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Abstract. This paper is concerned with the non-uniform dependence on initial data for the µ−b equation on the circle. Using
the approximate solution method, we construct two solution sequences to show that the data-to-solution map of the Cauchy
problem of the µ−b equation is not uniformly continuous in Hs(S).
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1. Introduction

The b-equation [4,5,11]

ut − uxxt + u(ux − uxxx) + bux(u − uxx) = 0, (1.1)

which in fact comprises a family of equations parameterized by the real value b, models wave phenomena
in shallow fluid flow, and has been the subject of considerable interest both to mathematicians and
physicists. When b = 2 and 3, respectively, (1.1) reduces to the well-known Camassa–Holm (CH) [1] and
Degasperis–Procesi (DP) [5] equations, which have interesting connections with the Korteweg–deVries
(KdV) equation and have been extensively studied, particularly from the point of view of integrability
and geodesic flow on infinite dimensional Lie groups. The Cauchy problem of the b-equation, and in
particular its well-posedness and blow-up behavior, has also been well-studied both on the real line and
on the circle, see for example [3,6,22,23,25].

In [17], Khesin et al. studied a generalization of the Hunter–Saxton (HS) [12] equation, which is
a high-frequency limit of the CH equation and introduced the μ−HS equation. The μ−HS equation,
which is now more commonly referred to as the μ−CH equation, describes the propagation of weakly
nonlinear orientation waves in a massive nematic liquid crystal with external magnetic field and self-
interaction. It was also shown in [17] that the μ−CH equation on the circle is formally integrable, admits
a bi-Hamiltonian structure and an infinite hierarchy of conservation laws, and is an Euler equation for
geodesic flow on the Lie group of circle diffeomorphisms. Subsequently, in addition to μ−CH, Lenells et
al. [20] also introduced the μ−DP as well as μ−Burgers equations, and the μ−b equation (see also [19]).

In this paper, we consider the Cauchy problem for the (spatially) periodic μ−b equation:{
μ(ut) − uxxt − uuxxx + bux(μ(u) − uxx) = 0, t > 0, x ∈ S

1,

u(0, x) = u0(x), x ∈ S
1,

(1.2)
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where b is a real constant, u = u(t, x) is a time-dependent function on the unit circle S
1 = R/Z � [0, 1),

and μ(u) =
∫

S1 u(t, x)dx denotes the mean value of u. We note that under spatial periodicity, μ(ut) =
0 = μ(ux).

In the case b = 2 and 3, respectively, the μ−b equation reduces to the μ−CH and μ−DP equations.
In addition, if μ(u) = 0, they reduce to the HS and μ−Burgers equations, respectively.

The local well-posedness of the μ−CH and μ−DP Cauchy problems have been studied in [17] and
[20]. Recently, Fu et al. [7] described precise blow-up scenarios for μ−CH and μ−DP.

Our attention in this paper is on the dependence on initial data. Himonas et al. [8,9] showed that
solutions of the CH equation on the real line as well as on the circle do not depend uniformly on the
initial data. They made use of the method of approximate solutions [2,10,16,18].

Our work has been inspired by [8,9]. We show non-uniform dependence on initial data of (1.2) by
constructing two sequences of solutions in a bounded subset of the Sobolev space Hs(S1), whose distance
converges to zero at t = 0 but is bounded below by a positive constant at any later time. We remark
that, unlike the b-equation case, the method of [9] does not apply in a straightforward manner to the μ−b
equation. To be more specific, for the b-equation, one only needs to estimate the Hσ-norm (1/2 < σ < 1)
of the difference between approximate and actual solutions (as in [13]). For μ−b, however, we need to
treat the cases b = 3 and b �= 3 separately and estimate the Hσ-norm (1/2 < σ < 1) and H1-norm of
the difference, respectively, (see Sect. 3.2 for details). Unfortunately, when b �= 3, we are not yet able
to obtain the non-uniform dependence on the initial data for (1.2) with 3/2 < s < 2 and will study it
in a separate paper. We further remark that we have come to be aware that a similar method has been
employed to study the non-uniform dependence problem for the b-equation by Yan Li [21].

This paper is organized as follows: In Sect. 2, we recall the well-posedness results of [17] and [20]. We
will establish an energy estimate and use it to derive a lower bound for the lifespan of the solution as
well as an estimate of the Hs(S1) norm of the solution u(t, x) in terms of that of the initial data u0. In
Sect. 3, we consider approximate solutions and estimate their errors in the Hσ-norm (1/2 < σ ≤ 1) in
satisfying the equation (1.2). Further, we estimate the difference between the approximate and actual
solutions with the same initial data. The proof of the main result is given in Sect. 4.

In this paper, the symbols �, ≈ and � are used to denote inequality/equality up to a positive universal
constant. For example, f(x) � g(x) means that f(x) ≤ cg(x) for some positive universal constant c.
Since all spaces of functions are over S

1, the reference to S
1 will be dropped if no ambiguity arises.

[A,B] = AB − BA denotes the commutator of linear operators A and B.

2. Local well-posedness

As μ(ux) = 0 under spatial periodicity, we can re-write (1.2) as follows:⎧⎨
⎩ut + uux = −∂xA−1

(
bμ(u)u +

3 − b

2
u2

x

)
, t > 0, x ∈ S

1,

u(0, x) = u0(x), x ∈ S
1,

(2.1)

where A = μ − ∂2
x is an isomorphism between Hs(S1) and Hs−2(S1) with the inverse v = A−1u given by

v(x) =
(

x2

2
− x

2
+

13
12

)
μ(u) + (x − 1/2)

1∫
0

y∫
0

u(s)dsdy

−
x∫

0

u(s)dsdy +

1∫
0

y∫
0

s∫
0

u(r)drdsdy.
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Since A−1 and ∂x commute, the following identities hold as follows:

A−1∂xu(x) = (x − 1/2)

1∫
0

u(x)dx −
x∫

0

u(y)dy +

1∫
0

x∫
0

u(y)dydx, (2.2)

A−1∂2
xu(x) = −u(x) +

1∫
0

u(x)dx. (2.3)

It is easy to show that μ(A−1∂xu(x)) = 0.
We recall the following local well-posedness result:

Proposition 2.1. [20, Theorem 5.5] Let u0 ∈ Hs, s > 3/2. Then, there exist a maximal existence time
T = T (‖u0‖Hs) > 0 and a unique solution u to (2.1) such that

u = u(·, u0) ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1).

Moreover, the solution depends continuously on the initial data, that is, the map

u0 �→ u(·, u0) : Hs → C([0, T );Hs) ∩ C1([0, T );Hs−1)

is continuous.

Remark 2.1. The maximal existence time T > 0 in Proposition 2.1 is independent of the Sobolev index
s > 3/2; this can be proved using the Kato method [14], as in [24].

Next, we will give an explicit lower bound for the maximal existence time T with respect to the Hs-
norm of the initial data. We will also give an estimate of the solution size and show that the Hs-norm of
the solution is dominated by that of the initial data.

Lemma 2.1. Let s > 3/2 and let u be the solution of (2.1) with initial data u0 described in Proposition
2.1. Then, the maximal existence time T satisfies

T ≥ T0 :=
1

2Cs‖u0‖Hs

, (2.4)

where Cs is a constant depending only on s. Also, we have

‖u(t)‖Hs ≤ 2‖u0‖Hs , 0 ≤ t ≤ T0. (2.5)

Proof. First, we note that μ(u) = μ(u0) = μ0. The proof of the lemma is based on the following differential
inequality for the solution u:

1
2

d
dt

‖u(t)‖2
Hs ≤ Cs‖u(t)‖3

Hs , 0 ≤ t < T. (2.6)

Integrating this inequality from 0 to t, one obtains

‖u(t)‖Hs ≤ ‖u0‖Hs

1 − Cs‖u0‖Hst
,

which implies that ‖u(t)‖Hs < ∞ if Cs‖u0‖Hst < 1. As a result, for 0 ≤ t ≤ T0, we have

‖u(t)‖Hs ≤ ‖u0‖Hs

1 − Cs‖u0‖HsT0
= 2‖u0‖Hs .

It thus remains to prove the inequality (2.6). Note that the product uux only has the regularity of
Hs−1 when u ∈ Hs. To deal with this problem, we will consider the following modified equation:

(Jεu)t + Jε(uux) = −∂xA−1

(
bμ0Jεu +

3 − b

2
Jε

(
u2

x

))
, t > 0, x ∈ S

1, (2.7)
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where ε ∈ (0, 1] and

Jεf(x) = Jε(f)(x) = (jε × f)(x)

is the Friedrichs mollifier with jε(x) = 1
ε j(x

ε ) for a C∞ function j(x). Let Λ = (1 − ∂2
x)1/2. Applying the

operator Λs to (2.7), then multiplying the resulting equation by ΛsJεu and integrating with respect to
x ∈ S

1, we obtain

1
2

d
dt

‖Jεu‖2
Hs = − (ΛsJε(uux), ΛsJεu) −

(
∂xΛsA−1

(
bμ0Jεu +

3 − b

2
Jε(u2

x)
)

, ΛsJεu

)
, (2.8)

where

(f, g) :=
∫

fgdx.

We will estimate the right-hand side of (2.8). First, we note that Λs and Jε are commutative and that

(Jεf, g) = (f, Jεg), ‖Jεu‖Hs ≤ ‖u‖Hs . (2.9)

To estimate the first integral in the right-hand side of (2.8), we write it as follows:(
ΛsJε(uux), ΛsJεu

)
=

(
JεΛs(uux), ΛsJεu

)
=

(
Λs(uux), JεΛsJεu

)
= ([Λs, u]ux, JεΛsJεu) + (uΛsux, JεΛsJεu).

Using [15, Lemma X1] and (2.9), we obtain

‖([Λs, u]ux, JεΛsJεu)‖ ≤ ‖[Λs, u]ux‖2 ‖JεΛsJεu‖2 ≤ Cs ‖ux‖∞ ‖u‖2
Hs , (2.10)

where we have used the fact that ‖u‖Hs = ‖Λsu‖2. Noting that, by [8, Lemma 2],

‖[Jε, u]fx‖2 ≤ C ‖ux‖∞ ‖f‖2 ,

and integrating by parts, we obtain

|(uΛsux, JεΛsJεu)| = |(JεuΛsux, ΛsJεu)|
= |([Jε, u] ∂xΛsu, ΛsJεu) + (uJε∂xΛsu, ΛsJεu)|

≤ ‖[Jε, u]∂xΛsu‖2‖u‖Hs +
1
2

∣∣(uxΛsJεu, ΛsJεu)
∣∣

≤ Cs‖ux‖∞‖u‖2
Hs . (2.11)

From (2.10) and (2.11), we have∣∣(ΛsJε(uux), ΛsJεu
)∣∣ ≤ Cs‖ux‖∞‖u‖2

Hs . (2.12)

For the second integral in the right-hand side of (2.8), we note∣∣(∂xΛsA−1 (bμ0Jεu) , ΛsJεu
)∣∣ ≤ C|μ0| · ‖A−1∂xJεu‖Hs‖u‖Hs , (2.13)∣∣∣∣

(
∂xΛsA−1

(
3 − b

2
Jε(u2

x)
)

, ΛsJεu

)∣∣∣∣ ≤ C‖A−1∂xJε(u2
x)‖Hs‖u‖Hs . (2.14)

Since μ0 = μ(u), we have

|μ0| =

∣∣∣∣∣∣
∫
S1

u(x, t)dx

∣∣∣∣∣∣ ≤ ‖u‖2 ≤ ‖u‖Hs . (2.15)
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By (2.2) and (2.3), and using the Sobolev embedding theorem, we obtain

‖A−1∂xJεu‖Hs ≤ ‖A−1∂xu‖Hs ≤ ‖A−1∂xu‖2 + ‖A−1∂2
xu‖Hs−1

≤ 3‖u‖2 +
∥∥∥∥u −

∫
u(x)dx

∥∥∥∥
Hs−1

≤ 3‖u‖2 + 2‖u‖Hs−1

≤ 5‖u‖Hs−1 , (2.16)

‖A−1∂xJε(u2
x)‖Hs ≤ ‖A−1∂xu2

x‖Hs ≤ ‖A−1∂xu2
x‖2 + ‖A−1∂2

xu2
x‖Hs−1

≤ 3‖ux‖2
2 +

∥∥∥∥u2
x −

∫
u2

x(x)dx

∥∥∥∥
Hs−1

≤ 3‖u‖2
2 + 2‖u2

x‖Hs−1

≤ 5‖ux‖∞‖u‖Hs . (2.17)

Using (2.12)–(2.17) in (2.8), we obtain

1
2

d
dt

‖Jεu‖2
Hs ≤ Cs

(‖u‖Hs + ‖ux‖∞
)‖u‖2

Hs .

Letting ε → 0, we have
1
2

d
dt

‖u‖2
Hs ≤ Cs

(‖u‖Hs + ‖ux‖∞
)‖u‖2

Hs ,

or
1
2

d
dt

‖u(t)‖2
Hs ≤ Cs

(‖u‖Hs + ‖u‖C1

)‖u(t)‖2
Hs . (2.18)

Since s > 3/2, by Sobolev’s inequality,

‖u(t)‖C1 ≤ Cs‖u(t)‖Hs ,

and the desired inequality (2.6) follows. �

3. Approximate solutions

In this section, following [8,9], we consider a two-parameter family of approximate solutions. We will
first estimate the error of the approximate solutions in satisfying (2.1) in the Hσ-norm (1/2 < σ ≤ 1),
and then, estimate the difference between the approximate solution and actual solution having the same
initial data.

We consider approximate solutions of the form

uω,λ = ωλ−1 + λ−s cos(λx − ωt),

where s ∈ R, ω is in a bounded set in R and λ = 2πz with z ∈ Z+. We note that uω,λ ∈ Hs.

3.1. Error in satisfying (2.1)

Now, we estimate the Hσ-norm of the error of uω,λ is satisfying (2.1), which is given by

E =
[
uω,λ

t + uω,λuω,λ
x

]
+ ∂xA−1

(
bμ

(
uω,λ

)
uω,λ +

3 − b

2
(
uω,λ

x

)2
)

=: E1 + E2 + E3.
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A direct calculation shows that

E1 := uω,λ
t + uω,λuω,λ

x = −1
2
λ−2s+1 sin 2(λx − ωt).

Using (2.2), we have

E2 := bμ(uω,λ)∂xA−1uω,λ

= bμ(uω,λ)

⎡
⎣(

x − 1
2

) 1∫
0

uω,λ(t, x)dx −
x∫

0

uω,λ(t, y)dy +

1∫
0

x∫
0

uω,λ(t, y)dydx

⎤
⎦

= bλ−s−1
[
ωλ−1 + λ−s−1(sin(λ − ωt) + sin(ωt))

]
×

[(
x − 1

2

)[
sin(λ − ωt) + sin(ωt)

] − sin(λx − ωt) +
cos(ωt) − cos(λ − ωt)

λ

]
;

E3 :=
3 − b

2
∂xA−1(uω,λ

x )2

=
3 − b

2

⎡
⎣(

x − 1
2

) 1∫
0

(uω,λ
x (t, x))2dx −

x∫
0

(uω,λ
x (t, y))2dy +

1∫
0

x∫
0

(uω,λ
x (t, y))2dydx

⎤
⎦

=
b − 3

4
λ−2s+1

[(
x − 1

2

)[
sin(2λ − 2ωt) + sin(2ωt)

] − sin(2λx − 2ωt)

+
cos(2ωt) − cos(2λ − 2ωt)

2λ

]
.

Lemma 3.1. Let s > 3/2 and σ ∈ (1/2, 1]. When ω is in a bounded set in R and λ � 1, we have

‖E‖Hσ � λ−rs (3.1)

for 0 < t < T , where rs = 2s − σ − 1 > 0.

Proof. First, we recall from [9, Lemma 1] that

‖uω,λ‖Hσ = ‖ωλ−1 + λ−s cos(λx − ωt)‖Hσ � λ−1 + λ−s+σ.

The following was also obtained in [9]:

‖E1(t)‖Hσ =
∥∥∥∥1

2
λ−2s+1 sin 2(λx − ωt)

∥∥∥∥
Hσ

� λ−2s+1+σ.
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Finally, direct calculations show that

‖E2(t)‖Hσ = λ−s−1|b|∣∣ωλ−1 + λ−s−1(sin(λ − ωt) + sin(ωt))
∣∣

×
∥∥∥∥
(

x − 1
2

)[
sin(λ − ωt) + sin(ωt)

] − sin(λx − ωt) +
cos(ωt) − cos(λ − ωt)

λ

∥∥∥∥
Hσ

� λ−s−2

(∥∥∥∥x − 1
2

∥∥∥∥
Hσ

+ ‖ sin(λx − ωt)‖Hσ + λ−1

)

� λ−s−2+σ,

‖E3(t)‖Hσ =
∣∣∣∣b − 3

4

∣∣∣∣ λ−2s+1
∥∥∥ (x − 1/2)

[
sin(2λ − 2ωt) + sin(2ωt)

] − sin(2λx − 2ωt)

+
cos(2ωt) − cos(2λ − 2ωt)

2λ

∥∥∥∥
Hσ

� λ−2s+1
(‖x − 1/2‖Hσ + ‖ sin(2λx − 2ωt)‖Hσ + λ−1

)
� λ−2s+1+σ.

�

3.2. Difference between approximate and actual solutions

We now estimate the difference between the approximate and actual solutions.
Let uω,λ(t, x) be the solution to (2.1) with initial data uω,λ(0, x), that is, uω,λ(t, x) satisfies⎧⎪⎨

⎪⎩
∂tuω,λ + uω,λ∂xuω,λ + ∂xA−1

(
bμ(uω,λ)uω,λ +

3 − b

2
(∂xuω,λ)2

)
= 0, t > 0, x ∈ S

1,

uω,λ(0, x) = uω,λ(0, x) = ωλ−1 + λ−s cos(λx), x ∈ S
1.

(3.2)

Then, by Proposition 2.1, Lemma 2.1 and [9, Lemma 1], uω,λ ∈ C([0, T ];Hs) is the unique solution of
(3.2) with

T � 1
‖uω,λ(0, x)‖Hs

=
1

‖uω,λ
0 ‖Hs

� 1
λ−1+1

� 1, λ � 1.

To estimate the difference between the approximate and actual solutions, we let

v = uω,λ − uω,λ.

Then, for t > 0 and x ∈ S
1, v satisfies⎧⎪⎨

⎪⎩
vt = E − 1

2
∂x

[
(uω,λ + uω,λ)v

] − ∂xA−1

[
bμ(uω,λ)v +

3 − b

2
∂x(uω,λ + uω,λ)∂xv

]
,

v(0, x) = 0.
(3.3)

We treat the cases b = 3 and b �= 3 separately.

Lemma 3.2. Let b = 3. Let s > 3/2, σ ∈ (1/2, s − 1], ω be in a bounded set in R, and λ � 1. Then

‖v(t)‖Hσ = ‖uω,λ(t) − uω,λ(t)‖Hσ � λ−rs (3.4)

for 0 ≤ t < T where rs = 2s − 1 − σ > 0.
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Proof. Applying to both sides of (3.3) with b = 3 the operator Λσ, multiplying the resulting equation by
Λσv and integrating, we obtain

1
2

d
dt

‖v(t)‖2
Hσ = (ΛσE, Λσv) − 1

2
(
Λσ∂x

[
(uω,λ + uω,λ)v

]
, Λσv

)
+ 3μ(uω,λ)

(
Λσ∂xA−1v, Λσv

)
. (3.5)

By the Cauchy–Schwarz inequality, we have∣∣(ΛσE, Λσv
)∣∣ ≤ ‖ΛσE‖2‖Λσv‖2 ≤ ‖E‖Hσ‖v‖Hσ . (3.6)

Similarly to [9], for 3/2 < ρ ≤ s and σ + 1 ≤ ρ, one can show that∣∣(Λσ∂x[(uω,λ + uω,λ)v], Λσv
)∣∣ �

(‖∂xuω,λ‖∞ + ‖∂xuω,λ‖∞
) ‖v‖2

Hσ +
(‖uω,λ‖Hρ + ‖uω,λ‖Hρ

) ‖v‖2
Hσ

�
(‖uω,λ‖Hρ + ‖uω,λ‖Hρ

) ‖v‖2
Hσ . (3.7)

By using (2.2) and the Cauchy–Schwarz inequality, we have∣∣μ(uω,λ)
(
Λσ∂xA−1v, Λσv

)
x
∣∣ =

∣∣μ(uω,λ(0))
(
Λσ∂xA−1v, Λσv

)
x
∣∣

≤ |ωλ−1 + λ−s−1 sin λ| · ‖Λσ∂xA−1v‖2‖Λσv‖2

� λ−1‖v‖Hσ

∥∥∥∥∥∥
(

x − 1
2

) 1∫
0

v(x)dx −
x∫

0

v(y)dy +

1∫
0

x∫
0

v(y)dydx

∥∥∥∥∥∥
Hσ

� λ−1‖v‖Hσ

⎛
⎝∥∥∥∥x − 1

2

∥∥∥∥
Hσ

1∫
0

|v(x)|dx + ‖v‖Hσ−1 +

1∫
0

x∫
0

|v(y)|dydx

⎞
⎠

� λ−1‖v‖2
Hσ . (3.8)

Substituting (3.6)–(3.8) into (3.5), we have

d
dt

‖v(t)‖2
Hσ �

(
λ−1 + ‖uω,λ‖Hρ + ‖uω,λ‖Hρ

) ‖v‖2
Hσ + ‖E‖Hσ‖v‖Hσ .

Noting that ‖uω,λ(t)‖Hρ � λ−1 + λρ−s for 3/2 < ρ < s, and, by Lemma 2.1, that

‖uω,λ(t)‖Hρ � ‖uω,λ(0)‖Hρ = ‖uω,λ(0)‖Hρ � λ−1 + λρ−s,

it follows from Lemma 3.1 that
d
dt

‖v(t)‖2
Hσ �

(
λ−1 + λρ−s

) ‖v‖2
Hσ + λ−rs‖v‖Hσ ,

or
d
dt

‖v(t)‖Hσ � ‖v‖Hσ + λ−rs . (3.9)

As v(0) = 0, solving the differential inequality (3.9), we obtain (3.4). �

Now, we consider the case b �= 3. In this case, the Eq. (3.5) will have an extra term:

I := −3 − b

2

∫
∂xΛσA−1

[
∂x

(
uω,λ + uω,λ

)
∂xv

] · Λσvdx. (3.10)

It is easy to see that

|I| �
∥∥∂xA−1

[
∂x(uω,λ + uω,λ)∂xv

]∥∥
Hσ ‖v(t)‖Hσ . (3.11)
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By (2.2), we know that

‖∂xA−1w‖Hσ =

∥∥∥∥∥∥
(

x − 1
2

) 1∫
0

w(x)dx −
x∫

0

w(y)dy +

1∫
0

x∫
0

w(y)dydx

∥∥∥∥∥∥
Hσ

�

⎛
⎝∥∥∥∥x − 1

2

∥∥∥∥
Hσ

1∫
0

|w(x)|dx + ‖w‖Hσ−1 +

1∫
0

x∫
0

|w(y)|dydx

⎞
⎠, (3.12)

where w = ∂x(uω,λ + uω,λ)∂xv. When 3/2 < s < 2, we are unable to show that
∫ 1

0
|w(x)|dx is bounded.

So, we shall limit the scope of s in the following result:

Lemma 3.3. Let b �= 3. Let s ≥ 2, ω be in a bounded set in R, and λ � 1. Then

‖v(t)‖H1 = ‖uω,λ(t) − uω,λ(t)‖H1 � λ−θs (3.13)

for 0 ≤ t < T where θs = 2(s − 1) > 0.

Proof. In the proof of Lemma 3.2, if we take σ = 1, the Eq. (3.5) becomes
1
2

d
dt

‖v(t)‖2
H1 = (ΛE, Λv) − 1

2
(
Λ∂x

[(
uω,λ + uω,λ

)
v
]
, Λv

)
+ 3μ(uω,λ)

(
Λ∂xA−1v, Λv

)
+ I, (3.14)

where I is given by (3.10) with σ = 1. We will show that the estimates (3.6)–(3.8) with σ = 1 remain
true. In (3.7), we take ρ = 2.

Now, we estimate
∫ 1

0
|w(x)|dx and ‖w‖2 with w = ∂x(uω,λ + uω,λ)∂xv. A direct calculation yields

1∫
0

|w(x)|dx =

1∫
0

∣∣∂x

(
uω,λ + uω,λ

)
∂xv

∣∣ dx

≤ ‖v‖H1‖uω,λ + uω,λ‖H1 , (3.15)

‖w‖2 =
(∫ ∣∣∂x(uω,λ + uω,λ)

∣∣2 |∂xv|2 dx

)1/2

≤ (‖∂xuω,λ‖∞ + ‖∂xuω,λ‖∞
)‖v‖H1

�
(‖uω,λ‖H2 + ‖uω,λ‖H2

) ‖v‖H1 . (3.16)

Substituting (3.12), (3.15) and (3.16) into (3.11), we have

|I| � ‖v‖2
H1

(‖uω,λ‖H1 + ‖uω,λ‖H1 + ‖uω,λ‖H2 + ‖uω,λ‖H2

)
� ‖v‖2

H1

(‖uω,λ‖H2 + ‖uω,λ‖H2

)
. (3.17)

Applying (3.6)–(3.8) with σ = 1 and ρ = 2, and (3.17), it follows from (3.14) that
d
dt

‖v(t)‖2
H1 �

(
λ−1 + ‖uω,λ‖H2 + ‖uω,λ‖H2

) ‖v‖2
H1 + ‖E‖H1‖v‖H1 . (3.18)

Similarly to the proof of Lemma 3.2,

‖uω,λ(t)‖H2 � λ−1 + λ2−s, ‖uω,λ(t)‖H2 � λ−1 + λ2−s. (3.19)

Noting that s ≥ 2 and applying Lemma 3.1 with σ = 1, it follows from (3.18) and (3.19) that
d
dt

‖v(t)‖2
H1 �

(
1 + λ−1

) ‖v‖2
H1 + λ−2(s−1)‖v‖H1 .

The rest of the proof is the same as that of Lemma 3.2. �
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4. Non-uniform dependence

In this section, we prove our main result, namely,

Theorem 4.1. Let {
s > 3/2 if b = 3,

s ≥ 2 if b �= 3.

Then, the data-to-solution map u(0) �→ u(t) for (2.1) is not uniformly continuous from any bounded
subset of Hs into C([−T, T ];Hs). More precisely, there exist two sequences of solutions uλ(t) and ũλ(t)
to (2.1) in C([−T, T ];Hs) such that

‖uλ(t)‖Hs + ‖ũλ(t)‖Hs � 1, lim
λ→∞

‖uλ(0) − ũλ(0)‖Hs = 0, (4.1)

and

lim inf
λ→∞

‖uλ(t) − ũλ(t)‖Hs � | sin t|, |t| < T ≤ 1. (4.2)

Proof. Let uλ(t) = u1,λ(t, x) and ũλ(t) = u−1,λ(t, x), where u1,λ(t, x) and u−1,λ(t, x) are the unique
solution to the Cauchy problem (3.2) with initial data u1,λ(0, x) and u−1,λ(0, x), respectively.

By Proposition 2.1, these solutions lie in C([0, T ];Hs). By Lemma 2.1, we know that the existence
time T can be chosen to be independent of λ provided λ � 1. Moreover, for 0 ≤ t ≤ T0,

‖u±1,λ(t)‖Hs ≤ 2‖u±1,λ(0)‖Hs = 2‖u±1,λ(0)‖Hs .

If λ is large enough and k > s − 1, then, by [9, Lemma 1],

‖u±1,λ(t)‖Hk � λ−1 + λk−s � λk−s.

It follows that

‖u±1,λ(t)‖Hk � λk−s, λ � 1,

and

‖u±1,λ(t) − u±1,λ(t)‖Hk � λk−s, λ � 1. (4.3)

We first consider the case b = 3. Lemma 3.2 implies that

‖u±1,λ(t) − u±1,λ(t)‖Hσ � λ−rs , λ � 1. (4.4)

Now, applying the interpolation inequality

‖ϕ‖Hs ≤ ‖ϕ‖(s2−s)/(s2−s1)
Hs1 ‖ϕ‖(s−s1)/(s2−s1)

Hs2

with s1 = σ and s2 = 2s − σ = k and using (4.3) and (4.4), we get

‖u±1,λ(t) − u±1,λ(t)‖Hs ≤ (‖u±1,λ(t) − u±1,λ(t)‖Hσ‖u±1,λ(t) − u±1,λ(t)‖H2s−σ

)1/2

�
(
λ−rsλs−σ

)1/2 � λ−(s−1)/2, λ � 1.

Hence,

‖u±1,λ(t) − u±1,λ(t)‖Hs � λ−εs , λ � 1, (4.5)

where εs = (s − 1)/2.
We can now prove (4.1) and (4.2). It follows from the definition of uω,λ that

‖u1,λ(0) − u−1,λ(0)‖Hs = ‖u1,λ(0) − u−1,λ(0)‖Hs = 2λ−1 → 0 as λ → ∞,

which implies that (4.1) holds. Obviously,

‖u1,λ(t) − u−1,λ(t)‖Hs ≥ ‖u1,λ(t) − u−1,λ(t)‖Hs − ‖u1,λ(t) − u1,λ(t)‖Hs − ‖u−1,λ(t) − u−1,λ(t)‖Hs .
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It follows from (4.5) that

‖u1,λ(t) − u−1,λ(t)‖Hs ≥ ‖u1,λ(t) − u−1,λ(t)‖Hs − cλ−εs , λ � 1,

which implies that

lim inf
λ→∞

‖u1,λ(t) − u−1,λ(t)‖Hs ≥ lim inf
λ→∞

‖u1,λ(t) − u−1,λ(t)‖Hs . (4.6)

Using the identity

cos α − cos β = −2 sin
α + β

2
sin

α − β

2
,

we obtain

u1,λ(t) − u−1,λ(t) = 2λ−1 + 2λ−s sin(λx) sin t.

Thus,

‖u1,λ(t) − u−1,λ(t)‖Hs ≥ 2λ−s‖ sin(λx)‖Hs | sin t| − 2λ−1‖1‖Hs .

Letting λ → ∞ in the above inequality, we have

lim inf
λ→∞

‖u1,λ(t) − u−1,λ(t)‖Hs � | sin t|. (4.7)

Summing (4.6) and (4.7) yields (4.2).
Next, we consider the case b �= 3. Lemma 3.3 implies that

‖u±1,λ(t) − u±1,λ(t)‖H1 � λ−θs , λ � 1. (4.8)

Applying the interpolation inequality

‖ϕ‖Hs ≤ ‖ϕ‖(s2−s)/(s2−s1)
Hs1 ‖ϕ‖(s−s1)/(s2−s1)

Hs2

with s1 = 1 and s2 = [s] + 2 = k and using (4.3) and (4.8), we get∥∥u±1,λ(t) − u±1,λ(t)
∥∥

Hs ≤ ∥∥u±1,λ(t) − u±1,λ(t)
∥∥(k−s)/(k−1)

H1

∥∥u±1,λ(t) − u±1,λ(t)
∥∥(s−1)/(k−1)

Hk

� λ−θs(k−s)/(k−1)λ(k−s)(s−1)/(k−1)

� λ−(θs−s+1)(k−s)/(k−1), λ � 1.

Hence,

‖u±1,λ(t) − u±1,λ(t)‖Hs � λ−εs , λ � 1,

where εs = (s − 1)(k − s)/(k − 1). The rest of the proof is similar to the case b = 3. This completes the
proof of the theorem. �
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