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Abstract. In this paper, we present a bipolar hydrodynamic model from semiconductor devices and plasmas, which takes the
form of bipolar isentropic Euler—Poisson with electric field and frictional damping added to the momentum equations. We
firstly prove the existence of the stationary solutions. Next, we present the global existence and the asymptotic behavior
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1. Introduction

In this paper, we present a bipolar hydrodynamic model from semiconductor devices and plasmas, which
takes the form of bipolar isentropic Euler—Poisson with electric field and frictional damping added to
the momentum equations. The scaled one-dimensional bipolar Euler—Poisson equation (see [1,2,21,27])
is given by

nit + (n1ur), =0,

(n1ur)e + (nﬂﬁ + P(n1))e = n1¢, — niug,

Not =+ (TLQUQ)m = 0, (11)
(nauz)y + (n2u3 + P(n2))s = —na¢s — naus,

d)a::r =n1 —n2

for (z,t) € @ x Ry (© = (0,1)). Here the unknown variables n;,u;(i = 1,2) and ¢ are the charge den-
sities, velocities, pressures and electrostatic potential. The pressures P(n;)(i = 1,2) are assumed to be
functions of the densities given by P(n;) = Kn](K > 0,7 > 1). The case v = 1 is important from the
physical point of view. The bipolar Euler—Poisson equations (hydrodynamic models) are generally used
in the description of charged particle fluids, for example, electrons and holes in semiconductor devices,
positively and negatively charged ions in plasma. More details on the semiconductor applications and the
applications in plasma physics can be found in [9,20,24], etc.

Recently, many efforts have been made for the one-dimensional bipolar hydrodynamic equations. More
precisely, Zhou—Li [28] and Tsuge [26] considered the existence and uniqueness of the stationary solution
for the one-dimensional bipolar hydrodynamic model with some proper boundary conditions. Zhu—Hattori
[27] proved the stability of steady-state solutions for a recombined one-dimensional bipolar hydrodynam-
ical model with initial data. Natalini [21] and Hsiao—Zhang [8] established the global entropy solutions of
the one-dimensional system in the compensated compactness framework on the whole real line and spatial
bound domain respectively. Natalini [21] and Hsiao—Zhang [7] studied the relaxation-time limit of the
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weak solutions for the one-dimensional bipolar hydrodynamic model. Gasser—-Marcati [3] also discussed
some combined limits of the weak solutions. Gasser—Hsiao-Li [2] investigated the large-time behavior of
smooth “small” solutions around diffusion waves for the initial value problem. They observed that the
frictional damping is essential to the nonlinear diffusive phenomena of hyperbolic waves. Huang-Li [5]
studied the large-time behavior and the quasi-neutral limit of L solution of the Cauchy problem with
large data as well as vacuum. Huang et al. [6] discussed large-time behavior of solution to the bipo-
lar hydrodynamic model for semiconductors with switch-on case. Moreover, we also mention that some
authors studied the corresponding multi-dimensional cases, that is, the authors of [1,10-12,17,18], etc.
Finally, for the unipolar Euler—Poisson equation, Nishibata and Suzuki [22,23] discuss the stability of
the stationary solution for the IBVP for the one-dimensional isentropic and non-isentropic Euler—Poisson
equation, respectively. Li [13,14] studied the corresponding multi-dimensional case. As far as we know,
no results on the initial boundary value problem of (1.1) can be found. In this paper, we will study the
global existence and the asymptotic behavior of smooth solutions to the initial boundary value problem
for a one-dimensional bipolar hydrodynamic model (1.1) in a bounded domain. For this, we prescribe the
initial and the boundary data as

(n1,ur,n2,u2)(0,2) = (10, U10, N20, U20) (), (1.2)
n(t,0) = na(t,0) = g > 0,m1 (£, 1) = na(t, 1) = ny. > 0, (1.3)
#(t,0) = 0,0(t,1) = ¢ > 0, (1.4)

satisfying the following compatibility conditions:
n1(0,0) = n2(0,0) = n;,n1(0,1) = n2(0,1) = n,,
(n1u1)2(0,0) = (n2u2).(0,0) = 0 = (nyu1).(0,1) = (nou2).(0,1). (1.5)
For the sake of simplicity, we only consider the subsonic solutions as in [15,22,23]. Thus, we assume

that this initial boundary value problem is considered in the region where the subsonic condition and
positivity of the density hold.

] ! i) — 2 1 i | — 1
;relg(P(n) u;) >0, ;relgn >0, i=12, (1.6)

further, we need to suppose that the initial data satisfy these condition
inf(P'(nio) — uZy) >0, infn >0, i=1,2. (1.7)
We will establish the solution in the neighborhood of the initial data (1.7) as the conditions (1.6) hold.

For convenience, introducing the current densities j; = n;u;(i = 1,2), then the initial boundary value
problem for (nq, ji,n2, j2, ¢) can be written as

nit + j1z = 0, .
e+ (P'(m) = J5)nie + e = made — Ju,
Nnot + Jor = 0, (1.8)

-2 .
Jo + (P'(n2) = 53)n2e + 22 joy = =Nty — ja,
Gz = N1 — Na,
with the initial data (n19, j10, 20, j20)(x) = (n10, R10U10, R20, N20Us20) (), Which is derived from (1.2), and
(1.3)-(1.4). Apparently, (1.1) is equivalent to (1.8), provided that the density n;(i = 1,2) are positive.
Moreover, integrating (1.8)s and using the boundary condition (1.4), we obtain an explicit formula of the
electrostatic potential:

¢(tv x) = (I)(nla nQ)(tv x)v

z Yy 1y
:zo/o/(nl—n2)(t,z)dzdy+ ¢T—O/O/(n1 —n2)(t, 2)dxdy | x. (1.9)
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Compared with the initial value problem in [2], here we believe that the asymptotic state is the sta-
tionary solutions. That is, when ny; = ji; = na = jor = 0, we have the corresponding stationary state
problem:

3193 = 0, )
QBTFl(ﬁL]j)ﬁlw = ¢y — 7]7117
Bn (nQ,]Z)nQI = 7(;51 _ 7]T227

¢’I"E - nl - n2;
with the boundary data
n1(t,0) = na(t,0) = ng > 0,71 (¢, 1) = na(t, 1) = n,. > 0, (1.11)
b 0,6(t,1) = ¢ > 0. (1.12)
)

Here F(7;, ;) = j‘2 +h(f) (i=1,2
in x yield that

and h(§) = ff #dn. Further, differentiating (1.10) and (1.10)4

oF ~ _ L
(an (ﬂldl)nu) - %nlx — 1 +ng =0, (1.13)
1 1
oF ~ Ja L
(3712 (7127]2)”295) - %nzz +ny—ny =0. (1.14)
v 2

From (1.10)2 and (1.10)4, we have the following current—voltage relationships:

1

~ ~ ~ ].
¢r = F(np,j1) — F(ny, j1) + 51 / ﬁ—dm, (1.15)
0 1
h 1
— ¢ = F(nr,jg) — F(nl,jg) +32 / Edft, (1.16)
0

which mean
1

1

~ ~ ~ 1 ~ ~ ~ 1

F(nmh)—F(nz,h)+Jl/ﬁ*dl‘+F(nmJ2)—F(nz,J2)+J2/Ed$=0~

1
0 0

Moreover, owing to Eq. (1.10)s, 5 is given by the formula

1y
// ny — ng)(2)dzdy + gi),« // 1 — 7i9)( dzdy) (1.17)
00

which corresponds to (1.9) for the non-stationary problem.

Before stating the main results, we introduce some notations. For a nonnegative integer [ > 0, H'
denotes the usual Sobolev space in the L? sense, equipped with the norm || - ||;, in particular, || - [|o =
|| ]]. C*¥([0, T]; H'(£2)) denotes the space of the k-times continuously differentiable functions on the inter-
val [0, T] with values in H'(Q). For a nonnegative integer k > 0, 3%(Q) denotes the space of the functions
whose derivatives up to k-th order are continuous and bounded over Q, equipped with the norm

k
|fli:= Y sup 0L f ()]

1=0 *€12
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Moreover, we also introduce the function space:
X7 ([0,7]) = NizoC' ([0, T), H*'74(Q)),  for i,k =0,1,2,
%:([0,7)) : = X%([0,T)) fori=0,1,2.

Throughout the rest of this paper, C' always denotes generic positive constant.

The unique existence of the stationary solution (g, @1, 72, 2, @) is stated in the next Lemma.

Lemma 1.1. Let the boundary data satisfy condition (1.3) and (1.4). For an arbitrary n;, there erists a
positive constant dg such that if |n,. —ny| + ¢ < do, then the stationary problem (1.10), (1.11) and (1.12)
has a unique solution (N, a1, N, U2, @) satisfying the conditions (1.6).

Next, the global existence and asymptotic behavior of smooth solution for the initial boundary value
problem (1.1)—(1.4) is summarized in the following Theorem.

Theorem 1.2. Let (nq, U1, N2, U2, @) be the stationary solution of (1.10), (1.11) and (1.12). Suppose that
the initial data (n19,u10,n20, U20)(x) € H*(Q) and the boundary data ny,n, and ¢, satisfy (1.3), (1.4),
(1.5) and (1.7). Then there exists a positive constant €, such that if |n. —ni| + ¢r + ||(n10 — N1, u10 —
U1,no0 — Na,u1g — U2)|l2 < €, the initial boundary value problem (1.1)-(1.4) has a unique solution
(n1,u1,n2,u2,9)(t,z) € X2([0,00))* x X3([0,00)). Moreover the solution (ny,ui,na,uz, ¢)(t, ) satisfies
the decay estimate

[(n1 = g, u1 — 1, n2 — Az, uz — a2) (-, t)[|2 + (¢ — &) (-, )|
< C||(n1o — fox, w10 — 1, nag — Mg, ugo — U2) |26, (1.18)

where C' and a are positive constants independent of a time variable t.

Remark 1.3. Here we obtain the similar results for the initial boundary value problem of the one-dimen-
sitonal bipolar Euler—Poisson equation without the doping profile. This assumption is to overcome the
interaction of the two particles. As to more general case, it is left for us in the future.

The idea of the proof is outlined as follows. First, we show the unique existence of the stationary
solution by Schauder fixed-point principle. In this procedure, the key point is the bound of the station-
ary densities. We cannot use the maximal principle here, which is different from the unipolar case in
[16,22,23]. Next, based on the local existence and the a priori estimates, the continuum arguments can
be applied to showing global existence and asymptotic behavior of smooth solution for the nonlinear
problem. The a priori estimate can be derived by the elaborate energy methods. That is, we first find
that the spatial derivatives of the perturbed variables can be controlled by the temporal derivatives of
the perturbed variables with the help of the special structure of the perturbed equation. Next, we show
the estimates of the temporal derivatives of the perturbed variables. However, due to the interaction of
the two particles, we cannot directly derive the estimate of the densities by the electric field (¢,.) as in
[16,22,23]. Thus, we need to make some elaborated treatments of the perturbed density. See Lemmas 4.3,
4.4 and 4.5.

The remaining part of the present paper is organized as follows. In Sect. 2, we begin detailed discussion
with the proof of the existence and the uniqueness of the stationary solution. We state the local existence
and reformulation of the original problem in Sect. 3. Section 4 is the core, in which we present the global
existence and the asymptotic behavior of the smooth solution.

2. The stationary solution

This section is devoted to the discussion on the unique existence and the properties of the stationary
solution of the problem (1.10)—(1.12). That is, we mainly present the following results.
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Lemma 2.1. Under the assumptions of Lemma 1.1, the stationary problem (1.10), (1.11) and (1.12) has
a unique solution (i1, j1, M2, jo, ®) € B*(Q) satisfying the condition (1.6) and

Ny < in(2), ia(x) < No,  z € (0,1, (2.1)
(6] < C, |6, bual < CBy (2.2)
jil < Cé, j=1,2, (2.3)
[T12]s P2z ], [P1ea|, 2] < Cdo, (2.4)
|12, T2z ], [T12e], [U22e| < Cdo, (2.5)

where N1 = min(ny, n,.), No = max(ng,n,).

Proof. First, we give a closed convex set W := {f € HY(Q) : Ny < f < Ny}. Taking (mq,mz) € W, and
solving the current—voltage relationship (1.15) and (1.16) with (mq,m2), we have
—1

1 1 2
T, = 2C} /mfldx + /mfldx +2CH(n 2 —n?) ,
0 0

-1
2

1 1
Ty = 207 /m;ldx + /m;ldx +2C2(ny? —n;?) ,
0 0

where

Cy = ¢r — (Mny) = h(m)), CF = = — (h(nr) = h(m)).

O
Then, choosing a proper positive number §; such that when |n, — n;| + ¢, < d1, we can define
-1
1 1 2
I, =20} /ml_ldx + /m;ldx +2C0 (2 —nyH | (2.6)
0 0
-1
1 1 2
Ty = 207 /mgldm + /m;ldw +2C2(ny 2 —n;?) : (2.7)
0 0

The details can be found in [22,26]. Further, we define the mapping S : (my,mz2) — (M, M2) over
W= {f e HY(Q): N; < f < N} by solving the linear problem

675 (thml)Mlz - Jm21 My, — My + My =0,

omy LT ™

(86752 (ma, sz)ng) - ‘Z:; Moy + My — My =0, (2.8)
2

Ml(O) =Ny = M2(0)7M1<1) = Ny = MQ(l),
Apparently, we can choose d5 such that for |n, — ny| + ¢, < da, the pairs (m;, J,,,)(i = 1,2) satisfy the

subsonic condition (1.6), which implies the Eqgs. (2.8); and (2.8); are elliptic. Thus, Lax-Milgram’s theo-
rem guarantees the existence of a unique H'(0,1) x H*(Q)-solution (M;, M). Next, it is easy to see that
S is precompact in C(£2) from Sobolev’s imbedding theorem. Moreover, using the standard arguments,
we know that S is continuous. In order to apply the Schauder fixed-point theorem [4], it remains to prove

that N1 S Ml,Mg S NQ.
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Indeed, using (M; — N2)™ = max(M; — N2, 0) and (My— Ny)t = max(Ms;— N, 0) as two test functions
in the weak formulations of (2.8); and (2.8)s. Integration by parts leads to

1 J2 1 J
/ ( m1 + 7P (m1)> |(M1 — NQ);_|2dJ; ‘l‘/ m21
m} my
0 0

+ /(Ml — M) (ny — Na)"da =0, (2.9)

(Ml Ng) (Ml NQ)diL‘

and
1

1 m2 7/m2 . ) J . .
0/( +—P'( )>I(M Na);[*d +0/ %(M No)H(My — Ny)dz

1

- /(M1 — My)(Ms — No)tda = 0. (2.10)
0
By means of the Cauchy—Schwarz and Poincaré inequalities, we have
L 1 3 1
Jml

S (M~ N (M = No)do < L | [ 108 = NPz | | [ [0 = Vo) * P
0 !
< V| [ 10001 = NPz,

and

Wl
D=

1
No)t (My — No)dz < C|Jp,| /\(Mz — No)f[Pdx /|(M2 — Np)[Pdz
0

o
3 <~

< Cla] [ 1012 = N P
Thanks to the definition of Ny, we have

1 1
/(Ml — M2)< Ng +d.’L’ / Mg M2 — N2)+d$
0 0

1
= /(M1 — No + Ny — Mo)(M; — No)Tdx
0

1
— /(M1 — N2 + N2 - MQ)(MQ - NQ)erl‘ Z 0.
0

Further, putting the above relations into (2.9) and (2.10), there is a positive constant d3 such that for
|nr - nl| +¢r S 63)

1
/|(M1 — No)f|?dx + / |(My — No)f|?dz < 0.
0
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Hence, we can obtain
My, My < Ns.

In complete similar way, there is a positive constant d3 such that for |n, — n;| + |¢,| < d3, such that we
can prove
My, My > Ny.

By Schauder’s fixed-point theorem, we have a fixed-point (71, fia) = S(21, ) € H () x H(Q) satisfying
Ny < ny(z),n2(x) < No. Apparently, the function (71, 72) is a solution to the system (1.13) and (1.14)
with the boundary data (1.11). We construct the solution to (1.10), (1.11) and (1.12) from 71 and 75 as
follows. Define two constants j; = Jz, (i = 1,2) by (2.6) and (2.7) and define a function 6 by the formula
(1.17). Finally, it is a straightforward computation to confirm that (71, j1, fig, Jo, ng) is a desired solution
to the stationary problem (1.10), (1.11) and (1.12). Choosing proper small d4 for |n, — ni| + |¢,| < da,
we can show the uniqueness of the stationary solution. Since the procedure is similar as those in [28], we
can omit the details here. Thus, choosing dy =: min{d;, ds, d3, 04}, the proof of unique existence of (1.10)
is completed.

Next, we discuss some properties of (721, j1, fi, jo, gzg) First, note that ¢ is given by the formula (1.17)

or equivalently
11 11
= [ [ @ty o | [ [ -mEasay | -0, (2.11)
Ty 0y

By estimating the formula (1.17) for € [0, 3] and the formula (2.11) for z € [3,1], we obtain the first
estimate in (2.2), due to (2.1). Next, due to (2.1) and the subsonic condition (1.6), we have

il < Cdo, i=1,2, (2.12)

with the aid of (1.15) and (1.16). Finally, we take ny(x) = n, + (n; — n,.)(1 — z) in z € [0, ] We observe
that (71 — np)(x) and (e — ny)(x) vanishes at x = 0 and x = 1, furthermore, multiply (1.13) and (1.14)
by n1 — np and ny — ngy, respectively, to have

1 1
2 .
/ ( nl ==+ = o Pl( )) ("1 — nb)idx + / 7‘%(&1 —np)dax
0

1 1 .
o1
+/ ny — ng) (N1 — np)dz = (n; — n,. / (—]13 + ~P'(ﬁ1)) (n1 —np)de,
0 0

and

0/1711—712 ng—nb)de(m—nr)o/< Js =+ 1P’( )> (i — mp)pd.

n2 N9

By means of the Cauchy—Schwarz and Poincaré inequalities, and noting that
1

1
/ ny — ng)(ny — ny)dx — /(ﬁl —ng)(ng — np)da > 0,
0 0
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we can derive
1712l + |fi2ell < C(G1] + lal + e — n0]) < Co. (2.13)
Similarly, we can obtain
72122 [l1 + |22z 11 < Cdo,

which together with (2.13) implies (2.4). From (2.4) and (2.12), we immediately have (2.5). Moreover,
using (1.10)2 or (1.10)4, and (2.4), we can show the second inequality in (2.2).

3. Local-in-time existence and reformulation of the original problem

In this section, we firstly present the unique existence of the solution locally in time to the initial bound-
ary problem (1.8), (1.2)—(1.4), then reformulate the original problem (1.1)—(1.4). At first, applying The-
orem—Al in [25], we can obtain the local existence of the linearized equation:

i + 01 = 0,
Jie+ (P'(n1) — 25)hg + 22551, = nigs — i,

Oy + Ozj2 = 0, (3.1)

5 Vige + 22 jor = —nada — ja,

»—-N"—‘ N

N

Jau + (P'(ng) — 2

(71, 71, M2, J2) (2,0) = (n10, J10, P20, j20) (2),
'fll(oat) =n; = ﬁ2(07t)aﬁ1(1vt) =Ny = ﬁl(lat)

where ¢ = ®(nq,n2) by (1.9). That is,

mm‘

Lemma 3.1. Suppose that the initial data (nio, j10,M20, joo)(x) € H*(Q) and the boundary data n; and n,
satisfy (1.7) and (1.3)—(1.4). In addition, assume the compatible conditions (1.5) holds. Then there exist
positive constants T,m,k and M satisfying the following property: if (n1,j1,na2,j2) € X2([0,T]), and
(1,1, n2, j2)(2,0) = (10, j10, 120, j20) (%),
9
ni(x,t) > m, P(n;) — % >k fori=1,2, (t,x) €[0,T] x Q,
n;
[(n1, 31, m2, 52) ()2 + [[(1e, Jie, n2t, Joe) (D)1 + | (Paee, Jree, n2ees 2ee) (B)|| < M for ¢ € 0,71,
then the problem (3.1) admits a unique solution (1, 1,7, J2)(z,t) in the same set X([0,T]) satisfying

2

RSN
ool

ng(x,t) > m, P(f;) —

>k fori=1,2, (t,x) €[0,T] x Q,
n

||(ﬁ1,317fl2752)(t)”2 + H(ﬁltajltaﬁ2t752t)(t)”1 + ||(ﬁ1tt,31tt7ﬁ2tt752tt)(t)|\ <M fortel0,T].

Since the procedure is similar as those in [22,23], we omit the details here.
Applying Lemma 3.1, and using the standard iterative arguments and energy estimates, we can prove
the following result without the details (we can refer to [22,23]).

Lemma 3.2. Suppose that the initial data (n1o,j10,"20,J20) € HQ(Q) and the boundary data n;,n, and
¢r satisfy (1.7), (1.3), (1.4) and (1.5). Then there exists a constant Ty > 0 such that the initial boundary
value problem (1.1)~(1.4) has a unique solution (n1,j1,n2, j2, ®) € X2([0, T]1)* x X3([0,T]1) satisfying the
condition (1.6) for (t,z) € [0,T1] x Q.

Next, in order to prove the global existence and asymptotic behavior of the smooth solutions in The-
orem 1.2, we regard the solution (ni,u1,nsg,us,d)(x,t) as a perturbation from the stationary solution
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(fy, Uy, Mo, 4a, ¢). That is, we need to reformulate the original problem in terms of the perturbed vari-
ables in the following. For this, multiplying (1.8)2 and (1.8)4 by n% and n%, respectively, and using the
Egs. (1.8); and (1.8)3, we have

Uty + Uiy + h(n1)e = dp — w1, Uz + UsUng + h(N1)r = —Pr — ua. (3-2)
Similarly, we have from (1.10)3 4 that

Uritng + h(n)e = G — U1, Goilog + h(fn)e = —y — Tia. (3.3)

Then, we introduce new unknown functions as

P1=n1— N1, P2 =Ng — N2, 1 = U — U1, P2 = up — U, W = P — ¢.
Further, from (1.10)q,35 and (3.2)-(3.3), we have

o1t + [(1 + 1) (U1 + Y1) — ], =0,

Y1e 4 5[(0 + ¥1)? — @3]y + [h(R1 + 1) — h(71)]e — wa + 1 =0,

Pat + (2 + p2) (U2 + 1h2) — fialia], = 0, (3.4)
Yor + L[l + ¥2)? — @3] + [A(ft2 + p2) — h(fi2)]s + wa + 2 = 0,

Wrr = P1 — P2.

The corresponding initial and the boundary condition are derived from (1.2), (1.3) and (1.4) as
pi(x,0) = pio(x) = nio(x) — i (x), ¥i(x,0) = io(x) = wio(x) — Us(x), =12, (3.5)
wi(t,0) = @;(t,1) =0, i=1,2, w(t,0)=w(t1) =0. (3.6)
From Lemma 3.2, we have
Corollary 3.3. Suppose that the initial data (10,10, ¢20,%20)(x) € H2(Q) and (7; + pio, @i + i) (i =
1,2) satisfy (1.7). Then there exists a constant Ty > 0 such that the initial boundary value problem

(3.4)—(3.6) has a unique solution (1,11, @2, V2, w)(x,t) € X([0,T])* x X3([0, T»]) with the property that
(n; + wi, 4; + ;) satisfying (1.6).

4. Global existence and asymptotic behavior

In this section, we mainly present the global existence and asymptotic behavior of smooth solutions.
Owing to Corollary 3.3, it suffices to derive an a priori estimate in order to show the existence and
asymptotic behavior of the global-in-time solution. For convenience, we introduce

2
E(t) =Y (1011 (05— + 1811 (D3, + 19fe2(8) 13- + 1012 (D151 + 10w()15 1),
=0
2
Ev(t) =) (101 @)IIP + 1031 ()] + 10502(DI* + 182207 + 0w (1)]%).
=0

The main aim of this part is to show the following Theorem.

Theorem 4.1. There exists € > 0 such that if E(0) + 3§ < e, then there is a unique smooth solution
(1,01, pa, P2, w)(t,x) € X2([0,00))* x X3([0,00)) to (3.4) and (3.5)—(3.6), and there are positive num-
bers C' and 3, which are independent of t, such that it holds that

E(t) < C(E(0) + §)e ", (4.1)

where ¢ 1= |n, — ng| + ¢y
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From Theorem 4.1, we immediately have Theorem 1.2.

The proof of Theorem 4.1 is based on several steps of careful energy estimates which are stated as a
sequence of Lemmas. Firstly, from (3.4)5 and the boundary data w(t,0) = w(t,1) = 0, we can derive the
estimate of w as follows.

Lemma 4.2. Assume that the assumptions in Theorem 4.1 hold. Then the following estimates hold:

lw®li < Cllealls + lle213), (4.2)
10cw ()5 < C(|Oepr]lT + 10502I7), :
07w (t)]13 < CUI07 all* + 1107 p2lI), (4.4)

where C' is a positive constant independent of t.

The details of the proofs can be found in [19,22,23] and can be omitted here.
The next lemma plays an important role in the proof of Theorem 4.1.

Lemma 4.3. Let (p1,v1, p2, 12, w) be the solution of (3.4)—(3.6). If E(t)% + 4 is small enough, then there
exists a constant C7 > 0 such that

E(t) < CLEL (1), (45)
Proof. From the velocity equations (3.4)2 and (3.4)4, we have
. 1, . . -
B (R + 0191) P12 — we = —1s — 5((U1 +91)° —@})e — 1 — (W (fin + 01901))ap1, (4.6)
and
_ 1. . .
W (R + 01p2) P2z + Wy = —thar — 5((102 +)? — i) — o — (W' (P2 + 0192))2p2, (4.7)

where 0 < 61,0, < 1. Taking the inner products of (4.6) by ¢, and (4.7) by a2, respectively, then
summing their resultant equations, and noting

1 1 1
- /(wx@hﬂ - wz(PQz)dx - /wzz(sol - ()02)dx - /(901 - @2)2(1393
0 0 0

we have
1 1
/(h'(ﬁl + 0101)@7, + B (fiz + O192) 3, )da + /(@1 — 2)°da
0 0

< Ul + rel® + all® + v2el1?) + ClIA1e [l Lo rallllen]l + llon | L= lerzl1?)
+O(|Azell = 020 |02l + @2l le2el*) + Clla] L= lorelll¥rell + dall o lora I ]
Hlorllzee o1z Y1) + CllazllLoe 020 [ 1¥22]] + @10l Lo |20 [ W02l + W2l Lo 022 [ ¢22 )
< Ol ll® + laeI? + i 1* + loael ) + C(E(1)* + )E(2),
with the help of (2.4) and (2.5).
Moreover, the continuity equations (3.4)2 and (3.4)4 imply

1 N 5 .
Vi = —m[%’t + (@i + Mi)ei + (Ui05)z], 1=1,2. (4.8)

Therefore, from (2.4) and (2.5), we obtain
a1 + [2al® < Cllprel® + Iz 1) + C(E()2 + 6 E(1).
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Next, we take time derivatives of (4.6), (4.7) and (4.8). It is clear that every time derivative and spatial
derivative of 1., Yoz, 1, and 1o, is again bounded by Ej(t). By noting Lemma 4.2, we finally deduce
(4.5). This completes the proof of Lemma 4.3.

Lemma 4.3 reduce the estimates of F(t) to those of Ey(t), then our next goal is dealt with the estimates
of Ey(t). First, from the expansion of the conservation of energy

1

d 1 1 1

T (2n1u§ + P(nl)n? + ingug + P(ng)ng + 2(;5?0) dz + /(nlu% + ngug)dx =0,
0

around the steady state (71, U1, Nig, U, ¢)(x, t), we can show the following basic estimates. The procedures
are standard and the details can be omitted here.

Lemma 4.4. Let (1,11, 02,2, w) be the solution of (3.4)—(3.6), then there is a constant C > 0 such that

S Bo(t) + 2|l + [al?) < CEW! +5)E(), (4.9)

where
Es(t) = B (7 + 0101)[01]l* + (Ria + @1) |01 [|> + B (72 + O102) || 02
+(p2 + f2) [ Y21 + [[wa(8)]?, 0 < 61,6, < 1.

In the following, we derive the higher-order estimates. It is necessary to justify these computations
by the discussion using the mollifier with respect to time variable ¢ since the regularity of the solution
(¢1,%1,2,12)(z,t) constructed in Corollary 3.3 is not enough. However, we omit this discussion as it is
a well-known argument. Differentiating (3.4)s and (3.4)4 with respect to t, we have the following equation
forl=1,2

e + (11 + ¥1)0h1e + (W (a4 ©1)04p1)x — Opwy + Ojthy = FY, (4.10)
Oftbar + (Tin + 12)0)thas + (W (2 + ©2)0}02)0 + Ojwe + Ojth = F, (4.11)
where for i =1, 2,
Fl = — (@ + i) ait, FP = — (T + Vi)t — 20zt — (B (7 + ©3) (0it)?) -
The absolute values of F}!(i = 1,2) and F?(i = 1,2) are estimated as
EY < C(E()? +6)|¢ul, (4.12)
|F1 < CE()* + §)E(1)2 (il + lies| + |pital), (4.13)

where C' is a positive constant independent of ¢. In deriving (4.13), we have also used the estimates (2.4),
(2.5) and the following inequality

it ()| oo + |93 (t) | < CE(t)7, (4.14)

where C' is a positive constant independent of ¢. In fact, we see that (¢1, 11, p2,1%2) € X2([0,t]) satisfies
(4.14) by applying the Sobolev inequality on the Eqs. (3.4)1,2,3.4 with using the estimate (2.4) and (2.5).
Next, differentiating (3.4); and (3.4)s with respect to ¢, we have for [ =0, 1,2,

(A1 + ¢1)01) e = =01 — (i1 + 11)0bpr1s + GY, (4.15)
(R + 2)0lpa) s = —0kpar — (T2 + 19)Okpar + G, (4.16)

where for i =1, 2,

GV = i + Vigin, GF = — (Ui + Vi) wpit, GF = — (Ui + Vi) aPite — 2(PitVit)a-
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The estimate (2.4), (2.5) and (4.14) give that

G| < C(E®t)% +8)(|vi] + lwil), (4.17)
GH| < C(E(t)% + 6)|putl, (4.18)
G2 < C(E()? + 8)(|pire] + [Wital + |03zl (4.19)

where C'is a positive constant independent of ¢.

Lemma 4.5. Let (o1, 11, p2, 2, w) be the solution of (3.4)—(3.6), then the following estimate holds

d 2 N
) +C > 1(0F e, Oftpre, 0oz, Ditbar, Ojwa) (1)1 < C(E(t)? + 8)E(t), (4.20)
=1

where Cy and C' are two positive constants independent of t, and
2
Es(t) = ((fll +01)(01901)? + 1 (g + 1) (0101)% + (R + 02) (Of02)® + I (7ig + ©2) (0} p2)”
=1
_ _ _ _ 1 -
+(Owa)? + (i + @1)0un 0y 1 — (@ + 900 1ipr + (R + 1) (0 )’

_ - _ - 1 -
(2 + )] i — (i + ¥2) 0} 20p + 5 (Rz + 02) (O 0n)?).

Proof. Multiplying (4.10) by (71 + wl)aklwl for [ = 1,2 and integrate the resultant equality over € to
obtain that

1
1 _
/ (7 + ©1)01010; "1 — (g +1)0; 101 + 5(711 + 1) (0, ") ?]da
0

&l

+ / W (i + 02)(Bhpr)?da — / Dy (i + 1)0 by da

1
/m + ¢1)(044p1)?da + HY, (4.21)
0

where
1

(71 + ¢1)e0) 1041 da — /[(ﬁl +1)0) "] Ohprdz

0

Hi(t) =

o—__

1

(1 + ¥1)0) " 1) Ohprda + / (1 + 1) (7ir + 1)20, "p10lprdz
0

(i1 +11)0; "1 Ghdr — /h 1+ 1) (@1 + ¥1)0p10) Hp1ada

1 1

1 _ N _ - _

+ 5(,0115(3% 11/11)2(117 + / h/(’ﬂl + Qﬁl)Gll 18§¢1dx + /(n1 + gﬁl)Fllaé 11/}1df£.
0 0

o _ O\H O\H
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In this procedure, we have used

1
/ Olbiy + (i + Y1) Ob1, + Ol | (g + p1)0k Yprda
0
1 1
d [ . L al—1 . -1 !
=% (P1 + ¢1)0;1010;, “prda — [ [(1 + ¢1)0; ¢n]i0phrde

0 0
1 1

dt/ulwl ol wlatgoldw/((ulwl)a L)l da

0
1

(@1 + )0 Y1) Dhprda + / (11 + )0y GLda

0

0

_|_

(71 + @1)o (@1 +191)0} 1 0lp1dz

i

with the chain rule and (4.15), and

oa‘_\ﬁ_ o&‘_\‘H

P1(0) ) da,

N |

1
TL1+Q01 al 1’1/)1) dl’—/
0

&\&
l\’)\r—x

1

1
/ (i1 + 1)k 1) (71 + 01)0) "hrda = — /((le +1)0; 1)l (7in + 1) p1da
0

0
1

- / 1 (1 + 1) (Ohipr)? + B (71 + 1) (i + )

0
x 0110) Yp1p — B (1 + 1) Gy Ok ]da

with the help of integration by parts and (4.15).

Similarly, treating (4.11), we have

&~

1
/ Ty + 02)01pa0l " Mhy — (Tig 4 1h2) 0L Mbdlps + 2(”2 + ©02) (0 o) ?|dw
0

1

/ (M2 + ¢2)( 8,%(,02 dx+/8th g —|—<p2)8l Lipoda

0

1
/ fia + ¢2) (0j1)2)*da + HS,
0

1137

(4.22)



1138 Yeping Li ZAMP

with
1

1
Hi(t) = / (s + 2)0 0 plepnde — / (2 + 2)0 ), Dl pode
’ 1
(@2 + 2)0 V4bn) o Obipad + / o + o) (7iz + 92)00l oOade
0

1
(it + 2)0f MhoGlhda — /h Ty 4 2) (il + 12) 0ol L popda

1

1 - _ - _

5(,0215(8,{_11/}2)2(11‘ + / h/(’flg + WQ)GZQ 18%(,02d$ + /(ng + @Q)Féai 1¢2d$.
0 0

From Cauchy—-Schwartz inequality, (4.12)—(4.14), and (4.17)—(4.19), we have

[H{()] < C(B@)* +6)B(), (4.23)

_|_

o _ O\H O\H

and
|HL(t)| < C(E(t)? + 0)E(t). (4.24)
Moreover, from (4.15) and (4.16), we have

— [ st + 00k rde + [ Dlunia + 02)0f s
0
1
= —/8§w(8§‘1¢1t + (@ 4+ 110, 1o + G — 0 Moy — (o + 12)0) " poe — Gh)dx
0
1

> / (Ohws)2de — C(E(H)* + 8)E(L).
0
Therefore, we obtain

d 5 _ 1 . _
d*/ (7 + 1) 0410105 oy — (1 + 1)) b1 Ohpr + §(n1 +¢1)(0; "1)?)da
. 1
—1—&/ (712 + 2)0y 20y "tho — (lin + 1p2)0, "1h20 02 + = 5 (nz + ©2)(0) Mpg)?)da
0

+ [ [W (i + 1) (9hp1)? + B (7iz + ©2) (0} 2)? + (Ojw)?]dz

[(7ir + ©1)(}11)* + (2 + 2) (O}2)]dz < C(E()? + O E(t). (4.25)

O\H o — _

Next, multiplying (4.10) by (71 + ¢1)0%1, for | = 1,2 and integrate the resultant equality over €2 to
obtain that
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1 1

1
/ (71 + 1)04p1Olabreda + /(ﬂl + 1) (7 + ©1)04 1 0fhrade + /(ﬁl + 1) (041p1)*da
0 0 0
1

1
4 / (s + 1) (W (71 + 1)0 1) Bleprdz — / (s + 1) Dly
0 0

n1 + (pl Flaé’gbld.’l} (426)

O\H

In the following, we treat the terms in (4.26) one by one. Firstly, the chain rule leads to
1 4 1 ) 1 .
/(ﬁ1 + 1)04p10pppda = % / 3 (i + 1) (O4ep1)*dz — / iwu(aﬂl)Qd%
0 0 0

and integration by parts yields

1
(1 + 1) (W' (i + @1)0kp1) 0k de = / fiy + @1)0 | (g + @1)0hprda
0

O\H

(W (71 + 1)0kp10k 10 + B (7n + 1) (@1 + 1) o104 01 — I (g + 1) G4 0kp1]d

o _

1

1
1 .
/ L (i + 1) (@) ?da /
0 0

W' (71 + ¢1)e1:(01p1)da

&~
[N}
DN | =

1

1
1 N N -
3 /(h’(m + (,01)(114 + w1))m(8£(p1)2d33 + / h'(m + QDl)Gllaéﬁpldl‘,
0 0

with the help of (4.15). Moreover, using (4.15) and chain rule, we have

1
/ (@1 + ) (7 + @1)3§1/115£¢1xd33
0

1
/ iy + Y1) 001 (Ohpre + (U1 + ¥1)0hp1s + (Rn + ¢1)20ip1 — GY)da
0

1

(i + 1)l Doy da + / (i1 + 1)l )0k o1 da

0

I
&~
—

+ [ (@ +1)20191) 20401 — (T + 1) (7ir + ¢1)2(041)? + (1 + ¢1) G104 da

O\H -

Q—“Q_,

1 1
/ u1 + 1/)1 t?,/JlaiﬁpldSC + / uy + 1/)1 z T+ ’L/)u]ai'l/)laégoldw
0 0
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(@1 + 1) (1 + ©1)2 (O)21)? — (i1 + 11) G Obr]dw

+ [ [0 twlt + (1 + ¢1)a£1/}1z](711 + wl)aé(Pldm

O\H O\H

1
(i1 + 1)l Doy da + / (i + 1)2)s + )01 01 da
0

|
&~
—

(@1 + 1) (1 + ©1)2 (O)21)? — (1 + 11) GO ]d

+ [ (@1 4+ P1)[(=H (7 + 01)041)e + Ojwa — Oj11 + Fi]0jp1da

O\H O\H o

Il
&)~
—

1
7(17,1 + 1/)1 tﬂ)latﬁpldx + / uy + 1/)1 >+ 1/)1t]8i1/)18ég01dm
0
(@1 + 1) (1 + ©1)2 (O)21)? — (i1 + 11) G Ojbr]d
+

{%[h'(ﬁl + 1) (@1 + ¥1)]a(0)01)% — B (7 + ©1) (1 + 01)x (@1 + ¥1)(Dh1)* }da

+ (Ul + ¢1)( th - 8£1/J1 + Fl)af,%@ldm

O\H o — O\H -

Therefore, we have

1
d 1 1 ~ -
E/ 51+ 1) )(Ohp1)? + S (i + P1)(911)” = (@ + 1) 001 Oy ]
0
1 1
+ / (i1 + 1) (B1451)? / (71 + 1), b de = JL, (4.27)
0 0

where

1

1
Ji = / L (@) / (@ + 1)) + 110)0ln Dy
1

0

+ / 1+ 1)+ 0)a(@1)? — (@ + 1) GLOlb|da

0
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1

- / %[h'(m + @) (i + 1)]a(Bhp1)” = B (i1 + 1) (1 + 91)2 (901)* }da
0
1

1
- 1 -
- /(Ul + 91)(Ohws — Ojb1 + FY)Ojprda + 3 /h”(m + 1)1 (0hp1)?dx
0 0
h 1
+ /{5[’1/(@1 + 1) (i1 + 11)]a(0)01)? + W (71 + ¢1)G0}p1 }dx

+ n1 + ©1 Fl t’(bldx

O\H

In the complete similar way, from (4.11), we can obtain

1
d 1 1.,
T [ Gn )@l 4 51z + ) Ghoa)® (G2 + o) Ofpadlide
0
1 1
+ [+ pa) 0fnda + [ (s + p2)0hw,0fade = I, (4.28)
0 0
where
1 1 1
Jh = / 2@% Opih)? / (g + 2)?)s + Vo] 0lh20kipada
0
1

+ [ [tz + o) (72 + 2)a(04102)? — (T2 + 1) GhO4bs)da

o\

{é[h (12 + 02) (i + Y2)]a (Bhoa)? — K (7 + )2+ 02).(Ohp2) Y

(@2 + o) (—Ofws — Ojtby + F3)0jpada + /h” fia + ©2) 2t (0} p2)*dz

+

O\H o —__ o\ﬁ o\

(51 (1a + )+ )]a (Bhp2)? + 1 (7> + 02)Ghhipr Y

+ [ (2 + @2) Fi0lprda

Similar as (4.23) and (4.24), we have

L) < C(E(t)? + 8)E(t), i =1,2.
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Moreover, note that

/8 wy (N1 + 1) t¢1dx+/8 Wy (72 + 2)Olprda

1

((R1 + 1) tz/q)maiwdx — /((ﬁ1 + wl)aéwl)zaiwdm
0

O\H

= —/5tw Lore + (g + ¥1)0kp1e — GY — Ohpay — (T + 1b2)Okpa, + Gb)da

1

= /3
de¢

0

1 1
/ (g + 1)) 0lw] 5t<,02d:17+/ (GY — GY)dlwdz.
0 0

1

inL dz + /[(111 + 1?1)3,%10]18%‘?1(1%
0

l\J\»—t

Hence, we obtain

DN |

1
/ i1+ 1) (0i91)? + B (7 + 1) (Op1)” + (72 + 02) (9f3)2)?
0

1
LW (i + 02) (Olp)? + (D) M+/nuw1dm><m+wme%x
0

< C(E(t)? +6)E(t). (4.29)

Multiplying (4.29) by 2, adding the resulting inequality to (4.25), we arrive at the desired estimate (4.20).
This completes the proof of Lemma 4.5

Proof of Theorem 4.1. From (4.9) and (4.20), there exists a positive constant C3 such that
d
dt(

From the definitions of E(t), Ea(t), E5(t) and Lemma 4.2, we can easily see that E;(t) and Eo(t) + E3(t)
is equivalent. Then,

Eo(t) + E5(t)) + C3E1(t) < C(E(t)? + §)E(t). (4.30)

d 1
S(EL(0) + Calir (1) < OB +H)E(). (4.31)
On the other hand, using Lemma 4.3, it is easy to see that
E(t) < C1Eq(1). (4.32)
Thus, for E(t)2 + § sufficiently small, (4.31) and (4.32) yield
d C
Ey(t) + 5 Eu(t) <0. (4.33)

dt
which yields the exponential decaying of E;(t). Finally, the exponential decay of E(t) follows from (4.32)
and Lemma 4.3. This completes the proof of Theorem 4.1.
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