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Abstract. We study the eigenpairs of a model Schrödinger operator with a quadratic potential and Neumann boundary
conditions on a half-plane. The potential is degenerate in the sense that it reaches its minimum all along a line that makes
the angle θ with the boundary of the half-plane. We show that the first eigenfunctions satisfy localization properties related
to the distance to the minimum line of the potential. We investigate the densification of the eigenvalues below the essen-
tial spectrum in the limit θ → 0, and we prove a full asymptotic expansion for these eigenvalues and their associated
eigenvectors. We conclude the paper by numerical experiments obtained by a finite element method. The numerical results
confirm and enlighten the theoretical approach.
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1. Introduction and main results

The aim of this paper is to study the eigenpairs of a Schrödinger operator with a degenerate electric
potential of the form (t cos θ− s sin θ)2 on the half-plane t > 0. This problem is motivated by the analysis
of the third critical field HC3 in the theory of superconductivity (see for instance [15]). More precisely,
the linearization of the Ginzburg-Landau functional leads to investigate the asymptotics of the lowest
eigenvalues of Schrödinger operators with magnetic fields (ih∇+A)2 and Neumann boundary conditions
on smooth domains Ω in R

3. Then, near the boundary of Ω, the magnetic field can be approximated by
a constant field that makes an angle θ ∈ [

0, π
2

]
with the boundary (approximated by the tangent plane).

Thus, after a choice of gauge, we are led to investigate the operator with Neumann conditions on the
half-space R

3
+ = {(r, s, t) ∈ R

3 : t > 0}:

h2D2
s + h2D2

t + (hDr + t cos θ − s sin θ)2,

where Dx denotes −i∂x for any variable x. The first step in the study of this operator is a Fourier trans-
form in r. If θ = 0, we are led to the so-called de Gennes operator on an half-line (see [7]). If θ �= 0, after
a translation in s, we are reduced to a Schrödinger operator with an electric potential on the half-plane
R

2
+ = {(s, t) ∈ R

2 : t > 0}:

h2D2
s + h2D2

t + (t cos θ − s sin θ)2.

After a rescaling, we can reduce to the case h = 1.
Thus, this is a natural question to wonder how the eigenpairs of this operator behave when θ goes

to 0 (the form domain does not depend continuously on θ).
In this paper, we investigate this question and study the exponential concentration of eigenvectors.
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1.1. Discrete and essential spectrum of model operators

We denote by x = (s, t) the coordinates in R
2 and by Ω the half-plane:

Ω = R
2
+ = {x = (s, t) ∈ R

2, t > 0}.
We study the self-adjoint Neumann realization on the half-plane Ω of the Schrödinger operator Lθ with
potential Vθ:

Lθ = −Δ + Vθ = D2
s +D2

t + Vθ,

where Vθ is defined for any θ ∈ (0, π
2 ) by

Vθ : x = (s, t) ∈ Ω �−→ (t cos θ − s sin θ)2.

We can notice that Vθ reaches its minimum 0 all along the line t cos θ = s sin θ, which makes the angle
θ with ∂Ω. We denote by DN (Lθ) the domain of Lθ and we consider the associated quadratic form qθ
defined by:

qθ(u) =
∫

Ω

(|∇u|2 + Vθ|u|2
)
dx,

whose domain D(qθ) is:

D(qθ) = {u ∈ L2(Ω), ∇u ∈ L2(Ω),
√
Vθ u ∈ L2(Ω)}.

The operator Lθ is positive. We now recall the min-max principle that links the nth eigenvalue to
Rayleigh quotients (see [22, Theorem XIII.1], [23, p. 75]):

Proposition 1.1. (min–max principle) Let A be a self-adjoint operator that is bounded from below, qA its
quadratic form and D(qA) its form domain. Let us define

μn = sup
Ψ1,...,Ψn−1∈D(qA)

inf
Ψ∈[Ψ1,...,Ψn−1]

⊥

Ψ∈D(qA), ‖Ψ‖=1

qA(Ψ) (1.1)

= inf
Ψ1,...,Ψn∈D(qA)

sup
Ψ∈[Ψ1,...,Ψn]

‖Ψ‖=1

qA(Ψ). (1.2)

Then, for each fixed n, we have the alternative “(a) or (b)”:
(a) There are n eigenvalues (counted with multiplicity) below the bottom of the essential spectrum, and

μn is the nth eigenvalue counted with multiplicity;
(b) μn is the bottom of the essential spectrum, and in that case μn = μn+1 = ... and there are at most

n− 1 eigenvalues (counting multiplicity) below μn.

Let σn(θ) denote the nth Rayleigh quotient of Lθ defined by (1.1). Let spdis(Lθ) and spess(Lθ) be its
discrete and essential spectrum, respectively. Let us recall some fundamental spectral properties of Lθ

when θ ∈ (
0, π

2

)
.

It is proved in [11] that spess(Lθ) = [1,+∞) and that θ �→ σn(θ) is nondecreasing. Moreover, the
function (0, π

2 ) � θ �→ σ1(θ) is increasing and corresponds to a simple eigenvalue < 1 associated with a
positive eigenfunction (see [15, Lemma 3.6]). As a consequence θ �→ σ1(θ) is analytic (see for example
[14, Chapter 7]).

Remark 1.2. By an even reflection through the boundary, our problem is equivalent to a problem set
on the whole plane R

2 with a potential that reaches its minimum on the union of two half-lines: Lθ has
eigenvalues under its essential spectrum if and only if the half-lines are not colinear. It is interesting to
note the analogy with quantum wave guides that have eigenvalues below their essential spectrum as soon
as their middle fiber has a nonzero curvature (see [5,8]).
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In all our investigations, of fundamental importance is the family of one-dimensional self-adjoint oper-
ators Hζ , ζ ∈ R, defined by:

Hζ = Hζ(t;Dt) = D2
t + (t− ζ)2, (1.3)

on their common Neumann domain on the half-line:

{v ∈ H2(R+), t2v ∈ L2(R+), v′(0) = 0}.
The spectral properties of this family of operators have been studied in [7]. Let us recall some of these.
We denote by μ(ζ) the lowest eigenvalue of Hζ , and by vζ a normalized associated eigenfunction. We
have the following limits (see [7, Sect. 3]):

lim
ζ → +∞

μ(ζ) = 1 and lim
ζ → −∞

μ(ζ) = +∞.

Let us also mention that

μ(ζ) =
ζ → −∞

O(ζ2). (1.4)

In addition, the function μ reaches (nondegenerately) its minimum denoted by Θ0 for a unique value ζ0
(as proved in [7, Theorem 4.3]). There holds (see [4] for refined numerical computations):

ζ2
0 = Θ0 and Θ0 	 0.590106125.

1.2. Main results of the paper

Our results concern exponential decay estimates for eigenvectors of Lθ and the asymptotic behavior of
its eigenvalues in the small angle limit θ → 0. All along this paper, (σ(θ), uθ) will denote an eigenpair of
Lθ with σ(θ) < 1. We prove the exponential decay estimates for uθ stated in the following two theorems,
improving the results of [21]. Our first result gives an isotropic exponential decay with a weight of the
type eα|x|:

Theorem 1.3. Let (σ(θ), uθ) be an eigenpair of Lθ with σ(θ) < 1. We have:

∀α ∈ (
0,
√

1 − σ(θ)
)
, ∃Cα,θ > 0, qθ(eα|x|uθ) ≤ Cα,θ‖uθ‖2

L2(Ω). (1.5)

Our second result is an anisotropic decay estimate in the orthogonal direction of the zero set of Vθ:

Theorem 1.4. Let 0 < β < 1
2 . Let (σ(θ), uθ) be an eigenpair of Lθ with σ(θ) < 1. Then, there exists a

constant K(β) such that

qθ(eβVθuθ) ≤ K(β)‖uθ‖2
L2(Ω). (1.6)

Estimates (1.5) and (1.6) have different performances in different directions: For γ ∈ [0, π], let us
consider the points

x = r(cos γ, sin γ), r > 0,

on the half-line of angle γ with ∂Ω. Then,

|x| = r and Vθ(x) = r2 sin2(γ − θ).

Thus, estimate (1.5) is stronger than (1.6) if γ = θ, but weaker as soon as γ �= θ.
Then, we want to analyze the behavior of the eigenvalues below the essential spectrum when θ goes

to zero. In a first step, we prove that the number of such eigenvalues tends to infinity:

Theorem 1.5. We have the following upper bound for the nth eigenvalue σn(θ) of Lθ:

σn(θ) ≤ Θ0 cos θ + (2n− 1) sin θ, ∀n ≥ 1. (1.7)
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Remark 1.6. If we denote by n(θ) the number of eigenvalues of Lθ below the essential spectrum, we have:

n(θ) ≥ 1 − Θ0 cos θ
2 sin θ

+
1
2
. (1.8)

In [18, Theorem 2.1], it is proved that this number is finite for any chosen θ.

In a second step, we use semi-classical techniques to prove an expansion in powers of θ as θ → 0 for
those eigenvalues:

Theorem 1.7. For all n ≥ 1, there exists a sequence (βj,n)j≥0 such that for all N ≥ 1 and J ≥ 1, there
exist CN,J > 0 and θN > 0 such that for all 1 ≤ n ≤ N and 0 < θ < θN , σn(θ) is an eigenvalue and

∣
∣
∣σn(θ) −

J∑

j=0

βj,nθ
j
∣
∣
∣ ≤ CN,J θ

J+1. (1.9)

Moreover, β0,n = Θ0 and β1,n = (2n− 1)
√

μ′′(ζ0)
2 .

The proof of this theorem relies on the construction of quasimodes and on projection arguments that
show that eigenvectors are close to quasimodes. In this way, we prove at the same time a full expansion of
eigenvectors associated with the lowest eigenvalues as θ → 0, see Sect. 4.3. A remarkable feature is that
the eigenvector expansions do contain half-integer powers of θ, in contrast with the eigenvalue expansions.

1.3. Organization of the paper

After the present introduction, we prove in Sect. 2 the isotropic and anisotropic decay estimate of
Theorems 1.3 and 1.4. In Sect. 3, we prove Theorem 1.5, which shows that the number of eigenvalues
below 1 tends to infinity as the angle θ tends to 0. We also prove that eigenvalues densify on the whole
interval [Θ0, 1] when θ → 0. Section 4 is devoted to the proof of Theorem 4.1 that immediately implies
Theorem 1.7.

In Sect. 5, we present a series of computations of eigenpairs performed with the finite element library
Mélina [16]. They illustrate the anisotropic exponential decay of eigenvectors and also clearly display
the four term asymptotic expansion for the nth eigenvalue of Lθ as θ → 0:

σn(θ) = Θ0 + (2n− 1)a1θ − a2,nθ
2 − a3,nθ

3 + O(θ3),

where a1 	 0.7651882 and a2,n, a3,n are some positive coefficients. This expansion is coherent with (1.9),
all the more since a1 coincides with the 7-digit numerical approximation of

√
μ′′(ζ0)/2 according to the

1D computations presented in [4]. In addition, for small angles θ, the eigenvectors show their resemblance
with the quasimodes constructed in tensor product form, cf. Sect. 4.3 and Figs. 7, 8, 9.

2. Exponential decay of eigenvectors

The aim of this section is to prove Theorems 1.3 and 1.4. For that purpose, we need to recall some
ingredients in order to implement the so-called Agmon’s estimates. These estimates are related to the
Agmon distance the main properties of which can be found in [12] (see also [10, Sect. 3.2]).

2.1. Preliminaries

Here, we recall a few classical identities due to Agmon. There are consequences of the “IMS” formula
and can be found in [2] (see also [6] and [20] for the same kind of applications).
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Lemma 2.1. Let u ∈ DN (Lθ) and Φ be a bounded and uniform Lipschitz function defined on Ω. Then, we
have

〈Lθu, e
2Φu〉 = qθ(eΦu) − ‖|∇Φ|eΦu‖2

L2(Ω). (2.1)

Taking u = uθ in Lemma 2.1, we get the obvious corollary:

Corollary 2.2. Let (σ(θ), uθ) be an eigenpair for Lθ and Φ be a bounded and uniform Lipschitz function
defined on Ω. We have the following identities:

∫

Ω

(σ(θ) + |∇Φ|2)e2Φ|uθ|2 = qθ(eΦuθ), (2.2)

∫

Ω

|∇(eΦuθ)|2 +
∫

Ω

(Vθ − σ(θ) − |∇Φ|2)e2Φ|uθ|2 = 0. (2.3)

Let (Ω+,Ω−) be a partition of Ω: Ω = Ω+ ∪ Ω− with Ω+ ∩ Ω− = ∅, then we have
∫

Ω+

(Vθ − σ(θ) − |∇Φ|2)e2Φ|uθ|2 ≤ sup
Ω−

∣
∣Vθ − σ(θ) − |∇Φ|2∣∣

∫

Ω−

e2Φ|uθ|2. (2.4)

In order to satisfy the hypotheses of this corollary, we will need to perform a partition of unity. This
is the aim of the following two lemmas to explain how to deal with such a partition.

Lemma 2.3. Let χ ∈ C∞
0 (Ω) and u ∈ D(qθ), then

qθ(χu) =
∫

Ω

|χ|2(|∇u|2 + Vθ|u|2) +
1
2

∫

Ω

∇|χ|2∇|u|2 +
∫

Ω

|∇χ|2|u|2. (2.5)

If we suppose moreover that u ∈ DN (Lθ), we have:

qθ(χu) = 〈χ2Lθu, u〉 + ‖|∇χ|u‖2
L2(Ω). (2.6)

Lemma 2.4. Let (χi)i be a finite regular partition of unity with
∑

i χ
2
i = 1. Then, for all u ∈ D(qθ),

∑

i

qθ(χiu) = qθ(u) +
∫

Ω

∑

i

|∇χi|2|u|2. (2.7)

2.2. Isotropic decay of the eigenvectors

This subsection is devoted to the proof of Theorem 1.3.
Preliminaries. Let (χ1, χ2) be a partition of unity on R

+ with χ2
1 + χ2

2 = 1 and:
{

0 ≤ χ1 ≤ 1, χ1(r) = 1 if r ≤ 1, and 0 if r ≥ 2,

0 ≤ χ2 ≤ 1, χ2(r) = 0 if r ≤ 1, and 1 if r ≥ 2.

We define

χR
1 (x) = χ1(

|x|
R ) and χR

2 (x) = χ2(
|x|
R ). (2.8)

We have ∇χR
j (x) = 1

R∇χj( x
R ). Thus, we deduce:

∃C > 0, ∀j = 1, 2, ∀x ∈ Ω, |∇χR
j (x)| ≤ C

R
. (2.9)

Let us fix α > 0. As Agmon’s distance, we choose the function:

Φ(s, t) = α
√
s2 + t2 = α|x|. (2.10)
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It clearly satisfies |∇Φ|2 = α2. We do not know yet that eΦuθ ∈ D(qθ). This is the reason why we use a
cut-off function in order to use the Corollary 2.2. We define for k ∈ N:

⎧
⎨

⎩

Φk(x) = α|x| if |x| ≤ k,
Φk(x) = α(2k − |x|) if k ≤ |x| ≤ 2k,
Φk(x) = 0 if |x| ≥ 2k.

We have:
{ |∇Φk|2 = |∇Φ|2 = α2 if |x| ≤ 2k,

|∇Φk|2 = 0 if |x| > 2k.

First step. Using (2.2) and (2.7), we have:

∫

Ω

(σ(θ) + |∇Φk|2)e2Φk |uθ|2 =
2∑

j=1

qθ(χR
j e

Φkuθ) −
2∑

j=1

∫

Ω

∣
∣∇χR

j

∣
∣2e2Φk |uθ|2. (2.11)

Let us choose ε ∈ (0, 1 − σ(θ)) and

α =
√

1 − ε− σ(θ). (2.12)

Thus, we have:

σ(θ) + |∇Φ|2 = 1 − ε. (2.13)

Let us set Ωk = Ω ∩ {|x| ≤ 2k} and Ω′
k = Ω ∩ {|x| > 2k}. It follows that:

∫

Ω

(σ(θ) + |∇Φk|2)e2Φk |uθ|2 = (1 − ε)‖eΦkuθ‖2
L2(Ω) + (σ(θ) − 1 + ε)

∫

Ω′
k

|uθ|2. (2.14)

We choose R > 0 such that

C2

R2
≤ ε

4
, (2.15)

where C is the constant appearing in (2.9). Hence, we get:

2∑

j=1

∫

Ω

∣
∣∇χR

j

∣
∣2|eΦkuθ|2 ≤ ε

2
‖eΦkuθ‖2

L2(Ω). (2.16)

Relations (2.11), (2.14), and (2.16) provide:

ε

2
‖eΦkuθ‖2

L2(Ω) ≤ ‖eΦkuθ‖2
L2(Ω) −

2∑

j=1

qθ(χR
j e

Φkuθ) + (σ(θ) − 1 + ε)
∫

Ω′
k

|uθ|2

≤ ‖eΦkuθ‖2
L2(Ω) − qθ(χR

2 e
Φkuθ). (2.17)

Second step. In order to bound from below the energy “far from the origin” qθ(χR
2 e

Φkuθ), we introduce
a classical notation attached to Persson’s lemma:

Σ(Lθ, r) = inf
{
qθ(u), ‖u‖L2(Ω) = 1, u ∈ C∞

0 (Ω ∩ �Br)
}
,
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where Br denotes the ball of radius r centered at 0 and �Br its complement. It results from Persson’s
lemma (see [19]) that the limit of Σ(Lθ, r) as r → +∞ equals the bottom of the essential spectrum of
Lθ, thus 1

lim
r→+∞ Σ(Lθ, r) = 1. (2.18)

We have:

qθ(χR
2 e

Φkuθ)
‖χR

2 e
Φkuθ‖2

L2(Ω)

≥ Σ(Lθ, R), (2.19)

and so, recalling ΩR = Ω ∩ {|x| ≤ 2R} and Ω′
R = Ω ∩ {|x| > 2R}:

qθ(χR
2 e

Φkuθ) ≥ Σ(Lθ, R)
∫

Ω′
R

e2Φk |uθ|2. (2.20)

Using (2.17), we get:

ε

2
‖eΦkuθ‖2

L2(Ω) ≤
∫

ΩR

e2Φk |uθ|2 + (1 − Σ(Lθ, R))
∫

Ω′
R

e2Φk |uθ|2.

Using (2.18), we can choose R large enough such that, besides (2.15):

1 − Σ(Lθ, R) <
ε

4
.

We deduce:
ε

4

∫

Ω

e2Φk |uθ|2 ≤
∫

ΩR

e2Φk |uθ|2.

We finally get:

∀k ∈ N, ‖eΦkuθ‖2
L2(Ω) ≤ 4

ε
e4αR‖uθ‖2

L2(Ω). (2.21)

Conclusion. However, |eΦkuθ| converges pointwise to |eΦuθ| as k goes to infinity. It follows from Fatou’s
lemma that eΦuθ ∈ L2(Ω). The conclusion comes from:

‖∇(eΦuθ)‖2
L2(Ω) + ‖Vθ e

Φuθ‖2
L2(Ω) = (1 − ε)‖eΦuθ‖2

L2(Ω),

as a direct consequence of (2.3) and (2.13).

Remark 2.5. This proof is the key point in order to prove that uθ is in the Schwartz’s class, see [21].

Examining the arguments of this proof, we can see that α and the constant Cα,θ can be chosen uni-
formly in any closed interval [θ0, θ1] with θ0 > 0 and θ1 <

π
2 . Since σ(θ) → 1 as θ → π

2 , it is impossible
to obtain uniform estimates as θ → π

2 . When θ → 0, there is no valid uniform estimates in the tangential
variable s. However, considering only a dependence with respect to t, we get a uniform control in θ:

Proposition 2.6. Let η < 1. There exist C > 0 and γ > 0 such that for any eigenpair (σ(θ), uθ) of Lθ

with σ(θ) ≤ η, there holds
∫

Ω

e2γt|uθ|2dsdt ≤ C‖uθ‖2
L2(Ω). (2.22)
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Proof. The proof is similar as for Theorem 1.3. We choose Φ = γt and instead (2.8) we use the partition
of unity (χR

j ) with respect to t:

χR
1 (x) = χ1( t

R ) and χR
2 (x) = χ2( t

R ). (2.23)

The first step of the proof goes the same way with

ε ∈ (0, 1 − η),

and the key point of the second step is then the following lower bound that replaces (2.20):

qθ(χR
2 e

Φuθ) ≥ ‖χR
2 e

Φuθ‖2
L2(Ω). (2.24)

This inequality is a consequence of the fact that the support of χR
2 is now far from the boundary of Ω

and that the bottom of the spectrum of the self-adjoint realization on R
2 of D2

t + D2
s + Vθ is 1. Thus,

as ε is set and the size of R does not depend anymore on θ for this choice of Φ, we get that the upper
bound in (2.21) is independent from θ. �

2.3. Anisotropic decay from the minimum of the potential

In this section, we prove the decay of uθ away from the minimum of Vθ stated in Theorem 1.4. Let
δ ∈ (0, 1). Following [1], we introduce the function associated with Agmon’s geodesics:

Φ(x) = (1 − δ)

√
Vθ(x)∫

√
σ(θ)

√(
l2 − σ(θ)

)
+
dl, (2.25)

where f+ denotes the positive part of a function f . Let us notice that if we define the function

g(d) =

d∫

√
σ(θ)

√
(l2 − σ(θ))+ dl,

we have

Φ(x) = (1 − δ)g(
√
Vθ(x)).

It is an elementary computation to check that we have (uniformly in θ):

g(d) =
d→+∞

d2

2
+ O(ln d) and g′(d) =

d→+∞
d+ O(d−1). (2.26)

So Theorem 1.4 holds if and only if qθ(eΦuθ) is bounded uniformly in θ for all δ ∈ (0, 1).
Let us prove this. We choose δ ∈ (0, 1). By construction of Φ, we have:

|∇Φ|2 = (1 − δ)2(Vθ − σ(θ))+. (2.27)

Let η > 0, we define a partition of unity for Ω:

A+
η = {(s, t) ∈ Ω, Vθ(s, t) − σ(θ) > η} and A−

η = {(s, t) ∈ Ω, Vθ(s, t) − σ(θ) ≤ η}.
On A+

η , we have:

Vθ − σ(θ) − |∇Φ|2 = (Vθ − σ(θ))(2δ − δ2) > η(2δ − δ2). (2.28)

Similarly, we have on A−
η :

|Vθ − σ(θ) − |∇Φ|2| =
{
σ(θ) − Vθ if Vθ < σ(θ),
(Vθ − σ(θ))(2δ − δ2) if not.
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Let us assume that

0 < η(2δ − δ2) ≤ Θ0 < σ(θ). (2.29)

Then, we have the following upper bound:

sup
A−

η

∣
∣Vθ − σ(θ) − |∇Φ|2∣∣ ≤ σ(θ). (2.30)

We now combine (2.4), (2.28), and (2.30) in order to get:

η(2δ − δ2)
∫

A+
η

e2Φ|uθ|2 ≤
∫

A+
η

(Vθ − σ(θ) − |∇Φ|2)e2Φ|uθ|2 ≤ σ(θ)
∫

A−
η

e2Φ|uθ|2. (2.31)

Since ‖uθ‖L2(Ω) = 1 and that Φ is maximal on the boundary of A−
η , we get:

‖eΦuθ‖L2(Ω) ≤
( σ(θ)
η(2δ − δ2)

+ 1
)

exp

√
σ(θ)+η∫

√
σ(θ)

(1 − δ)
√
l2 − σ(θ) dl. (2.32)

We denote by K(η, δ, σ(θ)) the right hand side of the last inequality. If we fix δ > 0, the function

R+ × [Θ0, 1] → R

(η, σ) → K(η, δ, σ)

is clearly positive and continuous. We notice that:

lim
η→0

K(η, δ, σ) = +∞.

Recall that we assume the condition on η given by (2.29). We introduce the interval I(δ) =
(
0, Θ0

2δ−δ2

]
.

This allows us to define the positive constant

K0(δ) = max
σ∈[Θ0,1]

min
η∈I(δ)

K(η, δ, σ).

The minimum is achieved for a η0 ∈ I(δ). Choosing this η0, we deduce from (2.32):

‖eΦuθ‖L2(Ω) ≤ K0(δ). (2.33)

If we define

Φ̃(x) =
(

1 − δ

2

)
√

Vθ(x)∫

√
σ(θ)

√
(l2 − σ(θ))+ dl,

we have

‖eΦ̃uθ‖L2(Ω) ≤ K0

(δ
2

)
.

Because of (2.26), we have easily

∃K1(δ) > 0, ∀d > 0, |d e− δ
2 g(d)| < K1(δ). (2.34)

We notice that
√
Vθ e

Φ−Φ̃ =
√
Vθ e

− δ
2 g(

√
Vθ) and with (2.34), we deduce:

∃K1(δ) > 0, ‖
√
Vθ e

Φ−Φ̃‖L∞(Ω) ≤ K1(δ). (2.35)

Therefore, we have:

‖
√
Vθ e

Φuθ‖L2(Ω) ≤ ‖
√
Vθ e

Φ−Φ̃‖L∞(Ω)‖eΦ̃uθ‖L2(Ω),
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and finally, with a new constant K2(δ):

‖
√
Vθ e

Φuθ‖L2(Ω) ≤ K2(δ). (2.36)

With the definition of Φ, we also get:

‖|∇Φ| eΦuθ‖L2(Ω) ≤ K3(δ). (2.37)

Using (2.1), we finally obtain

qθ(eΦuθ) = ‖|∇Φ|eΦuθ‖2
L2(Ω) + σ(θ)‖eΦuθ‖2

L2(Ω) ≤ K(δ).

3. Densification of the spectrum for small angles

In this section, we investigate the behavior of the eigenvalues below 1.

3.1. An upper bound

In this section, we give the proof of Theorem 1.5. In order to get the announced upper bound, we will
construct a family of quasimodes and use the min-max principle.

Let us introduce first some tools from spectral theory of self-adjoint operators (see for example [22]).
We denote by bθ(u) the Rayleigh quotient associated with a function u for Lθ:

∀u ∈ D(qθ) \ {0}, bθ(u) =
qθ(u)

‖u‖2
L2(Ω)

.

The bilinear form associated with qθ is defined on the form domain by:

aθ(u, v) =
∫

Ω

(
DtuDtv +DsuDsv + Vθ uv

)
dx.

Lemma 3.1. Let vζ0 be a normalized eigenvector associated with the first eigenvalue Θ0 of the operator Hζ0

(cf. (1.3) and the properties recalled there), and let ψn be the nth Hermite function with the “physicists”
convention. We recall that:

∀n ≥ 0, ∀x ∈ R, −ψ′′
n(x) + x2ψn(x) = (2n+ 1)ψn(x).

We define the normalized function ũn,θ by:

ũn,θ(s, t) = (cos θ sin θ)
1
4 vζ0(t

√
cos θ)ψn

(
s
√

sin θ − ζ0√
tan θ

)
. (3.1)

Then, we have:

∀n ∈ N, ∀θ ∈
(
0,
π

2

)
, bθ(ũn,θ) = Θ0 cos θ + (2n+ 1) sin θ. (3.2)

Proof. The function ũn,θ is clearly in the form domain D(qθ). We are going to estimate qθ(ũn,θ). Let us
make the following rescaling and translation:

⎧
⎪⎨

⎪⎩

y = s
√

sin θ − ζ0√
tan θ

,

z = t
√

cos θ.
(3.3)
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Then,

qθ(ũn,θ) =
∫

Ω

(
cos θ|v′

ζ0
(z)ψn(y)|2 + sin θ|vζ0(z)ψ

′
n(y)|2

+ (z
√

cos θ − y
√

sin θ − ζ0
√

cos θ)2|vζ0(z)ψn(y)|2
)

dy dz

= cos θ
∫

Ω

(|v′
ζ0

(z)ψn(y)|2 + (z − ζ0)2|vζ0(z)ψn(y)|2)dy dz

+ sin θ
∫

Ω

(|vζ0(z)ψ
′
n(y)|2 + y2|vζ0(z)ψn(y)|2) dy dz

− 2
√

sin θ
√

cos θ
∫

Ω

y(z − ζ0)|vζ0(z)ψn(y)|2 dy dz.

We have the following relations:

∫

R+

|v′
ζ0

(z)|2 + (z − ζ0)2|vζ0(z)|2 dz = Θ0, (3.4)

∫

R+

(z − ζ0)|vζ0(z)|2 dz = 0, (3.5)

∫

R

|ψ′
n(y)|2 + y2|ψn(y)|2 dy = 2n+ 1, (3.6)

where (3.5) is a direct consequence of the Feynman-Hellman formula (see [13] and also Sect. 4.1). Thus,
we have

qθ(ũn,θ) = Θ0 cos θ‖ψn‖2
L2(R) + (2n+ 1) sin θ‖vζ0‖2

L2(R+). (3.7)

Since vζ0 and ψn are normalized, and ‖ũn,θ‖2
L2(Ω) = 1, we deduce (3.2). �

Lemma 3.2. The functions ũn,θ, n ≥ 0, are orthogonal for the bilinear form aθ.

Proof. Let n �= m be two integers. We recall that
∫

R
ψnψm = 0. As in the proof of Lemma 3.1, we have:

aθ(ũn,θ, ũm,θ) = Θ0 cos θ
∫

R

ψn(y)ψm(y) dy

+ sin θ
∫

R

ψ′
n(y)ψ′

m(y) + y2ψn(y)ψm(y) dy

− 2
√

sin θ
√

cos θ
∫

Ω

y(z − ζ0)ψn(y)ψm(y)|vζ0(z)|2 dy dz.
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For the second term, we make an integration by parts:
∫

R

ψ′
n(y)ψ′

m(y) dy =
∫

R

−ψ′′
n(y)ψm(y) dy

=
∫

R

(2n+ 1 − y2)ψn(y)ψm(y) dy

= −
∫

R

y2ψn(y)ψm(y) dy.

Since the other terms are clearly equal to 0, we have aθ(ũn,θ, ũm,θ) = 0.
�

Combining Lemmas 3.1 and 3.2, we deduce Theorem 1.5: Indeed, we only have to apply the min-max
principle with the functions (ũn,θ)n∈N that are orthogonal for the bilinear form associated with Lθ.

We now show that the eigenvalues get dense in [Θ0, 1].

3.2. Spectrum density

Proposition 3.3. Let ζ > 0 and n be an integer such that

μ(ζ) cos θ + (2n+ 1) sin θ < 1.

Then, there exist an eigenvalue λ of Lθ and a constant Cζ > 0 such that:

|μ(ζ) cos θ + (2n+ 1) sin θ − λ| ≤ Cζ

√
2 cos θ sin θ

√
n2 + 1. (3.8)

Proof. In the same way as previously, we define the functions:

ũn,θ;ζ(s, t) = (cos θ sin θ)
1
4 vζ(t

√
cos θ)ψn

(
s
√

sin θ − ζ√
tan θ

)
, (3.9)

where vζ is the normalized eigenfunction associated with the first eigenvalue μ(ζ) of Hζ (cf. Sect. 1.1).
These functions are clearly in the form domain of Lθ. We have:

D2
t ũn,θ;ζ(s, t) = cos θ

(
μ(ζ) − (t

√
cos θ − ζ)2

)
ũn,θ;ζ(s, t),

D2
s ũn,θ;ζ(s, t) = sin θ

(
2n+ 1 −

(
s
√

sin θ − ζ√
tan θ

)2
)
ũn,θ;ζ(s, t).

We deduce

Lθũn,θ;ζ − (μ(ζ) cos θ + (2n+ 1) sin θ)ũn,θ;ζ

= 2(cos θ sin θ)
1
2

( ζ√
tan θ

− s
√

sin θ
)
(t

√
cos θ − ζ)ũn,θ;ζ . (3.10)

Thus, noticing that ‖ũn,θ;ζ‖L2(Ω) = 1, we get:

‖Lθũn,θ;ζ − (μ(ζ) cos θ + (2n+ 1) sin θ)ũn,θ;ζ‖L2(Ω)

= 2(cos θ sin θ)
1
2 ‖(t− ζ)vζ(t)‖L2(R+)‖sψn(s)‖L2(R). (3.11)

It is well known that
∫

R

s2ψ2
n(s) ds =

n2 + 1
2

,

and if we define Cζ = ‖(t− ζ)vζ‖L2(R+), we can conclude with the spectral theorem. �
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We can notice that the right part of (3.8) goes to infinity as n gets large, so the previous proposition
is useless if θ is fixed and n goes to infinity. However, we have the following proposition:

Proposition 3.4. We have the densification result:

∀λ0 ∈ (Θ0, 1), ∀ε > 0, ∃θ∗ ∈
(
0,
π

2

)
, ∀θ ∈ (0, θ∗], dist

(
spdis(Lθ), λ0

)
< ε. (3.12)

Proof. We only consider the case ε < 1. In the previous lemma, we choose n = 0 and ζ such that
μ(ζ) = λ0, which is possible since Θ0 < λ0 < 1 and μ(ζ) takes all values of [Θ0, 1) when ζ lays in R+.
Thus, we get (3.12). �

In the next section, we improve the estimate of Theorem 1.5 for each fixed rank n when θ goes to
zero.

4. Asymptotics of eigenvalues in the small angle limit

As it has been proved in Theorem 1.5, when θ goes to zero, the number of eigenvalues n(θ) below the
essential spectrum tends to infinity. Thus, for any arbitrary integer N , we can find a value of θ small
enough such that σN (θ) < 1. In this section, we investigate the asymptotics of those eigenvalues and
prove Theorem 1.7. We use again the scaling (3.3):

⎧
⎪⎨

⎪⎩

y = s
√

sin θ − ζ0√
tan θ

,

z = t
√

cos θ.

In the new variables, the operator Lθ rewrites

sin θD2
y + cos θD2

z + cos θ(z − ζ0 − y
√

tan θ)2 = cos θ(Lh + Θ0),

where we have set h = tan θ and

Lh = hD2
y +D2

z + (z − ζ0 − yh1/2)2 − Θ0. (4.1)

We denote by sn(h) the nth eigenvalue of Lh. Due to the change of variables, we have

σn(θ) = cos θ
(
Θ0 + sn(tan θ)

)
.

Thus, Theorem 1.7 is clearly a consequence of the following asymptotics for sn(h), which we are going to
establish:

Theorem 4.1. For all n ≥ 1, there exists a sequence (bj,n)j≥0 such that for all N ≥ 1 and J ≥ 1, there
exist CN,J > 0 and h0 > 0 such that for all 1 ≤ n ≤ N and 0 < h < h0:

∣
∣
∣sn(h) −

J∑

j=0

bj,nh
j
∣
∣
∣ ≤ CN,J h

J+1.

Moreover, b0,n = 0 and b1,n = (2n− 1)
√

μ′′(ζ0)
2 .

Remark 4.2. It follows from Theorem 4.1 that for h small enough, the eigenvalues sn(h), 1 ≤ n ≤ N , are
simple.

The proof of Theorem 4.1 is organized in two main steps. Using the one-dimensional operators Hζ

defined in (1.3), we can rewrite (4.1) as

Lh = hD2
y +Hζ0+y

√
h(z;Dz) − Θ0.

In a first step, we construct quasimodes by an expansion in powers of h1/2 (natural power of h appear-
ing in Lh), and using the spectral theorem, we get a family of approximate eigenvalues (constructed as
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asymptotic series in powers of h1/2 and whose odd terms will be zero for some parity reason) and a rough
upper bound for sn(h). In a second step, we establish a lower bound. The basic idea to get such a lower
bound is to use a Born-Oppenheimer technique that consists of replacing Hζ0+y

√
h by its ground energy

μ(ζ0 + y
√
h) and to implement the standard harmonic approximation in the semi-classical limit for the

one-dimensional operator Lh,BO defined as:

Lh,BO = hD2
y + μ(ζ0 + y

√
h) − Θ0.

However, Lh,BO, seen as an operator acting on the domain of Lh—i.e., as two-dimensional operator, has
eigenvalues of infinite multiplicity, and we cannot use directly the min-max principle to compare its spec-
trum with the eigenvalues of Lh. Thus, we have to justify, through Agmon estimates and a Grushin type
argument, that the eigenvalues of Lh are bounded from below by those of Lh,BO seen as one-dimensional
operator. Such a procedure was described in [17] for degenerate potentials in R

n. Nevertheless, we cannot
apply directly the techniques of [17] because the minimal line of the potential Vθ goes to infinity and we
work in a domain with boundary.

4.1. Construction of quasimodes

We can write Lh as:

Lh = P0 + h1/2P1 + hP2,

with:

P0 = D2
z + (z − ζ0)2 − Θ0 = Hζ0 − Θ0, (4.2)

P1 = −2(z − ζ0)y, (4.3)
P2 = D2

y + y2. (4.4)

We look for formal series solution of the equation Lhuh = γhuh in the form:

uh 	
∑

j≥0

ϕjh
j/2 and γh =

∑

j≥0

γjh
j/2.

We are led to the system:

h0 : (P0 − γ0)ϕ0 = 0, (4.5)

h1/2 : (P0 − γ0)ϕ1 = γ1ϕ0 − P1ϕ0, (4.6)
h : (P0 − γ0)ϕ2 = γ2ϕ0 + γ1ϕ1 − P2ϕ0 − P1ϕ1, (4.7)

hj/2 : (P0 − γ0)ϕj =
j−1∑

k=0

γj−kϕk − P2ϕj−2 − P1ϕj−1. (4.8)

Order h0. Considering (4.2), we choose γ0 = 0 and the general solution of (4.5) is

ϕ0(y, z) = f0(y)vζ0(z), (4.9)

for some f0 to determine.

Order h1/2. To solve (4.6), a necessary and sufficient compatibility condition is:
〈
γ1ϕ0(y, ·) − P1ϕ0(y, ·), vζ0

〉
z

= 0, ∀y ∈ R,

where 〈·, ·〉z denotes the standard L2 scalar product on R+ with respect to z. Using (4.3) and (4.9), this
condition becomes

γ1f0(y) + 2yf0(y)
〈
(z − ζ0)vζ0 , vζ0

〉
z

= 0, ∀y ∈ R.
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In order to evaluate the scalar product, we recall an easy computation. Let us take the derivative with
respect to ζ of:

(Hζ − μ(ζ))vζ = 0.

Choosing ζ = ζ0, we get:

(Hζ0 − Θ0)(∂ζvζ)
∣
∣
ζ=ζ0

= 2(z − ζ0)vζ0 . (4.10)

We deduce:
∫

R+

(z − ζ0)v2
ζ0

(z) dz = 0. (4.11)

By (4.11), we get γ1 = 0 and, thanks to (4.10), the general solution of (4.6) is given by:

ϕ1(y, z) = yf0(y)wζ0(z) + f1(y)vζ0(z), with wζ0(z) := (∂ζvζ)
∣
∣
ζ=ζ0

, (4.12)

and where f1 is to be determined.

Order h. Taking (4.9) and (4.12) into account, we rewrite equation (4.7) as

(Hζ0 − Θ0)ϕ2 = γ2f0(y)vζ0(z) − P2f0(y) vζ0(z) − P1f1(y) vζ0(z) − P1yf0(y)wζ0(z).

From the previous calculations, we already know that a particular solution of the equation (Hζ0 −Θ0)ϕ =
−P1f1(y)vζ0(z) is yf1(y)wζ0(z). That is why we look for ϕ2 in the general form

ϕ2(y, z) = ϕ⊥
2 (y, z) + yf1(y)wζ0(z) + f2(y)vζ0(z), (4.13)

where
〈
ϕ⊥

2 (y, z), vζ0

〉
z

= 0 for all y ∈ R. Note that as a consequence of the equality 〈vζ , vζ〉z = 1 for all
ζ, we have

〈
wζ0 , vζ0

〉
z

= 0.

Thus, ϕ⊥
2 has to solve

(Hζ0 − Θ0)ϕ⊥
2 = γ2f0(y)vζ0(z) − P2f0(y) vζ0(z) − P1yf0(y)wζ0(z).

The corresponding compatibility condition is:
〈
γ2f0(y)vζ0 − P2f0(y) vζ0 − P1yf0(y)wζ0 , vζ0

〉

z
= 0, ∀y ∈ R,

i.e.,

γ2f0(y) = P2f0(y) − 2y2f0(y)
〈
(z − ζ0)wζ0 , vζ0

〉
z
, ∀y ∈ R. (4.14)

But we have the identity:

(Hζ0 − Θ0)v
(2)
ζ0

= (μ′′(ζ0) − 2)vζ0 + 4(z − ζ0)wζ0 with v(2)
ζ0

(z) := (∂2
ζvζ)

∣
∣
ζ=ζ0

.

Taking the scalar product 〈•, vζ0

〉
z
, we find the well-known identity (see [3, pp. 1283–1284] and also

[9]):

μ′′(ζ0) − 2 = −4
〈
(z − ζ0)wζ0 , vζ0

〉
z
, (4.15)

and the compatibility condition (4.14) becomes

Hharmf0 = γ2f0, with Hharm = D2
y +

μ′′(ζ0)
2

y2. (4.16)

Thus, for f0, we take an eigenfunction fn,harm of Hharm and for γ2, the associated eigenvalue
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γ2 = λn,harm :=

√
μ′′(ζ0)

2
(2n− 1) (n ≥ 1). (4.17)

With this choice, ϕ⊥
2 exists and is unique.

Further terms. Let us assume that the coefficients (γk)0≤k≤j are determined. Let us also assume that,
for 0 ≤ k ≤ j, the functions ϕk can be written in the form:

ϕk(y, z) = ϕ⊥
k (y, z) + yfk−1(y)wζ0(z) + fk(y)vζ0(z),

where
〈
ϕ⊥

k (y, ·), vζ0

〉
z

= 0 for all y ∈ R and with the convention f−1 = 0. We assume that (ϕ⊥
k )0≤k≤j

and (fk)0≤k≤j−2 determined in S(R × R+) and S(R), respectively, fj−1 and fj being still unknown.
This assumption is proven for j ≤ 2. Let us prove it for j+ 1. For this, we write the equation of order

j + 1:

(Hζ0 − Θ0)ϕj+1 =
j∑

k=0

γj+1−kϕk − P2ϕj−1 − P1ϕj . (4.18)

We write ϕj+1 in the form:

ϕj+1(y, z) = ϕ⊥
j+1(y, z) + yfj(y)wζ0(z) + fj+1(y)vζ0(z).

Then, Eq. (4.18) implies the following equation in ϕ⊥
j+1

(Hζ0 − Θ0)ϕ⊥
j+1 = γj+1f0vζ0 + γ2fj−1vζ0 − P2(fj−1vζ0) − P1(yfj−1wζ0) +Rj , (4.19)

where

Rj =
j−2∑

k=1

γj+1−kϕk + γ2ϕ
⊥
j−1 + γ2yfj−2wζ0 − P2ϕ

⊥
j−1 − P2(yfj−2wζ0) − P1ϕ

⊥
j

is known and belongs to S(R × R+). The compatibility condition ensuring the solvability of (4.19) is
obtained by taking the scalar product with vζ0 . We calculate, cf (4.14), and obtain for all y ∈ R

γj+1f0(y) + γ2fj−1(y) = P2fj−1(y) − 2y2fj−1(y)
〈
(z − ζ0)wζ0 , vζ0

〉
z

− gj(y) ,

where gj = 〈Rj , vζ0〉z belongs to S(R). Thanks to (4.15) this equation in y can be put in the form:

(Hharm − γ2)fj−1 = γj+1f0 + gj . (4.20)

The compatibility condition ensuring the solvability of (4.20) is obtained by taking the scalar product
with f0 = fn,harm:

γj+1 +
〈
gj , f0

〉
y

= 0.

This determines γj+1, and then fj−1 (the unique solution orthogonal to f0) thanks to the Fredholm
alternative. The assertion is proven at the order j + 1.

Cancelation of odd terms. Let us now explain why, for j odd, we have γj = 0. Let us first notice that
either f0 is odd or f0 is even and that P1 is odd and P2 is even (with respect to y) and also that γ1 = 0.
To fix ideas, we deal with the case f0 even, the other one being completely similar. Then, we observe that
ϕ⊥

1 is odd with respect to y and ϕ⊥
2 is even.

In the recursion above, we can assume that, for 0 ≤ k ≤ j, ϕ⊥
k is even/odd if k is even/odd (with

respect to y) and that the already known fk are even/odd if k is even/odd. In addition, we assume that
γk = 0 if k is odd and k ≤ j. Using this recursion assumption, we get that, if j is even/odd then Rj (and
thus gj) is odd/even.

If j is even, we get 〈gj , f0〉 = 0, thus γj+1 = 0. Then, the Fredholm condition (see (4.20)) implies that
fj−1 is odd. Coming back to (4.19), we check that the other terms in the right hand side are odd with
respect to y. We have that ϕ⊥

j+1 is orthogonal to vζ0 ; thus, we deduce by uniqueness that ϕ⊥
j+1 is odd.
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If j is odd then γj+1 does not need to be zero and fj−1 is even. We deduce in the same way that ϕ⊥
j+1 is

even. Thus, the assertion is proved by recursion.
This analysis provides a quasimode for Lh (for all n and J):

uJ
n(h) =

J∑

j=0

ϕjh
j/2,

which satisfies
∥
∥
∥
(
Lh −

J∑

j=0

γ2j,nh
j
)
uJ

n(h)
∥
∥
∥

L2(Ω)
≤ Cn,J h

J+1‖uJ
n(h)‖L2(Ω), (4.21)

where we use the notation γ2j,n for γ2j to emphasize the dependence on n. Using the spectral theorem,
we immediately deduce that:

Proposition 4.3. For all N ≥ 1 and J ≥ 1, there exist CN,J > 0 and h0 > 0 such that for all 1 ≤ n ≤ N
and 0 < h < h0:

dist
(

spdis(Lh),
J∑

j=0

γ2j,nh
j
)

≤ CN,J h
J+1.

Remark 4.4. In particular, we observe that, for 1 ≤ n ≤ N and h ∈ (0, h0):

0 ≤ sn(h) ≤ hλn,harm + CN,1 h
2 ≤ CN h. (4.22)

4.2. Lower bound

To get a suitable lower bound of sn(h), we will use the so-called Born-Oppenheimer approximation Lh,BO

with

Lh,BO := hD2
y +Wh(y), with Wh(y) = μ(ζ0 + yh1/2) − Θ0 ≥ 0.

Thus, we have

∀v ∈ DN (Lh), 〈Lhv, v〉 ≥ 〈Lh,BOv, v〉. (4.23)

4.2.1. Localization estimates of Agmon type. Let us take N0 such that 1 ≤ N0 ≤ N . We are going to
prove some localization of the eigenfunctions of Lh associated with (sn(h))1≤n≤N0 . For all 1 ≤ n ≤ N0,
we will consider a normalized eigenfunction un(h) associated with sn(h) so that the distinct un(h) are
orthogonal. It is convenient to introduce the sum of the first eigenspaces of Lh:

EN0(h) = span(u1(h), . . . ,uN0(h)). (4.24)

Combining Proposition 2.6 and the scaling (3.3), we have the following localization with respect to
the normal variable z:

Proposition 4.5. There exist C > 0, γ > 0 and h0 > 0 such that for all h ∈ (0, h0) and v ∈ EN0(h):∫

Ω

e2γz|v|2dydz ≤ C‖v‖2
L2(Ω). (4.25)

Now, we improve Theorem 1.3 by proving an optimal localization with respect to y when h goes to 0:

Proposition 4.6. There exist C > 0 and h0 > 0 such that for all h ∈ (0, h0) and v ∈ EN0(h):∫

Ω

e2|y||v|2dydz ≤ C‖v‖2
L2(Ω). (4.26)
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Proof. For v = un(h), we can write:

qh(eΦv) −
∫

Ω

(|DzΦ|2 + h|DyΦ|2 + sn(h)
)|eΦv|2 dydz = 0, (4.27)

where qh is the quadratic form associated to (4.1). Let us choose Φ(y) = |y|. With (4.23), we deduce:
∫

Ω

(Wh − h− sn(h))|eΦv|2 dydz ≤ 0 (4.28)

Let us consider the positivity of:

Wh − h− sn(h)

in a region of the type |y| ≥ C0 with C0 > 0.

(i) Using the nondegeneracy of the minimum, we know that it exists ε0 such that:

Wh(y) ≥ μ′′(ζ0)
4

|y|2h, for |y| ≤ ε0h
−1/2. (4.29)

(ii) With η0 defined as min{μ(ζ0 ± ε0)} − Θ0, we have Wh(y) ≥ η0 > 0 for |y| ≥ ε0h
−1/2.

We deduce from (i) and (ii) that

Wh(y) ≥ min
{
η0,

μ′′(ζ0)
4

C2
0h
}

if |y| ≥ C0.

Therefore, using Remark 4.4 and choosing C0 large enough, and h small enough, we get the existence of
c > 0 such that, for |y| ≥ C0:

Wh(y) − h− sn(h) ≥ ch. (4.30)

Combining this with (4.28), we obtain:

ch

∫

|y|≥C0

|eΦv|2 dydz ≤
∫

|y|≤C0

|Wh − h− sn(h)| |eΦv|2 dydz.

Then, we take advantage of Remark 4.4 and bound Wh(y) for |y| ≤ C0 by C ′
0h for a suitable constant

C ′
0 to deduce finally

ch

∫

|y|≥C0

|eΦv|2 dydz ≤ Ch‖v‖2
L2(Ω).

Thus, we have proved (4.26) for v = un(h), 1 ≤ n ≤ N0. Using the orthogonality of the eigenvectors
un(h), we obtain (4.26) for v ∈ EN0(h). �

Combining Propositions 4.5 and 4.6, we get the following two corollaries:

Corollary 4.7. There exist C > 0, δ > 0 and h0 > 0 such that for all h ∈ (0, h0) and v ∈ EN0(h):
∫

Ω

eδ(|y|+z)|v|2dydz ≤ C‖v‖2
L2(Ω),

and in particular:
∫

Ω

(1 + z|y|3 + y6)|v|2dydz ≤ C‖v‖2
L2(Ω). (4.31)
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Corollary 4.8. For all ε0 > 0, there exist h0 > 0, γ > 0 and C > 0 such that, for all h ∈ (0, h0) and
v ∈ EN0(h): ∫

|y|≥ε0h−1/2

(1 + |y|4)|v|2 dydz ≤ Ce−γh−1/2‖v‖2
L2(Ω).

4.2.2. Approximation of eigenvectors. We will consider the projection Π0 : L2(Ω) → L2(R) ⊗ span{vζ0}
defined by

w �−→ 〈
w, vζ0

〉
z
vζ0 .

The aim of the following proposition is to approximate un(h) by a tensor product:

Proposition 4.9. There exist C > 0 and h0 > 0 such that for all h ∈ (0, h0):

Q
(
un(h) − Π0un(h)

) ≤ Ch1/2‖un(h)‖2
L2(Ω),

Q
(
Dyun(h) − Π0Dyun(h)

) ≤ Ch1/4‖un(h)‖2
L2(Ω),

Q
(
yun(h) − Π0yun(h)

) ≤ Ch1/2‖un(h)‖2
L2(Ω),

where Q is the quadratic form of IdL2(R) ⊗ (Hζ0 − Θ0).

Proof. (1) We first notice that, since Θ0 is the first eigenvalue of Hζ0 , the quadratic form Q is nonneg-
ative: Q(w) ≥ 0 for all w ∈ L2(R) ⊗B1(R+).

(2) We also notice that, since vζ0 generates the kernel of Hζ0 − Θ0, there holds

Q(w) = Q(w − Π0w), ∀w ∈ L2(R) ⊗B1(R+).

Hence we only have to bound Q
(
un(h)

)
, Q

(
Dyun(h)

)
, and Q

(
yun(h)

)
.

(3) Using the equation satisfied by un(h):

Lhun(h) = sn(h)un(h), (4.32)

and taking the scalar product with un(h), we find the identity

h‖Dyun(h)‖2
L2(Ω) +Q(un(h)) − 2h1/2

〈
(z − ζ0)yun(h),un(h)

〉
+ h‖yun(h)‖2

L2(Ω) = sn(h)‖un(h)‖2
L2(Ω).

With (4.22) and (4.31), we deduce

Q(un(h)) ≤ Ch1/2‖un(h)‖2
L2(Ω).

(4) Considering again the scalar product of identity (4.32) with un(h), we observe that, using (4.22)
and (4.23):

‖Dyun(h)‖2
L2(Ω) ≤ C‖un(h)‖2

L2(Ω). (4.33)

Moreover, calculating the derivative with respect to y of (4.32), we obtain:

LhDyun(h) + 2ih1/2(z − ζ0 − yh1/2)un(h) = sn(h)Dyun(h). (4.34)

Taking the scalar product with Dyun(h), we get:

‖D2
yun(h)‖2

L2(Ω) ≤ Ch−1/2‖un(h)‖2
L2(Ω), (4.35)

where we have used (4.31) to control the commutator term.
Considering once more the scalar product of (4.34) with Dyun(h), we infer:

h‖D2
yun(h)‖2

L2(Ω) +Q(Dyun(h)) + 2ih1/2
〈
(z − ζ0 − yh1/2)un(h),Dyun(h)

〉

−2h1/2
〈
(z − ζ0)yDyun(h),Dyun(h)

〉
+ h‖yDyun(h)‖2

L2(Ω)

= sn(h)‖Dyun(h)‖2
L2(Ω).
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With the help of (4.31), (4.33), (4.35), and integration by parts, we find

Q(Dyun(h)) ≤ Ch1/4‖un(h)‖2
L2(Ω).

(5) Similarly, we multiply (4.32) by y and find the identity

Lh(yun(h)) + 2h∂yun(h) = sn(h)yun(h), (4.36)

from which we deduce

h‖Dy(yun(h))‖2
L2(Ω) +Q(yun(h)) + 2h

〈
∂yun(h), yun(h)

〉

−2h1/2
〈
(z − ζ0)y2un(h), yun(h)

〉
+ h‖y2un(h)‖2

L2(Ω) = sn(h)‖yun(h)‖2
L2(Ω).

We obtain finally

Q(yun(h)) ≤ Ch1/2‖un(h)‖2
L2(Ω),

which concludes the proof. �

Corollary 4.10. There exist C > 0 and h0 > 0 such that for all h ∈ (0, h0) and v ∈ EN0(h):

‖v − Π0v‖H1(Ω) + ‖yv − Π0yv‖L2(Ω) ≤ Ch1/8‖v‖L2(Ω). (4.37)

Proof. Let us assume that w ∈ L2(R) ⊗B1(R+) is such that: 〈w, vζ0〉z = 0. Then, we get:

Q(w) ≥ (μ2(ζ0) − Θ0)‖w‖2
L2(Ω),

where μ2(ζ0) denotes the second eigenvalue of Hζ0 . Therefore, the left-hand side of (4.37) is bounded by
(μ2(ζ0) − Θ0)−1

{
Q(w) +Q(Dyw) +Q(yw)

}
. Then, the conclusion follows from Proposition 4.9. �

Corollary 4.11. There exists h0 > 0 such that for h ∈ (0, h0), the projection Π0 is an isomorphism from
EN0(h) onto its range.

4.2.3. Conclusion. For all v ∈ EN0(h), we have
〈
(hD2

y + μ(ζ0 + yh1/2) − Θ0)v, v
〉 ≤ sN0(h)‖v‖2

L2(Ω).

We recall (1.4) and we have, with Corollary 4.8:
∫

|y|≥ε0h−1/2

∣
∣
∣
∣

(
μ(yh1/2 + ζ0) − Θ0 − h

μ′′(ζ0)
2

y2

)
v

∣
∣
∣
∣

2

dydz = O(h∞)‖v‖2
L2(Ω).

A Taylor approximation (using that μ is smooth) gives:
∫

|y|≤ε0h−1/2

∣
∣
∣
∣

(
μ(yh1/2 + ζ0) − Θ0 − h

μ′′(ζ0)
2

y2

)
v

∣
∣
∣
∣

2

dydz ≤ C(ε0)‖y3h3/2v‖2
L2(Ω) ≤ C̃(ε0)h3‖v‖2

L2(Ω),

the last inequality coming from (4.31). We get:

h
〈(
D2

y +
μ′′(ζ0)

2
y2
)
v, v

〉
− Ch3/2‖v‖2

L2(Ω) ≤ sN0(h)‖v‖2
L2(Ω).

Applying Corollary 4.10, we obtain for all v ∈ EN0(h):

h
〈(
D2

y +
μ′′(ζ0)

2
y2
)
Π0v,Π0v

〉
− Ch9/8‖Π0v‖2

L2(Ω) ≤ sN0(h)‖Π0v‖2
L2(Ω).

With Corollary 4.11 and the min-max principle, we infer that:

h(2N0 − 1)

√
μ′′(ζ0)

2
− Ch9/8 ≤ sN0(h)

and thus k(n) = n in Proposition 4.3. This ends the proof of Theorem 4.1.
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4.3. Eigenvector asymptotics

From Theorem 4.1, we obtain that the gap between the eigenvalues is of order h. Thus, combining the
construction of Sect. 4.1 with the spectral theorem (see [24, Lemmas 12–13, Sect. 9]), we can deduce
approximation results for the eigenfunctions un(h) of Lh. Let us denote by ũ�

n(h) and ũ
n(h) the nth

quasimode with one and two terms, respectively, constructed in Sect. 4.1: We recall

ũ�
n(h)(y, z) = fn(y) vζ0(z),

ũ
n(h)(y, z) = fn(y) vζ0(z) + h1/2yfn(y) ∂ζvζ

∣
∣
ζ=ζ0

(z).
(4.38)

Here, fn is the nth eigenfunction of the harmonic oscillator Hharm cf. (4.16). It is straightforward that
we can take

fn(y) = ψn−1

([μ′′(ζ0)
2

]1/4

y
)
, n ≥ 1, (4.39)

with ψm the Hermite function of rank m. Then, there exists an eigenmode un(h) such that

‖un(h) − ũ�
n(h)‖L2(Ω) ≤ C h1/2‖un(h)‖L2(Ω) and ‖un(h) − ũ

n(h)‖L2(Ω) ≤ C h‖un(h)‖L2(Ω).(4.40)

Setting

ũ�
n,θ(s, t) = ũ�

n(h)(y, z) and ũ
n,θ(s, t) = ũ

n(h)(y, z), (4.41)

with h = tan θ and (s, t) given by the change of variables (3.3), we obtain quasimodes for Lθ which satisfy,
for suitable eigenvectors un,θ of Lθ

‖un,θ − ũ�
n,θ‖L2(Ω) ≤ C θ1/2‖un,θ‖L2(Ω) and ‖un,θ − ũ

n,θ‖L2(Ω) ≤ C θ‖un,θ‖L2(Ω). (4.42)

Remark 4.12. For the same reason (cf. [24]), we get an approximation at any order in power of θ1/2 of
un,θ when θ goes to 0 (and which is given by the asymptotic series defining the quasimode).

5. Finite element computation of eigenpairs

In this section, we show computations of the eigenvalues σn(θ) that display numerically the asymptot-
ics given by Theorem 1.7. We also illustrate the results given by Theorems 1.3, 1.4 on isotropic and
anisotropic decay of the eigenvectors of Lθ.

The simulations have been realized with the finite element library Mélina, see [16].

5.1. Eigenvalues

We illustrate here the behavior of the eigenvalues of Lθ. The operator Lθ is defined on the infinite
domain Ω = R × R+. We bound this infinite domain by a large box Ra,b,c := (−a, b) × (0, c) to per-
form numerical approximations. We compute the eigenvalues denoted by σn(θ; a, b, c) of the operator
Lθ(a, b, c) = −Δ + Vθ on Ra,b,c with Neumann condition on t = 0 and Dirichlet conditions on the artifi-
cial boundary {s = −a} ∪ {s = b} ∪ {t = c}. Using the inclusion of the form domain of Lθ(a, b, c) in that
of Lθ, we prove

σn(θ) ≤ σn(θ; a, b, c),

and by similar arguments, we obtain the monotonicity of σn(θ; a, b, c) according to each variable a, b
or c. The method consists in computing for several sets of values of (a, b, c) with several combinations of
rectangular finite elements of different degrees until convergence is found.

Figure 1 gives an approximation of the first 4 eigenvalues of Lθ below 1. For this, the final choice
of (a, b, c) is (100, 100, 100) with rectangular elements of degree Q10 and 15 elements in each direction.
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Fig. 1. σn(θ; 100, 100, 100) for n = 1, . . . , 4 (ordinates) versus ϑ = 2θ/π (abscissa) for ϑ = k/100, 1 ≤ k ≤ 99

By looking at Fig. 1, we can conjecture that the derivative of σ1(θ) tends to zero when θ goes to π
2 . This

is true indeed, as we prove in the following proposition:

Proposition 5.1. For all θ ∈ (
0, π

2

)
, we have:

σ1(θ) cos θ − σ′
1(θ) sin θ > 0.

Moreover, we have:

lim
θ→ π

2
θ< π

2

σ′
1(θ) = 0.

Proof. For γ ≥ 0, we introduce the operator:

L(θ, γ) = D2
s +D2

t + (t(cos θ + γ) − s sin θ)2

and we denote by σ1(θ, γ) the bottom of its spectrum. Let ρ > 0 and α ∈ (0, π
2 ) satisfy

cos θ + γ = ρ cosα and sin θ = ρ sinα.

We perform the rescaling t = ρ−1/2t̂, s = ρ−1/2ŝ and obtain that L(θ, γ) is unitarily equivalent to:

ρ(D2
ŝ +D2

t̂
+ (t̂ cosα− ŝ sinα)2) = ρLα.

In particular, we observe that σ1(θ, γ) = ρσ1(α) is a simple eigenvalue: there holds

σ1(θ, γ) =
√

(cos θ + γ)2 + sin2 θ σ1

(
arctan

(
sin θ

cos θ + γ

))
. (5.1)

Performing the rescaling t̃ = (cos θ + γ)t, we get the operator L̃(θ, γ) that is unitarily equivalent to
L(θ, γ):

L̃(θ, γ) = D2
s + (cos θ + γ)2D2

t̃ + (t̃− s sin θ)2.

We observe that the domain of L̃(θ, γ) does not depend on γ ≥ 0. Denoting by ũθ,γ the L2-normalized
and positive eigenfunction of L̃(θ, γ) associated with σ1(θ, γ), we write:

L̃(θ, γ)ũθ,γ = σ1(θ, γ)ũθ,γ .
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Fig. 2. σn(θ; 100, 100, 50) for n = 1, . . . , 17 (ordinates) versus ϑ = 2θ/π (abscissa) for ϑ = k/200, 2 ≤ k ≤ 20

Taking the derivative with respect to γ, multiplying by ũθ,γ , and integrating, we get the Feynman-Hellman
formula:

∂γσ1(θ, γ) = 2(cos θ + γ)
∫

Ω

|Dtũθ,γ |2 dsdt ≥ 0.

We deduce that, if ∂γσ1(θ, γ) = 0 then Dtũθ,γ = 0 and ũθ,γ only depends on s, which is a contradiction
with ũθ,γ ∈ L2(Ω). Consequently, we have ∂γσ1(θ, γ) > 0 for any γ ≥ 0. An easy computation using
formula (5.1) provides:

∂γσ1(θ, 0) = σ1(θ) cos θ − σ′
1(θ) sin θ.

As recalled in Sect. 1.1, the function σ1 is analytic and increasing. Thus, we deduce:

∀θ ∈
(
0,
π

2

)
, 0 ≤ σ′

1(θ) <
cos θ
sin θ

σ1(θ).

We get:

0 ≤ lim inf
θ→ π

2
θ< π

2

σ′
1(θ) ≤ lim sup

θ→ π
2

θ< π
2

σ′
1(θ) ≤ 0,

which ends the proof. �

Figure 2 gives an approximation of all eigenvalues of Lθ for small θ. For this, the final choice of (a, b, c)
is (100, 100, 50) with rectangular elements of degree Q10 and 20 elements in each direction. The figure
corroborates the densification of the spectrum in [Θ0, 1] described in Sect. 3.

We now illustrate formula (1.9). According to this formula, we have the convergence:

σn(θ) − Θ0

a1θ
→ 2n− 1 as θ → 0, with a1 =

√
μ′′(ζ0)

2
, (5.2)

for all n ≥ 1. Using numerical computations for Hζ , we find good approximations of Θ0 and a1, cf.
Tables 1 and 2 in [4]:

Θ̆0 = 0.590106125 and ă1 	 0.7651881.
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Fig. 3. Convergence of ρn,1(θ) to 2n − 1 as θ → 0, n = 1, . . . , 7 (bottom to top)
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Fig. 4. ρn,3(θ) (a) and ρn,4(θ) (b) (ordinates) versus log 10(2θ/π) (abscissa). n = 1, . . . , 7 (bottom to top)

Let us denote by σ̆n(θ) the nth computed eigenvalue of Lθ, with a convenient choice of the computational
domain (−a, b) × (0, c). On Fig. 3, we represent the functions

log 10(2θ/π) �−→ ρn,1(θ) :=
σ̆n(θ) − Θ̆0

ă1θ
. (5.3)

We see that the ratio ρn,1(θ) converges to 2n− 1, corroborating formula (5.2).
Computations displayed in Fig. 4 allow to evaluate the next terms of the asymptotic expansion for

σn(θ). Indeed on Fig. 4a, we represent the functions

log 10(2θ/π) �−→ ρn,2(θ) :=
Θ̆0 + ă1(2n− 1)θ − σ̆n(θ)

θ2
. (5.4)
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Table 1. Numerical limits ăn,2

n 1 2 3 4 5 6 7

ăn,2 0.32616 1.1577 2.8206 5.3148 8.6402 12.797 17.784

Fig. 5. First eigenpair of Lθ for θ = ϑπ/2 with ϑ = 0.9, 0.85, 0.8, and 0.7

Fig. 6. First eigenpair of Lθ for θ = ϑπ/2 with ϑ = 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1

We observe that the ratio ρn,2(θ) converges to a numerical limit ăn,2 as θ → 0 for any n = 1, . . . , 7, see
Table 1.

We can still determine numerically the next term of the expansion. On Fig. 4b we represent the
functions

log 10(2θ/π) �−→ ρn,3(θ) :=
Θ̆0 + ă1(2n− 1)θ − ăn,2θ

2 − σ̆n(θ)
θ3

. (5.5)
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Fig. 7. First 8 computed eigenvectors and eigenvalues of Lθ for θ = 0.0125π

Figure 4b agrees with the first terms of the asymptotics proved in Theorem 1.7 : σn(θ) = Θ0 +a1(2n− 1)
θ − an,2θ

2 − an,3θ
3 + o(θ3).

5.2. Eigenvectors

In this section, we highlight the isotropic exponential decay of the eigenvectors of Lθ and the anisotropic
one given, respectively, in Theorems 1.3 and 1.4. Figure 5 illustrates the anisotropic decay for θ close to
π/2: we compute the first eigenpair of Lθ(5, 15, 75) on [−5, 15]× [0, 75] for θ = ϑπ/2, ϑ = 0.9, 0.85, 0.8, 0.7
with unit square elements of degree Q2. The first eigenvector is localized along the line Vθ = 0, and we
see the exponential decay far away from this line. When θ is close to π/2, the eigenvector spreads along
the line Vθ = 0 and the exponential decay far away from the origin is not predominant.

When θ = ϑπ/2 with ϑ ∈ {0.1, . . . , 0.6}, we observe equivalently the decay far away from the line
Vθ = 0 and the origin (see (1.5) and (1.6)). Figure 6 gives an approximation of the first eigenvector and
eigenvalue of Lθ on the computational domain [−15, 25] × [0, 15] with unit square elements of degree Q6.
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Fig. 8. Quasimodes ũ�
n,θ and values Θ̆0 + ă1(2n − 1)θ for θ = 0.0125π and n = 1, . . . , 8

We observe also that the first eigenvector spreads less and less along the line Vθ = 0 when θ is decreasing
and the decay becomes essentially radial.

On Figs. 7, 8, and 9, we consider the asymptotics θ → 0. Figure 7 gives an approximation of the first
eight eigenmodes of Lθ computed by a finite element method with rectangular 2× 1 elements and degree
Q6 on the domain [−20, 80]×[0, 10]. The oscillations with respect to the horizontal variable appear clearly.
We can compare with Figs. 8 and 9 where are represented the quasimodes1 ũ�

n,θ and ũ
n,θ introduced in

(4.38)–(4.42). We observe an interesting correlation between the computed eigenvectors on Fig. 7 and the
quasimodes on Figs. 8 and 9.

1To compute these quasimodes, we approximate the one-dimensional eigenvector vζ0 with a finite difference method for

the operator D2
t +(t−ζ0)2 on [0, 10] with Dirichlet condition on t = 10, and ζ0 = 0.76818365314 according to computations

of [4].
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Fig. 9. Quasimodes ũ�
n,θ and values Θ̆0 + ă1(2n − 1)θ for θ = 0.0125π and n = 1, . . . , 8
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