
1 − F (x)

F (b)
dx − lim

c→+∞

√
2
(

1 − F (a)
F (b)

)
F (d(a))
2f(d(a))

= 0.

Furthermore, we have that, for c → +∞,

I2 = o

(
1√
F (b)

)
= o

(
1
c

)
. (2.16)

On the other hand, we know from (2.13) that, for c → +∞,

0∫

d(b)

dx√
2(F (d(b)) − F (x))

=

0∫

d(b)

dx√
2(F (b) − F (x))

=
2
nc

+ o

(
1
c

)
, c → +∞,
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which, together with (2.16), implies that, for c → +∞,
0∫

d(a)

dx√
2(F (d(b)) − F (x))

=
2
nc

+ o

(
1
c

)
, c → +∞. (2.17)

Combining (2.12), (2.13) with (2.17), we get that, for c → +∞, the estimate

ta − t1 =
2
nc

+ o

(
1
c

)
(2.18)

holds uniformly with respect to (x0, y0) ∈ Γc.
In what follows, we estimate t∗ − ta. Since x′(t∗) = y(t∗) = 0, we have that, for t ∈ (ta, t∗),

t∗∫

t

x′′(s)x′(s)ds = −
t∗∫

t

f(x(s))x′(s)ds +

t∗∫

t

p(s)x′(s)ds,

which implies

x′2(t) = 2(F (x(t∗)) − F (x(t))) − 2

t∗∫

t

p(s)x′(s)ds

≥ 2(F (x(t∗)) − F (x(t))) + 2||p||∞(x(t∗) − x(t)),

where ||p||∞ = max{|p(t)| : t ∈ [0, 2π]}. Therefore, for t ∈ (ta, t∗),

−x′(t) ≥
√

2(F (x(t∗)) − F (x(t))) + 2||p||∞(x(t∗) − x(t)).

Furthermore,

− x′(t)√
2(F (x(t∗)) − F (x(t))) + 2||p||∞(x(t∗) − x(t))

≥ 1.

As a result, we get
d(a)∫

x∗

dx√
2(F (x∗) − F (x)) + 2||p||∞(x∗ − x)

≥ t∗ − ta, (2.19)

where x∗ = x(t∗). Since limc→+∞ d(a) = −1, limc→+∞ d(b) = −1, and d(b) ≤ x∗ ≤ d(a), we have
limc→+∞(d(a) − x∗) = 0. Meanwhile, there exists a ≤ x∗ ≤ b such that x∗ = d(x∗) and F (x∗) = F (x∗).
Using a similar method as estimating I2, we can prove

d(a)∫

x∗

dx√
2(F (x∗) − F (x)) + 2||p||∞(x∗ − x)

= o

(
1
c

)
, c → +∞,

which, together with (2.19), yields

t∗ − ta = o

(
1
c

)
, c → +∞. (2.20)

From (2.18) and (2.20), we know that, for c → +∞,

t∗ − t1 =
2
nc

+ o

(
1
c

)

holds uniformly with respect to (x0, y0) ∈ Γc. Similarly, we have

t2 − t∗ =
2
nc

+ o

(
1
c

)
, c → +∞.



Vol. 65 (2014) Lazer–Leach type conditions 81

Consequently, we get

t2 − t1 =
4
nc

+ o

(
1
c

)
, c → +∞

holds uniformly with respect to (x0, y0) ∈ Γc. The proof is complete. �

3. Proof of Theorem 1.1

In this section, we shall use basic lemmas in Sect. 2 to prove Theorem 1.1.

Proposition 3.1. Assume that conditions (h′
i)(i = 1, 2, 3) and (h4) hold. Then, Eq. (1.6′) has at least one

positive 2π-periodic solution provided that the following condition holds,

4G(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt �= n2, ∀θ ∈ R.

Proof. From Lemma 2.3, we know that θ′(t) < 0, t ∈ [0, 4π] for ζ(x0, y0) large enough. Then, the inverse
of θ = θ(t), t ∈ [0, 4π] exists for ζ(x0, y0) large enough. Let t = t(θ) be the inverse of θ = θ(t). We denote
by τn(r0, θ0) the required time for the solution (r(t), θ(t)) of (2.2) to complete n turns around the origin.
In what follows, we shall estimate τn(r0, θ0).

It follows from Lemma 2.4 that, for c → +∞, the estimate

1
r(t)

=
1
c

+ o

(
1
c

)
(3.1)

holds uniformly for t ∈ [0, 4π] satisfying cos θ(t) ≥ 0 and (r0, θ0) with (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc.

From the first equality of (2.2), we know that, for ζ(x0, y0) large enough and t ∈ [0, 4π],
dt

dθ
= − 2

n

1

1 + 4
n2r

g(r cos θ) cos θ − 4
n2r

p(t) cos θ
.

According to condition (h4), we know that g is bounded on the interval [0,+∞). Hence, we have that,
for c → +∞, the estimate

dt

dθ
= − 2

n
+

8
n3c

g(r cos θ) cos θ − 8
n3c

p(t) cos θ + o

(
1
c

)
.

holds uniformly for t ∈ [0, 4π] satisfying cos θ(t) ≥ 0 and (r0, θ0) with (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc.

Without loss of generality, we assume that θ0 ∈ [− 3π
2 , π

2 ]. We first deal with the case θ0 ∈ [−π
2 , π

2 ]. Set

J0 =

θ0∫

− π
2

[
2
n

− 8
n3c

g(r cos θ) cos θ +
8

n3c
p(t) cos θ

]
dθ,

and for i = 1, . . . , n − 1,

Ji =

−2iπ+ π
2∫

−2iπ− π
2

[
2
n

− 8
n3c

g(r cos θ) cos θ +
8

n3c
p(t) cos θ

]
dθ,

and

Jn =

−2nπ+ π
2∫

−2nπ+θ0

[
2
n

− 8
n3c

g(r cos θ) cos θ +
8

n3c
p(t) cos θ

]
dθ.
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In what follows, we shall estimate Ji, (i = 0, . . . , n),, respectively. We now estimate J0. Obviously,

J0 =
π

n
+

2θ0

n
− 8

n3c

θ0∫

− π
2

[g(r cos θ) cos θ − p(t) cos θ] dθ.

From Lemma 5.1 in Appendix, we know that, for c → +∞, the estimate
θ0∫

− π
2

g(r cos θ) cos θdθ = (1 + sin θ0)G(+∞) + o(1) (3.2)

holds uniformly for (r0, θ0) satisfying (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc. When θ(t) ∈ [−π

2 , θ0], we have

t(θ) =
2
n

(θ0 − θ) + o(1). (3.3)

Since p is uniformly continuous on [0, 2π] and θ0 ∈ [−π
2 , π

2 ], we get from (3.3) that

θ0∫

− π
2

p(t) cos θdθ =
n

2

2θ0+π
n∫

0

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣dτ + o(1).

Therefore,

J0 =
π

n
+

2θ0

n
+

4
n3c

⎡
⎢⎣−2(1 + sin θ0)G(+∞) + n

2θ0+π
n∫

0

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣ dτ

⎤
⎥⎦+ o

(
1
c

)
.

We next estimate Ji, (i = 1, . . . , n − 1). Obviously, we have

Ji =
2π

n
− 8

n3c

−2iπ+ π
2∫

−2iπ− π
2

[g(r cos θ) cos θ − p(t) cos θ] dθ.

Similarly, we know from Lemma 5.1 in Appendix that, for c → +∞, the estimate
−2iπ+ π

2∫

−2iπ− π
2

g(r cos θ) cos θdθ = 2G(+∞) + o(1) (3.4)

holds uniformly for (r0, θ0) satisfying (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc. When θ(t) ∈ [−2iπ − π

2 ,−2iπ + π
2 ], (i =

1, . . . , n − 1), we have

t(θ) =
2
n

(θ0 − θ) − 2iπ

n
+ o(1).

Then, we obtain

−2iπ+ π
2∫

−2iπ− π
2

p(t) cos θdθ =
n

2

2θ0+(2i+1)π
n∫

2θ0+(2i−1)π
n

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣ dτ + o(1).

Hence,

Ji =
2π

n
+

4
n3c

⎡
⎢⎢⎣−4G(+∞) + n

2θ0+(2i+1)π
n∫

2θ0+(2i−1)π
n

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣dτ

⎤
⎥⎥⎦+ o

(
1
c

)
.
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We finally estimate Jn. It is easy to see

Jn =
π − 2θ0

n
− 8

n3c

−2nπ+ π
2∫

−2nπ+θ0

[g(r cos θ) cos θ − p(t) cos θ] dθ.

We can also get
−2nπ+ π

2∫

−2nπ+θ0

g(r cos θ) cos θdθ = (1 − sin θ0)G(+∞) + o(1). (3.5)

When θ(t) ∈ [−2nπ + θ0,−2nπ + π
2 ], we have

t(θ) =
2
n

(θ0 − θ) − 2π + o(1).

Hence,
−2nπ+ π

2∫

−2nπ+θ0

p(t) cos θdθ =
n

2

2π∫
2θ0+(2n−1)π

n

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣ dτ + o(1).

Thus, we get

Jn =
π

n
− 2θ0

n
+

4
n3c

⎡
⎢⎢⎣−2(1 − sin θ0)G(+∞) + n

2π∫
2θ0+(2n−1)π

n

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣ dτ

⎤
⎥⎥⎦+ o

(
1
c

)
.

Consequently, we obtain

n∑
i=0

Ji = 2π +
4

n2c

⎡
⎣−4G(+∞) +

2π∫

0

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣dτ

⎤
⎦+ o

(
1
c

)
.

On the other hand, we know from Lemma 2.5 that the time Δt needed for the solution (x(t), y(t)) to
pass through the region {(x, y) : −1 < x ≤ 0,−∞ < y < +∞} once satisfies

Δt =
4
nc

+ o

(
1
c

)
.

Hence, we get that, for c → +∞,

τn(r0, θ0) = 2π +
4

n2c

⎡
⎣n2 − 4G(+∞) +

2π∫

0

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣ dτ

⎤
⎦+ o

(
1
c

)
. (3.6)

In case, when θ0 ∈ [− 3π
2 ,−π

2 ], we can prove by using (3.6) and the same method in (Lemma [17,19])
that, for c → +∞,

τn(r0, θ0) = 2π +
4

n2c

⎡
⎣n2 − 4G(+∞) +

2π∫

0

p(τ)
∣∣∣cos

(π

2
− nτ

2

)∣∣∣ dτ

⎤
⎦+ o

(
1
c

)
. (3.7)

If

4G(+∞) −
2π∫

0

p(τ)
∣∣∣sin

(
θ +

nτ

2

)∣∣∣ dτ > n2, θ ∈ [0, 2π],
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then we get from (3.6) and (3.7) that τn(r0, θ0) < 2π. Therefore, we have that, for c large enough and
(r0 cos θ0,

n
2 r0 sin θ0) ∈ Γc,

θ(2π, r0, θ0) − θ0 < −2nπ.

On the other hand, we know from above estimates that the required time τn+1(r0, θ0) for solution
(r(t), θ(t)) to complete n + 1 turns around the origin satisfies τn+1(r0, θ0) = 2π + 2π

n + o(1). Conse-
quently, we get that, for c large enough and (r0 cos θ0,

n
2 r0 sin θ0) ∈ Γc,

θ(2π, r0, θ0) − θ0 > −2(n + 1)π.

According to the Poincaré–Bohl theorem [19], Poincaré map P has at least one fixed point. Consequently,
Eq. (1.6′) has at least one 2π-periodic solution.

If

4G(+∞) −
2π∫

0

p(τ)
∣∣∣sin

(
θ +

nτ

2

)∣∣∣ dτ < n2, θ ∈ [0, 2π],

then we can prove similarly that Poincaré map P has at least one fixed point. Consequently, Eq. (1.6′)
has at least one 2π-periodic solution. �

Proof of Theorem 1.1. Consider the equation equivalent to Eq. (1.6),

x′′ +
1
4
n2x + g̃(x) = p̃(t), (3.8)

where g̃(x) = g(x+1), p̃(t) = p(t)− 1
4n2. Obviously, g̃ satisfies (h′

i)(i = 1, 2, 3). Moreover, limx→+∞ g̃(x) =
g(+∞). From Proposition 3.1, we know that Eq. (3.8) has at least one 2π-periodic solution x(t)(x(t) > −1)
provided that the following condition is satisfied,

4G(+∞) −
2π∫

0

[
p(t) − 1

4
n2

] ∣∣∣∣sin
(

θ +
nt

2

)∣∣∣∣ dt �= n2, ∀θ ∈ R. (3.9)

Since
2π∫

0

∣∣∣∣sin
(

θ +
nt

2

)∣∣∣∣dt = 4,

we know that (3.9) is equivalent to the following inequality,

4G(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt �= 0, ∀θ ∈ R. (3.10)

Therefore, Eq. (1.6) has at least one positive 2π-periodic solution provided that (3.10) is satisfied. �

4. Proof of Theorem 1.2

To prove Theorem 1.2, we need the following Proposition.

Proposition 4.1. Assume that conditions (h′
i)(i = 1, 2, 3) and g(x) are bounded for x ∈ [0,+∞). Then,

Eq. (1.6′) has at least one positive 2π-periodic solution provided that either

4g(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt > n2, ∀θ ∈ R (4.1)
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or

4g(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣ dt < n2, ∀θ ∈ R (4.2)

holds.

Proof. We put ourselves into the same situation as in the proof of Proposition 4.1. Under the present
conditions, we can prove that, for c → +∞,

τn(r0, θ0) ≤ 2π − 4
n2c

⎡
⎣−n2 + 4g(+∞) −

2π∫

0

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣ dτ

⎤
⎦+ o

(
1
c

)
, (cos θ0 ≥ 0),

τn(r0, θ0) ≤ 2π − 4
n2c

⎡
⎣−n2 + 4g(+∞) −

2π∫

0

p(τ)
∣∣∣cos

(π

2
− nτ

2

)∣∣∣ dτ

⎤
⎦+ o

(
1
c

)
, (cos θ0 ≤ 0),

and

τn(r0, θ0) ≥ 2π − 4
n2c

⎡
⎣−n2 + 4g(+∞) −

2π∫

0

p(τ)
∣∣∣cos

(
θ0 − nτ

2

)∣∣∣ dτ

⎤
⎦+ o

(
1
c

)
, (cos θ0 ≥ 0),

τn(r0, θ0) ≥ 2π − 4
n2c

⎡
⎣−n2 + 4g(+∞) −

2π∫

0

p(τ)
∣∣∣cos

(π

2
− nτ

2

)∣∣∣ dτ

⎤
⎦+ o

(
1
c

)
, (cos θ0 ≤ 0).

If (4.1) holds, then we have that, for c > 0 large enough, τn(r0, θ0) < 2π. If (4.2) holds, then we have that,
for c > 0 large enough, τn(r0, θ0) > 2π. Using the same method as proving Proposition 3.1, we can prove
that Poincaré map P has at least one fixed point. Consequently, Eq. (1.6′) has at least one 2π-periodic
solution. �

Proof of Theorem 1.2. We also consider Eq. (3.8). According to Proposition 4.1, Eq. (3.8) has at least
one 2π-periodic solution provided that either

4g(+∞) −
2π∫

0

[
p(t) − 1

4
n2

] ∣∣∣∣sin
(

θ +
nt

2

)∣∣∣∣dt > n2, ∀θ ∈ R

or

4g(+∞) −
2π∫

0

[
p(t) − 1

4
n2

] ∣∣∣∣sin
(

θ +
nt

2

)∣∣∣∣dt < n2, ∀θ ∈ R

holds. Since
2π∫

0

∣∣∣∣sin
(

θ +
nt

2

)∣∣∣∣dt = 4,

we know that Eq. (3.8) has at least one 2π-periodic solution provided that either

4g(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣dt > 0, ∀θ ∈ R (4.3)
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or

4g(+∞) −
2π∫

0

p(t)
∣∣∣∣sin

(
θ +

nt

2

)∣∣∣∣dt < 0, ∀θ ∈ R (4.4)

holds. Consequently, Eq. (1.6) has at least one 2π-periodic solution provided that either (4.3) or (4.4)
holds. �

5. Appendix

In this section, we shall give the proofs of (3.2), (3.4) and (3.5). Let us put ourselves into the same
situation considered as in the proof of Proposition 3.1.

Lemma 5.1. For c → +∞, the following estimates

θ0∫

− π
2

g(r cos θ) cos θdθ = (1 + sin θ0)G(+∞) + o(1),

and for i = 1, 2, . . . , n,

−2(i−1)π+ π
2∫

−2(i−1)π− π
2

g(r cos θ) cos θdθ = 2G(+∞) + o(1),

and
−2nπ+ π

2∫

−2nπ+θ0

g(r cos θ) cos θdθ = (1 − sin θ0)G(+∞) + o(1),

hold uniformly with respect to (r0, θ0) satisfying θ0 ∈ [−π
2 , π

2 ] and (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc, where

r = r(t(θ)) = r(t(θ), r0, θ0).

Proof. We only deal with the case i = 1. The other cases can be treated similarly. Let us write
π
2∫

− π
2

g(r cos θ) cos θdθ =

0∫

− π
2

g(r cos θ) cos θdθ +

π
2∫

0

g(r cos θ) cos θdθ. (5.1)

Since the limits

lim
c→+∞

1
c
r(t(θ)) cos θ = cos θ, lim

c→+∞
1
c

[r(t(θ)) cos θ]′ = − sin θ

hold uniformly with respect to (r0, θ0) satisfying (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc and θ ∈ [−π

2 , 0], there exists
a unique mapping σ : [−π

2 , 0] → R (which depends on c, r0, θ0, θ) such that

r(t(θ)) cos θ = c cos σ(θ), θ ∈
[
−π

2
, 0
]
.

Moreover, we have that, for c → +∞,

σ(θ) → θ, σ′(θ) → 1
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hold uniformly for (r0, θ0) satisfying (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc and θ ∈ [−π

2 , 0]. Then, we get

0∫

− π
2

g(r cos θ) cos θdθ =

0∫

− π
2

g(c cos σ(θ)) cos θdθ.

Taking τ = σ(θ), we derive that, for c → +∞, the estimate

0∫

− π
2

g(c cos σ(θ)) cos θdθ =

σ(0)∫

σ(− π
2 )

g(c cos τ) cos[σ−1(τ)]
σ′(σ−1(τ))

dτ

=

0∫

− π
2

g(c cos τ) cos τdτ + o(1)

holds uniformly for (r0, θ0) satisfying (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc. In what follows, we shall prove

lim
c→+∞

0∫

− π
2

g(c cos τ) cos τdτ = G(+∞).

Let us take a sufficiently small constant ε > 0. Then, we have that, for c → +∞,

−ε∫

− π
2 +ε

g(c cos τ) cos τdτ = −
−ε∫

− π
2 +ε

cos τ

c sin τ
dG(c cos τ)

= −cos2 τ

sin τ

G(c cos τ)
c cos τ

|−ε
− π

2 +ε −
−ε∫

− π
2 +ε

G(c cos τ)
c cos τ

cos τ

sin2 τ
dτ

= −G(+∞)

⎡
⎢⎣cos2 τ

sin τ
|−ε
− π

2 +ε +

−ε∫

− π
2 +ε

cos τ

sin2 τ
dτ

⎤
⎥⎦+ o(1)

= −G(+∞)

−ε∫

− π
2 +ε

cos τ

sin τ
d cos τ + o(1)

= G(+∞)

−ε∫

− π
2 +ε

cos τdτ + o(1)

= G(+∞)(cos ε − sin ε) + o(1). (5.2)

Since g is bounded, there exists a constant 	 > 0 such that, for any c > 0,
∣∣∣∣∣∣∣

− π
2 +ε∫

− π
2

g(c cos τ) cos τdτ

∣∣∣∣∣∣∣
≤ 	ε,

∣∣∣∣∣∣
0∫

−ε

g(c cos τ) cos τdτ

∣∣∣∣∣∣ ≤ 	ε. (5.3)
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From (5.2) and (5.3), we can derive

lim
c→+∞

0∫

− π
2

g(c cos τ) cos τdτ = G(+∞).

Therefore, we have that, for c → +∞, the estimate
0∫

− π
2

g(r cos θ) cos θdθ = G(+∞) + o(1) (5.4)

holds uniformly with respect to (r0, θ0) satisfying (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc. Similarly, we obtain

π
2∫

0

g(r cos θ) cos θdθ = G(+∞) + o(1). (5.5)

Consequently, we know from (5.1), (5.4), and (5.5) that, for c → +∞, the estimate
π
2∫

− π
2

g(r cos θ) cos θdθ = 2G(+∞) + o(1)

holds uniformly with respect to (r0, θ0) satisfying (r0 cos θ0,
n
2 r0 sin θ0) ∈ Γc. The proof is complete. �
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