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Abstract. We consider the steady Stokes equations in bounded and exterior domains Ω of R
3 with boundary data and forces

in L1. We prove existence and uniqueness of a weak solution with gradient in the Iwaniek–Sbordone grand Lebesgue space

L
3
2 ).
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1. Introduction and statement of the results

Let Ω be a bounded domain of R
3 defined by

Ω = Ω0 \ Ω
′
, Ω′ =

m⋃

i=1

Ωi, (1)

where Ω0 and Ωi are bounded domains of R
3 with connected boundaries such that Ωi ⊂ Ω0 and Ωi ∩Ωj =

ø, i �= j. Let f be an assigned field on Ω. The classical Stokes problem is to find a solution of the equations1

Δu− ∇p = f in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,
(2)

where u : Ω → R
3, p : Ω → R are the (unknown) velocity and pressure fields. It is well-known that if Ω is of

class C1 and f ∈ Lt(Ω) (t > 1), then (2) has a unique weak solution (u, p) ∈ W
1,3t/(3−t)
σ,0 (Ω)×L3t/(3−t)(Ω),

that is,
∫

Ω

∇u · ∇φ−
∫

Ω

pdivφ+
∫

Ω

f · φ = 0, ∀φ ∈ C∞
0 (Ω),

and the following estimate holds [2,7]

‖u‖W 1,3t/(3−t)(Ω) + ‖p‖L3t/(3−t)(Ω) ≤ c‖f‖Lt(Ω). (3)

Moreover, if f ∈ H1(Ω), then one shows that (2) has a unique solution (u, p) ∈ [W 2,1(Ω) ∩ W
3/2,2
σ,0 (Ω)] ×

W 1,1(Ω) and

1 Unless otherwise specified we use the notation of [6]; subscript σ in a function space Cσ(Ω) means that the fields in
Cσ(Ω) are (weakly) divergence free in Ω. H1(Ω) is the space of all functions in L1(Ω) whose zero extension to R

3 belongs to
the Hardy space H1(R3). To alleviate notation, we do not distinguish function spaces for scalar and vector (or tensor) valued

functions. Thus, for instance, ϕ ∈ Lq(Ω) means that every component ϕi of ϕ belongs to Lq(Ω) and ‖ϕ‖q
Lq(Ω)

=
∫
Ω |ϕ|q .
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‖u‖W 2,1(Ω) + ‖p‖W 1,1(Ω) ≤ c‖f‖H1(Ω). (4)

The main purpose of this paper is to prove that in the borderline case f ∈ L1(Ω) and for Lipschtz

domains, a solution of (2) exists in a slightly larger space than W
1, 3

2
σ,0 (Ω), the so-called grand Sobolev

space W
1, 3

2 )
σ,0 (Ω), introduced by Iwaniec and Sbordone [10] and defined as the set of all fields u ∈ W 1,1

σ,0 (Ω)
such that2

sup
q∈(1,3/2)

⎧
⎨

⎩
(

3
2 − q

) 1
|Ω|

∫

Ω

|∇u|q
⎫
⎬

⎭

1
q

= ‖u‖
W 1, 3

2 )(Ω)
< +∞. (5)

Indeed, we shall prove the following existence and uniqueness theorem.

Theorem 1. Let Ω be a bounded Lipschitz domain of R
3. If f ∈ L1(Ω), then (2) has a unique solution

(u, p) ∈ W
1, 3

2 )
σ,0 (Ω) × L

3
2 )(Ω) and

‖u‖
W 1, 3

2 )(Ω)
+ ‖p‖

L
3
2 )(Ω)

≤ c‖f‖L1(Ω). (6)

For more regular domains, the above results can be extended to the more general problem

Δu− ∇p = f in Ω,
divu = γ in Ω,

u = a on ∂Ω,∫

Ω

γ =
∫

∂Ω

a · n,

(7)

where n is the unit outward (with respect to Ω) normal to ∂Ω.
It holds

Theorem 2. Let Ω be a bounded domain of R
3 of class C2. If a ∈ L1(∂Ω), f ∈ L1(Ω) and γ ∈ H1(Ω),

then (7) has a weak solution (u, p) ∈ W
1, 3

2 )

σ,loc(Ω) × L
3
2 )

loc(Ω) and

‖u‖
W 1, 3

2 )(Ω′)
+ ‖p‖

L
3
2 )(Ω′)

+ ‖u‖L3)(Ω) ≤ c
{‖a‖L1(∂Ω)

+‖f‖L1(Ω) + ‖γ‖H1(Ω)

}
,

(8)

for all Ω′ � Ω, with c depending on Ω and Ω′. Moreover, the solution is unique in the class of all fields
u ∈ L1

loc(Ω) that satisfy the relation3

∫

Ω

u · φ =
∫

∂Ω

a · T (z, ϑ) · n+
∫

Ω

γϑ +
∫

Ω

f · z, (9)

for all φ ∈ C∞
0 (Ω), where (z, ϑ) is the solution of

Δz − ∇ϑ = φ in Ω,

divz = 0 in Ω,

z = 0 on ∂Ω
(10)

and

Tij(z, ϑ) = ∂jzi + ∂izj − ϑδij

is the Cauchy stress tensor.

2 W
1, 3

2 )

σ,0 (Ω) is a Banach space. For the basic properties of the grand Sobolev spaces we quote [4,9] and [10].
3 See Remark 3.3.
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We shall also consider the problem

Δu− ∇p = f in Ω,

divu = γ in Ω,

u = a on ∂Ω

u ∈ L3(�SR0) ∩ L
3)
loc(Ω)

(11)

in the exterior domain

Ω = R
3 \ Ω′,

where Ω′ is the domain defined in (1) and R0 > diam Ω′, under the assumptions

γ,f ∈ H1(Ω), a ∈ L1(∂Ω). (12)

Denote by C the linear space of the solutions of the equations

Δu− ∇p = 0 in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω
u ∈ D1,q(Ω), q > 3/2.

(13)

It holds

Theorem 3. Let Ω be an exterior domain of R
3 of class C1,λ. If a,f , γ satisfy (12) and

∫

∂Ω

a ·ψ′ =
∫

Ω

f · v[ψ′] +
∫

Ω

γP [ψ′], ∀ψ′ ∈ C, (14)

with v[ψ′], P [ψ′] and C defined in section 3, then (11) has a solution (u, p) and

‖u‖L3(�SR0 ) + ‖u‖L3)(ΩR0 ) + ‖∇u‖L3/2(�SR0 ) + ‖p‖L3/2(�SR0 )

≤ c
{‖a‖L1(∂Ω) + ‖f‖H1(Ω) + ‖γ‖H1(Ω)

}
.

Moreover, uniqueness holds in the class of all fields u ∈ L3(�SR0) ∩ L1
loc(Ω), that satisfy (9) for all

φ ∈ C∞
0 (Ω), with z ∈ D1,q(Ω)(q > 3/2) solution of (10). In this function class (14) is also necessary for

the existence of a solution of (11).

2. Proof of Theorem 1

We premise the following well-known results.

Lemma 1. [1,13] Let Ω be a bounded Lipschitz domain of R
3 and let f = divF . There is a positive

constant ε depending only on Ω such that if F ∈ Lq(Ω), with q ∈ (−ε + (3 + ε)/(2 + ε), ε + 3/2), then (2)
has a unique solution (u, p) ∈ W 1,q

σ,0 (Ω) × Lq(Ω) and

‖u‖W 1,q(Ω) + ‖p‖Lq(Ω) ≤ c‖F ‖Lq(Ω), (15)

with c depending only on Ω and ε.

Lemma 2. [4] Let Ω be a bounded Lipschitz domain of R
3. For all f ∈ L1(Ω), there is F ∈ L

3
2 )(Ω) such

that divF = f and for all q ∈ [1, 3/2)

[3(1 − q) + q]
∫

Ω

|F |q ≤ c|Ω|(3(1−q)+q)/3‖f‖q
L1(Ω), (16)

where c is an absolute positive constant.
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Proof. We recall the proof in [4], since we shall need it in the sequel. A solution of divF = f is given
by the gradient of the Newtonian potential

F (x) =
1
4π

∫

Ω

(x − y) ⊗ f(y)
|x − y|3 dvy.

Hence, by the Minkowski inequality,

‖F ‖Lq(Ω) ≤ 1
4π

∫

Ω

∥∥∥∥
1

|x − y|
∥∥∥∥

Lq(Ω)

|f(y)|dy

≤ 1
4π

sup
y∈Ω

∥∥∥∥
1

|x − y|
∥∥∥∥

Lq(Ω)

‖f‖L1(Ω).

(17)

Hence, the desired result follows, taking into account that [4]
∥∥∥∥

1
|x − y|

∥∥∥∥
Lq(Ω)

≤ (4π)2/3|Ω|(3(1−q)+q)/(3q)

(3(1 − q) + q)1/q
.

�
Proof of Theorem 1. By Lemma 2, there is a sequence F k such that fk = divF k, fk → f strongly in
L1(Ω) and

(
3
2 − q

) ∫

Ω

|F k|q ≤ c‖fk‖q
L1(Ω), (18)

for q in a small left neighborhood of 3/2. The field uk satisfies the relation
∫

Ω

∇uk · ∇ϕ =
∫

Ω

fk ·ϕ, ∀ϕ ∈ C∞
σ,0(Ω). (19)

To uk, we can associate a pressure field pk which satisfies the estimate

‖pk‖Lq(Ω) ≤ c‖∇uk‖Lq(Ω). (20)

By Lemma 1, the sequence uk of the solutions to (2) with data fk satisfies

‖uk − uh‖W 1,q(Ω) ≤ c‖F k − F h‖Lq(Ω). (21)

Putting together (18), (21), we have
(

3
2 − q

) ‖uk − uh‖W 1,q(Ω) ≤ c‖fk − fh‖L1(Ω). (22)

Therefore, uk is a Cauchy sequence in W 1,q(Ω) for q < 3/2 so that it converges to a field u ∈ W 1,q(Ω).
Letting k → +∞ and taking into account (19), (22), we see that u is the solution of (2) and

(
3
2 − q

) ‖uk − u‖W 1,q(Ω) ≤ c‖fk − f‖L1(Ω). (23)

Hence, it follows that u ∈ W
1, 3

2 )
σ,0 (Ω). Moreover, from (20), it follows that p ∈ L

3
2 )(Ω) and (6) holds. To

prove uniqueness, we have to show that (2) with f = 0 has only the trivial solution. To this end, denote

by (u, p) ∈ W
1, 3

2 )
σ,0 (Ω) × L

3
2 )(Ω) a solution of (2). By virtue of Lemma 1, (2) with f ∈ C∞

0 (Ω) has a
solution (v, Q) ∈ W 1,q

σ,0 (Ω) × Lq(Ω) for some q > 3. Thus, an integration by parts yields
∫

Ω

u · f = 0, ∀f ∈ C∞
0 (Ω).

Hence, the desired result follows.
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Remark 2.1. Taking into account the results of [3], we have that if Ω is Lipschitz and

a ∈ L2(∂Ω),
∫

∂Ω

a · n = 0, f ∈ L1(Ω),

then the equations

Δu− ∇p = f in Ω,

divu = 0 in Ω,

u = a on ∂Ω
(24)

have a weak solution (u, p) ∈ W
1, 3

2 )

σ,loc(Ω) × L
3
2 )

loc(Ω) and

‖u‖L3)(Ω) ≤ c
{‖a‖L2(∂Ω) + ‖f‖L1(Ω)

}
. (25)

If Ω is of class C1, then we can take a ∈ Lq(∂Ω) [2], q > 1, and it holds

‖u‖L3)(Ω) ≤ c
{‖a‖Lq(∂Ω) + ‖f‖L1(Ω)

}
. (26)

�

3. Proof of Theorem 2

The equations

Δu− ∇p = 0
divu = 0

(27)

admit the fundamental solution (U(x − y), q(x − y)), with

U(t) = − 1
8π|t|

{
1 +

t⊗ t
|t|2

}
,

q(t) = − t

4π|t|3 .

The simple and double Stokes layer potential with densities ψ and ϕ ∈ Lq(∂Ω) are the pairs defined,
respectively, by [11]

v[ψ](x) =
∫

∂Ω

U(x − ζ) ·ψ(ζ)dσζ ,

P [ψ](x) =
∫

∂Ω

q(x − ζ) ·ψ(ζ)dσζ ,

and

w[ϕ](x) =
∫

∂Ω

T ′(U , q)(x − ζ) · (ϕ⊗ n)(ζ)dσζ ,


[ϕ](x) = −2div
∫

∂Ω

[q(x − ζ) ·ϕ(ζ)]n(ζ)dσζ ,

where T ′
ij(U , q)(x − ζ) = [(∂ζi

Ujk + ∂ζk
Ukj) + qk](x − ζ). They are analytical solutions of (27) in R

3 \ ∂Ω
and, if Ω is of class C1,λ for some λ ∈ (0, 1), then the limits [11,12]

lim
α→0+

w[ϕ](x − αn(ξ)) = W[ϕ](ξ) = (1
2I + K)[ϕ](ξ) ∈ L1(∂Ω),

lim
α→0+

{T (v[ψ], P [ψ]) · n} (x − αn(ξ)) = −(1
2I + K′)[ϕ](ξ) ∈ L∞(∂Ω)
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exist for almost all ξ ∈ ∂Ω, where

K′ : L∞(∂Ω) → C0,μ(∂Ω)

(μ < λ) is the adjoint map of K [11,12]. Hence, it follows that K : L1(∂Ω) → L1(∂Ω) is completely
continuous so that the operator W : L1(∂Ω) → L1(∂Ω) is Fredholm with index zero and Kern (1

2I+K′) =
sp{n} ⊗ F, where F is the n(n + 1)m/2 dimensional space

F = {ψ : v[ψ]|Ωi
= rigid motions,v[ψ]|�Ω0

= 0, P [ψ]|Ωi∪�Ω0
= 0} ⊂ C1,λ(∂Ω),

i = 1 . . . , m [17,15,16,18]. If Ω is of class C1 by virtue of the results of [2], we have that K is compact
from Lq(∂Ω) into itself and from W 1,q(∂Ω) into itself for all q ∈ (1,+∞).

Lemma 3. Let Ω be a bounded domain of R
3 of class C1,λ, for some λ > 0. If a ∈ L1(∂Ω) satisfies

∫

∂Ω

a · n = 0, (28)

then the equations

Δv − ∇p = 0 in Ω,

divv = 0 in Ω,

v = a on ∂Ω
(29)

have a solution expressed by

u = w[ϕ] + v[ψ],
p = 
[ψ] + P [ψ],

(30)

for some ϕ ∈ L1(∂Ω) and ψ ∈ F. u, p are analytical in Ω and u takes the value a pointwise almost
everywhere, that is,

lim
α→0+

u(x − αn(ξ)) = a(ξ) (31)

for almost all ξ ∈ ∂Ω, and

‖u‖L3)(Ω) ≤ c‖a‖L1(∂Ω). (32)

If Ω is of class C1 and a ∈ Lq(∂Ω), for some q > 1, then the above result hold with ϕ ∈ Lq(∂Ω) and

‖u‖L3(Ω) ≤ c‖a‖Lq(∂Ω). (33)

Proof. By a simple application of Fredholm’s alternative, we see that the functional equation

W[ϕ] = a− v[ψ]|∂Ω′ (34)

has a solution ψ ∈ L1(∂Ω) for some ψ ∈ F. Recall that v[ψ] ∈ C1,λ(Ω) [12]. By Gagliardo’s trace theorem
[5], there is a field ω ∈ W 1,1(Ω) such that

u(x) =
∫

Ω

T (w[ϕ],
[ϕ])(x − y) · ∇ω(y)dvy.

Hence,

|u(x)| ≤ c

∫

Ω

|∇ω(y)|
|x − y|2 dvy.

Therefore, (32) follows by repeating the argument used in the proof of Lemma 2. The last part of the
lemma is a consequence of the regularity properties of the layer potentials. �
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Remark 3.2. The operator K maps subspaces of L1(∂Ω) in more regular spaces with natural estimates (see
[11, Ch. 3] and [12, Sections 14, 15]). For instance, K[Lq(∂Ω)] = C0,μ(∂Ω) (q > 2/λ) for all μ < λ − 2/q.
Hence, it follows that, if a ∈ C0,μ(∂Ω), μ ∈ [0, λ], then

‖u‖C0,µ(Ω) ≤ c‖a‖C0,µ(∂Ω). (35)

Moreover,
(i) if a ∈ C1,μ(∂Ω), μ > 1 − λ, then

‖u‖C1,µ(Ω) + ‖p‖C0,µ(Ω) ≤ c‖a‖C1,µ(∂Ω);

(ii) if a ∈ W 1−1/q,q(∂Ω), q ∈ (1,+∞), then

‖u‖W 1,q(Ω) + ‖p‖Lq(Ω) ≤ c‖a‖W 1−1/q,q(∂Ω).

Property (ii) also holds for domains of class C1 and for q ∈ ((3 + ε)/(2 + ε), 3 + ε) in Lipschitz domains,
where ε is a positive number depending only on Ω [1]. Other classical regularity results as well as natural
estimates can be find in [13].

Proof of Theorem 2. For γ ∈ H1(Ω), the field

V[γ](x) =
1
4π

∫

Ω

(x − y)γ(y)
|x − y|3 dvy

belongs to W 1,1(Ω) so that its trace satisfies

‖tr V[γ]∂Ω‖L1(∂Ω) ≤ c‖V[γ]‖W 1,1(Ω) ≤ c‖γ‖H1(Ω). (36)

By Lemma 3, the equations

Δv − ∇Q = 0 in Ω,

divv = 0 in Ω,

v = a− trV[γ]∂Ω on ∂Ω,∫

∂Ω

(a− trV[γ]∂Ω) · n = 0

(37)

have a solution (v, Q), and denoting by (vf , pf ), the solution of (2) given by Theorem 1, it is obvious
that

u = v + vf + V[γ],
p = Q + pf + γ

satisfies (7) and (8).
If (uk, pk) is the solution of (7) for a regular ak, an integration by parts yields

∫

Ω

uk · φ =
∫

∂Ω

ak · T (z, ϑ) · n+
∫

Ω

γϑ +
∫

Ω

f · z (38)

for all ϕ ∈ C∞
0 (Ω), with (z,
) solution of (10). Let ak → a strongly in L1(∂Ω). Since

‖u− uk‖Lq(Ω) ≤ c‖a− ak‖L1(∂Ω)

for some q > 1, we can let k → +∞ in (38) to see that u satisfies (9). Calling (u, p), a very weak solution
of (2) (in the sense of J. Nečas [14]), we have that (7) has a unique very weak solution. �

The following problem

divv = γ in Ω,

v = a on ∂Ω,
(39)
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is of some interest in the theory of the Navier–Stokes equations (see Ch. III of [6]). As an immediate
consequence of Theorem 2, we have

Corollary 1. Let Ω be a bounded domain of R
3 of class C2. If γ ∈ H1(Ω) and a ∈ L1(∂Ω), then (39) has

a weak solution v ∈ W
1,3)
loc (Ω) and

‖v‖L3)(Ω) ≤ c
{‖a‖L1(∂Ω) + ‖γ‖H1(Ω)

}
. (40)

Remark 3.3. Note that a very weak solution of (7) (in the sense of J. Nečas [14]) can also be defined as
a field u ∈ L1

loc(Ω) which satisfies4
∫

Ω

u · φ =
∫

∂Ω

a · (∂nz − ϑn) +
∫

Ω

ϑγ +
∫

Ω

f · z (41)

for all φ ∈ W 1,∞
0 (Ω). Now, choosing first φ = Δη, with η ∈ C2

σ,0(Ω) = {η ∈ C2
σ(Ω) : η|∂Ω = 0}, then

φ = ∇ω with ω ∈ C1(Ω), we see that u also satisfies the relations
∫

Ω

u · Δη =
∫

∂Ω

a · ∂nη +
∫

Ω

f · η, ∀η ∈ C1
σ,0(Ω) ∩ C2(Ω),

∫

Ω

u · ∇ω =
∫

∂Ω

ωa · n−
∫

Ω

γω, ∀ω ∈ C1(Ω),
(42)

that represent a more popular definition of a very weak solution to (7) [8]. Note that, in particular, (42)
yields

∫

Ω

u · Δη =
∫

Ω

f · η, ∀η ∈ C∞
σ,0(Ω),

∫

Ω

u · ∇ω = −
∫

Ω

γω, ∀ω ∈ C∞
0 (Ω),

(43)

i.e,u satisfies (7) in the sense of the distributions.

4. Proof of Theorem 3

We can repeat the classical argument of the potential theory we outlined in Sect. 3 to see that the problem

Δu− ∇p = 0 in Ω,

divu = 0 in Ω,

u = a on ∂Ω
(44)

has a solution expressed by (30) for some ϕ ∈ L1(∂Ω) and ψ ∈ G, with

G = {ψ : v[ψ]|Ωi
= rigid motions, P [ψ]|Ωi

= 0, i = 1 . . . , m} ⊂ C1,λ(∂Ω).

Let C be the linear subspace of all ψ ∈ G such that v[ψ]|Ω′ = constant5. A well-known argument (see, e.g,
[17,15,16,18]) assures that dim C = 3 and if {ψi} is a basis of C, then

∫
∂Ω
ψi is a basis of R

3. Therefore,
there is ψ̄ ∈ C such that

∫

∂Ω

(ψ + ψ̄) = 0

4 Note that this corresponds to a different decomposition of the Stokes operator.
5 Clearly, the pairs (v[ψ], P [ψ]) are the solutions of (13).
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and, putting

ψ̃ = ψ + ψ̄, κ = −v[ψ̄]|∂Ω,

the pair

u′ = w[ϕ] + v[ψ̃] + κ,

p′ = 
[ψ] + P [ψ̃]
(45)

is an analytical solution of (44) such that u′ −κ ∈ L3 in a neighborhood of infinity. A simple integration
yields

∫

∂Ω

(a− κ) ·ψ′ = 0, ∀ψ′ ∈ C.

Hence, it follows that if
∫

∂Ω

a ·ψ′ = 0, ∀ψ′ ∈ C, (46)

then u satisfies (11)4. Completing the standard procedure of “adding” to (u′, p′) suitable volume poten-
tials, we see that (11) has a solution expressed by

u = w[ϕ] + v[ψ] + E [f ] + V[γ],
p = 
[ψ] + P [ψ] + Q[f ] + γ

(47)

for some ϕ ∈ L1(∂Ω) and ψ ∈ C1,λ(∂Ω) such that
∫

∂Ω
ψ = 0, where

E [f ] =
∫

Ω

U(x − y) · f(y)dvy,

Q[f ] =
∫

Ω

q(x − y) · f(y)dvy.
(48)

Let ak be a sequence of regular fields on ∂Ω which converges strongly to a in L1(∂Ω) and let (uk, pk)
be the solution of (11) with data (ak,f , γ). Let g be a regular function in R

3, vanishing outside S2R,
equal to 1 in SR and such that |∇g| ≤ cR−1. By an integration by parts, we have

∫

Ω

guk · φ =
∫

∂Ω

ak · T (z, ϑ) · n+
∫

Ω

gϑγ +
∫

Ω

gf · z

−
∫

Ω

[uk · T (z, ϑ) − z · T (uk, pk)] · ∇g.

(49)

By the properties of the function g, Hölder inequality, the summability properties of (uk, pk) and the
behavior at infinity of (z, ϑ)

∣∣∣∣∣∣

∫

Ω

uk · T (z, ϑ) · ∇g

∣∣∣∣∣∣
≤ ‖uk‖L3(S2R\SR)

{‖∇z‖L3/2(S2R\SR) + ‖ϑ‖L3/2(S2R\SR)

}
,

≤ c‖uk‖L3(S2R\SR)

⎧
⎨

⎩

2R∫

R

dr

r

⎫
⎬

⎭

2/3

≤ c‖uk‖L3(S2R,\SR)

∣∣∣∣∣∣

∫

Ω

z · T (uk, pk) · ∇g

∣∣∣∣∣∣
≤ c

{‖∇uk‖L3/2(S2R\SR) + ‖pk‖L3/2(S2R\SR)

}
.
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Therefore, letting R → +∞ in (49) yields
∫

Ω

uk · φ =
∫

∂Ω

ak · T (z, ϑ) · n+
∫

Ω

ϑγ +
∫

Ω

f · z.

Hence, (9) follows by letting k → +∞.
To prove the last part of the theorem, it is sufficient to choose in (9) every pair (v[ψ′], P [ψ′]), with

ψ′ ∈ C.
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