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Abstract. It is well known that second-gradient continuum mechanical theories allow for the appearance of concentrated
stresses along the edges of piecewise smooth material surfaces, but this is not the sole example of concentrated interaction.
Two additional kinds of concentrated interaction are shown to take place in some second-gradient incompressible dissi-
pative fluids: the adherence to one-dimensional immersed bodies and the capability of sustaining concentrated external
body forces. These three phenomena turn out to be distinct and independent. This feature is explicitly discussed in two
benchmark problems, and the different mathematical origins of each concentrated interaction are explained.
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1. Introduction

A second-gradient theory for viscous fluids has been proposed by Fried and Gurtin in connection with
the modeling of small-scale effects [7] and turbulent flows [8]. Such fluids are characterized by an internal
power expenditure with dissipative part proportional to both the first and the second gradient of the
velocity field. As shown in [11,12], a key feature of that model, related to multiscale interactions, is
the possibility of describing the adherence of a three-dimensional fluid body to one-dimensional struc-
tures immersed in it. This is an example of concentrated interaction, but it has been pointed out by many
authors [3,4,6,9,15,17] that second-gradient theories allow also for the concentration of stresses along the
edges of piecewise smooth material surfaces. Nevertheless, Podio-Guidugli and Vianello [16] proved that
a constitutive lack of concentrated stresses can appear even in some second-gradient fluid, exemplifying
a general feature first noted by dell’Isola and Seppecher [4].

The aim of this paper is to provide evidence of the different nature of the aforementioned non-stan-
dard effects, investigating also a third kind of concentrated interaction. In Sect. 2, second-gradient linear
isotropic dissipative liquids, which are quasi-Newtonian from a viscometric viewpoint, are presented. The
distinction between concentrated stresses and other concentrated interactions, the adherence of a three-
dimensional liquid to one-dimensional immersed structures, is emphasized, in Sect. 3, by means of explicit
calculations in two benchmark problems. Section 4 aims first to mathematically clarify how the adherence
to one-dimensional immersed bodies can be modeled, even in liquids characterized by a constitutive lack
of concentrated stresses, and then to introduce a further concentrated interaction, related to the possible
concentration of the external forces acting on the liquid. Finally, in Sect. 5, possible applications of the-
ories encompassing concentrated interactions are discussed, and an approach to extending the analysis
presented in this note to Nth gradient continua is outlined.
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2. Second-gradient linear isotropic dissipative liquids

Following [7], I will introduce the model under consideration with an approach based on virtual power.
In this approach, the material is characterized by an internal power expenditure, and the action of the
environment on it is described by an external power expenditure. The descriptor of the state at any
instant t in the time interval [0, T ] ⊂ R is the Eulerian velocity field u(t, x). Since the focus of this paper
is on liquids, I will assume the incompressibility condition, together with the assumption of homogeneity,
and I will set the mass density ρ equal to unity, identically, obtaining the first constraint on the velocity:

∀t ∈ [0, T ] : div u = 0. (1)

Since viscous interactions should not occur during a rigid motion, and since I want to model generalized
viscous liquids, I require the second-gradient internal power expenditure to vanish on any rigid velocity
field. Then, its general form becomes

〈P in
u , v〉 =

∫

Ω

T · ∇v +
∫

Ω

G · ∇∇v , (2)

where T is a symmetric tensor field of order 2, representing the classical first-gradient contribution, and
G is a tensor field of order 3, introducing the second-gradient terms. Within this framework, v denotes a
virtual velocity, that is, any kinematically admissible velocity field.

Linearity and isotropy of the liquid are encoded in the dependence of the tensor fields T and G on the
descriptor u. It is well known that, within incompressible theories,

Tij = μ(ui,j + uj,i) − p δij ;

besides, in [14, Theorem 1.1], it has been shown that

Gijk = η1ui,jk + η2(uj,ki + uk,ij − ui,ssδjk) + η3(uj,ssδki + uk,ssδij − 4ui,ssδjk) − pkδij ,

where μ, η1, η2, η3 ∈ R and δij is the usual Kronecker symbol. The fields p and p, scalar- and vector-valued,
respectively, enter the definition of the pressure, whose role in incompressible theories reduces to that of
a Lagrange multiplier of the constraint (1).

Defining the symmetric part of a tensor X of order m as

Sym X :=
1
m!

∑
σ

Xσ(i1...im) ,

where σ runs over the group of permutations of m elements, denoting by Δ the Laplace operator, and
setting I = (δij), the previous relations can be written in intrinsic notation as

T = 2μ Sym ∇u − p I , (3)
G = (η1 − η2)∇∇u + 3η2 Sym ∇∇u − (η2 + 5η3)Δu ⊗ I + 3η3 Sym(Δu ⊗ I) − I ⊗ p. (4)

Following these definitions, since also the virtual velocities must obey the constraint (1), the internal
power expenditure for a second-gradient linear isotropic dissipative liquid can be expressed as

〈P in
u , v〉 = 2μ

∫

Ω

Sym ∇u · ∇v + (η1 − η2)
∫

Ω

∇∇u · ∇∇v

+3η2

∫

Ω

Sym ∇∇u · ∇∇v − (η2 + 4η3)
∫

Ω

Δu · Δv. (5)

On the basis of thermodynamical considerations, the instantaneous dissipation must be non-negative
for any flow; it has been proved in [12] that this constraint is satisfied if and only if



Vol. 64 (2013) Concentrated interactions in second-gradient liquids 373

μ ≥ 0 , η1 + 2η2 ≥ 0 , η1 − η2 ≥ 0 , η1 − η2 − 6η3 − 2
√

η2
2 + 4η2η3 + 9η2

3 ≥ 0. (6)

Notice that a thermodynamically consistent choice with η1 = 0 requires both η2 = 0 and η3 ≤ 0.
By the definition of a second-gradient power expenditure, it is clear that G carries dimensions of

mass per unit time squared. Moreover, the constitutive prescriptions (3) and (4) imply that the ratios√
ηi/μ (i = 1, 2, 3) have dimensions of length. Hence, many characteristic length scales could be defined

combining the four material parameters; one of those combinations, which will be used later, leads to

L :=
√

η1 − η2 − 4η3

μ
, (7)

where the constraints (6) imply L ≥ 0.
It is important to decompose the stresses T,G into active contributions Ta,Ga and pressure con-

tributions Tp,Gp. Such a decomposition of T is obvious, while a comparison between expressions (4)
and (5) helps in understanding that pressure contributions contain terms that do not expend power on
divergence-free virtual velocities; this also clarifies the meaning of the active part. Summarizing, we have

Ta = 2μSym ∇u , Tp = −p I ,

Ga = (η1 − η2)∇∇u + 3η2 Sym ∇∇u − (η2 + 4η3)Δu ⊗ I ,

Gp = 3η3 Sym(Δu ⊗ I) − η3Δu ⊗ I − I ⊗ p ,

with ∫

Ω

Tp · ∇v = 0 =
∫

Ω

Gp · ∇∇v

for any virtual velocity v.
Notice that the material coefficient η3 enters both the active and the pressure contributions Ga and

Gp to the second-gradient stress G. This is a striking difference from the first-gradient case, where active
and pressure contributions are completely independent. The term multiplied by η3 in Gp originates from
the projection of the third-order tensor Δu⊗ I onto the space of completely symmetric tensors. Hence, the
form of Gp suggests that, within incompressible theories, there is no point in taking the symmetric part
of Δu ⊗ I. Nonetheless, the dual role played by η3 is somewhat puzzling and deserves further analysis.

Since the assumed form of the internal power of a continuous body limits the range of internal inter-
actions that body can experience, I assume that the external power expenditure is also a second-gradient
power. This ensures that the external world can act only in ways consistent with the interactions sus-
tainable by a second-gradient liquid. Applying D’Alembert’s principle, it is customary to include within
the external power expenditure the inertial term

−
∫

Ω

ρ u̇ · v := −
∫

Ω

ρ

(
∂u

∂t
+ (u · ∇)u

)
· v ,

and thereby make it possible to formulate evolution equations as a consequence of the principle of virtual
power.

3. Some explicit calculations

The aim of this section is to analyze the effects of the higher-order material parameters η1, η2, and η3

in some examples, with the objective of providing some insight into their relationship with concentrated
interactions. It will become clear that η1 is strictly related to the presence of concentrated stresses, while
η3 is only responsible for the adherence to one-dimensional immersed structures. The role of η2 is less
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obvious: it must vanish if η1 vanishes, but it can be otherwise set equal to η1 to make Sym ∇∇u and Δu
the sole relevant terms affecting second-gradient dissipation, as can be inferred by the form of (5).

Concentrated stresses appear in second-gradient theories on considering an equivalent representation
of the internal power (2), expended on a piecewise smooth domain Ω, in terms of interaction fields. Indeed,
as shown in [7,16], there exist vector fields b̂, t̂, m̂, and k̂ such that

〈P in
u , v〉 =

∫

Ω

b̂ · v +
∫

S
t̂ · v +

∫

S
m̂ · ∂v

∂n
+

∫

E
k̂ · v ,

where S and E are, respectively, the regular and the singular part of ∂Ω, n is the unit outer normal to
S, and ∂/∂n denotes the normal derivative on S. Moreover, the following relations hold:

b̂ = −div T + div div G ,

t̂ = [T − div G]n + divS [Gn] ,
m̂ = [Gn]n ,

k̂ = [Gna]ea + [Gnb]eb ,

where divS denotes the projection onto S of the divergence operator, na and nb are the limits of n coming
from the two sides of an edge in E , and ea and eb are unit vector fields orthogonal to E and to na and nb,
respectively, and pointing outward the a and b faces, respectively.

The previous representation was exploited by Fried and Gurtin [7] to arrive at various boundary con-
ditions. Using their terminology, I will assume a no-slip condition with weak adherence (i.e. m̂ = 0) to
solid walls. I will consider steady flows and neglect body forces, in which case the differential problem
given by the balance of internal and external power expenditures is

2μ

∫

Ω

Sym ∇u · ∇v + (η1 − η2)
∫

Ω

∇∇u · ∇∇v

+3η2

∫

Ω

Sym ∇∇u · ∇∇v − (η2 + 4η3)
∫

Ω

Δu · Δv = −
∫

Ω

ρ (u · ∇)u · v , (8)

for any virtual velocity v. If the velocity field u is sufficiently regular, the local form of Eq. (8) reads

ρ (u · ∇)u − μΔu + (η1 − η2 − 4η3)ΔΔu = 0. (9)

3.1. Dragged flow in a cylinder

Consider now a liquid in a concentric annular pipe with radii R1 < R2; the flow is driven by moving
the inner cylinder at constant speed U along the axial direction ez. We look for cylindrically symmetric
stationary solutions, i.e. u = u(r)ez, where r is the cylindrical radius. In the case of Newtonian liquids
with viscosity μ and the usual adherence condition on the walls, one easily finds the following profile for
the axial component of the velocity as a function of r:

U
log R2 − log r

log R2 − log R1
.

It is clear that this solution has no continuous extension to the case R1 = 0.
However, with a second-order linear isotropic viscous liquid, this problem leads to the equation

Δu − L2ΔΔu = 0. (10)

We have now the family of solutions

u(r) = α1 + α2 I0
( r

L

)
+ α3 log

( r

L

)
+ α4 K0

( r

L

)
, (11)
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where αi, i = 1, . . . , 4, are constants (depending on R1 and R2) fixed by the boundary conditions, Is and
Ks, s ∈ N, are Bessel functions of imaginary argument (see [13, Sect. 5.7]), and the parameter L is defined
as in (7). If we now set R1 = 0, the solution remains bounded provided that α3 = α4, since

c0 := lim
r→0

(
log

( r

L

)
+ K0

( r

L

))
< +∞ ;

besides, one can still meet the prescribed boundary conditions by a suitable choice of the constants.
Actually, true boundary conditions can now be imposed only at r = R2 that is on the outer boundary

of the annular pipe, while at r = 0, I will impose the value of the velocity field to be equal to U—that is,
to the speed at which the one-dimensional degenerate cylinder moves in the ez direction. Hence, letting
n denotes the outer unit normal to the boundary, the three conditions are:

u(0) = U , (12)
u(R2) = 0 , (13)

(Gn)n|r=R2 =
[
η1

∂2u

∂r2
− (η2 + 4η3)

1
r

∂

∂r

(
r
∂u

∂r

)]
r=R2

= 0. (14)

Thus, it follows that α1, α2, and α3 obey

α1 = U − α2 − α3c0 ,

α2 =
1

1 − I0
(

R2
L

)
[
U + α3

(
log

(
R2

L

)
+ K0

(
R2

L

)
− c0

)]
,

α3 =
1
B

· U

1 − I0
(

R2
L

)
[
η1 − η2 − 4η3

2L2

(
I0

(
R2

L

)
+ I2

(
R2

L

))
− η2 + 4η3

LR2
I1

(
R2

L

)]
,

with

B =
η1 − η2 − 4η3

2L2

[
log

(
R2
L

)
+ K0

(
R2
L

) − c0

1 − I0
(

R2
L

)
(

I0

(
R2

L

)
+ I2

(
R2

L

))]

+
η1 − η2 − 4η3

2L2

[
K0

(
R2

L

)
+ K2

(
R2

L

)
− L2

R2
2

]

−η2 + 4η3

LR2

[
log

(
R2
L

)
+ K0

(
R2
L

) − c0

1 − I0
(

R2
L

) I1

(
R2

L

)
+

L

R2
− K1

(
R2

L

)]
.

Using the foregoing expressions for α1, α2, and α3 in (11) determines the axial velocity in terms of the
geometric and material parameters.

The existence and uniqueness results proved in [11] require η1 > 0. However, the example treated
in this section admits a solution also when η1 = η2 = 0 and η3 < 0, in which case the liquid is still a
non-simple one and no thermodynamic requirement is violated. In fact, a general result of existence and
uniqueness of solution with the latter choice for the material parameters can be proved, as outlined in
Sect. 4.1.

So far, there is no clear distinction between the effects of the presence of the three parameters. Let us
now calculate the concentrated force on the edge of a cylindrical wedge, corresponding to the point E on
the section depicted in Fig. 1. Notice that there

k̂ = G(ex ⊗ ey + ey ⊗ ex) = 2G(ex ⊗ ey) ;

indeed,

G112 = G212 = 0 , and G312 = η1
∂2u

∂x∂y
.
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Fig. 1. Section of the cylindrical wedge

Remembering that r =
√

x2 + y2, we have

∂2u

∂x∂y
= −xy

r3

[α2

L
I1

( r

L

)
+

α3

r
− α3

L
K1

( r

L

)]

+
xy

r2

[ α2

2L2

(
I0

( r

L

)
+ I2

( r

L

))
− α3

r2
+

α3

2L2

(
K0

( r

L

)
+ K2

( r

L

))]
; (15)

u being a radial function, the expression in (15) vanishes whenever x = 0 or y = 0 but is generically
non-zero when calculated at a point E = (x0, y0) with both x0 �= 0 and y0 �= 0 and thus gives rise to a
concentrated stress along the corresponding edge.

Moreover, it is clear that the parameters η2 and η3, entering (15) via the constants αi, cannot deter-
mine the presence of the concentrated force k̂, since no concentrated force can appear if η1 = 0. This result
is in agreement with observations of Podio-Guidugli and Vianello [16, Sect. 4]. Indeed, the second-order
stress would take the form

G = −5η3Δu ⊗ I + 3η3 Sym(Δu ⊗ I) + I ⊗ p ,

whose active part, given the incompressibility constraint, is Ga = −4η3Δu ⊗ I, which cannot develop
concentrated stresses, since I · (ea ⊗ na) = ea · na = 0 for any surface label a, ea, and na being a pair of
orthogonal vectors.

The results of the present section show that with particular constitutive choices, it is possible to define
a liquid which is capable of adhering to one-dimensional objects without developing concentrated stresses.
This is the case when η1 = η2 = 0 and η3 < 0. Such a result is a bit surprising. But we have to properly
understand the meaning of concentrated stresses; what we find for η1 = η2 = 0 and η3 < 0 is that the
adherence to a one-dimensional structure can be represented, on any material surface containing it, by
diffuse surface interactions. On the other hand, for η1 > 0, the representation of internal stresses can have
a concentrated part on the singular edges of the surface of some subbody, even if there are no manifestly
concentrated interactions on any part of the boundary or the interior of the body.

3.2. Pressure-driven flow

Consider now a pipe with square section in the (x, y)-plane, a velocity field u = w(x, y)ez, and a constant
and uniform pressure gradient Cez, which drives the flow. To emphasize the appearance of concentrated
stresses, I set η2 = η3 = 0. The nonlinear term in (9) vanishes again, thanks to the chosen geometry, and
the differential equation for the steady flow of a second-order liquid with viscosity μ becomes

μΔw − η1ΔΔw = C ,
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with w = 0 and (∇∇w)nn = 0 on the boundary of the pipe. The previous equation can be written as

−Δ(w − L2Δw) = −C

μ
,

and since w − L2Δw = 0 on the boundary, it is permissible to set u = w − L2Δw, obtaining
{−Δu = −C/μ =: C̃

u = 0 on the boundary.
(16)

Take now the section of the pipe to be [0, π] × [0, π], so that we can expand on the basis given by the
eigenfunctions of the Laplace operator on that square:

Xh,k =
4
π2

sin hx sin ky,

with eigenvalues λh,k = h2 + k2, with h, k ∈ N. It follows that

〈C̃,Xh,k〉 =
{

fh,k := 8C̃
π2 hk for h, k odd

0 otherwise.

Hence, the solution of (16) is

ũ =
∑

h,k odd

fh,k

λh,k
Xh,k. (17)

It remains to solve

−L2Δw + w = ũ.

The operator (−L2Δ + 1) has again Xh,k as eigenfunctions, with eigenvalues L2λh,k + 1; thus,

w(x, y) =
∑

h,k odd

fh,k

λh,k(L2λh,k + 1)
Xh,k = −32C

μπ4

∑
h,k odd

hk

(h2 + k2)(L2h2 + L2k2 + 1)
sin hx sin ky. (18)

Now, the concentrated traction along the edges of the pipe can be evaluated. Since

k̂ = 2G(ex ⊗ ey) , G112 = G212 = 0 , and G312 = η1
∂2w

∂x∂y
,

the concentrated stress density at the origin is given by

k̂(0, 0) = 2η1
∂2w

∂x∂y
(0, 0)ez = −2η1

32C

μπ4

∑
h,k odd

h2k2

(h2 + k2)(L2h2 + L2k2 + 1)
ez �= 0.

Thanks to the symmetry of the problem, identical results hold on the remaining edges.

4. Concentrated interactions without concentrated stress

In the previous section, a clear distinction between concentrated stresses and concentrated adherence
interactions has been exemplified. The aim of what follows is to present the crucial mathematical facts
that make it possible to model the adherence to one-dimensional immersed bodies, regardless of whether
concentrated stresses are allowed, and to introduce a third kind of concentrated interaction, related to
the possible concentration of the external forces acting on the liquid.
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4.1. The sole adherence

Existence and uniqueness results for the solution of the differential problem associated with a second-
gradient dissipative liquid that adheres to one-dimensional immersed structures have been proved in [11,
12]. An essential hypothesis for those proofs is

μ > 0 , η1 + 2η2 > 0 , η1 − η2 > 0 , η1 − η2 − 6η3 − 2
√

η2
2 + 4η2η3 + 9η2

3 > 0 , (19)

which implies, in particular, η1 > 0. Such an assumption is related to the coercivity of the bilinear form,
defined by the internal power expenditure (5), on a suitable subspace of the Sobolev space H2(Ω; R3); this
is a basic ingredient needed to establish the existence of solutions. Moreover, the embedding of H2(Ω; R3)
into a space of Hölder continuous functions is needed to obtain both uniqueness of the solution and
adherence to one-dimensional rigid bodies (for the theory of Sobolev spaces see [1]).

Actually, conditions (19) are stronger than the thermodynamical constraints (6), and as anticipated
in Sect. 3.1, it should be possible to prove existence and uniqueness of flows for a second-gradient liquid
interacting with a line, even when η1 = η2 = 0 and η3 < 0, which is a choice consistent with (6). Indeed,
such a result can be established with minor modifications of the proofs contained in [11,12], as discussed
below.

In this case, the internal power expenditure becomes

A(u, v) := 〈P in
u , v〉 = 2μ

∫

Ω

Sym ∇u · ∇v − 4η3

∫

Ω

Δu · Δv , (20)

which defines the bilinear form A. Assuming u, v ∈ X, where X is a suitable Banach space, the bilinear
form A is coercive if there exists ν > 0 such that ‖u‖2

X ≤ νA(u, u) for every u ∈ X.
Now, if the boundary of the domain Ω is regular enough, A is coercive on a subspace of H2(Ω; R3). But

if ∂Ω is only piecewise smooth (in which case the presence of concentrated stresses could be detected!),
A cannot be coercive on H2(Ω; R3), whereas the form defined by (5), with η1 − η2 > 0, is coercive. Nev-
ertheless, thanks to the fact that A is coercive on D, existence of solutions for the steady flow problem
can be proved in the space

D :=
{
u ∈ H1

0 (Ω; R3) : div u = 0 and Δu ∈ L2(Ω; R3)
}
. (21)

Moreover, standard regularity theorems for elliptic second-order partial differential equations guaran-
tee that functions belonging to D are essentially bounded and Hölder continuous [10, Theorems 8.16 and
8.22]. Essential boundedness provides the estimates needed to establish the uniqueness of any solution,
while the continuity of the solutions makes it possible to assign the value of the velocity field u on a
one-dimensional set contained in the interior of Ω, imposing adherence. It thus transpires that a second-
gradient liquid can undergo a concentrated adherence interaction in generic situations, even when the
choice of the constitutive parameters rules out the development of concentrated stresses.

4.2. Concentrated body force

By the definition (2) of the internal power expenditure, it is clear that P in
u is a linear continuous form

on the space of virtual velocities and can balance the linear continuous form representing the external
power Pex

u . Considering steady flows in a domain Ω with piecewise smooth boundary, it is permissible
to assume that virtual velocities belong to the space D defined by (21). Since D is a Hilbert space, the
Riesz representation theorem ensures that there exist vector fields b, t,m, and k such that

〈Pex
u , v〉 =

∫

Ω

b · v +
∫

S
t · v +

∫

S
m · ∂v

∂n
+

∫

E
k · v.
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The interaction fields t,m, and k belong to suitable trace spaces, and b belongs to D′, the topological
dual of D. It is implicit in the proofs of the existence result contained in [12, Theorem 3] that the steady
flow problem admits a solution for any body force field b ∈ D′.

Since functions in D are Hölder continuous, D′ contains also distributions with support concentrated
in points or along lines laying in the interior of Ω. This implies that internal stresses can balance concen-
trated external forces and thereby represents a third kind of concentrated interaction.

5. Discussion

Within the present paper, three different kinds of concentrated interaction have been shown to be possi-
ble in linearly viscous second-gradient liquids: concentrated stresses along the edges of piecewise smooth
bounding surfaces, adhesion to one-dimensional immersed bodies, and concentrated external body forces.
Those interactions, absent in simple (i.e., first-gradient) liquids, should be regarded as available tools
when modeling non-standard interactions, and they can be particularly useful whenever the coupling
between physical phenomena occurring at very different length scales is considered.

A relevant example of such a context arises in the modeling of nanofluids (see [2] for a comprehen-
sive introduction), that is, suspensions where the typical size of the solid particles is of the order of ten
nanometers, six or more orders of magnitude smaller than the typical length scale of the relevant flows.
Such composite fluids display unexpectedly enhanced heat and mass transfer properties, relative to those
of the base fluid, and the understanding of their behavior is still an open problem. In this case, a theory
that makes it possible to model the dispersed phase as lower dimensional, providing effective interactions
with the fluid phase, could serve as a good reduced model to investigate nanofluids.

The coupling between a three-dimensional environment and structures that can be effectively consid-
ered as lower dimensional is relevant also while modeling biological systems, such as blood vessels within
soft tissues or alveoli in the lungs. It is therefore important to know what kind of interactions can be
included in the mathematical model. In particular, concentrated body forces are necessary to encompass
any non-trivial mechanical behavior of the lower dimensional structures. Indeed, in many situations, such
structures actively react to various stimuli, giving rise to concentrated body forces.

In a recent paper, dell’Isola et al. [5] clarify the structure of concentrated stresses in Nth gradient
continua, giving also their representation in terms of the shape of Cauchy cuts. However, it could be
interesting to perform an analysis of further concentrated interactions allowed in Nth order materials,
akin to that presented above for second-gradient liquids. Such a project could take advantage of a fact,
which has been exploited also in this note: the structure of the internal power expenditure and the avail-
ability of each kind of concentrated interaction is strictly related to the (generalized) kinematics of the
system, as explained below.

By generalized kinematics, I mean the functional space U to which virtual velocities belong. If powers
are considered to be linear continuous forms on U , it is clear that their integral representation depends
on the regularity of functions in U . As the simplest example, an Nth gradient power is associated with
a linear continuous form on the Sobolev space HN (Ω; R3), a space where Nth order weak derivatives
are defined. But when it comes to interactions, finer distinctions are called for. Indeed, many functional
spaces that are ‘intermediate’ between HN−1(Ω; R3) and HN (Ω; R3) can be defined. Abstract results,
such as the Riesz representation theorem, suggest a suitable integral form of the internal power, and the
increased regularity of the virtual velocities allows for new interactions.
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