Zeitschrift für angewandte Mathematik und Physik ZAMP

On the Stokes problem with data in L^1

Antonio Russo and Alfonsina Tartaglione

Abstract. We consider the steady Stokes equations in bounded and exterior domains Ω of \mathbb{R}^3 with boundary data and forces in L^1 . We prove existence and uniqueness of a weak solution with gradient in the Iwaniek–Sbordone grand Lebesgue space $L^{\frac{3}{2}}$.

Mathematics Subject Classification (2010). Primary 76D05 · 35Q30; Secondary 76D07 · 35J47.

Keywords. Steady-state Stokes equations \cdot Boundary-value problem \cdot Bounded Lipschitz domains.

1. Introduction and statement of the results

Let Ω be a bounded domain of \mathbb{R}^3 defined by

$$\Omega = \Omega_0 \setminus \overline{\Omega}', \quad \Omega' = \bigcup_{i=1}^m \Omega_i, \tag{1}$$

where Ω_0 and Ω_i are bounded domains of \mathbb{R}^3 with connected boundaries such that $\overline{\Omega}_i \subset \Omega_0$ and $\overline{\Omega}_i \cap \overline{\Omega}_j = \phi, i \neq j$. Let f be an assigned field on Ω . The classical Stokes problem is to find a solution of the equations¹

$$\Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{f} \quad \text{in} \quad \Omega, \\ \operatorname{div} \boldsymbol{u} = 0 \quad \text{in} \quad \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \quad \text{on} \quad \partial\Omega, \end{cases}$$
(2)

where $\boldsymbol{u}: \Omega \to \mathbb{R}^3, p: \Omega \to \mathbb{R}$ are the (unknown) velocity and pressure fields. It is well-known that if Ω is of class C^1 and $\boldsymbol{f} \in L^t(\Omega)$ (t > 1), then (2) has a unique weak solution $(\boldsymbol{u}, p) \in W^{1,3t/(3-t)}_{\sigma,0}(\Omega) \times L^{3t/(3-t)}(\Omega)$, that is,

$$\int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{\phi} - \int_{\Omega} p \operatorname{div} \boldsymbol{\phi} + \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{\phi} = 0, \quad \forall \boldsymbol{\phi} \in C_0^{\infty}(\Omega),$$

and the following estimate holds [2,7]

$$\|\boldsymbol{u}\|_{W^{1,3t/(3-t)}(\Omega)} + \|p\|_{L^{3t/(3-t)}(\Omega)} \le c\|\boldsymbol{f}\|_{L^{t}(\Omega)}.$$
(3)

Moreover, if $\boldsymbol{f} \in \mathcal{H}^1(\Omega)$, then one shows that (2) has a unique solution $(\boldsymbol{u}, p) \in [W^{2,1}(\Omega) \cap W^{3/2,2}_{\sigma,0}(\Omega)] \times W^{1,1}(\Omega)$ and

¹ Unless otherwise specified we use the notation of [6]; subscript σ in a function space $C_{\sigma}(\Omega)$ means that the fields in $C_{\sigma}(\Omega)$ are (weakly) divergence free in Ω . $\mathcal{H}^1(\Omega)$ is the space of all functions in $L^1(\Omega)$ whose zero extension to \mathbb{R}^3 belongs to the Hardy space $\mathcal{H}^1(\mathbb{R}^3)$. To alleviate notation, we do not distinguish function spaces for scalar and vector (or tensor) valued functions. Thus, for instance, $\varphi \in L^q(\Omega)$ means that every component φ_i of φ belongs to $L^q(\Omega)$ and $\|\varphi\|_{L^q(\Omega)}^q = \int_{\Omega} |\varphi|^q$.

The main purpose of this paper is to prove that in the borderline case $\boldsymbol{f} \in L^1(\Omega)$ and for Lipschtz domains, a solution of (2) exists in a slightly larger space than $W^{1,\frac{3}{2}}_{\sigma,0}(\Omega)$, the so-called grand Sobolev space $W^{1,\frac{3}{2}}_{\sigma,0}(\Omega)$, introduced by Iwaniec and Sbordone [10] and defined as the set of all fields $\boldsymbol{u} \in W^{1,1}_{\sigma,0}(\Omega)$ such that²

$$\sup_{q \in (1,3/2)} \left\{ \left(\frac{3}{2} - q \right) \frac{1}{|\Omega|} \int_{\Omega} |\nabla \boldsymbol{u}|^q \right\}^{\frac{1}{q}} = \|\boldsymbol{u}\|_{W^{1,\frac{3}{2}}(\Omega)} < +\infty.$$
(5)

Indeed, we shall prove the following existence and uniqueness theorem.

Ģ

Theorem 1. Let Ω be a bounded Lipschitz domain of \mathbb{R}^3 . If $\mathbf{f} \in L^1(\Omega)$, then (2) has a unique solution $(\mathbf{u}, p) \in W^{1, \frac{3}{2}}_{\sigma, 0}(\Omega) \times L^{\frac{3}{2}}(\Omega)$ and

$$\|\boldsymbol{u}\|_{W^{1,\frac{3}{2}}(\Omega)} + \|p\|_{L^{\frac{3}{2}}(\Omega)} \le c\|\boldsymbol{f}\|_{L^{1}(\Omega)}.$$
(6)

For more regular domains, the above results can be extended to the more general problem

$$\Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{f} \quad \text{in} \quad \Omega, \\ \operatorname{div} \boldsymbol{u} = \boldsymbol{\gamma} \quad \operatorname{in} \quad \Omega, \\ \boldsymbol{u} = \boldsymbol{a} \quad \operatorname{on} \quad \partial\Omega, \\ \int_{\Omega} \boldsymbol{\gamma} = \int_{\partial\Omega} \boldsymbol{a} \cdot \boldsymbol{n},$$
(7)

where \boldsymbol{n} is the unit outward (with respect to Ω) normal to $\partial \Omega$.

It holds

Theorem 2. Let Ω be a bounded domain of \mathbb{R}^3 of class C^2 . If $\boldsymbol{a} \in L^1(\partial\Omega)$, $\boldsymbol{f} \in L^1(\Omega)$ and $\gamma \in \mathcal{H}^1(\Omega)$, then (7) has a weak solution $(\boldsymbol{u}, p) \in W^{1, \frac{3}{2}}_{\sigma, \text{loc}}(\Omega) \times L^{\frac{3}{2}}_{\text{loc}}(\Omega)$ and

$$\|\boldsymbol{u}\|_{W^{1,\frac{3}{2})}(\Omega')} + \|p\|_{L^{\frac{3}{2}}(\Omega')} + \|\boldsymbol{u}\|_{L^{3}(\Omega)} \le c \{\|\boldsymbol{a}\|_{L^{1}(\partial\Omega)} + \|\boldsymbol{f}\|_{L^{1}(\Omega)} + \|\gamma\|_{\mathcal{H}^{1}(\Omega)} \},$$
(8)

for all $\Omega' \in \Omega$, with c depending on Ω and Ω' . Moreover, the solution is unique in the class of all fields $u \in L^1_{loc}(\Omega)$ that satisfy the relation³

$$\int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{\phi} = \int_{\partial \Omega} \boldsymbol{a} \cdot \boldsymbol{T}(\boldsymbol{z}, \vartheta) \cdot \boldsymbol{n} + \int_{\Omega} \gamma \vartheta + \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{z}, \tag{9}$$

for all $\phi \in C_0^{\infty}(\Omega)$, where $(\boldsymbol{z}, \vartheta)$ is the solution of

$$\Delta \boldsymbol{z} - \nabla \vartheta = \boldsymbol{\phi} \quad \text{in} \quad \Omega,$$

div $\boldsymbol{z} = 0 \quad \text{in} \quad \Omega,$
 $\boldsymbol{z} = \boldsymbol{0} \quad \text{on} \quad \partial \Omega$ (10)

and

$$T_{ij}(\boldsymbol{z},\vartheta) = \partial_j z_i + \partial_i z_j - \vartheta \delta_{ij}$$

is the Cauchy stress tensor.

 $^{^{2}}_{\sigma,0}W^{1,\frac{3}{2})}_{\sigma,0}(\Omega)$ is a Banach space. For the basic properties of the grand Sobolev spaces we quote [4,9] and [10].

³ See Remark 3.3.

We shall also consider the problem

$$\Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{f} \quad \text{in} \quad \Omega,$$

$$\operatorname{div} \boldsymbol{u} = \boldsymbol{\gamma} \quad \operatorname{in} \quad \Omega,$$

$$\boldsymbol{u} = \boldsymbol{a} \quad \text{on} \quad \partial\Omega$$

$$\boldsymbol{u} \in L^{3}(\mathbb{C}S_{R_{0}}) \cap L^{3)}_{\operatorname{loc}}(\Omega)$$
(11)

in the exterior domain

$$\Omega = \mathbb{R}^3 \setminus \Omega',$$

where Ω' is the domain defined in (1) and $R_0 > \text{diam } \Omega'$, under the assumptions

$$\gamma, \boldsymbol{f} \in \mathcal{H}^1(\Omega), \quad \boldsymbol{a} \in L^1(\partial\Omega).$$
 (12)

Denote by \mathfrak{C} the linear space of the solutions of the equations

$$\Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{0} \quad \text{in} \quad \Omega,$$

$$\operatorname{div} \boldsymbol{u} = 0 \quad \text{in} \quad \Omega,$$

$$\boldsymbol{u} = \boldsymbol{0} \quad \text{on} \quad \partial \Omega$$

$$\boldsymbol{u} \in D^{1,q}(\Omega), \quad q > 3/2.$$
(13)

It holds

Theorem 3. Let Ω be an exterior domain of \mathbb{R}^3 of class $C^{1,\lambda}$. If $\boldsymbol{a}, \boldsymbol{f}, \gamma$ satisfy (12) and

$$\int_{\partial\Omega} \boldsymbol{a} \cdot \boldsymbol{\psi}' = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}[\boldsymbol{\psi}'] + \int_{\Omega} \gamma P[\boldsymbol{\psi}'], \quad \forall \, \boldsymbol{\psi}' \in \mathfrak{C},$$
(14)

with $v[\psi']$, $P[\psi']$ and \mathfrak{C} defined in section 3, then (11) has a solution (u, p) and

$$\begin{aligned} \|\boldsymbol{u}\|_{L^{3}(\mathbf{C}S_{R_{0}})} + \|\boldsymbol{u}\|_{L^{3}(\Omega_{R_{0}})} + \|\nabla\boldsymbol{u}\|_{L^{3/2}(\mathbf{C}S_{R_{0}})} + \|p\|_{L^{3/2}(\mathbf{C}S_{R_{0}})} \\ &\leq c \left\{ \|\boldsymbol{a}\|_{L^{1}(\partial\Omega)} + \|\boldsymbol{f}\|_{\mathcal{H}^{1}(\Omega)} + \|\gamma\|_{\mathcal{H}^{1}(\Omega)} \right\}. \end{aligned}$$

Moreover, uniqueness holds in the class of all fields $\boldsymbol{u} \in L^3(\mathcal{C}S_{R_0}) \cap L^1_{loc}(\Omega)$, that satisfy (9) for all $\boldsymbol{\phi} \in C_0^{\infty}(\Omega)$, with $\boldsymbol{z} \in D^{1,q}(\Omega)(q > 3/2)$ solution of (10). In this function class (14) is also necessary for the existence of a solution of (11).

2. Proof of Theorem 1

We premise the following well-known results.

Lemma 1. [1,13] Let Ω be a bounded Lipschitz domain of \mathbb{R}^3 and let $\mathbf{f} = \operatorname{div} \mathbf{F}$. There is a positive constant ϵ depending only on Ω such that if $\mathbf{F} \in L^q(\Omega)$, with $q \in (-\epsilon + (3 + \epsilon)/(2 + \epsilon), \epsilon + 3/2)$, then (2) has a unique solution $(\mathbf{u}, p) \in W^{1,q}_{\sigma,0}(\Omega) \times L^q(\Omega)$ and

$$\|\boldsymbol{u}\|_{W^{1,q}(\Omega)} + \|p\|_{L^{q}(\Omega)} \le c \|\boldsymbol{F}\|_{L^{q}(\Omega)},\tag{15}$$

with c depending only on Ω and ϵ .

Lemma 2. [4] Let Ω be a bounded Lipschitz domain of \mathbb{R}^3 . For all $\mathbf{f} \in L^1(\Omega)$, there is $\mathbf{F} \in L^{\frac{3}{2}}(\Omega)$ such that div $\mathbf{F} = \mathbf{f}$ and for all $q \in [1, 3/2)$

$$[3(1-q)+q] \int_{\Omega} |\mathbf{F}|^q \le c |\Omega|^{(3(1-q)+q)/3} \|\mathbf{f}\|_{L^1(\Omega)}^q,$$
(16)

where c is an absolute positive constant.

ZAMP

 \square

Proof. We recall the proof in [4], since we shall need it in the sequel. A solution of div F = f is given by the gradient of the Newtonian potential

$$\boldsymbol{F}(x) = \frac{1}{4\pi} \int_{\Omega} \frac{(x-y) \otimes \boldsymbol{f}(y)}{|x-y|^3} \mathrm{d}v_y.$$

Hence, by the Minkowski inequality,

$$\begin{aligned} \|\boldsymbol{F}\|_{L^{q}(\Omega)} &\leq \frac{1}{4\pi} \int_{\Omega} \left\| \frac{1}{|x-y|} \right\|_{L^{q}(\Omega)} |\boldsymbol{f}(y)| \mathrm{d}y \\ &\leq \frac{1}{4\pi} \sup_{y \in \Omega} \left\| \frac{1}{|x-y|} \right\|_{L^{q}(\Omega)} \|\boldsymbol{f}\|_{L^{1}(\Omega)}. \end{aligned}$$
(17)

Hence, the desired result follows, taking into account that [4]

$$\left\|\frac{1}{|x-y|}\right\|_{L^q(\Omega)} \le \frac{(4\pi)^{2/3} |\Omega|^{(3(1-q)+q)/(3q)}}{(3(1-q)+q)^{1/q}}.$$

Proof of Theorem 1. By Lemma 2, there is a sequence F_k such that $f_k = \operatorname{div} F_k$, $f_k \to f$ strongly in $L^1(\Omega)$ and

$$\left(\frac{3}{2}-q\right) \int_{\Omega} |\boldsymbol{F}_k|^q \le c \|\boldsymbol{f}_k\|_{L^1(\Omega)}^q,\tag{18}$$

for q in a small left neighborhood of 3/2. The field u_k satisfies the relation

$$\int_{\Omega} \nabla \boldsymbol{u}_k \cdot \nabla \boldsymbol{\varphi} = \int_{\Omega} \boldsymbol{f}_k \cdot \boldsymbol{\varphi}, \quad \forall \boldsymbol{\varphi} \in C^{\infty}_{\sigma,0}(\Omega).$$
(19)

To \boldsymbol{u}_k , we can associate a pressure field p_k which satisfies the estimate

$$\|p_k\|_{L^q(\Omega)} \le c \|\nabla \boldsymbol{u}_k\|_{L^q(\Omega)}.$$
(20)

By Lemma 1, the sequence u_k of the solutions to (2) with data f_k satisfies

$$\|\boldsymbol{u}_k - \boldsymbol{u}_h\|_{W^{1,q}(\Omega)} \le c \|\boldsymbol{F}_k - \boldsymbol{F}_h\|_{L^q(\Omega)}.$$
(21)

Putting together (18), (21), we have

$$\left(\frac{3}{2}-q\right)\|\boldsymbol{u}_{k}-\boldsymbol{u}_{h}\|_{W^{1,q}(\Omega)} \leq c\|\boldsymbol{f}_{k}-\boldsymbol{f}_{h}\|_{L^{1}(\Omega)}.$$
(22)

Therefore, \boldsymbol{u}_k is a Cauchy sequence in $W^{1,q}(\Omega)$ for q < 3/2 so that it converges to a field $\boldsymbol{u} \in W^{1,q}(\Omega)$. Letting $k \to +\infty$ and taking into account (19), (22), we see that \boldsymbol{u} is the solution of (2) and

$$\left(\frac{3}{2}-q\right)\|\boldsymbol{u}_{k}-\boldsymbol{u}\|_{W^{1,q}(\Omega)} \leq c\|\boldsymbol{f}_{k}-\boldsymbol{f}\|_{L^{1}(\Omega)}.$$
(23)

Hence, it follows that $\boldsymbol{u} \in W^{1,\frac{3}{2}}_{\sigma,0}(\Omega)$. Moreover, from (20), it follows that $p \in L^{\frac{3}{2}}(\Omega)$ and (6) holds. To prove uniqueness, we have to show that (2) with $\boldsymbol{f} = \boldsymbol{0}$ has only the trivial solution. To this end, denote by $(\boldsymbol{u},p) \in W^{1,\frac{3}{2}}_{\sigma,0}(\Omega) \times L^{\frac{3}{2}}(\Omega)$ a solution of (2). By virtue of Lemma 1, (2) with $\boldsymbol{f} \in C_0^{\infty}(\Omega)$ has a solution $(\boldsymbol{v},Q) \in W^{1,q}_{\sigma,0}(\Omega) \times L^q(\Omega)$ for some q > 3. Thus, an integration by parts yields

$$\int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{f} = 0, \quad \forall \, \boldsymbol{f} \in C_0^{\infty}(\Omega).$$

Hence, the desired result follows.

Remark 2.1. Taking into account the results of [3], we have that if Ω is Lipschitz and

$$\boldsymbol{a} \in L^2(\partial\Omega), \quad \int_{\partial\Omega} \boldsymbol{a} \cdot \boldsymbol{n} = 0, \quad \boldsymbol{f} \in L^1(\Omega),$$

then the equations

$$\Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{f} \quad \text{in} \quad \Omega,$$

div $\boldsymbol{u} = 0 \quad \text{in} \quad \Omega,$
 $\boldsymbol{u} = \boldsymbol{a} \quad \text{on} \quad \partial \Omega$ (24)

have a weak solution $(u, p) \in W^{1, \frac{3}{2})}_{\sigma, \text{loc}}(\Omega) \times L^{\frac{3}{2})}_{\text{loc}}(\Omega)$ and

$$\|\boldsymbol{u}\|_{L^{3}(\Omega)} \leq c \left\{ \|\boldsymbol{a}\|_{L^{2}(\partial\Omega)} + \|\boldsymbol{f}\|_{L^{1}(\Omega)} \right\}.$$

$$(25)$$

If Ω is of class C^1 , then we can take $\boldsymbol{a} \in L^q(\partial \Omega)$ [2], q > 1, and it holds

$$\|\boldsymbol{u}\|_{L^{3}(\Omega)} \le c \left\{ \|\boldsymbol{a}\|_{L^{q}(\partial\Omega)} + \|\boldsymbol{f}\|_{L^{1}(\Omega)} \right\}.$$
(26)

3. Proof of Theorem 2

The equations

$$\Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{0}$$

$$\operatorname{div} \boldsymbol{u} = \boldsymbol{0}$$
(27)

admit the fundamental solution (U(x - y), q(x - y)), with

$$egin{aligned} m{U}(m{t}) &= -rac{1}{8\pi|m{t}|} \left\{ m{1} + rac{m{t}\otimesm{t}}{|m{t}|^2}
ight\}, \ m{q}(m{t}) &= -rac{m{t}}{4\pi|m{t}|^3}. \end{aligned}$$

The simple and double Stokes layer potential with densities ψ and $\varphi \in L^q(\partial \Omega)$ are the pairs defined, respectively, by [11]

$$\boldsymbol{v}[\boldsymbol{\psi}](x) = \int_{\partial\Omega} \boldsymbol{U}(x-\zeta) \cdot \boldsymbol{\psi}(\zeta) \mathrm{d}\sigma_{\zeta},$$
$$P[\boldsymbol{\psi}](x) = \int_{\partial\Omega} \boldsymbol{q}(x-\zeta) \cdot \boldsymbol{\psi}(\zeta) \mathrm{d}\sigma_{\zeta},$$

and

$$\begin{split} \boldsymbol{w}[\boldsymbol{\varphi}](x) &= \int_{\partial\Omega} \boldsymbol{T}'(\boldsymbol{U},\boldsymbol{q})(x-\zeta) \cdot (\boldsymbol{\varphi}\otimes\boldsymbol{n})(\zeta) \mathrm{d}\sigma_{\zeta}, \\ \boldsymbol{\varpi}[\boldsymbol{\varphi}](x) &= -2\mathrm{div} \int_{\partial\Omega} [\boldsymbol{q}(x-\zeta) \cdot \boldsymbol{\varphi}(\zeta)] \boldsymbol{n}(\zeta) \mathrm{d}\sigma_{\zeta}, \end{split}$$

where $T'_{ij}(\boldsymbol{U},\boldsymbol{q})(x-\zeta) = [(\partial_{\zeta_i}U_{jk} + \partial_{\zeta_k}U_{kj}) + q_k](x-\zeta)$. They are analytical solutions of (27) in $\mathbb{R}^3 \setminus \partial\Omega$ and, if Ω is of class $C^{1,\lambda}$ for some $\lambda \in (0,1)$, then the limits [11,12]

$$\lim_{\alpha \to 0^+} \boldsymbol{w}[\boldsymbol{\varphi}](x - \alpha \boldsymbol{n}(\xi)) = \mathcal{W}[\boldsymbol{\varphi}](\xi) = (\frac{1}{2}\mathcal{I} + \mathcal{K})[\boldsymbol{\varphi}](\xi) \in L^1(\partial\Omega),$$
$$\lim_{\alpha \to 0^+} \{\boldsymbol{T}(\boldsymbol{v}[\boldsymbol{\psi}], P[\boldsymbol{\psi}]) \cdot \boldsymbol{n}\} (x - \alpha \boldsymbol{n}(\xi)) = -(\frac{1}{2}\mathcal{I} + \mathcal{K}')[\boldsymbol{\varphi}](\xi) \in L^{\infty}(\partial\Omega)$$

exist for almost all $\xi \in \partial \Omega$, where

$$\mathcal{K}': L^{\infty}(\partial\Omega) \to C^{0,\mu}(\partial\Omega)$$

 $(\mu < \lambda)$ is the adjoint map of \mathcal{K} [11,12]. Hence, it follows that $\mathcal{K} : L^1(\partial\Omega) \to L^1(\partial\Omega)$ is completely continuous so that the operator $\mathcal{W} : L^1(\partial\Omega) \to L^1(\partial\Omega)$ is Fredholm with index zero and Kern $(\frac{1}{2}\mathcal{I} + \mathcal{K}') =$ sp $\{n\} \otimes \mathfrak{F}$, where \mathfrak{F} is the n(n+1)m/2 dimensional space

$$\mathfrak{F} = \{ \boldsymbol{\psi} : \ \boldsymbol{v}[\boldsymbol{\psi}]_{|\Omega_i} = \text{rigid motions}, \boldsymbol{v}[\boldsymbol{\psi}]_{|\mathfrak{C}\Omega_0} = \boldsymbol{0}, P[\boldsymbol{\psi}]_{|\Omega_i \cup \mathfrak{C}\Omega_0} = 0 \} \subset C^{1,\lambda}(\partial\Omega)$$

i = 1..., m [17,15,16,18]. If Ω is of class C^1 by virtue of the results of [2], we have that \mathcal{K} is compact from $L^q(\partial\Omega)$ into itself and from $W^{1,q}(\partial\Omega)$ into itself for all $q \in (1, +\infty)$.

Lemma 3. Let Ω be a bounded domain of \mathbb{R}^3 of class $C^{1,\lambda}$, for some $\lambda > 0$. If $\mathbf{a} \in L^1(\partial \Omega)$ satisfies

$$\int_{\partial\Omega} \boldsymbol{a} \cdot \boldsymbol{n} = 0, \tag{28}$$

then the equations

$$\Delta \boldsymbol{v} - \nabla \boldsymbol{p} = \boldsymbol{0} \quad \text{in} \quad \Omega,$$

div $\boldsymbol{v} = 0 \quad \text{in} \quad \Omega,$
 $\boldsymbol{v} = \boldsymbol{a} \quad \text{on} \quad \partial \Omega$ (29)

have a solution expressed by

$$\begin{aligned} \boldsymbol{u} &= \boldsymbol{w}[\boldsymbol{\varphi}] + \boldsymbol{v}[\boldsymbol{\psi}], \\ \boldsymbol{p} &= \boldsymbol{\varpi}[\boldsymbol{\psi}] + \boldsymbol{P}[\boldsymbol{\psi}], \end{aligned}$$
(30)

for some $\varphi \in L^1(\partial \Omega)$ and $\psi \in \mathfrak{F}$. u, p are analytical in Ω and u takes the value a pointwise almost everywhere, that is,

$$\lim_{\alpha \to 0^+} \boldsymbol{u}(x - \alpha \boldsymbol{n}(\xi)) = \boldsymbol{a}(\xi) \tag{31}$$

for almost all $\xi \in \partial \Omega$, and

$$\|\boldsymbol{u}\|_{L^{3}(\Omega)} \le c \|\boldsymbol{a}\|_{L^{1}(\partial\Omega)}.$$
(32)

If Ω is of class C^1 and $\mathbf{a} \in L^q(\partial \Omega)$, for some q > 1, then the above result hold with $\varphi \in L^q(\partial \Omega)$ and

$$\|\boldsymbol{u}\|_{L^{3}(\Omega)} \leq c \|\boldsymbol{a}\|_{L^{q}(\partial\Omega)}.$$
(33)

Proof. By a simple application of Fredholm's alternative, we see that the functional equation

$$\mathcal{W}[\boldsymbol{\varphi}] = \boldsymbol{a} - \boldsymbol{v}[\boldsymbol{\psi}]_{|\partial\Omega'} \tag{34}$$

has a solution $\boldsymbol{\psi} \in L^1(\partial\Omega)$ for some $\boldsymbol{\psi} \in \mathfrak{F}$. Recall that $\boldsymbol{v}[\boldsymbol{\psi}] \in C^{1,\lambda}(\overline{\Omega})$ [12]. By Gagliardo's trace theorem [5], there is a field $\boldsymbol{\omega} \in W^{1,1}(\Omega)$ such that

$$\boldsymbol{u}(x) = \int_{\Omega} \boldsymbol{T}(\boldsymbol{w}[\boldsymbol{\varphi}], \boldsymbol{\varpi}[\boldsymbol{\varphi}])(x-y) \cdot \nabla \boldsymbol{\omega}(y) \mathrm{d}v_y.$$

Hence,

$$|\boldsymbol{u}(x)| \leq c \int_{\Omega} \frac{|\nabla \boldsymbol{\omega}(y)|}{|x-y|^2} \mathrm{d}v_y.$$

Therefore, (32) follows by repeating the argument used in the proof of Lemma 2. The last part of the lemma is a consequence of the regularity properties of the layer potentials.

Vol. 64 (2013)

Remark 3.2. The operator \mathcal{K} maps subspaces of $L^1(\partial\Omega)$ in more regular spaces with natural estimates (see [11, Ch. 3] and [12, Sections 14, 15]). For instance, $\mathcal{K}[L^q(\partial\Omega)] = C^{0,\mu}(\partial\Omega)$ $(q > 2/\lambda)$ for all $\mu < \lambda - 2/q$. Hence, it follows that, if $\boldsymbol{a} \in C^{0,\mu}(\partial\Omega)$, $\mu \in [0, \lambda]$, then

$$\|\boldsymbol{u}\|_{C^{0,\mu}(\overline{\Omega})} \le c \|\boldsymbol{a}\|_{C^{0,\mu}(\partial\Omega)}.$$
(35)

Moreover,

(i) if $\boldsymbol{a} \in C^{1,\mu}(\partial\Omega), \ \mu > 1 - \lambda$, then

$$\|\boldsymbol{u}\|_{C^{1,\mu}(\overline{\Omega})} + \|p\|_{C^{0,\mu}(\overline{\Omega})} \le c \|\boldsymbol{a}\|_{C^{1,\mu}(\partial\Omega)};$$

(ii) if $\boldsymbol{a} \in W^{1-1/q,q}(\partial\Omega), q \in (1, +\infty)$, then

$$\|\boldsymbol{u}\|_{W^{1,q}(\Omega)} + \|p\|_{L^{q}(\Omega)} \le c \|\boldsymbol{a}\|_{W^{1-1/q,q}(\partial\Omega)}$$

Property (ii) also holds for domains of class C^1 and for $q \in ((3 + \epsilon)/(2 + \epsilon), 3 + \epsilon)$ in Lipschitz domains, where ϵ is a positive number depending only on Ω [1]. Other classical regularity results as well as natural estimates can be find in [13].

Proof of Theorem 2. For $\gamma \in \mathcal{H}^1(\Omega)$, the field

$$\mathcal{V}[\gamma](x) = \frac{1}{4\pi} \int_{\Omega} \frac{(x-y)\gamma(y)}{|x-y|^3} \mathrm{d}v_y$$

belongs to $W^{1,1}(\Omega)$ so that its trace satisfies

 $\|\operatorname{tr} \mathcal{V}[\gamma]_{\partial\Omega}\|_{L^1(\partial\Omega)} \le c \|\mathcal{V}[\gamma]\|_{W^{1,1}(\Omega)} \le c \|\gamma\|_{\mathcal{H}^1(\Omega)}.$ (36)

By Lemma 3, the equations

$$\Delta \boldsymbol{v} - \nabla Q = \boldsymbol{0} \qquad \text{in } \Omega,$$

$$\operatorname{div} \boldsymbol{v} = 0 \qquad \text{in } \Omega,$$

$$\boldsymbol{v} = \boldsymbol{a} - \operatorname{tr} \mathcal{V}[\gamma]_{\partial\Omega} \quad \text{on } \partial\Omega,$$

$$\int_{\partial\Omega} (\boldsymbol{a} - \operatorname{tr} \mathcal{V}[\gamma]_{\partial\Omega}) \cdot \boldsymbol{n} = 0$$
(37)

have a solution (v, Q), and denoting by (v_f, p_f) , the solution of (2) given by Theorem 1, it is obvious that

satisfies (7) and (8).

If (u_k, p_k) is the solution of (7) for a regular a_k , an integration by parts yields

$$\int_{\Omega} \boldsymbol{u}_{k} \cdot \boldsymbol{\phi} = \int_{\partial \Omega} \boldsymbol{a}_{k} \cdot \boldsymbol{T}(\boldsymbol{z}, \vartheta) \cdot \boldsymbol{n} + \int_{\Omega} \gamma \vartheta + \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{z}$$
(38)

for all $\varphi \in C_0^{\infty}(\Omega)$, with (z, ϖ) solution of (10). Let $a_k \to a$ strongly in $L^1(\partial \Omega)$. Since

$$\|\boldsymbol{u} - \boldsymbol{u}_k\|_{L^q(\Omega)} \le c \|\boldsymbol{a} - \boldsymbol{a}_k\|_{L^1(\partial\Omega)}$$

for some q > 1, we can let $k \to +\infty$ in (38) to see that u satisfies (9). Calling (u, p), a very weak solution of (2) (in the sense of J. Nečas [14]), we have that (7) has a unique very weak solution.

The following problem

is of some interest in the theory of the Navier–Stokes equations (see Ch. III of [6]). As an immediate consequence of Theorem 2, we have

Corollary 1. Let Ω be a bounded domain of \mathbb{R}^3 of class C^2 . If $\gamma \in \mathcal{H}^1(\Omega)$ and $\boldsymbol{a} \in L^1(\partial\Omega)$, then (39) has a weak solution $\boldsymbol{v} \in W^{1,3)}_{\text{loc}}(\Omega)$ and

$$\|\boldsymbol{v}\|_{L^{3}(\Omega)} \le c \left\{ \|\boldsymbol{a}\|_{L^{1}(\partial\Omega)} + \|\boldsymbol{\gamma}\|_{\mathcal{H}^{1}(\Omega)} \right\}.$$

$$\tag{40}$$

Remark 3.3. Note that a very weak solution of (7) (in the sense of J. Nečas [14]) can also be defined as a field $\boldsymbol{u} \in L^1_{\text{loc}}(\Omega)$ which satisfies⁴

$$\int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{\phi} = \int_{\partial \Omega} \boldsymbol{a} \cdot (\partial_n \boldsymbol{z} - \vartheta \boldsymbol{n}) + \int_{\Omega} \vartheta \gamma + \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{z}$$
(41)

for all $\boldsymbol{\phi} \in W_0^{1,\infty}(\Omega)$. Now, choosing first $\boldsymbol{\phi} = \Delta \boldsymbol{\eta}$, with $\boldsymbol{\eta} \in C^2_{\sigma,0}(\Omega) = \{\boldsymbol{\eta} \in C^2_{\sigma}(\overline{\Omega}) : \boldsymbol{\eta}_{|\partial\Omega} = \mathbf{0}\}$, then $\boldsymbol{\phi} = \nabla \omega$ with $\omega \in C^1(\overline{\Omega})$, we see that \boldsymbol{u} also satisfies the relations

$$\int_{\Omega} \boldsymbol{u} \cdot \Delta \boldsymbol{\eta} = \int_{\partial \Omega} \boldsymbol{a} \cdot \partial_n \boldsymbol{\eta} + \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{\eta}, \quad \forall \boldsymbol{\eta} \in C^1_{\sigma,0}(\Omega) \cap C^2(\overline{\Omega}),$$

$$\int_{\Omega} \boldsymbol{u} \cdot \nabla \omega = \int_{\partial \Omega} \omega \boldsymbol{a} \cdot \boldsymbol{n} - \int_{\Omega} \gamma \omega, \quad \forall \omega \in C^1(\overline{\Omega}),$$
(42)

that represent a more popular definition of a very weak solution to (7) [8]. Note that, in particular, (42) yields

$$\int_{\Omega}^{\Omega} \boldsymbol{u} \cdot \Delta \boldsymbol{\eta} = \int_{\Omega}^{\Omega} \boldsymbol{f} \cdot \boldsymbol{\eta}, \quad \forall \boldsymbol{\eta} \in C^{\infty}_{\sigma,0}(\Omega),$$

$$\int_{\Omega}^{\Omega} \boldsymbol{u} \cdot \nabla \omega = -\int_{\Omega}^{\Omega} \gamma \omega, \quad \forall \omega \in C^{\infty}_{0}(\Omega),$$
(43)

i.e, u satisfies (7) in the sense of the distributions.

4. Proof of Theorem 3

We can repeat the classical argument of the potential theory we outlined in Sect. 3 to see that the problem

$$\Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{0} \quad \text{in} \quad \Omega,$$

div $\boldsymbol{u} = 0 \quad \text{in} \quad \Omega,$
 $\boldsymbol{u} = \boldsymbol{a} \quad \text{on} \quad \partial \Omega$ (44)

has a solution expressed by (30) for some $\varphi \in L^1(\partial \Omega)$ and $\psi \in \mathfrak{G}$, with

$$\mathfrak{G} = \{ \boldsymbol{\psi} : \boldsymbol{v}[\boldsymbol{\psi}]_{|\Omega_i} = \text{rigid motions}, P[\boldsymbol{\psi}]_{|\Omega_i} = 0, i = 1..., m \} \subset C^{1,\lambda}(\partial\Omega).$$

Let \mathfrak{C} be the linear subspace of all $\psi \in \mathfrak{G}$ such that $v[\psi]_{|\Omega'} = \text{constant}^5$. A well-known argument (see, *e.g.*, [17,15,16,18]) assures that dim $\mathfrak{C} = 3$ and if $\{\psi_i\}$ is a basis of \mathfrak{C} , then $\int_{\partial\Omega} \psi_i$ is a basis of \mathbb{R}^3 . Therefore, there is $\bar{\psi} \in \mathfrak{C}$ such that

$$\int\limits_{\partial\Omega} (\boldsymbol{\psi} + \bar{\boldsymbol{\psi}}) = \mathbf{0}$$

 $^{^4}$ Note that this corresponds to a different decomposition of the Stokes operator.

⁵ Clearly, the pairs $(\boldsymbol{v}[\boldsymbol{\psi}], P[\boldsymbol{\psi}])$ are the solutions of (13).

Vol. 64 (2013)

and, putting

the pair

$$\boldsymbol{u}' = \boldsymbol{w}[\boldsymbol{\varphi}] + \boldsymbol{v}[\tilde{\boldsymbol{\psi}}] + \boldsymbol{\kappa},$$

$$\boldsymbol{p}' = \boldsymbol{\varpi}[\boldsymbol{\psi}] + \boldsymbol{P}[\tilde{\boldsymbol{\psi}}]$$
(45)

is an analytical solution of (44) such that $u' - \kappa \in L^3$ in a neighborhood of infinity. A simple integration yields

$$\int_{\partial\Omega} (\boldsymbol{a} - \boldsymbol{\kappa}) \cdot \boldsymbol{\psi}' = 0, \quad \forall \, \boldsymbol{\psi}' \in \mathfrak{C}.$$

Hence, it follows that if

T

$$\int_{\partial\Omega} \boldsymbol{a} \cdot \boldsymbol{\psi}' = 0, \quad \forall \, \boldsymbol{\psi}' \in \mathfrak{C}, \tag{46}$$

then u satisfies $(11)_4$. Completing the standard procedure of "adding" to (u', p') suitable volume potentials, we see that (11) has a solution expressed by

for some $\varphi \in L^1(\partial \Omega)$ and $\psi \in C^{1,\lambda}(\partial \Omega)$ such that $\int_{\partial \Omega} \psi = \mathbf{0}$, where

$$\mathcal{E}[\boldsymbol{f}] = \int_{\Omega}^{\Omega} \boldsymbol{U}(x-y) \cdot \boldsymbol{f}(y) \mathrm{d}v_y,$$

$$\mathcal{Q}[\boldsymbol{f}] = \int_{\Omega}^{\Omega} \boldsymbol{q}(x-y) \cdot \boldsymbol{f}(y) \mathrm{d}v_y.$$
(48)

Let a_k be a sequence of regular fields on $\partial\Omega$ which converges strongly to a in $L^1(\partial\Omega)$ and let (u_k, p_k) be the solution of (11) with data (a_k, f, γ) . Let g be a regular function in \mathbb{R}^3 , vanishing outside S_{2R} , equal to 1 in S_R and such that $|\nabla g| \leq cR^{-1}$. By an integration by parts, we have

$$\int_{\Omega} g \boldsymbol{u}_{k} \cdot \boldsymbol{\phi} = \int_{\partial \Omega} \boldsymbol{a}_{k} \cdot \boldsymbol{T}(\boldsymbol{z}, \vartheta) \cdot \boldsymbol{n} + \int_{\Omega} g \vartheta \gamma + \int_{\Omega} g \boldsymbol{f} \cdot \boldsymbol{z}$$

$$- \int_{\Omega} [\boldsymbol{u}_{k} \cdot \boldsymbol{T}(\boldsymbol{z}, \vartheta) - \boldsymbol{z} \cdot \boldsymbol{T}(\boldsymbol{u}_{k}, p_{k})] \cdot \nabla g.$$
(49)

By the properties of the function g, Hölder inequality, the summability properties of (u_k, p_k) and the behavior at infinity of $(\boldsymbol{z}, \vartheta)$

$$\begin{split} \left| \int_{\Omega} \boldsymbol{u}_{k} \cdot \boldsymbol{T}(\boldsymbol{z}, \vartheta) \cdot \nabla g \right| &\leq \|\boldsymbol{u}_{k}\|_{L^{3}(S_{2R} \setminus S_{R})} \big\{ \|\nabla \boldsymbol{z}\|_{L^{3/2}(S_{2R} \setminus S_{R})} + \|\vartheta\|_{L^{3/2}(S_{2R} \setminus S_{R})} \big\} \\ &\leq c \|\boldsymbol{u}_{k}\|_{L^{3}(S_{2R} \setminus S_{R})} \left\{ \int_{R}^{2R} \frac{\mathrm{d}r}{r} \right\}^{2/3} \leq c \|\boldsymbol{u}_{k}\|_{L^{3}(S_{2R} \setminus S_{R})} \\ &\left| \int_{\Omega} \boldsymbol{z} \cdot \boldsymbol{T}(\boldsymbol{u}_{k}, p_{k}) \cdot \nabla g \right| \leq c \big\{ \|\nabla \boldsymbol{u}_{k}\|_{L^{3/2}(S_{2R} \setminus S_{R})} + \|p_{k}\|_{L^{3/2}(S_{2R} \setminus S_{R})} \big\}. \end{split}$$

 $ilde{oldsymbol{\psi}} = oldsymbol{\psi} + ar{oldsymbol{\psi}}, \quad oldsymbol{\kappa} = -oldsymbol{v}[ar{oldsymbol{\psi}}]_{ert \partial \Omega},$

Therefore, letting $R \to +\infty$ in (49) yields

$$\int\limits_{\Omega} oldsymbol{u}_k \cdot oldsymbol{\phi} = \int\limits_{\partial\Omega} oldsymbol{a}_k \cdot oldsymbol{T}(oldsymbol{z},artheta) \cdot oldsymbol{n} + \int\limits_{\Omega} artheta \gamma + \int\limits_{\Omega} oldsymbol{f} \cdot oldsymbol{z}.$$

Hence, (9) follows by letting $k \to +\infty$.

To prove the last part of the theorem, it is sufficient to choose in (9) every pair $(v[\psi'], P[\psi'])$, with $\psi' \in \mathfrak{C}$.

References

- Brown, R.M., Shen, Z.: Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44, 1183– 1206 (1995)
- Fabes, E.B., Jodeit, M. Jr.., Rivière, N.M.: Potential techniques for boundary value problems on C¹ domains. Acta Math. 141, 165–186 (1978)
- Fabes, E.B., Kenig, C.E., Verchota, G.C.: Boundary value problems for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)
- Fiorenza, A., Sbordone, C.: Existence and uniqueness results for solutions of nonlinear equations with right hand side in L¹. Studia Math. 127, 223–231 (1998)
- Gagliardo, E.: Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabli. Rend. Sem. Mat. Padova 27, 284–305 (1957)
- 6. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady State Problems, 2nd edn, Springer Monographs in Mathematics, Springer, Berlin (2011)
- Galdi, G.P., Simader, C.G., Sohr, H.: On the Stokes problem in Lipschitz domains. Ann. Mat. Pura Appl. 167, 147– 163 (1994)
- 8. Galdi, G.P., Simader, C.G., Sohr, H.: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in $W^{-1/q,q}$. Math. Ann. 331, 41–74 (2005)
- 9. Greco, L., Iwaniec, T., Sbordone, C.: Inverting the p-harmonic operator. Manuscripta Math. 92, 249–258 (1997)
- Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119, 129–143 (1992)
- 11. Ladyzhenskaia, O.A.: The Mathematical Theory of Viscous Incompressible Fluid. Gordon and Breach, London (1969)
- 12. Miranda, C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)
- Mitrea, M., Taylor, M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955– 987 (2001)
- 14. Nečas, J.: Les méthodes directes en théorie des équations élliptiques. Masson-Paris and Academie-Prague (1967)
- 15. Russo, R.: On the existence of solutions to the stationary Navier–Stokes equations. Ricerche Mat. **52**, 285–348 (2003) 16. Russo, R., Tartaglione, A.: On the Robin problem for Stokes and Navier–Stokes systems. Math. Models Methods Appl.
- Sci. 19, 701–716 (2006)
- Russo, A., Tartaglione, A.: On the Oseen and Navier-Stokes systems with a slip boundary condition. Appl. Math. Lett. 22, 674–678 (2009)
- 18. Tartaglione, A.: On the Stokes problem with slip boundary conditions. CAIM 1, 186–205 (2010)

Antonio Russo Largo Aldifreda 9 81100 Caserta Italy

Alfonsina Tartaglione Dipartimento di Matematica e Fisica Seconda Università degli Studi di Napoli Via Vivaldi, 43 81100 Caserta, Italy e-mail: alfonsina.tartaglione@unina2.it

(Received: July 10, 2012)