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Abstract. General solutions for the problems of an elastic half-space and an elastic half-plane, respectively, subjected to a
symmetrically distributed normal force of arbitrary profile are analytically derived using a simplified strain gradient elas-
ticity theory (SSGET) that contains one material length scale parameter. Mindlin’s potential function method and Fourier
transforms are employed in the formulation, and the half-space and half-plane contact problems are solved in a unified man-
ner. The specific solutions for the problems of a half-space/plane subjected to a concentrated normal force or a uniformly
distributed normal force are obtained by directly applying the general solutions, which recover the existing classical elastic-
ity-based solutions of the Flamant and Boussinesq problems as special cases. In addition, the indentation problems of an
elastic half-space indented by a flat-ended cylindrical punch, a spherical punch, and a conical punch, respectively, are solved
using the general solutions, leading to hardness formulas that are indentation size- and material microstructure-dependent.
Numerical results reveal that the displacement and stress fields in a half-space/plane given by the current SSGET-based
solutions are smoother than those predicted by the classical elasticity-based solutions and do not exhibit the discontinuity
and/or singularity displayed by the latter. Also, the indentation hardness values based on the newly obtained half-space
solution are found to increase with decreasing indentation radius and increasing material length scale parameter, thereby
explaining the microstructure-dependent indentation size effect.
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1. Introduction

Due to a lack of any material length scale parameter, classical continuum theories cannot explain size
effects exhibited by many materials at the micron and nanometer scales (e.g., [2,7,21,37,45]). Hence,
higher-order elasticity theories have been developed to interpret microstructure-dependent size effects on
elastic properties, which include the Cosserat theory [8], couple stress theories (e.g., [23,32,36,38,46,47,
50]), and strain gradient elasticity theories (e.g., [12,15,33–35]).

The general strain gradient elasticity theory of Mindlin [33] for an isotropic material contains 16 mate-
rial parameters in addition to the two Lamé constants, which are challenging to determine experimentally
(e.g., [24]). Difficulties also arise from having to deal with the associated higher-order equilibrium equa-
tions and extra boundary conditions. Owing to these challenges, Mindlin’s general theory has not been
widely used in modeling size-dependent material responses.

Simplified versions of the strain gradient elasticity theory of Mindlin [33] have been suggested (e.g.,
[1,12,17,48]). Such simplified models are mathematically more tractable and are quite desirable in view
of the formidable experimental efforts required in determining additional material parameters.

These simplified strain gradient elasticity theories have been employed to analyze various problems
in solid mechanics, such as fracture [17,42], mechanics of defects [25,26], thick-walled shells [15,16], and
Eshelby-type inclusion problems [10–14,29–31]. The two-dimensional (2-D) and three-dimensional (3-D)
problems of a point force in an infinite elastic body have also been studied using simplified strain gradient
elasticity theories (e.g., [11,14,22,25,39]).
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However, the Flamant and Boussinesq problems have not been satisfactorily explored using such the-
ories. The 2-D Flamant problem was analyzed in [27] and [52] employing the simplified strain gradient
elasticity theories suggested in [1] and [48], respectively. But these solutions are not exact, since the
boundary conditions (BCs) used are not complete or variationally consistent. The plane strain Flamant
problem was recently re-examined in [18] using correct BCs and a dipolar gradient elasticity theory
(a simplified version of the general theory of Mindlin [33]). Like in [27,52], Georgiadis and Anagnostou
[18] also applied the Fourier transform method to directly solve the displacement-equations of equilibrium,
which are fourth-order partial differential equations (PDEs). Due to the difficulties in evaluating some
integrals involved, the solution for the 2-D Flamant problem provided in [18] is not in a closed form. For
3-D contact problems, no analytical solution that uses correct and complete boundary conditions based
on a strain gradient elasticity theory has been reported.

In the current paper, the 3-D problem of a half-space subjected to an axisymmetrically distributed
normal force of arbitrary profile is solved together with the corresponding 2-D half-plane problem in a uni-
fied manner using a simplified strain gradient elasticity theory (SSGET) that contains only one material
length scale parameter. The potential function method of Mindlin [33] and Fourier transforms are utilized
in deriving the general solutions. The specific solutions for the problems of a half-space/plane subjected
to a concentrated normal force or a uniformly distributed normal force are then obtained by directly
applying the general solutions. The solutions of the Flamant and Boussinesq problems based on classical
elasticity are recovered as special cases of the SSGET-based solutions for the concentrated normal force
problems. By using the general solutions, the indentation problems of an elastic half-space indented by
a flat-ended cylindrical punch, a spherical punch, and a conical punch, respectively, are solved, leading
to size- and microstructure-dependent hardness formulas. To quantitatively illustrate the newly obtained
solutions and formulas, numerical results are also presented.

2. Potential function method

2.1. Simplified strain gradient elasticity theory

In a first-order strain gradient elasticity theory, the strain energy density function w has the form:

w = w(εij , κijk), (1)

where εij and κijk are, respectively, the components of the infinitesimal strain and strain gradient tensors
defined by

εij =
1
2

(ui,j + uj,i) , κijk = εij,k, (2a,b)

with ui being the components of the displacement vector.
For an isotropic linear elastic material, the general expression of w can be written as [12,35]

w =
1
2
λεiiεjj + μεijεij + c1κijjκikk + c2κiikκkjj + c3κiikκjjk + c4κijkκijk + c5κijkκkji, (3)

where λ and μ are Lamé’s constants in classical elasticity, and c1−c5 are additional material constants. In
Eqs. (1)–(3) and throughout the paper, the summation convention and standard index notation are used,
with the Greek indices running from 1 to 2 and the Latin indices from 1 to 3 unless otherwise indicated.

As stated in [12], when c1 = c2 = c5 = 0, c3 = 1
2λl

2 and c4 = μl2, Eq. (3) reduces to

w =
1
2
λεiiεjj + μεijεij + l2

(
1
2
λκiikκjjk + μκijkκijk

)
, (4)

which is the strain energy density function adopted in the simplified strain gradient elasticity theory
(SSGET) (e.g., [1,15,26]). In Eq. (4), l is a material length scale parameter having the dimension of
length, which can be determined experimentally or computationally (e.g., [12,24,43]).
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It follows from Eq. (4) that the Cauchy stress, τij , and the double stress, μijk, are given by

τij =
∂w

∂εij
= λεllδij + 2μεij = τji,

μijk =
∂w

∂κijk
= l2 (λκllkδij + 2μκijk) = l2τij,k. (5a,b)

The total stress, σij , is related to the Cauchy stress through [15]

σij = τij − μijk,k = (1 − l2∇2)τij , (6)

and the equilibrium equations have the form:

σij,j + fi = 0, (7)

where fi are the components of the body force.
Equation (7) can be rewritten in terms of the displacement vector u = uiei as [15]

(1 − l2∇2) [(λ+ 2μ)∇(∇ · u) − μ∇ × (∇ × u)] + f = 0, (8)

which is the displacement-equation of equilibrium based on the SSGET. In Eq. (8), ∇,∇·,∇×, and ∇2

denote, respectively, the gradient, divergence, curl, and Laplacian of the indicated quantity.

2.2. Potential function method of Mindlin

The displacement-equation of equilibrium in the general strain gradient elasticity theory of Mindlin [33]
has the form:

(λ+ 2μ)(1 − l21∇2)∇(∇ · u) − μ(1 − l22∇2)∇ × (∇ × u) + f = 0, (9)

where l1 and l2 are two material length scale parameters that can be related to the material constants ci
by (e.g., [22,43])

l21 =
2(c1 + c2 + c3 + c4 + c5)

λ+ 2μ
, l22 =

(c3 + 2c4 + c5)
2μ

. (10)

Clearly, Eq. (9) reduces to Eq. (8) when l1 = l2 = l.
The general solution of Eq. (9) is given by [33]

u = B − l22∇(∇ · B) − 1
2
(α− l21∇2)∇ [

r · (1 − l22∇2)B +B0

]
, (11a)

where α = 1/[2(1−ν)], r is the position vector, and B and B0 are, respectively, a vector potential function
and a scalar potential function satisfying

μ(1 − l22∇2)∇2B = −f ,

μ(1 − l21∇2)∇2B0 = r · (1 − l21∇2)f − 4l21∇ · f . (11b,c)

In the absence of body forces, f = 0 and Eqs. (11b,c) become

μ(1 − l22∇2)∇2B = 0,

μ(1 − l21∇2)∇2B0 = 0.
(11d,e)

When l1 = l2 = 0, Eq. (9) reduces to the Navier displacement-equation of equilibrium in classical
elasticity, Eq. (11a) recovers the general solution of the Navier equation, and B and B0 defined in Eqs.
(11b,c) become the well-known Papkovitch-Neuber potential functions (e.g., [53]).

When l1 = 0 and l2 = l, Eq. (9) reads, with f = 0,

μ∇2u + (λ+ μ)∇(∇ · u) + μl2∇2[∇ × (∇ × u)] = 0, (12)
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and Eqs. (11a,d,e) reduce to

u = B − l2∇(∇ · B) − α

2
∇ [

r · (1 − l2∇2)B +B0

]
, (13a)

μ(1 − l2∇2)∇2B = 0,

μ∇2B0 = 0.
(13b,c)

Note that in reaching Eq. (12) use has been made of the identity: ∇(∇ · u) − ∇ × (∇ × u) = ∇2u (e.g.,
[38]). Equations (12) and (13a,b,c) are the same as those originally provided in [36] in the absence of
body forces and body couples. The solution given in Eqs. (12) and (13a,b,c) was adopted in [9] to solve
axisymmetric contact problems.

Since Eq. (9) becomes identical to Eq. (8) when l1 = l2 = l, the general solution of Eq. (8) can be
readily obtained from Eqs. (11a,b,c) with l1 = l2 = l as

u = B − l2∇(∇ · B) − 1
2
(α− l2∇2)∇ [

r · (1 − l2∇2)B +B0

]
, (14a)

with

(1 − l2∇2)∇2B = 0,

(1 − l2∇2)∇2B0 = 0 (14b,c)

in the absence of body forces.
The use of Mindlin’s potential function method has reduced the problem of solving the fourth-order

partial differential equations in Eq. (8) (with f = 0) to the problem of finding the potential functions B
and B0 satisfying Eqs. (14b,c). This approach is adopted in the current study to solve half-space (3-D)
and half-plane (2-D) contact problems, which is more advantageous than that employed in [18,27,52] in
solving the 2-D Flamant problem, where the Fourier transform method was directly applied to solve the
fourth-order displacement-equations of equilibrium.

3. Formulation

The half-plane and half-space contact problems considered in this study are shown in Fig. 1. It is assumed
that body forces are absent so that Eqs. (14a,b,c) give the solution of Eq. (8), which is the final governing
equation in the SSGET.

For a half-space (occupying x3 ≥ 0) subjected to an axisymmetrically distributed normal force, the
vector potential function B takes the form (0, 0, B3) and the scalar potential function B0 is non-zero
(e.g., [9,53]). As a result, the displacement components in this case can be obtained from Eq. (14a) as

x3

x1

p(r)

o

x3

x1

x2

p(r)

o

(a) (b)

Fig. 1. A half-plane (a) and a half-space (b) subjected to a symmetrically distributed normal force of arbitrary profile
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uβ = −l2B3,3β − 1
2
(α− l2∇2)

[
x3(1 − l2∇2)B3 +B0

]
,β
,

u3 = B3 − l2B3,33 − 1
2
(α− l2∇2)

[
x3(1 − l2∇2)B3 +B0

]
,3
, (15a,b)

where B3 and B0 satisfy

(1 − l2∇2)∇2B3 = 0,

(1 − l2∇2)∇2B0 = 0,
(15c,d)

which are directly obtained from Eqs. (14b,c).

3.1. Boundary conditions

The general form of boundary conditions (BCs) in the SSGET was obtained in [15] using a variational
formulation based on the principle of minimum total potential energy, which reads

σijnj − (μijknk),j + (μijknknl),lnj = ti or ui = ui

μijknjnk = qi or ui,lnl = ∂ui

∂n

}
on ∂Ω, (16)

where ti and qi are, respectively, the components of the Cauchy traction vector and double stress traction
vector (see [12] for the general expressions of ti and qi), ∂Ω is the smooth boundary surface of the domain
Ω occupied by the elastic body satisfying Eq. (8), ni are the components of the unit outward normal
vector on ∂Ω, and the overhead bar represents the prescribed value.

For the current half-space problem, t = pe3 and q = 0 on x3 = 0. Then, it follows from Eqs. (5a,b),
(6) and (16) that, with n = −e3,

p+ (1 − l2∇2)τ33 = 0,
(1 − l2∇2)τα3 − l2(τα1,31 + τα2,32) = 0,

l2τi3,3 = 0

⎫⎬
⎭ on x3 = 0, (17a-c)

where p = p(r) and use has been made of Eq. (17c) in reaching Eq. (17a).
For the half-plane (plane strain) problem (see Fig. 1a), Eqs. (17a-c) become, with τ21 = τ23 = 0 and

τ22 = τ22(x1, x3),

p+ (1 − l2∇2)τ33 = 0,
(1 − l2∇2)τ31 − l2τ11,31 = 0,

l2τ13,3 = 0,
l2τ33,3 = 0

⎫⎪⎪⎬
⎪⎪⎭

onx3 = 0, (18a-d)

which can be readily shown to be the same as the BCs used in [18] for the plane strain half-plane problem
when p is a concentrated normal force acting at (x1, x3) = (0, 0). Clearly, when l = 0, Eqs. (17a-c) reduce
to τi3 = −pδi3 on x3 = 0, which are the BCs for the half-space problem based on classical elasticity (e.g.,
[54]).

The BCs in Eqs. (17a-c) or Eqs. (18a-d) will be used to determine the constants involved in the
potential functions B3 and B0, which are to be obtained from solving Eqs. (15c,d).

3.2. Solutions in the Fourier domain

The Fourier transform and Hankel transform methods have been widely used to solve half-space/plane
contact mechanics problems based on classical elasticity and surface elasticity (e.g., [4,19,41,51,53]). The
Fourier transform method is employed herein to solve the half-space and half-plane contact problems that
have been formulated in Sect. 3.1 using the SSGET and Mindlin’s potential function method.
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The Fourier transform pair is given by

f(ξ) =

∞∫
−∞

f(x)e−iξxdx,

f(x) =
1
2π

∞∫
−∞

f(ξ)eiξxdξ,

(19a,b)

and the double Fourier transform pair is defined as

f(ξ1, ξ2) =

∞∫
−∞

∞∫
−∞

f(x1, x2)e−iξαxαdx1dx2,

f(x1, x2) =
1

(2π)2

∞∫
−∞

∞∫
−∞

f(ξ1, ξ2)eiξαxαdξ1dξ2,

(20a,b)

where the overhead bar denotes the function in the transformed space and i is the imaginary unit satis-
fying i2 = −1.

Taking Fourier transforms (see Eq. (20a)) on Eq. (15c) and Eq. (15d), respectively, yields

l2
∂4B3

∂x4
3

− (1 + 2l2ξ2)
∂2B3

∂x2
3

+ (1 + l2ξ2)ξ2B3 = 0,

l2
∂4B0

∂x4
3

− (1 + 2l2ξ2)
∂2B0

∂x2
3

+ (1 + l2ξ2)ξ2B0 = 0,
(21a,b)

where ξ2 = ξαξα. The solutions of Eqs. (21a,b) give, for the displacement u (and thus B3 and B0) to be
finite at x3 → ∞,

B0 = Ae−x3|ξ| +Be−x3ζ ,

B3 = Ce−x3|ξ| +De−x3ζ ,
(22a,b)

where ζ ≡
√
ξ2 + 1

l2 , and A,B,C and D are unknowns to be determined from the BCs.
Next, performing Fourier transforms (see Eq. (20a)) on Eqs. (15a,b) and then using Eqs. (22a,b) result

in the displacement components in the Fourier domain for the half-space problem as

uβ = − i

2
ξβ

{
α (Cx3 +A) e−x3|ξ| − [

(1 − α)B + 2Dl2ζ
]
e−x3ζ

}
,

u3 =
1
2

[(2 − α)C + α |ξ| (Cx3 +A)] e−x3|ξ| − 1
2

[
(1 − α)Bζ + 2Dl2ξ2

]
e−x3ζ .

(23a,b)

These expressions also hold for the plane strain half-plane problem except that ξ1 in Eqs. (23a,b) needs
to be replaced by ξ. That is, the displacement components for the half-plane problem in the transformed
space are given by

u1 = − i

2
ξ
{
α (Cx3 +A) e−x3|ξ| − [

(1 − α)B + 2Dl2ζ
]
e−x3ζ

}
,

u2 = 0, (24a-c)

u3 =
1
2

[(2 − α)C + α |ξ| (Cx3 +A)] e−x3|ξ| − 1
2

[
(1 − α)Bζ + 2Dl2ξ2

]
e−x3ζ .

It then follows from Eqs. (23a,b), (2a), (5a) and (20a) that the Cauchy stress components in the
Fourier domain for the half-space problem are
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τββ

μ
= α

[−2νC |ξ| + (Cx3 +A)ξ2β
]
e−x3|ξ| +

{
B

[
ανl−2 − (1 − α)ξ2β

] − 2Dl2ξ2βζ
}
e−x3ζ ,

τ12

μ
= ξ1ξ2

{
α(Cx3 +A)e−x3|ξ| − [

(1 − α)B + 2Dl2ζ
]
e−x3ζ

}
,

τβ3

μ
= iξβ

{
[(1 − α)C + α(Cx3 +A) |ξ|] e−x3|ξ| − [

(1 − α)Bζ +D
(
1 + 2l2ξ2

)]
e−x3ζ

}
,

τ33

μ
= − [

C |ξ| + α(Cx3 +A)ξ2
]
e−x3|ξ| +

{
B

[
1
2
l−2 + (1 − α)ξ2

]
+ 2Dl2ξ2ζ

}
e−x3ζ .

(25a-d)

Note that no summation is implied on β in Eq. (25a).
For the plane strain half-plane problem, the non-zero stress components in the Fourier domain can be

obtained from Eqs. (25a-d) as, after replacing ξ1 by ξ and setting ξ2 = 0,

τ11

μ
= α

[−2νC |ξ| + (Cx3 +A)ξ2
]
e−x3|ξ| +

{
B

[
ανl−2 − (1 − α)ξ2

] − 2Dl2ξ2ζ
}
e−x3ζ ,

τ13

μ
= iξ

{
[(1 − α)C + α(Cx3 +A) |ξ|] e−x3|ξ| − [

(1 − α)Bζ +D
(
1 + 2l2ξ2

)]
e−x3ζ

}
,

τ33

μ
= − [

C |ξ| + α(Cx3 +A)ξ2
]
e−x3|ξ| +

{
B

[
1
2
l−2 + (1 − α)ξ2

]
+ 2Dl2ξ2ζ

}
e−x3ζ ,

τ22

μ
= να

(
−2C |ξ| e−x3|ξ| +Bl−2e−x3ζ

)
.

(26a-d)

It can be readily verified that with α = 1/[2(1−ν)], the normal stress components listed in Eqs. (26a,c,d)
satisfy the relation τ22 = ν(τ11 + τ33), as expected for a plane strain problem.

Taking Fourier transforms (see Eq. (20a) and Eq. (19a)) on Eqs. (17a-c) and Eqs. (18a-d), respectively,
and then using Eqs. (25a-d) and Eqs. (26a-c) in the resulting equations will lead to the BCs in the Fourier
domain for the half-space and half-plane problems, respectively. These BCs, which happen to have the
same form for the two problems, are given by

αμξ2A+ μ |ξ| (1 + 2αl2ξ2)C = p,

αl2 |ξ| ζ2A+
[
αν + (α− 1)l2ξ2

]
ζB + (1 − α)l2ζ2C − 2l4ξ2ζ2D = 0,

αl2 |ξ|3A−
[
1
2

+ (1 − α)l2ξ2
]
ζB + (1 − α)l2ξ2C − 2l4ξ2ζ2D = 0,

− αξ2A+ (1 − α)ζ2B + (2α− 1) |ξ|C + (1 + 2l2ξ2)ζD = 0,

(27)

where p is the image of the distributed normal force p in the Fourier domain. The solution of this linear
algebraic equation system gives

A = −2(1 − ν)p
μξ2ϕ(ξ)

[
(1 − 2ν)(1 − ν + 2l4ξ2ζ2) + 4νl4ζ |ξ|3

]
, B =

4(1 − ν)l4ξ2p
μϕ(ξ)

,

C =
2(1 − ν)p
μ |ξ|ϕ(ξ)

[
1 − ν + 2l4ξ2ζ (ζ − |ξ|)] , D = − (1 − ν)p

μζϕ(ξ)
(
1 + 2l2ξ2

)
,

(28a-d)

where

ϕ(ξ) = (1 − ν)(1 + 2l2ξ2) + 2l6ζ2ξ2(ζ − |ξ|)2. (28e)

Note that A,B,C and D are all even functions of ξ and that ϕ(ξ) ≥ 1 − ν regardless of the value of ξ.
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Using Eqs. (28a-d) in Eqs. (23a,b) and (25a-d) will give the final expressions of the displacement and
stress components in the Fourier domain for the half-space problem, and substituting Eqs. (28a-d) into
Eqs. (24a-c) and (26a-d) will yield the displacement and stress expressions in the Fourier domain for the
plane strain half-plane problem.

4. General solutions

To obtain the displacement and stress components in the physical space from the corresponding expres-
sions in the Fourier domain derived in Section 3.2, inverse Fourier transforms can be applied, as shown
below in this section.

4.1. Half-plane problem

For the half-plane problem with a symmetrically distributed normal force p(r) (see Fig. 1a), p is an even
function of ξ. It then follows from Eqs. (24a-c), (26a-d) and (28a-d) that u1 and τ13 are odd functions
of ξ, and u3, τ11, τ̄22 and τ̄33 are even functions of ξ. Performing inverse Fourier transforms (see Eq. (19b))
on Eqs. (24a-c) and Eqs. (26a-d), respectively, gives, after using Eqs. (28a-d),

u1 = − 1
2πμ

∞∫
0

p

ξϕ(ξ)
(
h11e

−x3ξ + h12e
−x3ζ

)
sin(ξx1)dξ,

u2 = 0, (29a-c)

u3 =
1

2πμ

∞∫
0

p

ξϕ(ξ)
(
h21e

−x3ξ + h22e
−x3ζ

)
cos(ξx1)dξ,

and

τ11 = −
∞∫
0

p

πϕ(ξ)
(
g11e

−x3ξ + g12e
−x3ζ

)
cos(ξx1)dξ,

τ13 =

∞∫
0

p

πϕ(ξ)
(
g21e

−x3ξ + g22e
−x3ζ

)
sin(ξx1)dξ,

τ33 = −
∞∫
0

p

πϕ(ξ)
(
g31e

−x3ξ + g32e
−x3ζ

)
cos(ξx1)dξ,

τ22 = −
∞∫
0

νp

πϕ(ξ)
[
(g11 + g31)e−x3ξ + (g12 + g32)e−x3ζ

]
cos(ξx1)dξ,

(30a-d)

where

h11 = 1 − ν + 2l4ξ2ζ2 + (2ν + x3ξ)
[
ν − 1 + 2l4ξ2ζ(ξ − ζ)

]
,

h12 = −2l2ξ2
(
1 − ν + l2ξ2

)
,

h21 = 2(1 − ν)
(

1 − ν +
1
2
x3ξ + 2l4ξ2ζ2

)
+ 2l4ξ3ζ [2ν − 3 + x3(ζ − ξ)] ,

h22 = 2l2ξ3ζ−1
(
l2ξ2 + ν

)
,

(31a-d)
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and

g11 = (1 − ν + 2l4ξ2ζ2)(1 − x3ξ) + 2x3l
4ξ4ζ,

g12 = −2l4ξ2ζ2,

g21 = x3ξ(ν − 1) + 2l4ξ3ζ(1 + x3ξ − x3ζ),

g22 = −ξζ−1(1 − ν + 2l4ξ2ζ2),

g31 = (1 − ν + 2l4ξ2ζ2)(1 + x3ξ) − 2(2 + x3ξ)l4ξ3ζ,

g32 = 2l4ξ4.

(32a-f)

On the loading surface x3 = 0, Eqs. (29a,c) and (31a-d) give

u1|x3=0 = − 1
2πμ

∞∫
0

p

ξϕ(ξ)
[
(1 − ν)(1 − 2ν) − 2νl4ξ2(ζ − ξ)2

]
sin(ξx1)dξ,

(33a,b)

u3|x3=0 =
1 − ν

πμ

∞∫
0

p

ξϕ(ξ)
[
1 − ν − l2ξ3ζ−1 + 2l4ξ2ζ(ζ − ξ)

]
cos(ξx1)dξ,

and Eqs. (30a-d) yield

τ11|x3=0 = −1 − ν

π

∞∫
0

p

ϕ(ξ)
cos(ξx1)dξ,

τ13|x3=0 = −1 − ν

π

∞∫
0

ξp

ζϕ(ξ)
sin(ξx1)dξ,

τ33|x3=0 = − 1
π

∞∫
0

p

ϕ(ξ)
[
1 − ν + 2l4ξ2(ζ − ξ)2

]
cos(ξx1)dξ,

τ22|x3=0 = −2ν
π

∞∫
0

p

ϕ(ξ)
[
1 − ν + 2l4ξ3 (ξ − ζ) + l2ξ2

]
cos(ξx1)dξ.

(34a-d)

4.2. Half-space problem

For the half-space problem with an axisymmetrically distributed normal force p(r) (see Fig. 1b), applying
inverse Fourier transforms (see Eq. (20b)) to Eqs. (23a,b) and (25a-d) and using Eqs. (28a-d) will lead
to

uβ = − xβ

4πμr

∞∫
0

p

ϕ(ξ)
(
h11e

−x3ξ + h12e
−x3ζ

)
J1(ξr)dξ,

u3 =
1

4πμ

∞∫
0

p

ϕ(ξ)
(
h21e

−x3ξ + h22e
−x3ζ

)
J0(ξr)dξ,

(35a,b)
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τβ3 =
xβ

2πr

∞∫
0

p

ϕ(ξ)
(
g21e

−x3ξ + g22e
−x3ζ

)
ξJ1(ξr)dξ,

τ12 =
x1x2

2πr2

∞∫
0

p

ϕ(ξ)
(
h11e

−x3ξ + h12e
−x3ζ

)
ξJ2(ξr)dξ,

τ33 = − 1
2π

∞∫
0

p

ϕ(ξ)
(
g31e

−x3ξ + g32e
−x3ζ

)
ξJ0(ξr)dξ,

τββ =
1
4π

∞∫
0

p

ϕ(ξ)
{[

2g41(ξ) + g42(ξ)ξ2
]
ξJ0(ξr) +

(
1 − 2x2

βr
−2

)
g42(ξ)ξ3J2(ξr)

}
dξ,

(36a-d)

where r = (xαxα)1/2, Jn is the Bessel function of the first kind of order n (with n = 0, 1, 2),
h11, h12, h21, h22, g21, g22, g31 and g32 are given in Eqs. (31a-d) and (32c-f), and g41, g42 are defined as

g41(ξ) = 2ν
{

− [
1 − ν + 2l4ξ2ζ (ζ − |ξ|)] e−x3|ξ| + ξ2l2e−x3ζ

}
,

g42(ξ) =
1
ξ2

{− [(
1 − ν + 2l4ξ2ζ2

)
(1 − 2ν − |ξ|x3) + 2 (2ν + |ξ|x3) l4ζ |ξ|3

]
e−x3|ξ|

+2
(
1 − ν + l2ξ2

)
l2ξ2e−x3ζ

}
.

(36e,f)

Note that in reaching Eqs. (35a,b) and (36a-d) use has been made of the following inverse Fourier trans-
form results [53]:

F−1[f(ξ)] =
1
2π

∞∫
0

f(ξ)ξJ0(ξr)dξ,

F−1[f(ξ)ξα] =
ixα

2πr

∞∫
0

f(ξ)ξ2J1(ξr)dξ,

F−1[f(ξ)ξ1ξ2] = −x1x2

2πr2

∞∫
0

f(ξ)ξ3J2(ξr)dξ,

F−1[f(ξ)ξ2α] =
1
4π

∞∫
0

f(ξ)ξ3
[
J0(ξr) − (

2x2
αr

−2 − 1
)
J2(ξr)

]
dξ,

(37)

where F−1 denotes the inverse Fourier transform.
On the loading surface, Eqs. (35a,b) and (36a-d) give

uβ |x3=0 = − xβ

4πμr

∞∫
0

p

ϕ(ξ)
[
(1 − ν)(1 − 2ν) − 2νl4ξ2(ζ − ξ)2

]
J1(ξr)dξ,

u3|x3=0 =
1 − ν

2πμ

∞∫
0

p

ϕ(ξ)
[
1 − ν − l2ξ3ζ−1 + 2l4ξ2ζ(ζ − ξ)

]
J0(ξr)dξ,

(38a,b)
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τβ3|x3=0 = − (1 − ν)xβ

2πr

∞∫
0

p

ζϕ(ξ)
ξ2J1(ξr)dξ,

τ12|x3=0 =
x1x2

2πr2

∞∫
0

p

ϕ(ξ)
[
(1 − ν)(1 − 2ν) − 2νl4ξ2(ζ − ξ)2

]
ξJ2(ξr)dξ,

τ33|x3=0 = − 1
2π

∞∫
0

p

ϕ(ξ)
[
1 − ν + 2l4ξ2(ζ − ξ)2

]
ξJ0(ξr)dξ,

τββ |x3=0 =
1
4π

∞∫
0

p

ϕ(ξ)

{[
−(1 − ν)(1 + 2ν) − 2ν

(
2l4ξ4 − 2l4ζ |ξ|3 + l2ξ2

)]
ξJ0(ξr)

+
(
1 − 2x2

βr
−2

) [−(1 − ν)(1 − 2ν) + 2νl2ξ2
(
1 + 2l2ξ2 − 2l2ζ |ξ|)] ξJ2(ξr)

}
dξ.

(39a-d)

It is observed from Eqs. (33a,b), (34a-d), (38a,b) and (39a-d) that, with ϕ(ξ) ≥ 1 − ν (see Eq. (28e)),
the SSGET-based solutions predict smaller in-plane displacements uα|x3=0 and the Cauchy stress com-
ponents τββ |x3=0 than those predicted by the classical elasticity-based solution (with l= 0). Also, the
shear stress components τ13 and τ23 are no longer vanishing on the loading surface x3 = 0 when the strain
gradient effect is considered (with l �= 0). These observations will be quantitatively shown in the next
section.

5. Specific solutions

The general solutions for the half-space and half-plane problems derived in Sect. 4 are expressed in inte-
gral forms. These integrals are specified or evaluated in this section for several simple shapes of loading
p(r) (including a concentrated force and a uniform pressure distribution) to obtain specific solutions,
which are compared to the counterpart solutions based on classical elasticity to illustrate the differences.

5.1. Concentrated force

The problem of an elastic half-space loaded by a concentrated force is known as the Boussinesq problem,
while the problem of an elastic half-plane loaded by a concentrated force is called the Flamant problem
(e.g., [3,28,40]).

For the Flamant problem, p(r) = Pδ(x1) and thus p = P in the Fourier domain. It then follows from
Eqs. (33a,b) and (34a-d) that the current SSGET-based solution yields the surface displacements as

u1|x3=0 = − P

2πμ

∞∫
0

1
ξϕ(ξ)

[
(1 − ν)(1 − 2ν) − 2νl4ξ2(ζ − ξ)2

]
sin(ξx1)dξ,

u3|x3=0 =
(1 − ν)P

πμ

∞∫
0

1
ξϕ(ξ)

[
1 − ν − l2ξ3ζ−1 − 2l4ξ2ζ(ξ − ζ)

]
cos(ξx1)dξ,

(40a,b)
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and the surface Cauchy stress components as

τ11|x3=0 = − (1 − ν)P
π

∞∫
0

1
ϕ(ξ)

cos(ξx1)dξ,

τ13|x3=0 = − (1 − ν)P
π

∞∫
0

ξ

ζϕ(ξ)
sin(ξx1)dξ,

τ33|x3=0 = −P

π

∞∫
0

1
ϕ(ξ)

[
1 − ν + 2l4ξ2(ζ − ξ)2

]
cos(ξx1)dξ,

τ22|x3=0 = −2νP
π

∞∫
0

1
ϕ(ξ)

[
1 − ν + 2l4ξ3 (ξ − ζ) + l2ξ2

]
cos(ξx1)dξ.

(41a-d)

For the Boussinesq problem, p(r) = Pδ(x1)δ(x2) and thus p = P in the Fourier domain. Then, the
current SSGET-based solution gives from Eqs. (38a,b) and (39a-d) that the surface displacements as

uβ |x3=0 = − Pxβ

4πμr

∞∫
0

1
ϕ(ξ)

[
(1 − ν)(1 − 2ν) − 2νl4ξ2(ζ − ξ)2

]
J1(ξr)dξ,

u3|x3=0 =
(1 − ν)P

2πμ

∞∫
0

1
ϕ(ξ)

[
1 − ν − l2ξ3ζ−1 + 2l4ξ2ζ(ζ − ξ)

]
J0(ξr)dξ,

(42a,b)

and the surface Cauchy stress components as

τβ3|x3=0 = − (1 − ν)Pxβ

2πr

∞∫
0

ξ2J1(ξr)
ζϕ(ξ)

dξ,

τ12|x3=0 =
Px1x2

2πr2

∞∫
0

ξJ2(ξr)
ϕ(ξ)

[
(1 − ν)(1 − 2ν) − 2νl4ξ2(ζ − ξ)2

]
dξ,

τββ |x3=0 =
P

4π

∞∫
0

1
ϕ(ξ)

{[
−(1 − ν)(1 + 2ν) − 2ν

(
2l4ξ4 − 2l4ζ |ξ|3 + l2ξ2

)]
ξJ0(ξr)

+
(
1 − 2x2

βr
−2

) [−(1 − ν)(1 − 2ν) + 2νl2ξ2
(
1 + 2l2ξ2 − 2l2ζ |ξ|)] ξJ2(ξr)

}
dξ,

τ33|x3=0 = − P

2π

∞∫
0

ξJ0(ξr)
ϕ(ξ)

[
1 − ν + 2l4ξ2(ζ − ξ)2

]
dξ.

(43a-d)

The classical elasticity-based Flamant and Boussinesq solutions can be recovered from the current
SSGET-based solutions as special cases. Setting l = 0 and p = P in Eqs. (30a-c) yields, along with Eqs.
(28e) and (32a-f),

τ c
11 = −2P

π

x3x
2
1

r4
, τ c

13 = −2P
π

x1x
2
3

r4
, τ c

33 = −2P
π

x3
3

r4
, (44a-c)
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Fig. 2. Surface displacements of a half-plane loaded by a concentrated normal force P at (x1, x3) = (0, 0). The legend in
the box also applies to (a)

which are the same as those in the classical Flamant solution (e.g., [28,40]). In reaching Eqs. (44a-c), use
has been made of the following results:

∞∫
0

e−at sin(bt)dt =
b

a2 + b2
,

∞∫
0

e−at cos(bt)dt =
a

a2 + b2
,

∞∫
0

te−at sin(bt)dt =
2ab

(a2 + b2)2
,

∞∫
0

te−at cos(bt)dt =
a2 − b2

(a2 + b2)2
,

(45a-d)

which hold for any a (> 0) and b.
Similarly, letting l = 0 and p̄ = P in Eqs. (36a,c) gives, together with Eqs. (28e) and (32c-f),

τβ3 = − P

2π
3x2

3xβ

(r2 + x2
3)5/2

, τ33 = −3P
2π

x3
3

(r2 + x2
3)5/2

, (46a,b)

which are the same as those in the classical Boussinesq solution (e.g., [28]). In obtaining Eqs. (46a,b),
the following results have been used:

∞∫
0

ξe−x3ξJ0(ξr)dξ =
x3

(r2 + x2
3)3/2

,

∞∫
0

ξ2e−x3ξJ0(ξr)dξ =
2x2

3 − r2

(r2 + x2
3)5/2

,

∞∫
0

ξ2e−x3ξJ1(ξr)dξ =
3rx3

(r2 + x2
3)5/2

.

(47a-c)

According to the classical Flamant solution, the in-plane displacement u1 is discontinuous and the
out-of-plane displacement u3 is unbounded at the point of force application (e.g., [40]). However, such
discontinuity and singularity are not exhibited by the SSGET-based solution of the same problem. The
numerical results depicted in Fig. 2 show that at the loading point (x1, x3) = (0, 0), u1|x3=0 vanishes (and
thus is continuous) and u3|x3=0 is well defined for each case with l �= 0 (when the SSGET-based solution
is used). Similar observations were made in [18] based on their solution. Such mechanical responses are
more physical than the discontinuous and singular behaviors predicted by the classical solution. In addi-
tion, the current SSGET-based solution (with l �= 0) deviates significantly from the classical one (with
l = 0) in the vicinity of the loading point, even though it converges to the latter at a far distance (with
x1 becoming sufficiently large). Also, the discrepancy between the current solution and the classical one
decreases as the material parameter l decreases.
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Fig. 3. Surface displacements along x2 = 0 of a half-space loaded by a concentrated normal force P at (x1, x2, x3) =
(0, 0, 0). The legend in the box also applies to (a)

Similar trends are observed for the SSGET-based solution of the Boussinesq problem, as shown in
Fig. 3.

5.2. Uniformly distributed normal force

For a uniformly distributed normal force of intensity q0 applied on the interval −a < x1 < a on the
surface of a half-plane, Eq. (19a) gives

p = 2q0ξ−1 sin(ξa). (48)

For a half-space, if the uniformly distributed normal force of intensity q0 is applied over the region r < a,
then it follows from Eq. (20a) that

p = 2πaq0ξ−1J1(aξ). (49)

Using Eq. (48) in Eqs. (29a-c) and (30a-d) gives the solution for the half-plane problem as

u1 = − q0
πμ

∞∫
0

1
ξ2ϕ(ξ)

(
h11e

−x3ξ + h12e
−x3ζ

)
sin(ξa) sin(ξx1)dξ,

u2 = 0,

u3 =
q0
πμ

∞∫
0

1
ξ2ϕ(ξ)

(
h21e

−x3ξ + h22e
−x3ζ

)
sin(ξa) cos(ξx1)dξ,

τ11 = −2q0
π

∞∫
0

1
ξϕ(ξ)

(
g11e

−x3ξ + g12e
−x3ζ

)
sin(ξa) cos(ξx1)dξ, (50a-g)

τ13 =
2q0
π

∞∫
0

1
ξϕ(ξ)

(
g21e

−x3ξ + g22e
−x3ζ

)
sin(ξa) sin(ξx1)dξ,

τ33 = −2q0
π

∞∫
0

1
ξϕ(ξ)

(
g31e

−x3ξ + g32e
−x3ζ

)
sin(ξa) cos(ξx1)dξ,

τ22 = −2νq0
π

∞∫
0

1
ξϕ(ξ)

[
(g11 + g31)e−x3ξ + (g12 + g32)e−x3ζ

]
sin(ξa) cos(ξx1)dξ.
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Similarly, substituting Eq. (49) into Eqs. (35a,b) and (36a-d)) yields the solution for the half-space
problem as

uβ = −aq0xβ

2μr

∞∫
0

1
ξϕ(ξ)

(
h11e

−x3ξ + h12e
−x3ζ

)
J1(aξ)J1(ξr)dξ,

u3 =
aq0
2μ

∞∫
0

1
ξϕ(ξ)

(
h21e

−x3ξ + h22e
−x3ζ

)
J0(ξr)J1(aξ)dξ,

τβ3 =
aq0xβ

r

∞∫
0

1
ϕ(ξ)

(
g21e

−x3ξ + g22e
−x3ζ

)
J1(aξ)J1(ξr)dξ,

τ12 =
aq0x1x2

r2

∞∫
0

1
ϕ(ξ)

(
h11e

−x3ξ + h12e
−x3ζ

)
J1(aξ)J2(ξr)dξ,

τββ =
aq0
2

∞∫
0

1
ϕ(ξ)

{[
2g41(ξ) + g42(ξ)ξ2

]
J0(ξr) +

(
1 − 2x2

βr
−2

)
g42(ξ)ξ2J2(ξr)

}
J1(aξ)dξ,

τ33 = −aq0
∞∫
0

1
ϕ(ξ)

(
g31e

−x3ξ + g32e
−x3ζ

)
J0(ξr)J1(aξ)dξ.

(51a-f)

The numerical results displayed in Figs. 4 and 5 show that u1|x3=0 and τ33|x3=0 given by the SSGET-
based solutions for the half-plane and half-space problems change smoothly across the loading periphery,
unlike those given by the classical elasticity-based solutions (with l = 0), which exhibit sharp angles. A
similar observation was made for the near-tip displacement in 2-D crack problems (e.g., [17,42]), which
varies more smoothly if a strain gradient elasticity theory is used to describe the material behavior.

6. Indentation

The problem of an elastic solid indented by a punch is of practical interest. Classical elasticity cannot
explain the size effect on elastic properties observed at the micron and nanometer scales (e.g., [2,7,45])
due to a lack of any material length scale parameter.

The indentation size effect is studied herein using the newly derived SSGET-based solution for the
half-space contact problem that contains a material length scale parameter. Three indenter shapes (or
punch profiles), i.e., flat-ended, spherical and conical, are considered, as was done in [6,53].

6.1. Flat-ended punch

The problem of an elastic half-space indented by a rigid flat-ended cylindrical punch was first solved in
[5] using the classical theory of elasticity. According to his solution, the pressure profile under the punch
takes the form (e.g., [3]):

pB(r) =
P

2πa
(a2 − r2)−1/2, (52)



1378 X.-L. Gao and S.-S. Zhou ZAMP

0 1 2 3 4
-0.25

-0.2

-0.15

-0.1

-0.05

0

x
1
/a

μ  
u 1/(

aq
0)

0 1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x
1
/a

μ  
u 3/(

aq
0)

0 1 2 3 4
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

x
1
/a

τ 13
/q

0

0 1 2 3 4

-1

-0.8

-0.6

-0.4

-0.2

0

x
1
/a

τ 33
/q

0

l/a = 0
l/a = 1
l/a = 2

(a) (b)

(c) (d)

Fig. 4. Surface displacements and Cauchy stress components of a half-plane subjected to a uniform pressure q0 on
– a < x1 < a. The legend in the box also applies to (a), (b) and (c)

where a is the radius of the cylindrical punch, and P is the total load applied on the punch. That is,

P = 2π

a∫
0

pB(r)rdr. (53)

Taking Fourier transforms (see Eq. (20a)) on Eq. (52) gives

pB(ξ) =
P

aξ
sin(aξ). (54)

The displacement and stress components can then be readily obtained by using Eq. (54) in the general
solution given in Eqs. (35a,b) and (36a-d) for the half-space problem. In particular, substituting Eq. (54)
into Eq. (35b) yields, along with Eqs. (31c,d), the indentation depth (defined as the depth of penetration
of the punch tip) δB as

δB = u3|r=0,x3=0 =
P (1 − ν)

2πaμ

∞∫
0

φ(ξ)
ξϕ(ξ)

sin(aξ)dξ, (55a)

where

φ(ξ) = 1 − ν − l2ξ3ζ−1 + 2l4ξ2ζ(ζ − ξ), (55b)

and ϕ(ξ) is defined in Eq. (28e).
The displacement and Cauchy stress components on the surface x3 = 0 of the half-space at different

values of l/a are shown in Fig. 6, where the corresponding components given by the classical solution
(with l = 0) are also displayed for comparison. The numerical values shown in Fig. 6 are obtained by
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Fig. 5. Surface displacements and Cauchy stress components along x2 = 0 of a half-space subjected to a uniform pressure
q0 in the region r < a. The legend in the box also applies to (a), (b) and (c)

using Eq. (54) in Eqs. (38a,b) and (39a,c). It is seen that the current SSGET-based solution predicts
considerably smaller surface displacements than the classical solution inside and near the loading zone.
In addition, the Cauchy stress components on the surface τ13|x3=0 and τ33|x3=0 given by the current
solution are well defined and smooth.

6.2. Spherical punch

The Hertz’s solution [20] for the frictionless and non-adhesive contact of two elastic spheres is the earliest
one in contact mechanics. According to Hertz’s solution, the pressure distribution under the spherical
indenter has the form (e.g., [3]):

pH(r) =
3P

2πa3

√
a2 − r2, (56)

where a is the radius of the contact zone, and P is the total axial force applied on the punch. Taking
Fourier transforms (see Eq. (20a)) on Eq. (56) yields

pH(ξ) =
3P
ξ3a3

[sin(aξ) − aξ cos(aξ)] . (57)

The displacement and stress components can then be readily obtained by using Eq. (57) in the general
solution given in Eqs. (35a,b) and (36a-d). In particular, using Eq. (57) in Eq. (35b) gives the indentation
depth δH as
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Fig. 6. Variations of the surface displacements and Cauchy stress components along x2 = 0 in a half-space with the
Boussinesq pressure distribution. The legend in the box also applies to (a), (b) and (c)

δH = u3|r=0,x3=0 =
3P (1 − ν)

2πa3μ

∞∫
0

a2φ( t
a )

t3ϕ( t
a )

(sin t− t cos t) dt, (58)

where φ and ϕ are defined in Eq. (55b) and Eq. (28e), respectively.
Figure 7 shows the displacement and Cauchy stress components on the surface x3 = 0 of the half-space

at different values of l/a, where the corresponding components given by the classical solution (with l = 0)
are also displayed for comparison. The numerical values shown in Fig. 7 are obtained by using Eq. (57)
in Eqs. (38a,b) and (39a,c). It is observed from Fig. 7 that the surface displacements predicted by the
current SSGET-based solution are significantly smaller than those by the classical solution both inside
and near the loading zone. Also, u1|x3=0 and τ33|x3=0 given by the current solution are smoother. These
microstructural effects (as measured by the material length scale parameter l) on the elastic field are
similar to those observed earlier for the flat-ended punch problem.

6.3. Conical punch

Conical indenters are frequently used in indentation tests. For a cone-shaped punch subjected to the axial
load P , the pressure distribution in the contact zone has the form (e.g., [44])

pC(r) =
P

πa2
cosh−1 a

r
. (59)

Taking Fourier transforms (see Eq. (20a)) on Eq. (59) gives

pC(ξ) =
2P
a2ξ2

[1 − cos(ξa)] . (60)
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Fig. 7. Variations of the surface displacements and Cauchy stress components along x2 = 0 in a half-space with the Hertzian
pressure distribution. The legend in the box also applies to (a), (b) and (c)

The displacement and stress components can then be readily obtained by using Eq. (60) in the general
solution given in Eqs. (35a,b) and (36a-d). In particular, substituting Eq. (60) into Eq. (35b) yields the
indentation depth δC as

δC = u3|r=0,x3=0 =
P (1 − ν)
πa2μ

∞∫
0

aφ( t
a )

t2ϕ( t
a )

(1 − cos t) dt, (61)

where φ and ϕ are defined in Eq. (55b) and Eq. (28e), respectively.
Figure 8 displays the displacement and Cauchy stress components on the surface x3 = 0 of the half-

space at different values of l/a, where the corresponding components given by the classical solution (with
l = 0) are also shown for comparison. The numerical results in Fig. 8 are obtained by using Eq. (60) in
Eqs. (38a,b) and (39a,c). Microstructural effects (through l) on the elastic field similar to those observed
for the flat-ended and spherical punch problems based on Figs. 6 and 7 are shown in Fig. 8.

6.4. Depth-dependent hardness

Consider the indentation hardness defined by (e.g., [49,53])

H =
P

δ
, (62)

where P and δ are, respectively, the total applied load and indentation depth.
When the strain gradient effect is ignored, l = 0 and thus ϕ(ξ) = 1− ν = φ(ξ) according to Eqs. (28e)

and (55b). It then follows from Eqs. (62), (55a), (58) and (61) that
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Fig. 8. Variations of the surface displacements and Cauchy stress components along x2 = 0 in a half-space with the conical
punch pressure distribution. The legend in the box also applies to (a), (b) and (c)

Hc
B =

4μa
1 − ν

, Hc
H =

8μa
3(1 − ν)

, Hc
C =

2μa
1 − ν

(63)

as the indentation hardness for the three punch profiles based on classical elasticity.
When the strain gradient effect is considered, the indentation hardness can be obtained from Eqs.

(62), (55a), (58), (61) and (63) as

Hc
B

HB
= 1 − 2

π

∞∫
0

ψ(a, t)t−1 sin tdt (64a)

for the Boussinesq flat-ended cylindrical punch,

Hc
H

HH
= 1 − 4

π

∞∫
0

ψ(a, t)t−3 (sin t− t cos t) dt (64b)

for the Hertzian spherical punch, and

Hc
C

HC
= 1 − 2

π

∞∫
0

ψ(a, t)t−2 (1 − cos t) dt (64c)

for the conical punch, where

ψ(a, t) = 1 − φ( t
a )

ϕ( t
a )

= l̃2t2
2(1 − ν) + tζ̃−1 − 2l̃4tζ̃(ζ̃ − t)2

(1 − ν)(1 + 2l̃2t2) + 2l̃6ζ̃2t2(ζ̃ − t)2
, (65)

with l̃ = l/a and ζ̃ =
√
t2 + 1

l̃2
.
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Fig. 9. Indentation hardness changing with the contact radius at different l values: (a) flat-ended punch, (b) spherical
punch, and (c) conical punch

Clearly, when l = 0, ψ(a, t) = 0 from Eq. (65). It then follows from Eqs. (64a-c) that HB = Hc
B ,

HH = Hc
H , and HC = Hc

C . That is, when the strain gradient effect is not considered, the indentation
hardness given by the current SSGET-based solution reduces to that given by the classical elasticity-
based solution in each of the three cases. Also, for macro-indentation tests with l̃ = l/a � 1, ψ (a, t) → 0
from Eq. (65), and the current solution converges to the classical one, giving HB = Hc

B , HH = Hc
H ,

and HC = Hc
C . However, for micro-indentation tests, the size effect can be significant. As illustrated in

Fig. 9, the indentation hardness predicted by the current solution is considerably higher than that given
by the classical solution.

Figure 9 shows variations of the indentation hardness with the contact zone radius a at different values
of l/a. For each of the three punch profiles considered, it is seen from Fig. 9 that the indentation hardness
increases with decreasing a and increasing l. The punch profile is also observed to have an influence on
the indentation hardness, as displayed in Fig. 10. For given values of l and a, the indentation hardness
measured by a conical punch is seen to be the largest and that by a flat-ended cylindrical punch to be
the smallest. By contrast, the indentation hardness predicted by the classical elasticity-based solution
is a constant (independent of the indenter size (reflected through a) and the material microstructure
(measured by l)) for each punch profile, as shown in Fig. 9.

7. Summary

The contact problems of a half-plane and a half-space, respectively, subjected to a symmetrically dis-
tributed normal force of arbitrary profile are solved using a simplified strain gradient elasticity theory
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Fig. 10. Indentation hardness for different punch profiles (with l = 1µm)

(SSGET). The general SSGET-based solutions for the half-plane and half-space problems are derived in a
unified manner using Mindlin’s potential function method and Fourier transforms. The current solutions
contain one material length scale parameter and can capture the indentation size effect at small length
scales. The classical elasticity-based solutions of the half-plane and half-space problems are recovered as
special cases when the strain gradient effect is not considered. The general solution for the half-space
problem is also applied to analyze the indentation of an elastic half-space by a flat-ended cylindrical
punch, a spherical punch, and a conical punch, respectively.

The numerical results show that the displacement discontinuity and/or singularity exhibited by the
classical solutions of the Flamant and Boussinesq problems are not displayed by the current SSGET-based
solutions. The displacement and Cauchy stress components on the loading surface predicted by the newly
derived solutions are found to deviate considerably from those given by the classical solutions inside and
near the loading zone. The SSGET-based solutions converge to the classical solutions at a distance away
from the loading zone. The discrepancy between the two sets of solutions increases as the material length
scale parameter becomes larger. The indentation hardness given by the current SSGET-based half-space
problem solution is significantly higher than that provided by the classical elasticity-based solution when
the indentation radius is small.
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