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Shallow water equations: viscous solutions and inviscid limit
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Abstract. We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous
equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the
classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes
equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a
notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence
of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates
yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the
uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation
measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C2 test-functions,
are confined in a compact set in H−1, which yields that the measure-valued solutions are confined by the Tartar-Murat
commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solu-
tions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the
Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom
topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant
system in the presence of friction.

Mathematics Subject Classification. Primary 35B30 · 35Q30 · 35Q31 · 35L65 · 35L45 · 35B35 · 76N17; Secondary 76B15 ·
35L80 · 35Q35 · 35B25.

Keywords. Shallow water equations · Inviscid limit · Viscous · Inviscid · Saint-Venant system · Friction · Viscous

solutions · Entropy · Entropy flux · Entropy solutions · Uniform estimates · Finite energy · Entropy dissipation measures ·
H−1-compactness · Measure-valued solutions.

1. Introduction

We are concerned with solutions of the viscous shallow water equations:{
ht + (hu)x = 0,
(hu)t + (hu2 + g

2h
2)x + gbxh = ε(hux)x,

(1.1)

with initial data:

(h, u)|t=0 = (h0(x), u0(x)). (1.2)

Here, g is the free-fall acceleration and b(x) ≥ 0 is the function describing the topography of shallow
water with possible different end-states:

lim
x→±∞ b(x) = b±,

h(t, x) ≥ 0 is the height of water above the bottom b(x) at the time t and the position x with possible
different end-states:

lim
x→±∞h(t, x) = h± := h̄− b±,
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h̄ > 0 is the constant that stands for the height of water at rest, u(t, x) is the velocity of the fluid, and
(h0(x), u0(x)) are the initial values of the height and the velocity.

This system can directly be derived from the balance laws of mass and momentum; it can also be
derived from the system of two-dimensional Navier-Stokes equations for incompressible fluids in the shal-
low water limit and under the assumption that there is no friction at the bottom of the reservoir. See
Bouchut [1], Gerbeau and Perthame [14], Mascia [20] and the references cited therein.

Consider the topography function b(x) satisfying
(i) b ∈ L∞(R), b − b−χ{x<0} − b+χ{x>0} ∈ L2(R), bx ∈ L1(R) ∩ L4(R), where χB is the indication

function on the set B, i.e., χB(x) = 1 when x ∈ B and 0 when x /∈ B;
(ii) b(x) ≥ 0 and b± ≤ h̄.

When ε = 0, system (1.1) becomes the Saint-Venant system, i.e., the inviscid shallow water equations:{
ht + (hu)x = 0,
(hu)t + (hu2 + g

2h
2)x + gbxh = 0,

(1.3)

or in a short form:

Ut + F (U)x +G(U, x) = 0, (1.4)

with U = (h,m)� := (h, hu)�, F (U) = (hu, hu2 + g
2h

2)�, and G(U, x) = (0, gbxh)�.
The eigenvalues of system (1.3) are

λj = u+ (−1)j
√
gh, j = 1, 2. (1.5)

From (1.5),

λ2 − λ1 =
√
gh → 0 as h → 0.

Therefore, system (1.3) is strictly hyperbolic when h > 0. However, near the vacuum h = 0, the two
characteristic speeds of (1.3) may coincide and the system be nonstrictly hyperbolic.

A pair of mappings (η, q) : R
2
+ := R+ × R → R

2 is called an entropy-entropy flux pair (or entropy
pair, for short) of system (1.3) if the pair satisfies the 2 × 2 hyperbolic system:

∇q(U) = ∇η(U)∇F (U). (1.6)

Furthermore, η(h,m) is called a weak entropy if

η
∣∣∣h=0
u=m/h fixed

= 0. (1.7)

An entropy pair is said convex if the Hessian ∇2η(h,m) is nonnegative in the region under consideration.
For example, the mechanical energy and the mechanical energy flux

η∗(h,m) =
1
2
m2

h
+

1
2
gh2, q∗(h,m) =

1
2
m3

h2
+ ghm (1.8)

form a special entropy pair; η∗(h,m) is convex in the region h ≥ 0.
The relative total mechanical energy over R for (1.3) with respect to the end-states (h̄−b±, 0) through

(h̄− b(x), 0) is

E[h,m](t) :=
∫

R

(
η∗(h,m) − η∗(h̄− b(x), 0) − ∇η∗(h̄− b(x), 0) · (h− h̄+ b(x),m)

)
dx ≥ 0. (1.9)

In the coordinates (h, u), any weak entropy function η(h, hu) is governed by the second-order linear
wave equation: {

ηhh − g
hηuu = 0, h > 0,

η|h=0 = 0.
(1.10)
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Therefore, any weak entropy pair (η, q) can be represented by⎧⎪⎪⎨
⎪⎪⎩
ηψ(h, hu) =

∫
R

χ(h; s− u)ψ(s) ds,

qψ(h, hu) = 1
2

∫
R

(
s+ u)χ(h; s− u)ψ(s) ds

(1.11)

for any continuous function ψ(s), where the weak entropy kernel χ(h, s− u) is determined by{
χhh − g

hχuu = 0,
χ(0, u; s) = 0, χh(0, u; s) = δu=s,

(1.12)

with the Dirac mass δu=s concentrated at u = s.
This implies that the weak entropy kernel as the unique solution of (1.12) is

χ(h; s− u) = [4gh− (s− u)2]1/2+ . (1.13)

Then, the weak entropy pairs have the form:

ηψ(h,m) = ηψ(h, hu) =
∫

R

[4gh− (u− s)2
]1/2
+
ψ(s) ds

= 4gh
∫ 1

−1

ψ(u+ 2
√
ghs)[1 − s2]1/2+ ds, (1.14)

qψ(h,m) = qψ(h, hu) =
1
2

∫
R

(s+ u)[4gh− (u− s)2]1/2+ ψ(s) ds

= 4gh
∫ 1

−1

(u+
√
ghs)ψ(u+ 2

√
ghs)[1 − s2]1/2+ ds. (1.15)

The idea of regarding inviscid fluids as viscous fluids with vanishing physical viscosity dates back the
middle of 19th century; see [16,22–24] (also cf. [8]). The first rigorous proof for the inviscid limit of the
Navier-Stokes equations to the isentropic Euler equations for polytropic gases for general initial data has
been given only until recently in Chen and Perepelitsa [5]. For the Navier-Stokes equations, there exist
no natural invariant regions for the equations with the real physical viscosity term so that the uniform
sup-norm of solutions with respect to the physical viscosity coefficient may not be directly controllable,
and furthermore, convex entropy-entropy flux pairs may not produce signed entropy dissipation measures.
For the viscous shallow water equations, the viscosity term is more degenerate when h is close to zero,
in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in [5]
does not apply directly in several key steps. These require further new ideas and techniques to deal with
the additional degeneracy of the viscosity term for the limiting problem. In particular, the existence of
entropy solutions of the viscous shallow water equations (1.1)–(1.2) needs to be established in an appro-
priate space, and the uniform estimates of the viscous solutions require to be carefully made with the
additional degeneracy, on which the inviscid limit is based. See Sects. 2–4.

Now we define a notion of entropy solutions of the viscous shallow water equations (1.1)–(1.2) on
which our inviscid limit is also based.

Definition 1.1. A pair of functions (h,m) is called an entropy solution of (1.1)–(1.2) provided that

(i) m ∈ L1(R2
+), m2

h ∈ L∞(0,∞;L1(R));
(ii) h ≥ 0, h+ b− h̄ ∈ L∞(0,∞;L2(R)), (

√
h)x ∈ L∞(0,∞;L2(R));

(iii) (
√
h)t + ( m√

h
)x ∈ L2(R2

+);
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(iv) for any smooth, compactly supported function ψ = ψ(t, x) on [0,∞) × R, the following identities
hold:∫ ∞

0

∫ ∞

−∞

(
hψt +mψx

)
dxdt+

∫ ∞

−∞
h0(x)ψ(0, x) dx = 0,

∫ ∞

0

∫ ∞

−∞

(
mψt +

(m2

h
+
g

2
h2 − ε

√
hn
)
ψx − gbxhψ

)
dxdt+

∫ ∞

−∞
m0(x)ψ(0, x) dx = 0,

with n := 2
(
(
√
h)t + ( m√

h
)x
)
;

(v) for any weak entropy pair (ηψ, qψ) in (1.14)–(1.15) generated by a smooth, compactly supported
test-function ψ = ψ(·), there exists μψε ∈ M+

loc(R
2
+) such that the following entropy balance equation

holds in the distributional sense:

ηψt + qψx + gbxhη
ψ
m − ε

(√
hηψmn

)
x

+ μψε = 0. (1.16)

In the above conditions, the functions
√
hηψm,

m√
h

and m2

h are defined by zero on the set {h = 0}, besides
the weak entropy pair (ηψ, qψ).

A similar weak formulation of equations (1.1) was developed in Mellet and Vasseur [21] even for its
multidimensional analog. One of our main concerns in this paper is uniform estimates of global solu-
tions in the sense of Definition 1.1 with respect to the viscosity coefficient ε, which are established in
Theorem 1.1 below.

Define

B = ‖b‖L∞(R) + ‖b− b−χ{x<0} − b+χ{x>0}‖L2(R) + ‖bx‖L1∩L4(R), (1.17)

and

M0 =
∫ ∞

−∞
|m0|dx, E0 =

∫ ∞

−∞

(
m2

0

h0
+ g|h0 + b− h̄|2

)
dx, E1 = ε2

∫ ∞

−∞

∣∣∣(√h0)x
∣∣∣2 dx. (1.18)

Theorem 1.1 (Main Theorem). Let ε > 0. Let a pair of functions (h0,m0), with h0 ≥ 0, be such that

m0 ∈ L1(R),
( m0√

h0

, h0 + b− h̄, (
√
h0)x

) ∈ (L2(R)
)3
.

Then, there exists an entropy solution (h,m) of (1.1)–(1.2) on R
2
+ with the following properties: For

any T > 0, compact set K ⊂ R and ψ ∈ C∞
0 (R2

+), there are Ci = Ci(T,E0, E1, B), i = 1, 2, C3 =
C3(T,K,E0, E1,M0, B) and C4 = C4(T,E0, E1, B, ψ) that are all independent of ε > 0 such that

ess sup
t∈[0,T ]

∫ ∞

−∞

( |m(t, x)|2
h(t, x)

+ g|h(t, x) + b(x) − h̄|2
)

dx ≤ E0, (1.19)

ess sup
t∈[0,T ]

ε2
∫ ∞

−∞
|(
√
h(t, x))x|2 dx ≤ C1, (1.20)

ε

∫
[0,T ]×R

(n2 + |hx|2) dxdt ≤ C2, (1.21)

∫ T

0

∫
K

(
h3 +

|m|3
h2

)
dxdt ≤ C3, (1.22)

ε

∫ ∞

0

∫ ∞

−∞
|dμψ| ≤ C4. (1.23)

Based on the global existence and uniform estimates established in Theorem 1.1, we study the inviscid
limit of the solutions (hε,mε), ε > 0, to a solution of the Cauchy problem of the Saint-Venant system
(1.3) with initial data (1.2).



Vol. 63 (2012) Shallow water equations 1071

Definition 1.2. Let (h0,m0) be given initial data with relative finite energy with respect to the end-states
(h±, 0) := (h̄− b±, 0) at infinity, i.e.,

E[h0,m0] ≤ E0 < ∞.

A pair of measurable functions (h,m) : R
2
+ → R

2
+ is called a finite-energy entropy solution of the Cauchy

problem (1.3) with Cauchy data (1.2) provided that
(i) The relative total energy with respect to the end-states (h±, 0) is uniformly bounded in time: there

exists a bounded function CT (E0) such that, for a.e. t > 0,

E[h,m](t) ≤ CT (E0) for a.e. t ∈ [0, T ];

(ii) The entropy inequality:

ηψ(h,m)t + qψ(h,m)x + gηψm(h,m)bxh ≤ 0 (1.24)

is satisfied in the sense of distributions for any test-function ψ(s) ∈ {±1,±s, s2} in [0, T ] × R;
(iii) The initial data functions (h0,m0) are attained in the sense of distributions.

Then, as a corollary of Theorem 1.1 (Main Theorem) and the compactness framework established in
Chen and Perepelitsa [5], we conclude

Theorem 1.2. Let (hε0,m
ε
0) be a sequence of initial data functions for problem (1.2)–(1.3) which satisfy the

assumptions of Theorem 1.1 with the constants M0, E0 and E1, independent of ε. Moreover, assume that
(hε0,m

ε
0) → (h0,m0) a.e. x ∈ R. Then, for the global solutions (hε,mε) established in Theorem 1.1, when

ε → 0, there exists a subsequence of (hε,mε) that converges almost everywhere to a relative finite-energy
entropy solution (h,m) to the Cauchy problem (1.3) with Cauchy data (1.2) in the sense of Definition 1.2.
Moreover, there exists a bounded Radon measure μ(t, x; s) on R

2
+ × R such that

μ(U × R) ≥ 0

for any open set U ⊂ R
2
+, and the corresponding entropy kernel χ(h, s− u) defined by (1.13) satisfies

∂tχ(h, s− u) +
1
2
∂x
(
(s+ u)χ(h, s− u)

)− gbx∂sχ(h, s− u) = ∂2
sμ (1.25)

in the sense of distributions on R
2
+ × R.

When the Saint-Venant system describes the motion of shallow water in the presence of friction, an
additional term r(h, u)hu, called the friction term, is present:{

ht + (hu)x = 0,
(hu)t + (hu2 + g

2h
2)x + gbxh+ r(h, u)hu = 0.

(1.26)

The interaction between the dynamics of the shallow water and the geometry of the physical domain may
generate the formation of remarkable structures. In Sect. 6, for the case that r(h, u) is positive constant,
we show how our analysis can also be applied to the inviscid limit of the viscous solutions to the viscous
shallow water equations with the friction term to the corresponding Saint-Venant system (1.26).

We remark that, through straightforward arguments, the analysis also applies to a range α > 0 and
γ > 1 for more general singular viscosity term: ε(hαux)x replacing ε(hux)x and more general pressure
laws p(h) = κhγ replacing h2/2.

The further organization of the paper is as follows. In Sect. 2, we introduce and construct a nonde-
generate viscosity approximation of global solutions to the viscous shallow water equations and establish
the basic uniform estimates. Further essential uniform apriori estimates are made for the approximate
solutions in Sect. 3. In Sect. 4, we establish Theorem 1.1 for the existence and uniform estimates of the
viscous solutions with respect to the viscosity coefficient ε. Finally, in Sect. 5, we complete the proof of
Theorem 1.2 by combining the uniform estimates in Theorem 1.1 with the reduction theorem of Young
measures with unbounded support established in Chen and Perepelitsa [5].
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Finally, we further remark that the reduction theorem of Young measures with bounded support for
the isentropic Euler equations was established by DiPerna [13], Chen [3,4], Ding et al. [9–12], Lions et
al. [19] and Lions et al. [18] for the γ-law gases, and Chen and LeFloch [6,7] for general pressure-law
gases. Also see LeFloch and Westdickenberg [17] for the reduction theorem for the case 1 < γ ≤ 5/3 and
Chen and Perepelitsa [5] for the general case γ > 1 with a simpler proof for the Young measures with
unbounded support.

2. Nondegenerate viscosity approximation

To establish Theorem 1.1, we first introduce and analyze an approximate system of equations for which
the viscosity coefficient is bounded away from the vacuum. Let δ > 0. Consider{

ht + (hu)x = 0,
(hu)t + (hu2 + g

2h
2)x + gbxh = ε((h+ δ)ux)x.

(2.1)

We first follow Hoff [15] to show that (2.1) has a unique, global, smooth solution with h(t, x) > 0
provided that the initial data functions (h0, u0) are smooth, h0 > 0, and b± < h̄, as stated below. Mean-
while, we carefully make uniform estimates of the solutions with respect to both parameters δ > 0 and
ε > 0, which are essential to establish the inviscid limit for Theorem 1.2.

Theorem 2.1. Let (h0, u0) be such that

h0 + b− h̄ ∈ L2(R), ess inf
x∈R

h0(x) > 0,
√
h0(σ0)x ∈ L2(R), u0 ∈ H1(R),

where σ0 = εh0 lnh0−δ
h0

. Then there exists a unique strong solution (h, u) of (2.1) on [0,∞) × R with the
initial data (h0, u0) and such that, for any T > 0,

h, u ∈ C([0, T ];L2
loc(R)), h, h−1 ∈ L∞([0, T ] × R),

hx ∈ L∞(0, T ;L2(R)), ht ∈ L2(0, T ;L2(R)),
u ∈ L∞(0, T ;H1(R)), ut, uxx ∈ L2(0, T ;L2(R)).

Proof. We first assume that (h, u) is a smooth solution of (2.1) on QT := [0, T ) × R, with sufficiently
rapid decay as |x| → ∞ and with h(t, x) ≥ h > 0 for all (t, x) ∈ Q. In the estimate below, we also assume
that ε ≤ ε0 and δ ≤ δ0 for some fixed ε0 and δ0.

1. For a smooth solution (h, u) of (2.1), multiplying the second equation in (2.1) by 2u, using the first
equation in (2.1), the fact that(

g(h2)x + 2ghbx
)
u = 2g(h+ b)xhu = 2g(h+ b− h̄)xhu

= 2g
(
(h+ b− h̄)hu

)
x

+ 2g(h+ b− h̄)ht
= 2g

(
(h+ b− h̄)hu

)
x

+ g
(
(h+ b− h̄)2

)
t

(2.2)

and integrating the result over (0, t) × R, we have∫ ∞

−∞

(
h(t, x)|u(t, x)|2 + |h(t, x) + b(x) − h̄|2

)
dx+ ε

∫ t

0

∫ ∞

−∞
2(h+ δ)|ux|2 dxdt

=
∫ ∞

−∞

(
h0(x)|u0(x)|2 + |h0(x) + b(x) − h̄|2

)
dx ≤ E0. (2.3)

2. The next estimate was first observed by Bresch and Desjardins [2]. However, our main concern here
is whether the estimate is uniformly bounded, independent of the viscosity coefficient ε. That is,∫ ∞

−∞
h(t, x)|σx(t, x)|2 dx+ εg

∫ t

0

∫ ∞

−∞

h+ δ

h
|hx|2 dxdt ≤ C0, t ∈ [0, T ], (2.4)
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where σ = εh lnh−δ
h , and C0 = C0(T,E0, E1, B) is independent of both δ > 0 and ε > 0.

Indeed, from the first equation in (2.1), we obtain

σt + uσx = −εh+ δ

h
ux,

and

σxt + uσxx = −εh+ δ

h2
hxux − ε

(
h+ δ

h
ux

)
x

. (2.5)

Multiplying (2.5) by h yields

(hσx)t + (huσx)x = −ε((h+ δ)ux
)
x
.

Adding this to the momentum equation, we have(
h(u+ σx)

)
t
+
(
hu(u+ σx)

)
x

+ gh(h+ b)x = 0,

and then (
h(u+ σx)2

)
t
+
(
hu(u+ σx)2

)
x

+ 2gh(h+ b)xσx + 2gh(h+ b)xu = 0.

We integrate this over (0, t) × R and use (2.2) to obtain∫ ∞

−∞

(
h|u+ σx|2 + g|h+ b− h̄|2) dx+ 2gε

∫ t

0

∫ ∞

−∞

h+ δ

h
|hx|2 dxdt+ 2g

∫ t

0

∫ ∞

−∞
bxhσx dxdt

=
∫ ∞

−∞

(
h0|u0 + σ0,x|2 + |h0 + b− h̄|2) dx. (2.6)

Moreover, the last term on the left of (2.6) can be estimated as∣∣∣∣
∫ t

0

∫ ∞

−∞
bxhσx dxdt

∣∣∣∣
≤
∫ t

0

∫ ∞

−∞

(
h|σx|2 + (h+ b− h̄)|bx|2 + |b− h̄||bx|2

)
dxdt

≤
∫ t

0

∫ ∞

−∞

(
h|σx|2 + |h+ b− h̄|2) dxdt+ ‖bx‖4

L4(R) + ‖b− h̄‖L∞(R)‖bx‖2
L2(R). (2.7)

Then, (2.4) follows from both (2.3) and the assumptions on the initial data and b(x).
3. There exists C = C(T,E0, E1, B, ε, δ), such that

sup
[0,T ]×R

(
h(t, x) + h−1(t, x)

) ≤ C.

We first show the uniform lower bound for h. For any x, y ∈ R,∣∣∣∣∣ 1√
h(t, x)

− 1√
h(t, y)

∣∣∣∣∣ ≤
∫ y

x

∣∣∣∣∣
(

1√
h(t, x)

)
x

∣∣∣∣∣ dx.

Then, using the energy estimate (2.4), there exists C = C(T,E0, E1, B) such that∣∣∣∣∣ 1√
h(t, x)

− 1√
h(t, y)

∣∣∣∣∣ ≤ C|x− y| 1
2 . (2.8)

From the properties of b(x), it follows that there exists β0 > 0 such that h̄− b(x) ≥ β0 for all large
|x|. Define B as an open interval such that

Bc ⊂ {x : h̄− b(x) ≥ β0 > 0}.
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Let

A(t) =
{
x : h(t, x) <

β0

2

}
.

Then, from the first energy estimate, it follows that

|A(t) ∩ Bc| ≤ C1

for some C1 = C1(T,E0, E1, B). Then, for any x ∈ A(t), the interval (x−2(C1+|B|), x+2(C1+|B|))
contains a point x0(t) such that h(t, x0) > β0

2 . From (2.8) with y = x0, we obtain

inf
x∈A(t)

h(t, x) ≥ C > 0

for some C = C(T,E0, E1). On the other hand, h(t, x) > β0
2 on A(t)c. This yields a uniform bound

for h in (t, x). The uniform upper bound is obtained in a similar fashion.
4. Higher-order derivative estimates: Let, in addition to the conditions on the data used above, u0,x ∈
L2(R). Then, there exists C = C(T,E0, E1, B, ε, δ) such that

sup
t∈[0,T ]

∫ ∞

−∞
|ux(t, x)|2 dx+

∫ T

0

∫ ∞

−∞
|uxx|2 dxdt ≤ C

(
1 +

∫ ∞

−∞
|u0,x|2 dx

)
. (2.9)

We will repeatedly use the inequality

‖u‖L∞(R) ≤
√

2‖u‖1/2
L2(R)‖ux‖1/2

L2(R).

Differentiating the momentum equation with x yields

h(uxt + uuxx + uxux) + hx(ut + uux) + (h2)xx + (gbxh)x − ε
(
(h+ δ)ux

)
xx

= 0.

Multiply this equation by ux, integrate over R and notice that

∫ ∞

−∞

(
(h+ δ)ux

)
xx
ux dx = −

∫ ∞

−∞

(
hxuxuxx + (h+ δ)|uxx|2

)
dx.

Then, we have

1
2
d

dt

∫ ∞

−∞
h|ux|2 dx+ ε

∫ ∞

−∞
(h+ δ)|uxx|2 dx

=
∫ ∞

−∞
εhxuxuxx dx−

∫ ∞

−∞
h|ux|3 dx−

∫ ∞

−∞
hx(ut + uux)ux dx

−
∫ ∞

−∞
(h2)xuxx dx−

∫ ∞

−∞
(gbxh)xux dx

= I1 + · · · + I5. (2.10)

Let κ > 0 be a number to be chosen later. We have
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|I1| ≤ κ

∫ ∞

−∞
|uxx|2 dx+ Cκ‖ux‖2

L∞(R)

∫ ∞

−∞
|hx|2 dx

≤ κ

∫ ∞

−∞
|uxx|2 dx+ Cκ

(∫ ∞

−∞
|uxx|2 dx

∫ ∞

−∞
|ux|2 dx

) 1
2
∫ ∞

−∞
|hx|2 dx

≤ κ

∫ ∞

−∞
|uxx|2 dx+ Cκ(T1, E0, E1)

∫ ∞

−∞
|ux|2 dx;

|I2| ≤ C‖ux‖
5
2
L2(R)‖uxx‖

1
2
L2(R) ≤ κ‖uxx‖2

L2(R) + Cκ‖ux‖
10
3
L2(R)

= κ‖uxx‖2
L2(R) + Cκ‖ux‖2

L2(R)‖ux‖
4
3
L2(R);

I3 =
∫ ∞

−∞
hxux

( ε
h

((h+ δ)ux)x − 2hx − bx

)
dx

=
∫ ∞

−∞
hxux

(
ε(lnh)xux + ε

h+ δ

h
uxx − 2hx − gbx

)
dx

= J1 + · · · + J4,

where

|J1| ≤ C

∫ ∞

−∞

|hx|2|ux|2
h

dx

≤ C‖ux‖2
L∞(R)‖hx‖2

L2(R)

≤ C‖ux‖L2(R)‖uxx‖L2(R)

≤ κ‖uxx‖2
L2(R) + Cκ‖ux‖2

L2(R),

|J2| ≤ C‖ux‖L∞(R)‖hx‖L2(R)‖uxx‖L2(R)

≤ C‖ux‖L∞(R)‖uxx‖L2(R)

≤ κ‖uxx‖2
L2(R) + Cκ‖ux‖

2
3
L2(R),

|J3| ≤ C

∫ ∞

−∞
|hx|2|ux|dx

≤ C‖ux‖L∞(R)‖hx‖2
L2(R)

≤ C‖ux‖L∞(R)

≤ κ‖uxx‖L2(R) + Cκ‖ux‖L2(R),

and similarly,

|J4| ≤ κ‖uxx‖L2(R) + Cκ‖bx‖L2(R)‖ux‖
2
3
L2(R).

Thus,

|I3| ≤ κ‖uxx‖2
L2(R) + Cκ

(
‖ux‖2

L2(R) + ‖ux‖
2
3
L2(R)

)
.

Similarly, we have

|I4| + |I5| ≤ κ‖uxx‖2
L2(R) + Cκ.

Now we combine all the above estimates in (2.10). Since h(t, x) has a lower bound, we can choose γ
sufficiently small so that (2.10) implies
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∫ ∞

−∞
|ux(t, x)|2 dx+

∫ t

0

∫ ∞

−∞
|uxx(t, x)|2 dxdt

≤ C‖u0,x‖2
L2(R) + C

∫ t

0

(
1 + ‖ux‖2

L2(R)‖ux‖
4
3
L2(R) + ‖ux‖2

L2(R) + ‖ux‖
2
3
L2(R)

)
dt. (2.11)

From the first energy estimates, we know that∫ T

0

‖ux‖2
L2(R) dt ≤ C(E0).

Thus, by Gronwall’s inequality and from (2.11), we obtain the expected estimate.
Then, the global existence of strong solutions with the uniform apriori estimates is established by

extending the local solutions that can be obtained directly via the fixed point argument. Moreover, the
solution in this class of functions is unique. �

3. Further apriori estimates

In this section, we derive further uniform estimates of the global strong solution (h, u) of (2.1), which
are needed to pass to the limit δ → 0 to establish Theorem 1.1, especially to analyze the inviscid limit as
ε → 0 later on.

A direct corollary of the energy estimate (2.4) is the following uniform L∞ bound for h, independent
of δ ∈ (0, δ0]:

‖h‖L∞(0,T ;L∞(K)) ≤ C(ε,K,E0, E1, B) (3.1)

for every compact K ⊂ R.
Estimates (2.3) and (2.4) allow us to obtain the uniform higher integrability of h and u.
Higher Integrability I: Given a compact set K ⊂ R and T > 0, there exists C1 = C1(K,T,E0, B),

independent of ε, such that ∫ T

0

∫
K

h3 dxdt ≤ C1. (3.2)

The proof of this estimate is identical to the proof of Lemma 3.3 in [5].
Higher Integrability II: For K as above, there exists C2 = C2(K,T,E0, E1, B), independent of ε, such

that ∫ T

0

∫
K

h|u|3 dxdt ≤ C2. (3.3)

The estimate is analogous to the estimate in Lemma 3.4 in [5], but requires few technical modifications
that we explain now.

Let (η	, q	) be the weak entropy pair, generated by the function ψ	(w) = 1
2w|w|, through the formulas:

η	 = 4gh
∫ 1

−1

ψ	(u+ 2
√
ghs)[1 − s2]

1
2
+ ds,

q	 = 4gh
∫ 1

−1

(
u+

√
gh
)
ψ	(u+ 2

√
ghs)[1 − s2]

1
2
+ ds.

They satisfy the following estimates (see [5,18]):

|η	(h,m)| ≤ C
(
h|u|2 + h2

)
, q	(h,m) ≥ C−1

(
h|u|3 + h3/2

)
, (3.4)
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|η	m(h,m)| ≤ C(|u| +
√
h), |η	mm(h,m)| ≤ Ch−1, (3.5)

and, regarding η	m in the coordinates (h, u),

|η	mu(h, hu)| ≤ C, |η	mh(h, hu)| ≤ C√
h

(3.6)

for all h ≥ 0 and u ∈ R.
We multiply the first equation in (1.3) by η	h, the second by η	m, and add them and integrate over

(0, t) × (−∞, x) to obtain∫ t

0

q	 dt = tq	,− +
∫ x

−∞

(
η	(h0,m0) − η	(h,m)

)
dy

+ ε

∫ t

0

η	m(h+ δ)ux dt+ ε

∫ t

0

∫ x

−∞

(
η	mu(h+ δ)|ux|2 + η	mh(h+ δ)hx

)
dydt

− g

∫ t

0

∫ x

−∞
hη	mbx dydt

= I1 + I2 + I3 + I4 + I5, (3.7)

where q	,− = q	(h−, 0) is the left-end-state of q	.
Consider the term I2. First, as argued in [5], there exists a constant α > 0 such that

η	 = α
√
hm+ r2(h,m), |r2| ≤ chu2.

We write

α
√
hm = α(

√
h−

√
h−)hu+ α

√
h−hu

≤ αh|u|2 + αh
(√
h−

√
h−)+ α

√
h−hu. (3.8)

Without loss of generality, we assume h− > 0 (the case h− = 0 can be treated similarly). Then

h(
√
h−

√
h−) ≤ C (h− h−)2 ≤ C(h+ b− h̄)2 + (b− b−)2

since h̄ = h− + b−. It follows that

|I2| ≤ C

∫ x

−∞

(
hu2 + (h+ b− h̄)2 + (b− b−)2

)
dy + α

√
h−
∣∣∣∣
∫ x

−∞
hu dy

∣∣∣∣ .
Thus, for a compact set K,∫

K

|I2|dx ≤ C(K,E0, B) + α
√
h−
∫
K

∣∣∣∣
∫ x

−∞
hu dy

∣∣∣∣ dy.

Assume that M0 =
∫
h0|u0|dx < ∞. Then, we can obtain as in [5]:∫

K

∣∣∣∣
∫ x

−∞
hu dy

∣∣∣∣ dy ≤ C(T,E0, B,M0),

and consequently, ∫
K

|I2|dx ≤ C(T,K,E0, B,M0). (3.9)

From the pointwise estimate (3.6) on (η	mh, η
	
mu) and using (2.3) and (2.4), we have∣∣∣∣ε

∫ t

0

∫ x

−∞
η̌mu(h+ δ)|ux|2 dydt

∣∣∣∣ ≤ C(E0), (3.10)∣∣∣∣ε
∫ t

0

∫ x

−∞
η̌mh(h+ δ)hxux dydt

∣∣∣∣ ≤ C(T,E0, E1, B). (3.11)
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It follows that ∫
K

|I4|dx ≤ C(T,K,E0, E1, B).

Furthermore, we have ∫
K

|I3|dx ≤ C(T,K,E0, E1, B)

by the same arguments as in the proof of Lemma 3.4 in [5].
Finally,

|I5| =
∣∣∣∣
∫ t

0

∫ x

−∞
gbxhη

	
m dydt

∣∣∣∣
≤ C

∫ t

0

∫ x

−∞
g|bx|h(u+

√
h) dydt

≤
∫ t

0

∫ x

−∞

(
h|u|2 + |h+ b− h̄|2) dydt+ C(B). (3.12)

Integrating (3.7) over K and using (3.4) and the estimates on Ij , j = 1, . . . , 5, we conclude the proof
of (3.3).

4. Proof of Theorem 1.1: existence and estimates of the viscous solutions

In this section, we establish Theorem 1.1, that is, the existence of global solutions to the Cauchy problem
(1.1)–(1.2) in the sense of Definition 1.1 and the necessary uniform estimates for the inviscid limit to the
Saint-Venant system as ε → 0.

Let b(x) be as described in the Introduction. Define bδ(x) = min{h̄−δ, b(x)}. Notice that bδ measured
in the norms in (1.17) does not increase B. Let (h0,m0) be as in Theorem 1.1, and let (hδ0, u

δ
0), with

ess infR h
δ
0 > 0 and uδ0 ∈ H1(R), be such that (hδ0, h

δ
0u
δ
0) → (h0,m0) a.e. x ∈ R with the norms∫

R

(
hδ0|uδ0|2 + g|hδ0 + bδ − h̄|2) dx,

∫
R

|(
√
hδ0)x|2 dx

bounded independently of δ ∈ (0, δ0]. Let (hδ, uδ) be the global strong solution of (2.1), with bδ(x)
replacing b(x) and with initial data (hδ0, u

δ
0), constructed in Theorem 2.1.

We will make use of the following equation that holds for a smooth solution (hδ, uδ) :

(
√
hδ)t + (

√
hδuδ)x =

1
2

√
hδuδx. (4.1)

In particular, we will use this equation to define the limit of the left-hand side as a suitable distribution
obtained in the limit as δ → 0.

Using estimates (2.3), (2.4), (3.1), and Eq. (4.1), we conclude

(i)
√
hδ uniformly bounded in L∞(0, T ;L∞

loc(R));
(ii) (

√
hδ)x uniformly bounded in L∞(0, T ;L2(R));

(iii) (
√
hδ)t uniformly bounded in L2(0, T ;H−1

loc (R)) by using (4.1).
Also,

mx = 2(
√
h)x

√
hu+

√
h
√
hux,

and, using estimates (2.3), (2.4), (3.1) and (3.3),

(
√
hδ)x

√
hδuδ is uniformly bounded in L3(0, T ;L

6
5
loc(R)),
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and √
hδ

√
hδuδx is uniformly bounded in L2(0, T ;L2

loc(R)).

On the other hand,

(mδ)t = −(hδ(uδ)2 +
g

2
(hδ)2

)
x

− gbxh
δ + ε

(
(hδ + δ)uδx

)
x
,

and is uniformly bounded in L
3
2 (0, T ;W−1, 32

loc (R)).
We now summarize the estimates on mδ:

(i) mδ is uniformly bounded in L3(0, T ;L3
loc(R));

(ii) mδ
x is uniformly bounded in L2(0, T ;L

6
5 (R));

(iii) mδ
t is uniformly bounded in L

3
2 (0, T ;W−1, 32

loc (R)).
Moreover, √

hδuδx is uniformly bounded in L2(R2
+).

We conclude (by Aubin’s lemma) that

hδ is compact in Lploc(R
2
+), p ∈ [1,∞),

mδ is compact in L3
loc(R

2
+),√

hδuδx is compact in L2
weak(R

2
+).

Then there exists (h,m) ∈ L∞
loc(R

2
+) × L3

loc(R
2
+) such that, on a suitable subsequence,

(hδ,mδ) → (h,m) in Lp(R2
+) × L3

loc(R
2
+), p ∈ [1,∞), and a.e. (t, x) ∈ R

2
+,

and √
hδuδx converges weakly to n in L2(R2

+).

To pass to the limit in Eqs. (1.1) and (4.1), we have to deal with the functions that involve the negative
powers of h, which are not defined on the vacuum set. We will use repeatedly the following simple lemma.

Lemma 4.1. Let (hδ,mδ), with hδ > 0, converge to (h,m) a.e. (t, x) ∈ R
2
+. Let φ(h,m) be a measurable

function defined on {(h,m) ∈ R
2
+, h > 0}. Suppose that, for some p0 > 1 and any compact K ⊂ R

2
+,

‖φ(hδ,mδ)‖Lp0 (K) ≤ C(K),

‖φ(hδ,mδ)χ{h=0}‖Lp0 (K) → 0 with δ → 0.

Then

φ(hδ,mδ) → φ(h,m) in Lp(K), ∀p ∈ [1, p0), as δ → 0,

where φ(h,m) is defined by zero on {h = 0}.
We apply this lemma for φ = m2

h and φ = m√
h
. Estimates (3.1) and (3.3) imply

mδ

√
hδ

is uniformly bounded in L3(0, T ;L3
loc(R)),

(mδ)2

hδ
is uniformly bounded in L

3
2 (0, T ;L

3
2
loc(R)).

Lemma 4.1 yields

mδ

√
hδ

→ m√
h

in Lp(0, T ;Lploc(R)), p ∈ [1, 3),

(mδ)2

hδ
→ m2

h
in Lp(0, T ;Lploc(R)), p ∈ [1,

3
2
).
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By taking the limit in (2.1) and (4.1), we recover (1.1). To obtain (1.16), we find from (1.3) that

ηψ,δt + qψ,δx + gbxh
δηψ,δm − ε

(
(hδ + δ)ηψ,δm uδx

)
x

+ ε(hδ + δ)uδx(η
ψ,δ
m )x = 0. (4.2)

For any compactly supported C2-function ψ, it holds (see [5]):

|ηψ(h,m)| + |qψ(h,m)| ≤ Cψh,

and

|ηψm(h,m)| ≤ Cψ

uniformly in (h,m).
Using Lemma 4.1 and the uniform apriori estimates, it is straightforward to deduce that

(ηψ,δ, qψ,δ) → (ηψ, qψ) in Lploc(R
2
+), p > 1,√

hδ + δηψ,δm →
√
hηψ in Lploc(R

2
+), p > 1.

It follows then that

(hδ + δ)ηψ,δm uδx =
√
hδ + δηψ,δm

√
hδ + δuδx →

√
hηψmn in L1

loc(R
2
+),

and we can pass to the limit in the terms of Eq. (4.2), except the last one. However, the last term equals

(hδ + δ)uδx(η
ψ,δ
m )x = (hδ + δ)ηψ,δmu |uδx|2 + (hδ + δ)ηψ,δmhh

δ
xu

δ
x.

From the uniform estimates,

|ηψmu| ≤ Cψ, |ηψmh| ≤ Cψh
− 1

2 ,

we obtain

|(hδ + δ)ηψ,δmu |uδx|2| ≤ Cψ(hδ + δ)|uδx|2,

|(hδ + δ)ηψ,δmhh
δ
xu

δ
x| ≤ Cψ(hδ + δ)|uδx|2 + Cψ

hδ + δ

hδ
|hx|2,

both of which are uniformly bounded in L1(0, T ;L1(R)), by the energy estimates. This means that
(hδ + δ)uδx(η

ψ,δ
m )x converges to some μψ ∈ Mloc(R2

+) and

ε‖μψ‖Mloc(K) ≤ C(K)

for every compact K ⊂ R
2
+.

Finally, we notice that the estimates (2.3), (2.4), (3.2) and (3.3) hold in the limit δ → 0 for the limiting
solution (h,m) as well. This completes the proof of Theorem 1.1.

5. Proof of Theorem 1.2: H−1-compactness and inviscid limit

For the sequence of solutions of (1.1) constructed in Theorem 1.1, we can establish the compactness of
entropy dissipation measures. The following proposition is the straightforward generalization of Proposi-
tion 4.1 in [5].

Proposition 5.1. Let ψ : R → R be any compactly supported C2-function. Let (ηψ, qψ) be a weak entropy
pair generated by ψ. Then, for the solutions (hε,mε) with mε = hεuε of equations (1.1), the entropy
dissipation measures

ηψ(hε,mε)t + qψ(hε,mε)x are confined in a compact subset of H−1
loc (R2

+). (5.1)

The proof basically repeats the arguments from [5]. We conclude that the sequence of solutions (hε,mε)
of (1.1)–(1.2), with the initial data (hε0,m

ε
0), satisfying the uniform bounds in Theorem 1.1 converges (on

a subsequence) almost everywhere to a finite-energy entropy solution (h,m) to problem (1.3) with initial
data (1.2). This completes the proof of Theorem 1.2.



Vol. 63 (2012) Shallow water equations 1081

6. Shallow water equations in the presence of friction

When the friction is taken into consideration, an additional term, called the friction term, is present in
the viscous shallow water equations:{

ht + (hu)x = 0,
(hu)t + (hu2 + g

2h
2)x + gbxh+ r(h, u)hu = ε(hux)x.

(6.1)

The interaction between the dynamics of the fluid and the geometry of the physical domain may generate
the formation of remarkable structures; see [20,25] and the references cited therein.

Now we consider the case r(h, u) = α > 0 and show how our analysis can also be applied to the
inviscid limit of the viscous solutions of the viscous shallow water equations with the friction term to the
corresponding Saint-Venant system.

Theorem 6.1. Let (hε0,m
ε
0) be a sequence of initial data functions for problem (1.2) and (6.1) which

satisfy the assumptions of Theorem 1.1 with the constants M0, E0 and E1, independent of ε. Moreover,
assume that (hε0,m

ε
0) → (h0,m0) a.e. x ∈ R. Then there exists an entropy solution (h,m) of problem

(1.2) and (6.1) on R
2
+ for r(h, u) = α > 0 with the following properties: For any T > 0, compact set

K ⊂ R and ψ ∈ C∞
0 (R2

+), there are Ci = Ci(T,E0, E1, B), i = 1, 2, C3 = C3(T,K,E0, E1,M0, B) and
C4 = C4(T,E0, E1, B, ψ) that are all independent of ε > 0 such that

ess sup
t∈[0,T ]

∫ ∞

−∞

( |m(t, x)|2
h(t, x)

+ g|h(t, x) + b(x) − h̄|2
)

dx ≤ E0,

ess sup
t∈[0,T ]

ε2
∫ ∞

−∞

∣∣∣(√h(t, x))
x

∣∣∣2 dx ≤ C1,

ε

∫
[0,T ]×R

(n2 + |hx|2) dxdt ≤ C2,

∫ T

0

∫
K

(
h3 +

|m|3
h2

)
dxdt ≤ C3,

ε

∫ ∞

0

∫ ∞

−∞
|dμψ| ≤ C4.

Furthermore, when ε → 0, there exists a subsequence of (hε,mε) that converges almost everywhere to a
relative finite-energy entropy solution (h,m) to the Cauchy problem (1.26) with Cauchy data (1.2) in the
sense of Definition 1.2 in which the entropy inequality (1.24) is replaced by

ηψ(h,m)t + qψ(h,m)x + ηψm(h,m)
(
gbxh+ αhu) ≤ 0

in the sense of distributions for any test-function ψ(s) ∈ {±1,±s, s2} in R
2
+. Moreover, there exists a

bounded Radon measure μ(t, x; s) on R
2
+ × R such that

μ(U × R) ≥ 0

for any open set U ⊂ R
2
+, and the corresponding entropy kernel χ(h, s− u) defined by (1.13) satisfies

∂tχ(h, s− u) +
1
2
∂x
(
(s+ u)χ(h, s− u)

)− (gbx + αu)∂sχ(h, s− u) = ∂2
sμ (6.2)

in the sense of distributions on R
2
+ × R.

As before, we first conclude the following approximate system for δ > 0:{
ht + (hu)x = 0,
(hu)t + (hu2 + g

2h
2)x + gbxh+ αhu = ε

(
(h+ δ)ux

)
x
.

(6.3)
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First, the energy estimate (2.3) becomes∫ ∞

−∞

(
h(t, x)u(t, x)2 + g(h(t, x) + b(x) − h̄)2

)
dx

+ε
∫ t

0

∫ ∞

−∞
2(h+ δ)|ux|2 dxdt+ α

∫ t

0

∫ ∞

−∞
h|u|2 dxdt

=
∫ ∞

−∞

(
h0(x)|u0(x)|2 + g

(
h0(x) + b(x) − h̄

)2)dx ≤ E0. (6.4)

It follows by multiplying the second equation in (6.1) by 2u, using the first equation of (6.1) and the
fact (2.2).

Then, under the assumptions on the initial data and b(x), we still have∫ ∞

−∞
h(t, x)|σx(t, x)|2 dx+ εg

∫ t

0

∫ ∞

−∞

h+ δ

h
|hx|2 dxdt ≤ C0, t ∈ [0, T ], (6.5)

where σ = εh lnh−δ
h .

This can be proved as follows: Indeed, from the first equation of (6.1), we obtain

σt + uσx = −εh+ δ

h
ux,

and then

σxt + uσxx = −εh+ δ

h2
hxux − ε

(
h+ δ

h
ux

)
x

.

Multiplying it by h:

(hσx)t + (huσx)x = −ε((h+ δ)ux)x.

and adding this to the second equation of (6.1), we have

(h(u+ σx))t + (hu(u+ σx))x + gh(h+ b)x = −αhu,
and then (

h(u+ σx)2
)
t
+
(
hu(u+ σx)2

)
x

+ 2gh(h+ b)xσx + 2gh(h+ b)xu = −2αhu(u+ σx).

We integrate this over (0, t) × R and use the calculation in (2.2) to obtain∫ ∞

−∞

(
h(u+ σx)2 + g(h+ b− h̄)2

)
dx+ 2gε

∫ t

0

∫ ∞

−∞

h+ δ

h
|hx|2 dxdt+ 2g

∫ t

0

∫
hσxbx dxdt

=
∫ ∞

−∞

(
h0(u0 + σ0,x)2 + g(h0 + b− h̄)

)
dx− 2α

∫ t

0

∫
hu(u+ σx) dxdt.

Moreover, the terms on the left can be estimated as∣∣∣∣
∫ t

0

∫ ∞

−∞
bxhσx dxdt

∣∣∣∣
≤
∫ t

0

∫ ∞

−∞

(
h(σx)2 + (h+ b− h̄)|bx|2 + |b− h̄||bx|2

)
dxdt

≤
∫ t

0

∫ ∞

−∞

(
h(σx)2 + (h+ b− h̄)2

)
dxdt+ ‖bx‖4

L4(R) + ‖b− h̄‖L∞(R)‖bx‖2
L2(R),
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and ∣∣∣∣
∫ t

0

∫
hu(u+ σx) dxdt

∣∣∣∣ ≤ 2
∫ t

0

∫
h(u+ σx)2 dxdt+

1
2

∫ t

0

∫
h|u|2 dxdt.

Then, (6.5) follows by the assumptions on the initial data and b(x) and (6.4).
With the uniform estimates (6.4) and (6.5), the other steps for the uniform apriori estimates are the

same, and the functional framework of the inviscid limit remains unchanged as in Sects. 2–5.
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