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Global existence and the low Mach number limit for the compressible
magnetohydrodynamic equations in a bounded domain with perfectly
conducting boundary
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Abstract. We study the compressible magnetohydrodynamic equations in a bounded smooth domain in R
2 with perfectly

conducting boundary, and prove the global existence and uniqueness of smooth solutions around a rest state. Moreover, the
low Mach limit of the solutions is verified for all time, provided that the initial data are well prepared.
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1. Introduction

We mainly study the low Mach number limit for an initial boundary value problem of the following two-
dimensional resistive magnetohydrodynamic equations of a compressible viscous and conducting fluid:

∂tρ + div(ρu) = 0, (1.1)

∂t(ρu) + div(ρu ⊗ u) +
1
ε2

∇p(ρ) = div(2μD(u)) + λ∇divu + (∇ × H) × H, (1.2)

∂tH − ∇ × (u × H) = −∇ × (η∇ × H), divH = 0. (1.3)

Here, ρ denotes the density of the fluid, u = (u1, u2) the velocity, H = (H1,H2) the magnetic field,
D(u) = (∇u + ∇ut)/2. The constants μ and λ are the shear and bulk viscosity coefficients of the fluid,
respectively, satisfying μ > 0 and μ + λ > 0; the constant η > 0 is the magnetic diffusivity acting as a
magnetic diffusion coefficient of the magnetic field, ε is the Mach number. p(ρ) is the pressure, and in
this paper, we consider the case of isentropic flows

p(ρ) = aργ , (1.4)

where a > 0 and γ > 1 are constants.
Magnetohydrodynamics (MHD) studies the dynamics of compressible quasi-neutrally ionized fluids

under the influence of electromagnetic fields with a very broad range of applications. In the present
paper, we consider the flow in a perfectly conducting container, so that the magnetic field is confined
inside and separated from the exterior. The container is assumed to be a bounded and connected domain
Ω ⊂ R

2 with smooth boundary.
The initial data for the system (1.1)–(1.3) are prescribed as

ρ(t = 0) = ρ0(x), u(t = 0) = u0(x), H(t = 0) = H0(x). (1.5)
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We specify the velocity on the boundary with Navier slip boundary conditions, i.e.,

u · n = 0, τ · T(u, p) · n + fu · τ = 0 on ∂Ω (1.6)

with f(x) ≥ 0, where T(u, p) = 2μD(u)+(λdivu−p/ε2)I is the stress tensor, n and τ are the normal and
tangent vectors on ∂Ω, respectively. The Navier slip boundary conditions describe an interaction between
a viscous fluid and a solid wall.

We require that the container be perfectly conducting, that is,

n × e = 0, n · H = 0 on ∂Ω, (1.7)

where e = c−1(η∇ × H − u × H) is the electric field (c is the light speed, see [30]). Furthermore, the
conditions (1.7) imply that

n × (∇ × H) = −1
η
(n · u)H on ∂Ω.

Because of (1.6), the boundary conditions (1.7) reduce to

n × (∇ × H) = 0, n · H = 0 on ∂Ω. (1.8)

Notice that in the two-dimensional case, the conditions (1.8) are equivalent to

curlH = 0, n · H = 0 on ∂Ω, (1.9)

where curlH = ∂1H2 − ∂2H1.
The MHD equations have recently attracted a lot of attention of applied mathematicians because

of its physical importance, complexity, rich phenomena, and mathematical challenges, see, for example,
[4,9,10,14,15,24,27,36] and the references cited therein on the physical background, the well posedness
and the vanishing viscosity limit. Recently, the low Mach number limit of local smooth solutions to the
full MHD equations with heat conductivity was investigated in [19,20] in the whole space or a torus. The
existence of global weak solutions to the MHD equations was established in [16,34], while the low Mach
number limit was studied in [17,18]. We remark that the low Mach number limit established in [17–20]
for the MHD equations is for the whole space or a torus, consequently, no boundary terms are involved
in uniform a priori estimates.

The aim of the present paper is to establish the global well posedness of smooth solutions to the initial
boundary value problem (1.1)–(1.6), (1.8) around a rest state, and furthermore, to prove rigorously the
corresponding low Mach number limit as ε → 0 of solutions for all time. In [24], Kawashima obtained the
global small smooth solution to the three-dimensional Cauchy problem for initial data close to a constant
state in H3(R3). In the current paper, we generalize the result of [24] to the initial boundary problem with
Navier slip and perfectly conducting boundary conditions, and more important, we establish the uniform
estimates of smooth solutions with respect to the Mach number and verify rigorously the incompressible
limit for all time when boundary is present.

We also mention that the global smooth small solution to the related compressible isentropic Navier-
Stokes (the system (1.1)–(1.3) with H ≡ 0) was obtained, for example, in [32] for the non-slip boundary
condition and in [37] for the Navier slip boundary condition, while the existence of global large weak
solutions was established in [12,22,23,28] and among others. The corresponding low Mach number limit
was investigated extensively in [2,3,6–8,11,13,21,25,26,29,31,33], and in the references cited therein.

In this paper, we shall consider the flow with small density variation, i.e.,

ρ = 1 + εσ.
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Using the usual vorticity identities together with the constraint divH = 0, we can write the problem
(1.1)–(1.6), (1.8) in the form

∂tσ + div(σu) +
1
ε
divu = 0, (1.10)

ρ(∂tu + u · ∇u) +
1
ε
p′(1 + εσ)∇σ

= div(2μD(u)) + λ∇divu + (H · ∇)H − 1
2
∇|H|2, (1.11)

∂tH + (divu)H + (u · ∇)H − (H · ∇)u = η�H, divH = 0, (1.12)
σ(t = 0) = σ0(x), u(t = 0) = u0(x), H(t = 0) = H0(x), (1.13)
u · n = 0, τ · T(u, p) · n + fu · τ = 0 on ∂Ω, (1.14)
H · n = 0, curlH = 0 on ∂Ω. (1.15)

Thus, the main results of the present paper read as follows.

Theorem 1.1. There exists a positive constant α, such that if the initial data σ0,u0,H0 satisfy

‖(σ0,u0,H0)‖H2 + ‖(σt,ut,Ht)(0)‖H1 + ‖ε(σtt,utt,Htt)(0)‖L2 ≤ α, (1.16)

with

divH0 = 0,

∫

Ω

σ0dx = 0 and 1 + εσ0 ≥ m for some constant m > 0, (1.17)

and the following compatibility conditions

u0 · n = ut(0) · n = 0, τ · T(u0, p(ρ0)) · n + fu0 · τ = 0 on ∂Ω
H0 · n = Ht(0) · n = curlH0 = 0 on ∂Ω

hold, then for any ε ∈ (0, ε1] where 0 < ε1 < 1 is some constant, the initial boundary value problem
(1.10)–(1.15) admits a unique solution (σ,u,H) in Ω × R̄

+, satisfying

σ ∈ C(R̄+;H2), (u,H) ∈ C(R̄+;H2) ∩ L2(R̄+;H3),
σt ∈ C(R̄+;H1), (ut,Ht) ∈ C(R̄+;H1) ∩ L2(R̄+;H2),
σtt ∈ L∞(R̄+;L2), (utt,Htt) ∈ L∞(R̄+;L2) ∩ L2(R̄+;H1),

where R̄
+ = [0,+∞). Furthermore, it holds that:

sup
0≤s≤t

(‖(σ,u,H)(s)‖H2 + ‖(σt,ut,Ht)(s)‖H1)

+ess sup
0≤s≤t

‖ε(σtt,utt,Htt)(s)‖L2 ≤ C, ∀ t ∈ R
+, (1.18)

where C is a positive constant independent of ε.

Theorem 1.2. Let the assumptions in Theorem 1.1 be satisfied, and (u,H) be the global solution estab-
lished in Theorem 1.1. Assume the initial data (u0,H0) → (v0,B0) as ε → 0 in Hs for any 0 ≤ s < 2.
Then as ε → 0, (u,H) → (v,B) in C(R̄+

loc;H
s) for any 0 ≤ s < 2. And there exists a function P (x, t),

such that (v,B, P ) is the unique smooth solution of the following initial boundary value problem for the
incompressible magnetohydrodynamic equations:

vt + v · ∇v + ∇P = μ�v + (∇ × B) × B, div v = 0,

Bt + v · ∇B − B · ∇v = η�B, divB = 0,
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with initial and boundary conditions

v(x, 0) = v0(x), B(x, 0) = B0(x), x ∈ Ω,

v · n = 0, τ · D(v) · n + fv · τ = 0 on ∂Ω,

B · n = curlB = 0 on ∂Ω.

In the next section, we shall prove Theorems 1.1 and 1.2. Roughly speaking, Theorems 1.1 and 1.2
are proved based on the uniform estimates of solutions in Sobolev norms which do not depend on time
t and the Mach number ε. As aforementioned, compared with the Cauchy or spatially periodic problem,
due to the presence of boundary here, some difficulties involved with controlling the boundary terms,
in particular for the low Mach number limit, arise. To circumvent such difficulties, we exploit the fact
that the vorticity of the velocity and magnetic fields is a scalar in the two-dimensional case to esti-
mate carefully the vorticity and the divergence of the velocity as well as the vorticity of the magnetic
field. More precisely, to control the vorticity of the velocity and magnetic field, we exploit the fact that
both the Navier slip and the perfectly conducting boundary conditions make it possible to give a rep-
resentation of the vorticity on the boundary in the two-dimensional case (cf. (2.5) and (1.9)), while the
estimate of the divergence of the velocity is obtained by using the equality Δu = ∇divu − −−→

curl curlu
with

−−→
curl = (∂2,−∂1)t and curlu = ∂1u2 − ∂2u1 that helps us separate the divergence and vorticity. On

the other hand, the coupling of the hydrodynamic motion and the magnetic fields makes the derivation
of the uniform a priori estimates more complicated and delicate in comparison with the hydrodynamic
case. Therefore, we have to deal with the estimates involving these coupling terms carefully, especially
on higher-order spatial derivatives.

We remark that the effect of a boundary layer on the propagation of the acoustic waves will not appear
in the convergence of solutions under the Navier slip boundary condition (1.14) and perfectly conducting
boundary condition (1.15) in the present paper (see Chapter 7 in [11]). This is different from the case
of Dirichlet boundary condition. As shown in [8], the acoustic waves are asymptotically damped due to
the formation of a thin boundary layer for a viscous flow in a bounded domain with Dirichlet boundary
condition. The effect of boundary layers due to the Dirichlet boundary condition on the velocity is our
future study.

Before ending this section, we give the notations used throughout this paper. We use the letter C (or
Cδ) to denote various positive constants independent of ε (or to emphasize the dependence on δ). For
simplicity, we denote by Hm and ‖ · ‖Hm the standard Sobolev space Hm(Ω) and its norm, by Lp and
‖ · ‖Lp the Lebesgue space Lp(Ω) and its norm.

2. Proof of Theorems 1.1 and 1.2

To prove Theorem 1.1, we first establish the local existence for the problem (1.10)–(1.15) with an arbi-
trary but fixed ε. Assume that the assumptions in Theorem 1.1 are satisfied. Then, one can show by the
Galerkin method (see [37]) that there exists a T � > 0, such that for T ≤ T � the problem (1.10)–(1.15)
admits a solution satisfying

σ∈C([0, T ],H2), (u,H) ∈ C([0, T ],H2) ∩ L2(0, T ;H3),
σt∈C([0, T ],H1), (ut,Ht) ∈ C([0, T ],H1) ∩ L2(0, T ;H2),
σtt∈L∞(0, T ;L2), (utt,Htt) ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1).

The boundary conditions (1.14) and (1.15) are “complementing” boundary conditions in the sense of
Agmon et al. [1]. This fact can be verified as in [1]. Therefore, the regularity theory can be used in the
proof. We omit the details of the proof of the local existence here.

To extend the local solution globally in time, we shall establish a differential inequality which provides
us the uniform estimates of solutions for both time and the Mach number. Suppose that (σ,u,H) is the
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local solution to the initial boundary value problem (1.10)–(1.15) in Ω×(0, T ), for 0 < T < ∞. Moreover,
we assume that 1/c ≤ ρ = 1 + εσ ≤ c for some constant c > 1.

2.1. L2 Estimate

First, we obtain from the continuity equation (1.10) and the boundary condition u · n = 0 that∫

Ω

σ dx =
∫

Ω

σ0 dx = 0.

Lemma 2.1. For the solution to (1.10)–(1.15), we have
1
2

d

dt
(‖

√
p′(1)σ‖2

L2 + ‖√
ρu‖2

L2 + ‖H‖2
L2) + γ0(‖u‖2

H1 + ‖H‖2
H1)

≤ C‖u‖H1(‖σ‖2
H1 + ‖H‖2

H1), (2.1)

where γ0 and C are positive constants independent of ε.

Proof. Throughout this section, we denote the inner product in L2(Ω) by

〈f, g〉 :=
∫

Ω

fgdx.

By taking 〈(1.10), p′(1)σ〉, we see that

1
2

d

dt
‖
√

p′(1)σ‖2
L2 − p′(1)

ε

∫

Ω

u · ∇σ dx = −p′(1)
∫

Ω

σdiv(σu) dx ≤ C‖u‖H1‖σ‖2
H1 .

Using (1.14) and Korn’s inequality, one gets

−
∫

Ω

(div(2μD(u)) + λ∇divu) · u dx

=
∫

Ω

(2μ|D(u))|2 + λ(divu)2) dx +
∫

∂Ω

f(u · τ)2dS ≥ ι0‖u‖2
H1

for some constant ι0 > 0. Thus, we take 〈(1.11),u〉 to derive that

1
2

d

dt
‖√

ρu‖2
L2 +

p′(1)
ε

∫

Ω

u · ∇σdx + γ0‖u‖2
H1

≤
∫

Ω

p′(1) − p′(1 + εσ)
ε

∇σ · u dx +
∫

Ω

(
H · ∇H − 1

2
∇|H|2

)
u dx

≤ C(‖u‖H1‖σ‖2
H1 + ‖u‖H1‖H‖2

H1) for some constant γ0 > 0.

To deal with the magnetic equation, we denote
−−→
curl = (∂2,−∂1)t. Then, the Eq. (1.12) can be written

as

∂tH + (divu)H + (u · ∇)H − (H · ∇)u = −η
−−→
curl curlH. (2.2)

Taking 〈(2.2),H〉 and using (1.15), we find that
1
2

d

dt
‖H‖2

L2 + η‖curlH‖2
L2=

∫

Ω

[(divu)H + (u · ∇)H − (H · ∇)u]H dx

≤C‖u‖H1‖H‖2
H1 .
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Putting the above estimates together and keeping in mind that

‖F‖H1 ≤ C‖∇F‖L2 ≤ C(‖divF‖L2 + ‖curlF‖L2), (2.3)

for any vector F ∈ H1(Ω) with F · n = 0, we obtain the estimate (2.1). �

2.2. Estimates of first-order derivatives

Now, we derive the estimates of the first-order temporal and spatial derivatives of (σ,u,H), based on
their L2 estimates.

Lemma 2.2. For the solution to (1.10)–(1.15), we have
1
2

d

dt

[
2μ‖D(u)‖2

L2 + λ‖divu‖2
L2 + η‖curlH‖2

L2

]

+
d

dt

∫

Ω

ρutu dx + ‖
√

p′(1)σt‖2
L2 + ‖Ht‖2

L2

≤ C(‖ut‖2
H1 + ‖ut‖H1‖u‖2

H1 + ‖σt‖H1‖σ‖H1‖u‖H1 + ‖Ht‖H1‖H‖H1‖u‖H1).

Proof. First, differentiating (1.11) with respect to t and multiplying the resulting equation by u in L2,
integrating by parts and using the boundary conditions (1.14), we deduce that

1
2

d

dt

⎡
⎣(2μ‖D(u)‖2

L2 + λ‖divu‖2
L2) +

∫

∂Ω

f(u · τ)2 dS

⎤
⎦

+
d

dt

∫

Ω

ρutu dx +
p′(1)

ε

∫

Ω

∇σt · u dx

=
∫

Ω

[
p′(1) − p′(1 + εσ)

ε
∇σ

]
t

· u dx +
∫

Ω

(ρu2
t − ρ(ut · ∇u + u · ∇ut)) · u dx

+
∫

Ω

(H · ∇H − 1
2
∇|H|2)t · u dx

≤ C(‖ut‖2
L2 + ‖ut‖H1‖u‖2

H1 + ‖σt‖H1‖σ‖H1‖u‖H1 + ‖Ht‖H1‖H‖H1‖u‖H1).

We apply 〈(1.10), p′(1)σt〉 and 〈(2.2),Ht〉 to infer that

‖
√

p′(1)σt‖2
L2 +

p′(1)
ε

∫

Ω

σtdivu dx ≤ C‖σt‖H1‖σ‖H1‖u‖H1

and η

2
d

dt
‖curlH‖2

L2 + ‖Ht‖2
L2=

∫

Ω

(Hdivu + u · ∇H − H · ∇u)Htdx

≤ C‖u‖H1‖H‖H1‖Ht‖H1 ,

respectively. Summing up the above estimates and using the boundary conditions (1.14) again, we obtain
the lemma. �
Lemma 2.3. For the solution to (1.10)–(1.15), we have

d

dt
‖∇σ‖2

L2 + γ1‖∇divu‖2
L2 ≤ δ‖∇2divu‖2

L2

+Cδ(‖u‖2
H1 + ‖ut‖2

L2 + ‖u‖4
H2 + ‖σ‖4

H2 + ‖H‖4
H2), 0 < δ < 1,

where γ1 is a positive constants independent of ε.
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Proof. We take 〈∇(1.10),∇σ〉 to obtain that

1
2

d

dt
‖∇σ‖2

L2 +
1
ε

∫

Ω

∇divu · ∇σdx

= −
∫

Ω

((u · ∇)∇σ + ∇u∇σ + ∇σdivu + σ∇divu)∇σdx

≤ C(‖u‖H1‖σ‖2
H2 + ‖∇divu‖L2‖σ‖2

H2).

To bound ‖∇divu‖L2(0,t;L2), we rewrite the Eq. (1.11) as

ρ(∂tu + u · ∇u) +
1
ε
P ′(1 + εσ)∇σ

= (2μ + λ)∇divu − μ
−−→
curlcurlu + (H · ∇)H − 1

2
∇|H|2. (2.4)

Now, we apply 〈(2.4), p′(1)−1∇divu〉 to derive that

(2μ + λ)‖
√

p′(1)−1∇divu‖2
L2 − 1

ε

∫

Ω

∇divu · ∇σdx

=
1

p′(1)

∫

Ω

ρ[ut + u · ∇u − (H · ∇H − 1
2
∇|H|2)] · ∇divu dx

+
1

p′(1)

∫

Ω

p′(1 + εσ) − p′(1)
ε

∇σ · ∇divu dx + p′(1)−1μ

∫

Ω

−−→
curl curlu∇divu dx.

Differentiating (1.14)1 with respect to the length parameter (see [5]), we obtain

curlu =
(

2χ − f

μ

)
u · τ on ∂Ω, (2.5)

where χ is the curvature of ∂Ω. In view of (2.5) and the trace theorem, we find that
∫

Ω

−−→
curl curlu∇divu dx=

∫

∂Ω

curlu∇divu · τ dS

=
∫

∂Ω

(
2χ − f

μ

)
(u · τ)(∇divu · τ) dS

≤δ‖∇2divu‖2
L2 + Cδ‖u‖2

H1

for some small number δ > 0. Therefore,

(2μ + λ)‖
√

p′(1)−1∇divu‖2
L2 − 1

ε

∫

Ω

∇divu · ∇σdx

≤ δ‖∇2divu‖2
L2 + Cδ‖u‖2

H1 + C‖∇divu‖L2(‖ut‖L2 + ‖u‖H2‖u‖H1

+‖σ‖2
H2 + ‖H‖H2‖H‖H1). (2.6)

Putting the above estimates together and using Young’s inequality, we obtain the lemma. �
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Lemma 2.4. For the solution to (1.10)–(1.15), we have

d

dt
(‖

√
p′(1)σt‖2

L2 + ‖√
ρut‖2

L2 + ‖Ht‖2
L2) + γ2(‖ut‖2

H1 + ‖Ht‖2
H1)

≤ Cδ(‖σt‖2
H1(‖ut‖2

L2 + ‖u‖2
H1 + ‖u‖4

H1 + ‖σ‖2
H2 + ‖σt‖2

H1)

+Cδ(‖ut‖2
H1‖u‖2

H1 + ‖Ht‖2
H1‖H‖2

H1 + ‖Ht‖4
H1) + Cε2‖σt‖2

L2 + δ‖u‖2
H1 , (2.7)

where 0 < δ < 1, and γ2 is a positive constant independent of ε.

Proof. Taking 〈∂t(1.10), p′(1)σt〉, we get

1
2

d

dt
‖
√

p′(1)σt‖2
L2 +

p′(1)
ε

∫

Ω

σtdivutdx

= −p′(1)
∫

Ω

(u · ∇σt + ut · ∇σ + σtdivu + σdivut)σtdx

≤ δ(‖ut‖2
H1 + ‖u‖2

H1) + Cδ(‖σ‖4
H1 + ‖σt‖4

H1),

while taking 〈(1.11)t,ut〉 and using the boundary conditions (1.14), we find that

1
2

d

dt
‖√

ρut‖2
L2 + 2μ‖D(ut)‖2

L2 + λ‖divut‖2
L2

+
∫

∂Ω

f(ut · τ)2 dS +
p′(1)

ε

∫

Ω

∇σt · utdx

=
∫

Ω

[
p′(1) − p′(1 + εσ)

ε
∇σ

]
t

· ut −
∫

Ω

[ρtut + εσtu · ∇u + ρ(u · ∇u)t

+
1
2
∇(|H|2)t − Ht · ∇H − H · ∇Ht] · utdx

≤ δ‖ut‖2
H1 + Cδ

(‖σt‖2
H1(‖(ut,∇σ)‖2

L2 + ‖u‖4
H1) + ‖ut‖2

H1‖u‖2
H1

+‖Ht‖2
H1‖H‖2

H1

)
+ Cε2‖σt‖2

L2 .

If we differentiate (2.2) with respect to t, we obtain

Htt + divutH + divuHt + ut · ∇H + u · ∇Ht − Ht · ∇u − H · ∇ut

= −η
−−→
curl curlHt. (2.8)

And from taking 〈(2.8),Ht〉 and using the boundary condition (1.15), we get

1
2

d

dt
‖Ht‖2

L2 + η‖curlHt‖2
L2

= −
∫

Ω

(divutH + divuHt + ut · ∇H + u · ∇Ht − Ht · ∇u − H · ∇ut) · Htdx

≤ δ(‖ut‖2
H1 + ‖∇u‖2

L2) + Cδ(‖Ht‖2
H1‖H‖2

H1 + ‖Ht‖4
H1).

Hence, by choosing δ appropriately small, we obtain the estimate (2.7). �

Next, we estimate the vorticity of the velocity and magnetic fields, which are denoted by ω and ϕ,
respectively. By virtue of (1.10) and (1.11), it is easy to see that ω and ϕ satisfy the following systems

ρωt + ρu · ∇ω − μ�ω = g, (2.9)

ω =
(

2χ − f

μ

)
u · τ on ∂Ω, (2.10)
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and

∂tϕ − η�ϕ = curl(divuH + u · ∇H − H · ∇u), (2.11)
ϕ = 0 on ∂Ω, (2.12)

where

g=−ρωdivu − ε

ρ
∇σ × (μ�u + (μ + λ)∇divu)

− ε

ρ
∇σ × (H · ∇H − 1

2
∇|H|2) + curl(H · ∇H).

Then, we have

Lemma 2.5.
d

dt
‖(

√
ρω, ϕ)‖2

L2 + μ‖∇ω‖2
L2 + η‖∇ϕ‖2

L2

≤ δ‖ω‖2
H2 + Cδ‖u‖2

H1 + Cδ‖u‖2
H2(‖u‖2

H1 + ε2‖σ‖2
H2)

+C(‖H‖2
H2‖H‖2

H1‖εσ‖2
H2 + ‖H‖2

H2‖H‖2
H1), 0 < δ < 1. (2.13)

Proof. Multiplying (2.9) by ω, and using the boundary condition (2.10), we infer that
1
2

d

dt
‖√

ρω‖2
L2 + μ‖∇ω‖2

L2 =
∫

Ω

gω dx +
∫

∂Ω

ω∇ω · n dS. (2.14)

It is easy to verify that ∫

Ω

gω dx≤δ‖∇ω‖2
L2 + Cδ(‖u‖2

H2(‖u‖2
H1 + ε2‖σ‖2

H2)

+‖H‖2
H2‖H‖2

H1‖εσ‖2
H2 + ‖H‖2

H2‖H‖2
H1).

Employing (2.10) and the trace theorem, we arrive at∫

∂Ω

ω∇ω · n dS =
∫

∂Ω

[(
2χ − f

μ

)
u · τ

]
∇ω · n dS ≤ δ‖ω‖2

H2 + Cδ‖u‖2
H1 .

Inserting the above two inequalities into (2.14), we conclude that
1
2

d

dt
‖√

ρω‖2
L2 + μ‖∇ω‖2

L2≤δ‖ω‖2
H2 + Cδ‖u‖2

H1 + Cδ(‖u‖2
H2(‖u‖2

H1

+ε2‖σ‖2
H2) + ‖H‖2

H2‖H‖2
H1‖εσ‖2

H2 + ‖H‖2
H2‖H‖2

H1). (2.15)

Taking 〈(2.11), ϕ〉, one finds that
1
2

d

dt
‖ϕ‖2

L2 + η‖∇ϕ‖2
L2

≤ C

∫

Ω

(∇divuH + divuϕ + u · ∇ϕ + ∇(u · ∇)ϕ + H · ∇ω + ∇(H · ∇)u)ϕ dx

≤ δ(‖∇ω‖2
L2 + ‖∇ϕ‖2

L2) + Cδ‖u‖2
H2‖H‖2

H1 . (2.16)

Adding (2.15) to (2.16) and choosing δ appropriately small, we obtain (2.13). �
Now, defining two functions

Ψ1(t) :=
∫

Ω

ρuut dx + ‖(∇σ, σt,ut,Ht)‖2
L2 + ‖u‖2

H1 + ‖curlH‖2
L2 ,

Φ1(t) := ‖σt‖2
L2 + ‖(∇curlu,∇divu,∇curlH)‖2

L2 + ‖(ut,Ht)‖2
H1 ,
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we conclude from Lemmas 2.2–2.5 that for small ε, there are a positive constant M1 and a sufficiently
small constant δ, such that

d

dt
Ψ1(t) + Φ1(t)≤M1(‖σt‖2

H1(‖(σ,u)‖2
H2 + ‖u‖4

H2 + ‖σt‖2
H1 + ‖ut‖2

L2) + ‖σ‖4
H2

+‖u‖2
H2(‖ut‖2

H1 + ‖(σ,u)‖2
H2) + ‖ut‖2

L2) + M1(‖Ht‖2
H1(‖H‖2

H1 + ‖Ht‖2
H1)

+‖H‖2
H2‖H‖2

H1(1 + ‖εσ‖2
H2)) + δ(‖∇2divu‖2

L2 + ‖ω‖2
H2). (2.17)

2.3. Boundedness of second-order derivatives

First, we show the following lemma.

Lemma 2.6. For the solution to (1.10)–(1.15), we have

(2μ + λ)
d

dt
‖∇divu‖2

L2 − 2
d

dt

∫

Ω

ρut · ∇divudx + ‖
√

p′(1)∇σt‖2
L2

≤ δ(‖∇divut‖2
L2 + ‖∇2divu‖2

L2) + Cδ(‖(ut,∇divu)‖2
L2 + ‖σt‖2

H1‖σ‖2
H2

+‖u‖2
H2(ε2‖σt‖2

H1‖u‖2
H2 + ‖ut‖2

H1 + ‖σ‖2
H2) + ‖H‖2

H2‖Ht‖2
H1), (2.18)

where δ > 0 is a small constant.

Proof. Differentiating (2.4) with respect to t, multiplying then by ∇divu in L2, we arrive at

2μ + λ

2
d

dt
‖∇divu‖2

L2 − d

dt

∫

Ω

ρut · ∇divudx − p′(1)
ε

∫

Ω

∇σt · ∇divudx

=
∫

Ω

[(
p′(1 + εσ) − p′(1)

ε
∇σ

)
t

+ εσtu · ∇u + ρ(ut · ∇u + u · ∇ut)

+
(

1
2
(∇|H|2)t − Ht · ∇H − H · ∇Ht

)]
· ∇divudx −

∫

Ω

ρut · ∇divutdx

+μ

∫

Ω

−−→
curl curlut∇divu dx

≤ δ(‖(∇divut,∇2divu,∇σt)‖2
L2) + Cδ(‖ut‖2

H1 + ‖∇divu‖2
L2 + ‖σt‖2

H1‖σ‖2
H2

+‖u‖2
H2(ε2‖σt‖2

H1‖u‖2
H2 + ‖ut‖2

H1) + ‖H‖2
H2‖Ht‖2

H1),

where we have used the estimate∫

Ω

−−→
curl curlut∇divu dx=

∫

∂Ω

(
2χ − f

μ

)
(ut · τ)(n × ∇divu) dS

≤ δ‖∇2divu‖2
L2 + Cδ‖ut‖2

H1 .

Similarly, we take 〈∇(1.10), p′(1)∇σt〉 to infer that

‖
√

p′(1)∇σt‖2
L2 +

p′(1)
ε

∫

Ω

∇σt · ∇divudx

= −p′(1)
∫

Ω

((u · ∇)∇σ + ∇u∇σ + ∇σdivu + σ∇divu) · ∇σtdx

≤ δ‖∇σt‖2
L2 + Cδ‖u‖2

H2‖σ‖2
H2 .
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Putting the above inequalities together and choosing δ small, we get the estimate (2.18). �

Lemma 2.7. We have

1
2

d

dt
‖∇2σ‖2

L2 + (2μ + λ)‖
√

p′(ρ)−1∇2divu‖2
L2

≤ δ‖u‖2
H3 + Cδ(‖∇2curlu‖2

L2 + ‖ut‖2
H1) (2.19)

+Cδ(‖σ‖4
H2 + ‖u‖4

H2 + ‖σ‖2
H2(‖ut‖2

H1 + ‖u‖4
H2) + ‖H‖4

H2), 0 < δ < 1.

Proof. First, we differentiate (1.10) twice with respect to x to have

∇2σt + u · ∇(∇2σ) + 2∇u · ∇(∇σ) + ∇2u · ∇σ + ∇2(σdivu) +
1
ε
∇2divu = 0. (2.20)

If one takes 〈(2.20),∇2σ〉, one obtains

1
2

d

dt
‖∇2σ‖2

L2 +
1
ε

∫

Ω

∇2divu∇2σdx

= −
∫

Ω

[(u · ∇(∇2σ) + 2∇u · ∇(∇σ) + ∇2u · ∇σ + ∇2(σdivu))]∇2σdx

≤ δ‖u‖2
H3 + Cδ‖σ‖4

H2 .

Then, we differentiate (2.4) with respect to x to get

(2μ + λ)∇2divu − μ∇−−→
curlcurlu − 1

ε
p′(1)∇2σ

= ∇
[
p′(1 + εσ) − p′(1)

ε
∇σ

]
+ ρ(∇ut + ∇u · ∇u + u · ∇2u) + ε∇σ(ut + u · ∇u)

+∇H · ∇H + H · ∇(∇H) − 1
2
∇2|H|2,

which, by multiplying p′(1)−1∇2divu in L2, gives

(2μ + λ)‖
√

p′(1)−1∇2divu‖2
L2 − 1

ε

∫

Ω

∇2divu∇2σdx

≤ δ‖∇2divu‖2
L2 + Cδ

[‖∇2curlu‖2
L2 + ‖ut‖2

H1 + ‖u‖4
H2)

+Cδ(‖σ‖4
H2 + ‖σ‖2

H2(‖ut‖2
H1 + ‖u‖4

H2) + ‖H‖4
H2

]
,

where we have used the fact that ‖∇−−→
curl curlu‖L2 ≤ ‖∇2curlu‖L2 .

Putting the above two inequalities together and choosing δ suitably small, we get the estimate (2.19).
�

Now, we differentiate (2.4) with respect to t and divide the resulting equations by ρ to arrive at

utt − ρ−1((2μ + λ)∇divut − μ
−−→
curl curlut) +

1
ε
ρ−1p′(1)∇σt

= ρ−1

[
p′(1) − p′(1 + εσ)

ε
∇σ

]
t

− ερ−1σt(ut + u · ∇u) − ut · ∇u − u · ∇ut

+ρ−1

(
(Ht · ∇)H + H · ∇Ht − 1

2
∇(|H|2)t

)
. (2.21)
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Moreover, we take ∂t∇(1.10) to get

(∇σt)t + u · ∇2σt + ∇u∇σt + ∇2σut + ∇ut∇σ + ∇σdivut

+σ∇divut + ∇σtdivu + σt∇divu +
1
ε
∇divut = 0. (2.22)

It is to see that utt · n|∂Ω = 0, thus it holds that
∫

Ω

utt∇divut dx = −1
2

d

dt

∫

Ω

|divut|2 dx.

Finally, we take 〈(2.21),∇divut〉 + 〈(2.22), ρ−1p′(1)∇σt〉 to obtain the following lemma.

Lemma 2.8. For the solution to (1.10)–(1.15), we have

1
2

d

dt
(‖divut‖2

L2 + ‖
√

ρ−1∇σt‖2
L2) + (2μ + λ)‖

√
ρ−1∇divut‖2

L2

≤ δ(‖∇divut‖2
L2 + ‖u‖2

H3) + Cδ‖∇curlut‖2
L2 + Cδ

(‖σ‖2
H2‖curlut‖2

H1 + ‖ut‖2
H1‖u‖2

H2

+‖σt‖2
H1(‖ut‖2

H1 + ‖u‖4
H2 + ‖σ‖2

H2 + ‖σt‖2
H1) + ‖Ht‖2

H1‖H‖2
H2

)
, 0 < δ < 1.

Next, we estimate the derivatives of curlu and curlH. To this end, we apply ∂t to (2.9) to see that

ρωtt + ρu · ∇ωt − μ�ωt = h, (2.23)

where

h := −εσt(ωt + u · ∇ω) − ρut∇ω + gt.

Furthermore, the boundary condition for (2.23) reads as

ωt =
(

2χ − f

μ

)
ut · τ on ∂Ω. (2.24)

Therefore, by virtue of (2.24) and the trace theorem,
∫

Ω

Δωtωt dx=−
∫

Ω

|∇ωt|2 dx +
∫

∂Ω

ωt∇ωt · n dS

≤−
∫

Ω

|∇ωt|2 dx + C‖ut‖2
H2 .

Multiplying (2.23) by ωt in L2, we obtain

1
2

d

dt
‖√

ρωt‖2
L2 + μ‖∇ωt‖2

L2

≤ C‖ut‖2
H2 + Cδ(ε2‖σt‖2

H1(‖ωt‖2
L2 + ‖u‖2

H2‖∇ω‖2
L2) + ‖ut‖2

H1‖∇ω‖2
L2

+ε2‖σt‖2
L2‖∇u‖4

H1 + ‖ut‖2
H1‖u‖2

H2 + ε4‖σt‖2
H1‖σ‖2

H2‖u‖2
H2

+ε2(‖σt‖2
H1‖∇2u‖2

H1 + ‖σ‖2
H2‖ut‖2

H2)) + δ‖∇ωt‖2
L2

+
∫

Ω

(
− ε

ρ
∇σ × (H · ∇H − 1

2
∇|H|2) + curl(H · ∇H)

)
t

∇ωtdx, (2.25)
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where the last term on the right-hand side can be bounded as follows:
∫

Ω

(
− ε

ρ
∇σ × (H · ∇H − 1

2
∇|H|2) + curl(H · ∇H)

)
t

∇ωtdx

=
∫

Ω

{
ε2σt

ρ2
(∇σ × (H · ∇H − 1

2
∇|H|2)) − ε

ρ
(∇σ × (H · ∇H − 1

2
∇|H|2))t

+curl(H · ∇H)t

}
∇ωtdx

≤ Cδ(ε4‖σt‖2
H1‖σ‖2

H2‖H‖4
H2 + ε2(‖σt‖2

H1‖H‖2
H2‖H‖2

H3

+‖σ‖2
H2‖Ht‖2

H1‖H‖2
H2 + ‖Ht‖2

H2‖H‖2
H1‖σ‖2

H2)

+‖Ht‖2
H1‖ϕ‖2

H2 + ‖H‖2
H2‖ϕt‖2

H1 + ‖Ht‖2
H2‖H‖2

H2) + δ‖∇ωt‖2
L2 .

Substituting the above inequality into (2.25) and taking δ small enough, we obtain the following estimate.

Lemma 2.9.

d

dt
‖√

ρωt‖2
L2 +

μ

2
‖∇ωt‖2

L2

≤ C‖ut‖2
H2 + C

(‖σt‖2
H1(‖ut‖2

H1 + ‖u‖4
H2 + ‖u‖2

H3 + ‖σ‖2
H2‖u‖2

H2)

+‖ut‖2
H2(‖u‖2

H2 + ‖σ‖2
H2)

)
+ C

(
ε4‖σt‖2

H1‖σ‖2
H2‖H‖4

H2

+ε2(‖σt‖2
H1‖H‖2

H2‖H‖2
H3 + ‖σ‖2

H2‖Ht‖2
H1‖H‖2

H2 + ‖Ht‖2
H2‖H‖2

H1‖σ‖2
H2)

+‖Ht‖2
H1‖ϕ‖2

H2 + ‖H‖2
H2‖ϕt‖2

H1 + ‖Ht‖2
H2‖H‖2

H2

)
.

By applying ∂t to (2.11), we get that

∂tϕt − ν�ϕt = curl(divuH + u · ∇H − H · ∇u)t (2.26)

with ϕt = 0 on ∂Ω.
If we multiply (2.26) by ϕt in L2 and integrate by parts, we get the following result.

Lemma 2.10. We have

d

dt
‖ϕt‖2

L2 +
ν

2
‖∇ϕt‖2

L2

≤ δ(‖ϕt‖2
H1 + ‖ωt‖2

H1) + Cδ

(‖ut‖2
H2(‖H‖2

H1 + ‖ϕ‖2
L2 + ‖ϕ‖2

H1)

+‖u‖2
H2(‖Ht‖2

H1 + ‖ϕt‖2
L2 + ‖ϕt‖2

H1) + ‖Ht‖2
H1(‖ω‖2

H1 + ‖u‖2
H2)

+‖H‖2
H1(‖ϕt‖2

H1 + ‖ut‖2
H2)

)
, 0 < δ < 1.

On the other hand, we take 〈(2.9), ωt − η1�ω〉 (in which η1 is a positive constant to be chosen later)
to get that

(μ + η1)
2

d

dt
‖∇ω‖2

L2 + ‖√
ρωt‖2

L2 + μη1‖�ω‖2
L2

≤ δ(‖√ρωt‖2
L2 + ‖ω‖2

H2) + Cδ(‖ut‖2
H1 + ‖u‖4

H2 + ‖σ‖2
H2‖u‖2

H3 + ‖u‖2
H2‖∇ω‖2

L2)

+η2
1‖ρ‖2

L∞‖�ω‖2
L2 + η2

1‖�ω‖2
L2 + C(‖u‖2

H2‖∇ω‖2
L2 + ‖u‖4

H2 + ‖σ‖2
H2‖u‖2

H3)

+C(‖σ‖2
H2‖H‖2

H1‖u‖2
H2 + ‖H‖4

H2),
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where we have used the following estimate on the magnetic field H
∫

Ω

(
− ε

ρ
∇σ × (H · ∇H − 1

2
∇H2) + curl(H · ∇H)

)
(wt − η1�)wdx

≤ δ‖√
ρwt‖2

L2 + Cδ(‖σ‖2
H2‖H‖2

H1‖H‖2
H2 + ‖H‖4

H2)

+η2
1‖�w‖2

L2 +
1
4
(‖σ‖2

H2‖H‖2
H1‖H‖2

H2 + ‖H‖4
H2),

and the boundary term is bounded as follows:

−
∫

Ω

Δωωt dx=
1
2

d

dt
‖∇ω‖2

L2 −
∫

∂Ω

(
2χ − f

μ

)
ut · τ(∇ω · n) ds

≤1
2

d

dt
‖∇ω‖2

L2 + δ‖ω‖2
H2 + Cδ‖ut‖2

H1 .

Thus, we choose η1 = 10−1μ ≤ μ(2(1 + ‖ρ‖L∞))−1 and δ suitably small to conclude that

Lemma 2.11. For the solution to (1.10)–(1.15), we have

μ
d

dt
‖∇ω‖2

L2 + ‖√
ρωt‖2

L2 +
μ2

20
‖�ω‖2

L2 ≤ δ‖ω‖2
H2 + C

(‖ut‖2
H1 + ‖u‖4

H2

+‖σ‖2
H2(‖u‖2

H3 + ‖H‖2
H1‖H‖2

H2) + ‖H‖4
H2

)
, 0 < δ < 1.

Now, if we take 〈(2.11), ϕt − η2�ϕ〉, with η2 being a positive constant to be determined later, we
deduce that

η + η2

2
d

dt
‖∇ϕ‖2

L2 + ‖ϕt‖2
L2 + ηη2‖�ϕ‖2

L2

=
∫

Ω

curl(divuH + u · ∇H − H · ∇u)(ϕt − η�ϕ)dx

≤ C

∫

Ω

{∇divuH + divuϕ + u · ∇ϕ + ∇(u · ∇)ϕ

+H · ∇ω + ∇(H · ∇)u} (ϕt − η2�ϕ)dx

≤ δ(‖ϕt‖2
L2 + ‖ϕ‖2

H2 + ‖ω‖2
H2) + Cδ(‖u‖2

H2‖H‖2
H2 + ‖u‖2

H2‖ϕ‖2
H1

+‖u‖2
H2‖ϕt‖2

H1 + ‖H‖2
H2‖ϕt‖2

H1) + η2
2‖�ϕ‖2

L2

+C(‖u‖2
H2‖H‖2

H2 + ‖H‖2
H2‖∇ω‖2

L2 + ‖u‖2
H2‖ϕ‖2

H2),

which, recalling ‖ϕ‖H2 ≤ C‖Δϕ‖L2 and choosing η2 = η/10, yields that

Lemma 2.12.

η
d

dt
‖∇ϕ‖2

L2 + ‖ϕt‖2
L2 +

η2

20
‖�ϕ‖2

L2

≤ δ‖ω‖2
H2 + Cδ(‖u‖2

H2‖H‖2
H2 + ‖u‖2

H2‖ϕ‖2
H1 + ‖u‖2

H2‖ϕt‖2
H1 + ‖H‖2

H2‖ϕt‖2
H1)

+Cδ(‖u‖2
H2‖H‖2

H2 + ‖H‖2
H2‖∇w‖2

L2 + ‖u‖2
H2‖ϕ‖2

H2), 0 < δ < 1.

We apply the elliptic regularity theory to the Eq. (2.9) to obtain that

‖ω‖2
H2 ≤ C(‖g‖2

L2 + ‖ρ‖2
H2(‖ωt‖2

L2 + ‖u‖2
H2‖∇ω‖2

L2) + ‖u · τ‖2
H3/2(∂Ω)). (2.27)
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We proceed to derive more estimates. For simplicity, we define

Ψ =
2∑

i=0

Ψi(t) + ‖ε(σtt,
√

ρutt,Htt)‖2
L2 ,

Φ =
2∑

i=0

Φi(t) + ‖εσtt‖2
L2 + ‖ε(utt,Htt)‖2

H1 + ‖σ‖2
H2 , (2.28)

where

Ψ0(t) = ‖(σ,u,H)‖2
L2 , Φ0(t) = ‖(u,H)‖2

H1 ,

Ψ1(t) and Φ1(t) are defined by (2.2), and

Ψ2(t)=‖∇divu‖2
L2 − 2

∫

Ω

ρut · ∇divudx + ‖∇2σ‖2
L2 + ‖divut‖2

L2

+‖∇σt‖2
L2 + ‖∇curlu‖2

L2 + ‖curlut‖2
L2 + ‖∇curlH‖2

L2 + ‖curlHt‖2
L2 ,

Φ2(t)=(‖∇2divu‖2
L2 + ‖∇divut‖2

L2) + ‖∇σt‖2
L2 + ‖∇curlut‖2

L2

+‖∇2curlu‖2
L2 + ‖curlHt‖2

H1 + ‖∇2curlH‖2
L2 .

The next lemma gives a bound on ‖εσtt‖ and ‖ε(utt,Htt)‖.

Lemma 2.13. For the solution to (1.10)–(1.15), we have

d

dt
‖ε(

√
p′(1)σtt,

√
ρutt,Htt)‖2

L2 + γ3‖ε(utt,Htt)‖2
H1

≤ CΦ(t)(Ψ(t) + Ψ2(t)) + ε2‖σt‖2
H1 + δ(‖u‖2

H3 + ‖ut‖2
H2), 0 < δ < 1, (2.29)

where γ3 is a positive constant independent of ε.

Proof. We take 〈∂tt(1.10), ε2p′(1)σtt〉 + 〈∂tt(2.4), ε2utt〉 to get that

1
2

d

dt
(‖ε

√
p′(1)σtt‖2

L2 + ‖ε
√

ρutt‖2
L2) + (2μ + λ)‖εdivutt‖2

L2 + μ‖εcurlutt‖2
L2

≤ δ(‖divu‖2
H2 + ‖ut‖2

H2 + ‖εutt‖2
H1) + Cδ(‖εσtt‖2

L2 + ‖σt‖2
H1 + ‖σ‖2

H2)‖εσtt‖2
L2

+‖εutt‖L2(‖σt‖H1‖∇σt‖L2 + ε‖σt‖2
H1‖∇σ‖2

H1 + ‖εσtt‖L2(‖∇σ‖H1 + ‖ut‖H1)
+‖σt‖H1‖εutt‖L2 + ‖∇u‖H1(‖εutt‖L2 + ‖εσtt‖L2‖u‖H2 + ε‖σt‖H1‖ut‖H1)

+‖∇ut‖L2(ε‖σt‖H1‖u‖H2 + ‖ut‖H1)) + 〈[(H · ∇)H − 1
2
∇|H|2]tt, ε2utt〉

≤ δ(‖divu‖2
H2 + ‖ut‖2

H2 + ‖εutt‖2
H1) + CΦ(t)(Ψ(t) + Ψ2(t)), (2.30)

where we have used the following estimate

〈[(H · ∇)H − 1
2
∇H2]tt, ε2utt〉

=
∫

Ω

(Htt · ∇H + 2Ht · ∇Ht + H · ∇Htt − ∇Htt · H − 2∇Ht · Ht

−∇H · Htt)ε2uttdx

≤ δ‖εutt‖2
L2 + Cδ(‖∇H‖2

H1‖εHtt‖2
L2 + ‖Ht‖4

H1 + ‖H‖2
H2‖εHtt‖2

H1).
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And again we take 〈∂tt(2.2), ε2Htt〉 and use the boundary condition Htt|∂Ω = 0 to deduce that

1
2

d

dt
‖εHtt‖2

L2 + η‖ε∇Htt‖2
L2

= −
∫

Ω

(divut · H + divuHt + ut · ∇H + u · ∇Ht − Ht · ∇u − H · ∇ut)t · ε2Httdx

= −
∫

Ω

(divutt · H + 2divut · Ht + divu · Htt + utt · ∇H + 2ut · ∇Ht + u · ∇Htt

−Htt · ∇u − 2Ht · ∇ut − H · ∇utt) · ε2Httdx

≤ δ‖εHtt‖2
H1 + CΦ(t)(Ψ(t) + Ψ2(t)). (2.31)

Thus, taking δ suitably small in (2.30) and (2.31), we obtain the estimate (2.29). �

In order to close the established estimates, we have to control ‖εσtt‖L2 and ‖σ‖H2 . To this end, we
differentiate (1.10) with respect to t to see that

‖εσtt‖2
L2 ≤ Cε2Φ(t)Ψ(t) + ‖divut‖2

L2 . (2.32)

On the other hand, from the equations (1.11), we have

‖σ‖2
H2 ≤ Cε2(‖ut‖2

H1 + ‖u‖2
H3) + Cε2Φ(t)(Ψ(t) + Ψ2(t)). (2.33)

In addition, we use the following fact to control the terms ‖ut‖H2 and ‖u‖H3 ,

‖w‖W s,p ≤ C(‖divw‖W s−1,p + ‖curlw‖W s−1,p + ‖w · n‖W s−1/p,p(∂Ω) + ‖w‖W s−1,p) (2.34)

for all w ∈ W s,p(Ω) and 1 < p < +∞.
Combining Lemma 2.1, Lemmas 2.6–2.13 with the estimates (2.17) and (2.32)–(2.34) and choosing ε

and δ small enough, we finally conclude that

d

dt
Ψ(t) + Φ(t) ≤ c0Φ(t)

(
Ψ(t) + Ψ2(t)

)
, (2.35)

where c0 ≥ 1 is a constant independent of ε.
Now, employing (2.35), and following the analysis in [35], we obtain the following uniform estimate.

Lemma 2.14. Suppose Ψ(0) ≤ β/(2c0) for some β ∈ (0, 1/2] where c0 is the same as in (2.17). Then there
is an ε1 > 0, such that for any ε ∈ (0, ε1], we have c−1 ≤ 1 + εσ ≤ c for some c > 1, and Ψ(t) ≤ β/(2c0)
for all t ∈ [0, T ].

2.4. Proof of Theorems 1.1 and 1.2

Now, recalling the definition (2.28) of (Ψ(t),Φ(t)), we can use the uniform a priori estimate established in
Lemma 2.14 to continue the local solution (σ,u,H) globally in time by applying the standard extension
techniques (see, for example, [37]), and obtain therefore a global solution. Furthermore, we can employ
the uniform estimate given in Lemma 2.14 and Arzelà-Ascoli’s theorem to easily show the strong conver-
gence of (σ,u,H) to the solution of the corresponding incompressible magnetohydrodynamic equations
as ε → 0. This completes the proof of Theorems 1.1 and 1.2.
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