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Abstract. In this paper, a viscoelastic equation with nonlinear boundary damping and source terms of the form

utt(t) − Δu(t) +

t∫

0

g(t − s)Δu(s)ds = a |u|p−1 u, in Ω × (0, ∞),

u = 0, on Γ0 × (0, ∞),

∂u

∂ν
−

t∫

0

g(t − s)
∂

∂ν
u(s)ds + h(ut) = b |u|k−1 u, on Γ1 × (0, ∞)

u(0) = u0, ut(0) = u1, x ∈ Ω,

is considered in a bounded domain Ω. Under appropriate assumptions imposed on the source and the damping, we establish
both existence of solutions and uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback
and the relaxation function g, without setting any restrictive growth assumptions on the damping at the origin and weak-
ening the usual assumptions on the relaxation function g. Moreover, for certain initial data in the unstable set, the finite
time blow-up phenomenon is exhibited.
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1. Introduction

It is well known that viscoelastic materials have memory effects. These properties are due to the mechan-
ical response influenced by the history of the materials themselves. As these materials have a wide
application in the natural sciences, their dynamics are interesting and of great importance. From the
mathematical point of view, their memory effects are modeled by integro-differential equations. Hence,
questions related to the behavior of the solutions for the PDE system have attracted considerable atten-
tion in recent years.

We study the following viscoelastic problem with a nonlinear boundary dissipation and nonlinear
boundary/interior sources:

utt(t) − Δu(t) +

t∫

0

g(t − s)Δu(s)ds = a |u|p−1
u, in Ω × (0,∞),

u = 0, on Γ0 × (0,∞),

∂u

∂ν
−

t∫

0

g(t − s)
∂

∂ν
u(s)ds + h(ut) = b |u|k−1

u, on Γ1 × (0,∞)

u(0) = u0(x), ut(0) = u1(x), x ∈ Ω,

(1.1)
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where a > 0, b > 0, p > 1, k > 1, and Ω is a bounded domain in Rn with smooth boundary Γ = Γ0 ∪ Γ1.
Here, Γ0 and Γ1 are closed and disjoint with meas (Γ0) > 0, and ν is the unit outward normal to Γ.
The relaxation function g is a positive and uniformly decaying function, h is a function satisfying some
conditions given in (A2), and

1 ≤ p ≤ n

n − 2
, n > 2 and 1 ≤ p < ∞, if n = 2,

1 ≤ k <
n − 1
n − 2

, n > 2 and 1 ≤ k < ∞, if n = 2.
(1.2)

This problem has been widely studied when the viscoelastic term g is absent in (1.1). Several results
have been established. Some of the most important papers are those of Chen [8], Haraux [15], Komornik
and Zuazua [17], Lasiecka and Tataru [18] and Nako [32]. Among these works, it is worth noting that the
pioneering work of Lasiecka and Tataru [18], in which (1.1) with g = 0, was conducted under very weak
geometrical conditions on Γ0 and Γ1. They showed that the energy decays as fast as the solution of an
associated differential equation, without imposing that h has a polynomial behavior near zero. However,
they did not obtain an explicit decay rate estimate for the energy. Alababu–Boussouira [1] investigated
the stabilization of hyperbolic systems by a nonlinear feedback that can be localized on a part of the
boundary or locally distributed. Using weight integral inequalities together with convexity arguments,
she obtained a semi-explicit formula for the decay rate of the solution energy in terms of the behavior
of the nonlinear feedback close to the origin. Recently, Cavalcanti et al. [3] considered (1.1) with g = 0.
They established the existence, nonexistence and uniform decay of solutions under suitable conditions
and relations between the damping and the source terms. Yet, the decay rate is also implicit, as in [18].
Vitillaro [34] considered (1.1) with g = a = 0, b = 1 and h(ut) = |ut|m−1

ut, m ≥ 1. The author proved
the local existence of solutions when m > k and global existence when k ≤ m or the initial data was
chosen suitably. We refer the reader to related works [11,19,38] dealing with boundary stabilization.

Conversely, in the presence of the memory term (g �= 0), there are numerous results related to the
asymptotic behavior of solutions of viscoelastic systems. For example, the viscoelastic membrane equation

utt − Δu +

t∫

0

g(t − s)Δu(s)ds = 0, in Ω × (0, ∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1.3)

is considered in a bounded domain Ω ⊂ Rn with smooth boundary, see [4,5,9,10,12,28,33]. A nonlinear
case of (1.3) with damping term and force term is

ut − Δu +

t∫

0

g(t − s)Δu(s)ds + h(ut) = f(u), in Ω × (0, ∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1.4)

where Ω ⊂ Rn is a bounded domain with smooth boundary. Problems related to (1.4) have been exten-
sively studied, and several results concerning existence, decay and blow-up have been obtained [6,16,21–
26,29,35–37]. In relation to a class of abstract viscoelastic systems, Rivera et al. [30] considered the
following

utt + Au − (g ∗ Aαu) (t) = 0, (1.5)

where A is positive self-adjoint operator with domain D(A) that is a subset of Hilbert space H and ∗
denotes the convolution product in the variable t. They showed that the dissipation given by the mem-
ory effect is not strong enough to produce exponential stability with 0 ≤ α < 1. Indeed, they obtained
that the solutions decay polynomially even if kernel g decays exponentially. Very recently, River et al.
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[31] completed the analysis in studying the optimal energy rate for problem (1.5) with 0 ≤ α < 1: that
is, they showed that the associated energy to problem (1.5) with 0 ≤ α < 1 is polynomial stable, and
subsequently found that the decay rate is optimal.

Problem (1.1) has been considered by Cavalcanti et al. [5] with a = b = 0. They showed the global
existence and established some uniform decay results under quite restrictive assumptions on both the
damping function h and kernel g. Later, Cavalcanti et al. [4] generalized the result without imposing
a growth condition on h and under a weaker assumption on g. Recently, Messaoudi and Mustafa [27]
exploited some properties of convex functions [1] and the multiplier method to extend these results. They
establish an explicit and general decay rate result without imposing any restrictive growth assumption on
damping term h and greatly weakened the assumption on g. More recently, Ha [14] studied problem (1.1)
with a = 1 and b = 0. He generalized the result of [4] by applying the method developed by Martinez
[20]. In fact, the author proved the existence of solutions and uniform decay rates under greatly weakened
assumptions of g and h.

Motivated by previous works [3,14,27], it is interesting to investigate the existence of solutions, uniform
decay result of solutions and finite time blow-up of solutions to problem (1.1) with two nonlinear source
terms (boundary and interior) and without imposing any restrictive growth assumption on the boundary
dissipation. The presence of the boundary nonlinear term |u|k−1

u brings great difficulty in establishing
existence of weak solutions due to the fact that Loptanski condition does not hold for Neumann problem.
To overcome this point, we utilize arguments as in Cavalcanti et al. [7] making use of Faedo–Galerkin
procedure to study well-posedness of problem (1.1). Then, based on some properties of convex functions
and the multiplier method as in Guessmia and Messaoudi’s work [13], our next intention is to establish
an explicit and general decay rate for equations (1.1) under assumptions on g and h, without imposing
a specific growth condition on the behavior of h near zero and greatly weakening the usual assumptions
on relaxation function g. In this way, our results allow a larger class of relaxation functions and improve
the results of Messaoudi and Mustafa [27], who considered problem (1.1) in the absence of the bound-
ary/interior source terms. Additionally, two competing nonlinear source terms (boundary and interior)
in (1.1) may cause the finite time blow-up of solutions, which was not discussed by Ha [14]. Our last
intention is to prove that for certain initial data in the unstable set, there are solutions that blow-up in
finite time.

The remainder of this paper is organized as follows. In Sect. 2, we provide assumptions that will be
used later, state and prove the existence result Theorem 2.6. In Sect. 3, we prove our stability result that
is given in Theorem 3.5. Finally, we prove the blow-up result in Theorem 4.2.

2. Preliminary results

In this section, we give assumptions and preliminaries that will be needed throughout the paper. First,
we introduce the set

H1
Γ0

=
{
u ∈ H1 (Ω) : u |Γ0 = 0

}
,

and endow H1
Γ0

with the Hilbert structure induced by H1 (Ω), we have that H1
Γ0

is a Hilbert space. For
simplicity, we denote ‖·‖q = ‖·‖Lq(Ω) and ‖·‖q,Γ1

= ‖·‖Lq(Γ1)
, 1 ≤ q ≤ ∞. According to (1.2), we have the

imbedding: H1
Γ0

↪→ Lp+1 (Ω). Let c∗ > 0 be the optimal constant of Sobolev imbedding which satisfies
the inequality

‖u‖p+1 ≤ c∗ ‖∇u‖2 , ∀u ∈ H1
Γ0

, (2.1)

and we use the trace-Sobolev imbedding: H1
Γ0

↪→ Lk+1 (Γ1) , 1 ≤ k < n
n−2 . In this case, the imbedding

constant is denoted by B∗, i.e.,

‖u‖k+1,Γ1
≤ B∗ ‖∇u‖2 . (2.2)
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Next, we state the assumptions for problem (1.1):
(A1) g : [0,∞) → (0,∞) is a bounded C1 function satisfying

g(0) > 0, 1 −
∞∫

0

g(s)ds = l > 0, (2.3)

and there exists a nonincreasing positive differentiable function ξ such that

g′(t) ≤ − ξ(t)g(t), (2.4)

for all t ≥ 0.
(A2) h : R → R is a nondecreasing function with h(s)s ≥ 0 for all s ∈ R and there exists a convex and

increasing function H : R+ → R+ of class C1(R+)∩C2 ((0,∞)) satisfying H(0) = 0 and H is linear
on [0, 1] or H ′(0) = 0 and H ′′ > 0 on (0,1] such that,

mq |s|q ≤ |h(s)| ≤ Mq |s|q , 1 ≤ q < n−1
n−2 if |s| ≥ 1,

h2(s) ≤ H−1(sh(s)) if |s| ≤ 1,
(2.5)

where mq and Mq are positive constants.

Remark 2.1. Without loss of generality, we take a = b = 1 in (1.1) throughout this work.
The energy associated with problem (1.1) is given by

E(t) =
1
2

‖ut‖2
2 + J(u(t)), for u ∈ H1

Γ0
, (2.6)

where

J(u(t)) =
1
2

⎛
⎝1 −

t∫

0

g(s)ds

⎞
⎠ ‖∇u(t)‖2 +

1
2
(g ◦ ∇u)(t)

− 1
p + 1

‖u‖p+1
p+1 − 1

k + 1
‖u‖k+1

k+1,Γ1
, (2.7)

and

(g ◦ ∇u)(t) =

t∫

0

g(t − s) ‖∇u(t) − ∇u(s)‖2
2 ds.

Next, we define a functional F introduced by Cavalcanti et al. in [3], which helps in establishing
desired results. Setting

F (x) =
1
2
x2 − Bp+1

Ω

p + 1
xp+1 − Bk+1

Γ

k + 1
xk+1, x > 0, (2.8)

where

BΩ = sup
u∈H1

Γ0
,

u�=0

‖u‖p+1√
l ‖∇u‖2

2

and BΓ = sup
u∈H1

Γ0
,

u�=0

‖u‖k+1,Γ1√
l ‖∇u‖2

2

. (2.9)

Remark 2.2. (i) As in [3], we can verify that the functional F is increasing in (0, λ0), decreasing in
(λ0,∞), and F has a maximum at λ0 with the maximum value

d ≡ F (λ0)

=
1
2
λ2

0 − Bp+1
Ω

p + 1
λp+1

0 − Bk+1
Γ

k + 1
λk+1

0 , (2.10)

where λ0 is the first positive zero of the derivative function F ′(x).
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(ii) From (2.6), (2.7), (2.3), (2.9) and the definition of F , we have

E(t) ≥ J(u(t)) ≥ 1
2
l ‖∇u(t)‖2 +

1
2
(g ◦ ∇u)(t)

−Bp+1
Ω

p + 1

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)p+1

−Bk+1
Γ

k + 1

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)k+1

= F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

, t ≥ 0. (2.11)

Now, if one considers

l ‖∇u(t)‖2 + (g ◦ ∇u)(t) < λ2
0, (2.12)

then, from (2.11), we obtain

E(t) ≥ F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

=
1
2
l ‖∇u(t)‖2 +

1
2
(g ◦ ∇u)(t) − Bp+1

Ω

p + 1

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)p+1

−Bk+1
Γ

k + 1

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)k+1

>

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)2

(
1
2

− Bp+1
Ω

p + 1
λp−1

0 − Bk+1
Γ

k + 1
λk−1

0

)
, t ≥ 0.

Thus, using the identity

1 − Bp+1
Ω λp−1

0 − Bk+1
Γ λk−1

0 = 0, (2.13)

we have, for k ≥ p,

E(t) ≥ F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

≥
(√

l ‖∇u‖2
2 + (g ◦ ∇u)(t)

)2(1
2

− 1
p + 1

+
(

1
p + 1

− 1
k + 1

)
Bk+1

Γ λk−1
0

)

≥ p − 1
2(p + 1)

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)2

,

and if p ≥ k, we get

E(t) ≥ F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

≥ k − 1
2(k + 1)

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)2

,

where the identity (2.13) is derived because λ0 is the first positive zero of the derivative function F ′(x).
Consequently, we have

J(u(t)) ≥ 0
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and

l ‖∇u‖2
2 + (g ◦ ∇u)(t) ≤ 1

c0
F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

≤ 1
c0

E(t), for t ≥ 0, (2.14)

with c0 =

{
p−1

2(p+1) , if k ≥ p,
k−1

2(k+1) , if p ≥ k.

Following, we will study the existence of weak solutions to problem (1.1). For this purpose, we use
the Faedo–Galerkin procedure and employ the ideas developed in [3,7] to establish the weak solution of
problem (1.1). Firstly, we are going to consider regular solutions of the following problem

u′′
m(t) − Δum(t) +

t∫

0

g(t − s)Δum(s)ds = f1,m(um), in Ω × (0,∞),

um = 0, on Γ0 × (0,∞),

∂um

∂ν
−

t∫

0

g(t − s)
∂

∂ν
um(s)ds +

1
m

u′
m + h(u′

m) = f2,m(um), on Γ1 × (0,∞)

u(0) = u0(x), ut(0) = u1(x), x ∈ Ω,

(2.15)

where, for each m ∈ N, fi,m, i = 1, 2, are defined by

f1,m(s) =

⎧⎨
⎩

|s|p−1
s, |s| ≤ m,

|m|p−1
m, s ≥ m,

|−m|p−1 (−m) , s ≤ −m,

(2.16)

and

f2,m(s) =

⎧⎪⎨
⎪⎩

|s|k−1
s, |s| ≤ m,

|m|k−1
m, s ≥ m,

|−m|k−1 (−m) , s ≤ −m.

(2.17)

Then, a sequence of regular solution of problem (2.15) will be obtained and this sequence will converge
to a desired weak solution, as m goes to infinity. However, instead of solving (2.15), we will consider the
more general problem given by

u′′(t) − Δu(t) +

t∫

0

g(t − s)Δu(s)ds = |u|p−1
u, in Ω × (0,∞),

u = 0, on Γ0 × (0,∞),

∂u

∂ν
−

t∫

0

g(t − s)
∂

∂ν
u(s)ds + αu′ + h(u′) = |u|k−1

u, on Γ1 × (0,∞),

u(0) = u0(x), ut(0) = u1(x), x ∈ Ω,

(2.18)

where α > 0 is a positive constant.

Remark 2.3. Setting

f1(s) = |s|p−1
s and f2(s) = |s|k−1

s,

and defined f1,trunc and f2,trunc as
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f1,trunc(s) =

⎧⎨
⎩

|s|p−1
s, |s| ≤ M,

|M |p−1
M, s ≥ M,

|−M |p−1 (−M) , s ≤ −M,

f2,trunc(s) =

⎧⎪⎨
⎪⎩

|s|k−1
s, |s| ≤ M,

|M |k−1
M, s ≥ M,

|−M |k−1 (−M) , s ≤ −M,

where M is a positive constant, so if Fi(s) =
∫ s

0
fi(τ)dτ and Fi,trunc(s) =

∫ s

0
fi,trunc(τ)dτ are, respec-

tively, the primitives of fi and fi,trunc, i = 1, 2. We define, for u ∈ H1
Γ0

,

Jtrunc(u(t)) =
1
2

⎛
⎝1 −

t∫

0

g(s)ds

⎞
⎠ ‖∇u(t)‖2 +

1
2
(g ◦ ∇u)(t)

−
∫

Ω

F1,trunc(u(t))dx −
∫

Γ1

F2,trunc(u(t))dΓ,

and we can write

J(u(t)) =
1
2

⎛
⎝1 −

t∫

0

g(s)ds

⎞
⎠ ‖∇u(t)‖2 +

1
2
(g ◦ ∇u)(t)

−
∫

Ω

F1(u(t))dx −
∫

Γ1

F2(u(t))dΓ.

Define

Etrunc(t) =
1
2

‖ut‖2
2 + Jtrunc(u(t)),

considering the energy E(t) defined by (2.6), and noting that
∫
Ω

F1,trunc(u(t))dx ≤ ∫
Ω

F1(u(t))dx and∫
Γ1

F2,trunc(u(t))dΓ ≤ ∫
Γ1

F1(u(t))dΓ, we deduce that

Etrunc(t) ≥ Jtrunc(u(t))

≥ 1
2

(
l ‖∇u(t)‖2 + (g ◦ ∇u)(t)

)
−
∫

Ω

F1,trunc(u(t))dx −
∫

Γ1

F2,trunc(u(t))dΓ

≥ 1
2

(
l ‖∇u(t)‖2 + (g ◦ ∇u)(t)

)
−
∫

Ω

F1(u(t))dx −
∫

Γ1

F2(u(t))dΓ

≥ 1
2
l ‖∇u(t)‖2 +

1
2
(g ◦ ∇u)(t) − Bp+1

Ω

p + 1

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)p+1

−Bk+1
Γ

k + 1

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)k+1

= F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

,

which shows that the inequality (2.11) remains true by changing Etrunc(t) by E(t) and J(u(t)) by
Jtrunc(u(t)). Analogously as in deriving (2.14), subject to (2.12), we also obtain

Jtrunc(u(t)) ≥ 0
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and

l ‖∇u(t)‖2
2 + (g ◦ ∇u)(t) ≤ 1

c0
F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

≤ 1
c0

Etrunc(t), t ≥ 0.

From the above consideration, all the arguments that will be used to prove the existence of regular solu-
tions to problem (2.18) when the initial data is taken in the potential well, can be repeated to the same
problem by changing f1(s) = |s|p−1

s and f2(s) = |s|k−1
s by f1,trunc and f2,trunc, respectively.

Now, we are ready to state our result.

Theorem 2.4. Let the hypotheses (A1)−(A2) and (1.2) hold and u0 ∈ H1
Γ0

∩ H2 (Ω) , u1 ∈ H1
Γ0

verifying
the compatibility conditions

∂u0

∂ν
+ αu1 + h(u1) =

∣∣u0
∣∣k−1

u0 on Γ1. (2.19)

Assume further that l
∥∥∇u0

∥∥2

2
< λ2

0 and E(0) < d. Then, there exists a unique regular solution u of (2.18)
satisfying

u ∈ L∞ (
[0, T );H1

Γ0
∩ H2 (Ω)

)
,

ut ∈ L∞ (
[0, T );H1

Γ0

)
,

utt ∈ L∞ (
[0, T );L2 (Ω)

)
,

with l ‖∇u(t)‖2
2 + (g ◦ ∇u)(t) < λ2

0, for t > 0.

Proof. Let {wm}m∈N be a basis in H1
Γ0

∩ H2(Ω) and Vm be the space generated by w1, . . . , wm,
m = 1, 2, . . .. Let us consider

um(t) =
m∑

i=1

rim(t)wi

satisfying the following approximate problem corresponding to (2.18)

∫

Ω

u′′
m(t)wdx +

∫

Ω

∇um(t) · ∇wdx −
t∫

0

g(t − τ)
∫

Ω

∇um(τ) · ∇wdxdτ

+α

∫

Γ1

u′
m(t)wdΓ +

∫

Γ1

h(u′
m(t))wdΓ

=
∫

Ω

|um(t)|p−1
um(t)wdx +

∫

Γ1

|um(t)|k−1
um(t)wdΓ for w ∈ Vm,

um(0) = u0 and u′
m(0) = u1, for m ∈ N.

(2.20)

By standard methods in ordinary differential equations, we prove the existence of solutions to (2.20)
on some interval [0, tn), 0 < tn < T . In order to extend the solution of (2.20) to the whole interval [0, T ],
we need the a prior estimate below.
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The First Estimate
Setting w = u′

m(t) in (2.20), we obtain

d
dt

⎡
⎣1

2
‖u′

m(t)‖2
2 +

1
2

⎛
⎝1 −

t∫

0

g(s)ds

⎞
⎠ ‖∇um(t)‖2

2 +
1
2
(g ◦ ∇um)(t)

− 1
p + 1

‖um‖p+1
p+1 − 1

k + 1
‖um‖k+1

k+1,Γ1

⎤
⎦+ α ‖u′

m(t)‖2
2,Γ1

+
∫

Γ1

u′
mh(u′

m)dΓ

=
1
2
(g′ ◦ ∇um)(t) − 1

2
g(t) ‖∇um(t)‖2

2 . (2.21)

Then, from (A1) and (A2), we have

E′
m(t) = −α ‖u′

m(t)‖2
2,Γ1

−
∫

Γ1

u′
mh(u′

m)dΓ +
1
2
(g′ ◦ ∇um)(t) − 1

2
g(t) ‖∇um(t)‖2

2 ≤ 0.

This shows that Em(t) is a nonincreasing function. For extending the solution to the whole interval, we
adapt the idea of Vitillaro [] to our context. Since this result can also be used for existing solutions, for
simplicity, we will omit the index m. �

Lemma 2.5. Let u0 ∈ H1
Γ0

∩ H2 (Ω) , u1 ∈ H1
Γ0

and the hypotheses (A1)–(A2), (1.2) and (2.19) hold.

Assume further that l
∥∥∇u0

∥∥2

2
< λ2

0 and E(0) < d. Then, it holds that

l ‖∇u(t)‖2
2 + (g ◦ ∇u)(t) < λ2

0, (2.22)

for all t ≥ 0.

Proof. Using (2.11) and considering E(t) is a nonincreasing function, we obtain

F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

≤ E(t) ≤ E(0) < d, t ∈ [0, tm). (2.23)

Further, from Remark 2.2 (i), we observe that F is increasing in (0, λ0), decreasing in (λ0,∞) and
F (λ) → −∞ as λ → ∞. Thus, as E(0) < d, there exist λ′

2 < λ0 < λ2 such that F (λ′
2) = F (λ2) = E (0),

which together with l
∥∥∇u0

∥∥2

2
< λ2

0 infer that

F

(√
l ‖�u0‖2

2

)
≤ E (0) = F (λ′

2) .

This implies that l
1
2
∥∥�u0

∥∥
2

≤ λ′
2.

Next, we will prove that √
l ‖∇u(t)‖2

2 + (g ◦ ∇u)(t) ≤ λ′
2. (2.24)

To establish (2.24), we argue by contradiction. Suppose that (2.24) does not hold, then there exists
t∗ ∈ (0, tm) such that √

l ‖∇u(t∗)‖2
2 + (g ◦ ∇u)(t∗) > λ′

2.

Case 1: If λ′
2 <

√
l ‖∇u(t∗)‖2

2 + (g ◦ ∇u)(t∗) < λ0, then

F

(√
l ‖∇u(t∗)‖2

2 + (g ◦ ∇u)(t∗)
)

> F (λ′
2) = E (0) ≥ E(t∗).
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This contradicts (2.23).

Case 2: If
√

l ‖∇u(t∗)‖2
2 + (g � ∇u)(t∗) ≥ λ0, then by continuity of

√
l ‖∇u(t)‖2

2 + (g ◦ ∇u)(t), there
exists 0 < t1 < t∗ such that

λ′
2 <

√
l ‖∇u(t1)‖2

2 + (g ◦ ∇u)(t1) < λ0,

then

F

(√
l ‖∇u(t1)‖2

2 + (g ◦ ∇u)(t1)
)

> F (λ′
2) = E (0) ≥ E(t1).

This is also a contradiction of (2.23). Thus, we have proved the inequality (2.24). This completes the
proof of Lemma 2.2. �

We note from (2.1), (2.2) and Lemma 2.2 that
1

p + 1
‖um‖p+1

p+1 +
1

k + 1
‖um‖k+1

k+1,Γ1

≤ c1

(
‖∇um‖p+1

2 + ‖∇um‖k+1
2

)

≤ c1

(
λp+1

0

l
p+1
2

+
λk+1

0

l
k+1
2

)
, (2.25)

where c1 = max
{

cp+1
∗

p+1 ,
Bk+1

∗
k+1

}
.

Now, integrating (2.21) over (0, t) and using (A1), (2.22) and (2.25), we conclude that

1
2

‖u′
m(t)‖2

2 +
l

2
‖∇um‖2

2 +
1
2
(g ◦ ∇um)(t)

+α

t∫

0

‖u′
m(s)‖2

2,Γ1
ds +

t∫

0

∫

Γ1

u′
mh(u′

m)dΓds

≤ E(0) +
λ2

0

2
+

1
p + 1

‖um‖p+1
p+1 +

1
k + 1

‖um‖k+1
k+1,Γ1

≤ E(0) + λ2
0

(
1
2

+ c1

(
λp−1

0

l
p+1
2

+
λk−1

0

l
k+1
2

))

≡ L1, (2.26)

where L1 is a positive constant independent of m ∈ N, α and t ∈ (0, T ).
Additionally, using (2.26) and the growth condition imposed on h given in (A2), we obtain

1
2

‖u′
m(t)‖2

2 +
l

2
‖∇um‖2

2 +
1
2
(g ◦ ∇um)(t) +

α

t∫

0

‖u′
m(s)‖2

2,Γ1
ds + mq

t∫

0

∫

Γ1

|u′
m|q+1 dΓds − cht

≤ L1,

and then
t∫

0

∫

Γ1

(
|h(u′

m)|
q+1

q + |u′
m|q+1

)
dΓds ≤ L(mq,Mq, L1, T ), (2.27)
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where L and ch are some positive constants.

The Second Estimate
First of all, we are going to estimate ‖u′′

m(0)‖2. By taking t = 0 and w = u′′
m(0) in (2.20), we get

‖u′′
m(0)‖2

2 +
∫

Ω

∇u0 · ∇u′′
m(0)dx + α

∫

Γ1

u1u′′
m(0)dΓ +

∫

Γ1

u′′
m(0)h(u1)dΓ

=
∫

Ω

∣∣u0
∣∣p−1

u0u′′
m(0)dx +

∫

Γ1

∣∣u0
∣∣k−1

u0u′′
m(0)dΓ.

Employing Green’s formula, (2.19) and Hölder’s inequality, we have

‖u′′
m(0)‖2 ≤ ∥∥Δu0

∥∥
2

+
∥∥u0

∥∥p

2p
. (2.28)

Next, taking the derivative of (2.20) with respect to t and setting w = u′′
m(t) in the resulting expression,

we see that

1
2

d
dt

(
‖u′′

m(t)‖2
2 + ‖∇u′

m(t)‖2
2

)
+ α ‖u′′

m(s)‖2
2,Γ1

+
∫

Γ1

h′(u′
m) (u′′

m)2 dΓ

= g(0)
d
dt

∫

Ω

∇um(t) · ∇u′
m(t)dx − g(0) ‖∇u′

m(t)‖2
2

+
d
dt

⎛
⎝

t∫

0

g′(t − τ)
∫

Ω

∇um(τ) · ∇u′
m(t)dxdτ

⎞
⎠− g′(0)

∫

Ω

∇um(t) · ∇u′
m(t)dx

−
t∫

0

g′′(t − τ)
∫

Ω

∇um(τ) · ∇u′
m(t)dxdτ + p

∫

Ω

|um|p−1
u′

mu′′
m(t)dx

+k

∫

Γ1

|um|k−1
u′

mu′′
m(t)dΓ. (2.29)

We will estimate the terms on the right-hand side of (2.29). By Hölder’s inequality, Young’s inequality
and (A1), we have, for ε > 0,

− g′(0)
∫

Ω

∇um(t) · ∇u′
m(t)dx ≤ ε ‖∇um(t)‖2

2 +
g′(0)2

4ε
‖∇u′

m(t)‖2
2 , (2.30)

and

t∫

0

g′′(t − τ)
∫

Ω

∇um(τ) · ∇u′
m(t)dxdτ ≤ ‖∇u′

m(t)‖2

t∫

0

g′′(t − τ) ‖∇um(τ)‖2 dτ

≤ 1
4ε

‖∇u′
m(t)‖2

2 + ε ‖g′′‖L1

t∫

0

|g′′(t − τ)| ‖∇um(τ)‖2
2 dτ. (2.31)
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Observing that p−1
2p + 1

2p + 1
2 = 1 and k−1

2k + 1
2k + 1

2 = 1, and then, from generalized Hölder’s inequality,
(2.1), (2.2), Young’s inequality and (2.22), we obtain

p

∫

Ω

|um|p−1
u′

mu′′
m(t)dx ≤ p ‖um‖p−1

2p ‖u′
m‖2p ‖u′′

m‖2

≤ pcp
∗ ‖∇um‖p−1

2 ‖∇u′
m‖2 ‖u′′

m‖2

≤ k1(ε) ‖∇u′
m‖2

2 + ε ‖u′′
m‖2

2 , (2.32)

and

k

∫

Γ1

|um|k−1
u′

mu′′
m(t)dΓ ≤ k ‖um‖k−1

2k,Γ1
‖u′

m‖2k,Γ1
‖u′′

m‖2,Γ1

≤ kBk
∗ ‖∇um‖k−1

2 ‖∇u′
m‖2 ‖u′′

m‖2,Γ1

≤ k2(ε) ‖∇u′
m‖2

2 + ε ‖u′′
m‖2

2,Γ1
, (2.33)

where ki(ε), i = 1, 2, are positive constants which depends on ε and the estimate obtained in (2.22).
Integrating (2.29) over (0, t) and taking estimates (2.30)–(2.33) into account, we have

1
2

(
‖u′′

m(t)‖2
2 + ‖∇u′

m(t)‖2
2

)
+ (α − ε)

t∫

0

‖u′′
m(s)‖2

2,Γ1
ds +

t∫

0

∫

Γ1

h′(u′
m) (u′′

m)2 dΓds

≤ 1
2

(
‖u′′

m(0)‖2
2 +

∥∥∇u1
∥∥2

2

)
+ g(0)

∫

Ω

∇um(t) · ∇u′
m(t)dx − g(0)

∫

Ω

∇u0 · ∇u1dx

+
(

g′(0)2 + 1
4ε

+ k1(ε) + k2(ε) − g(0)
) t∫

0

‖∇u′
m‖2

2 ds +

t∫

0

g′(t − τ)
∫

Ω

∇um(τ) · ∇u′
m(t)dxdτ

+
(
ε ‖g′′‖2

L1 + ε
) t∫

0

‖∇um(s)‖2
2 ds + ε

t∫

0

‖u′′
m(s)‖2

2 ds. (2.34)

Exploiting Hölder’s inequality, Young’s inequality and the assumption on g given in (2.4), we observe
that

g(0)
∫

Ω

∇um(t) · ∇u′
m(t)dx ≤ ε ‖∇u′

m(t)‖2
2 +

g(0)2

4ε
‖∇um(t)‖2

2

and
t∫

0

g′(t − τ)
∫

Ω

∇um(τ) · ∇u′
m(t)dxdτ

≤ ε ‖∇u′
m(t)‖2

2 +
ξ(0) ‖g‖L1 ‖g‖L∞

4ε
‖∇um(t)‖2

2 ,

then, from (2.34), choosing ε small enough and combining the estimate (2.22), (2.26), (2.28) and using
Gronwall’s Lemma, we obtain

‖u′′
m(t)‖2

2 + ‖∇u′
m(t)‖2

2 +

t∫

0

‖u′′
m(s)‖2

2,Γ1
ds +

t∫

0

∫

Γ1

h′(u′
m) (u′′

m)2 dΓds ≤ L2, (2.35)

for all t ∈ [0, T ] and L2 is a positive constant independent of m ∈ N .
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The estimates (2.22), (2.26), (2.27) and (2.35) permits us to obtain a subsequence of {um}, which we
still denote by {um} and a function u : Ω × (0,∞) → R satisfying

um ⇀ u weak star in L∞(0, T ;H1
Γ0

), (2.36)

u′
m ⇀ u′ weak star in L∞(0, T ;L2(Ω)), (2.37)

u′′
m ⇀ u′′ weak star in L∞(0, T ;L2(Ω)). (2.38)

u′
m ⇀ u′ weakly in L2(0, T ;L2(Γ1)), (2.39)

u′
m ⇀ u′ weakly in Lq+1 ((0, T ) × Γ1) , (2.40)

h(u′
m) ⇀ χ weakly in L

q+1
q ((0, T ) × Γ1) . (2.41)

In addition, from the assumption (A2) and (2.35), we also notice that
∫

Γ1

(h(u′
m))2 dΓ =

∫

|u′
m|≤1

(h(u′
m))2 dΓ +

∫

|u′
m|>1

(h(u′
m))2 dΓ

≤ c2 + M2
q ‖u′

m(t)‖2q
2q,Γ1

≤ c2 + M2
q B2q

∗ ‖∇u′
m(t)‖2q

2

≤ c3,

where ci, i = 2, 3 are some positive constants. Thus, we deduce that

h(u′
m) ⇀ χ weakly in L2 ((0, T ) × Γ1) . (2.42)

Further, noting that H
1
2 (Γ) ↪→ L2 (Γ) and H1

Γ0
↪→ L2 (Ω) are compact and from Aubin–Lions theorem,

we deduce that

um → u strongly in L2(0, T ;L2(Ω)), (2.43)
u′

m → u′ strongly in L2(0, T ;L2(Ω)), (2.44)
um → u strongly in L2(0, T ;L2(Γ1)), (2.45)

and consequently, thanks to Lion’s Lemma, we have

|um|p−1
um ⇀ |u|p−1

u weakly in L2(0, T ;L2(Ω)) (2.46)

|um|k−1
um ⇀ |u|k−1

u weakly in L2(0, T ;L2(Γ1)). (2.47)

Multiplying (2.20) by θ ∈ D(0, T ) and integrating it over (0, T ), we get

T∫

0

∫

Ω

u′′
mvθdxdt +

T∫

0

∫

Ω

∇um · ∇vθdxdt −
T∫

0

t∫

0

g(t − τ)
∫

Ω

∇um(τ) · ∇vθdxdτdt

+α

T∫

0

∫

Γ1

u′
m(t)vθdΓdt +

T∫

0

∫

Γ1

h(u′
m(t))vθdΓdt

=

T∫

0

∫

Ω

|um(t)|p−1
um(t)vθdxdt +

T∫

0

∫

Γ1

|um(t)|k−1
um(t)vθdΓdt, (2.48)

for all θ ∈ D(0, T ) and for all v ∈ H1
Γ0

∩ H2(Ω). Convergences (2.36)–(2.47) are sufficient to pass the
limit in the approximate problem (2.48). Since {wm}m∈N is a basis in H1

Γ0
∩ H2(Ω) and Vm is dense in
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H1
Γ0

∩ H2(Ω), after passing to the limit, we obtain

T∫

0

∫

Ω

u′′vθdxdt +

T∫

0

∫

Ω

∇u · ∇vθdxdt −
T∫

0

t∫

0

g(t − τ)
∫

Ω

∇u(τ) · ∇vθdxdτdt

+α

T∫

0

∫

Γ1

u′(t)vθdΓdt +

T∫

0

∫

Γ1

χvθdΓdt

=

T∫

0

∫

Ω

|u(t)|p−1
u(t)vθdxdt +

T∫

0

∫

Γ1

|u(t)|k−1
u(t)vθdΓdt. (2.49)

In particular, let vθ ∈ D((0, T ) × Ω) in (2.49), we obtain

u′′(t) − Δu(t) +

t∫

0

g(t − s)Δu(s)ds = |u|p−1
u in D′((0, T ) × Ω).

Since u′′, |u|p−1
u ∈ L2([0, T );L2(Ω)), we have

Δ

⎛
⎝u(t) −

t∫

0

g(t − s)u(s)ds

⎞
⎠ ∈ L2(0, T ;L2(Ω))

and therefore

u′′(t) − Δu(t) +

t∫

0

g(t − s)Δu(s)ds = |u|p−1
u in L2(0, T ;L2(Ω)). (2.50)

Taking (2.50) into account and making use of the Green’s formula, we see that

∂

∂ν

⎛
⎝u −

t∫

0

g(t − s)u(s)ds

⎞
⎠+ αu′ + χ = |u|k−1

u in D′((0, T );H− 1
2 (Γ1)),

and since |u|k−1
u, αu′, χ ∈ L2(0, T ;L2(Γ1)), we infer

∂

∂ν

⎛
⎝u −

t∫

0

g(t − s)u(s)ds

⎞
⎠+ αu′ + χ = |u|k−1

u in L2(0, T ;L2(Γ1)). (2.51)
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Finally, we want to show that χ = h(u′). Firstly, taking w = um(t) in (2.20) and then integrating it over
(0, T ), we deduce that

T∫

0

∫

Ω

u′′
m(t)um(t)dxdt +

T∫

0

∫

Ω

∇um(t) · ∇um(t)dxdt

−
T∫

0

t∫

0

g(t − τ)
∫

Ω

∇um(τ) · ∇um(t)dxdτdt

+α

T∫

0

∫

Γ1

u′
m(t)um(t)dΓdt +

T∫

0

∫

Γ1

h(u′
m(t))um(t)dΓdt

=

T∫

0

∫

Ω

|um(t)|p+1 dxdt +

T∫

0

∫

Γ1

|um(t)|k+1 dΓdt. (2.52)

From (2.38), (2.42) and (2.45)–(2.47), we have

lim
m→∞

⎛
⎝

T∫

0

∫

Ω

|∇um(t)|2 dxdt −
T∫

0

t∫

0

g(t − τ)
∫

Ω

∇um(τ) · ∇um(t)dxdτdt

⎞
⎠

= −
T∫

0

∫

Ω

u′′(t)u(t)dxdt − α

T∫

0

∫

Γ1

u′(t)u(t)dΓdt +

T∫

0

∫

Γ1

χu(t)dΓdt

+

T∫

0

∫

Ω

|u(t)|p+1 dxdt +

T∫

0

∫

Γ1

|u(t)|k+1 dΓdt. (2.53)

Employing (2.50), (2.51) and (2.53) and the Green’s formula, we obtain

lim
m→∞

⎛
⎝

T∫

0

∫

Ω

|∇um(t)|2 dxdt −
T∫

0

t∫

0

g(t − τ)
∫

Ω

∇um(τ) · ∇um(t)dxdτdt

⎞
⎠

=

T∫

0

∫

Ω

|∇u(t)|2 dxdt −
T∫

0

t∫

0

g(t − τ)
∫

Ω

∇u(τ) · ∇u(t)dxdτdt, (2.54)

which implies that

∇um(t) → ∇u(t) strongly in L2(0, T ;L2(Ω)). (2.55)
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Secondly, considering w = u′
m(t) in (2.20) and then integrating it over (0, T ), we have

T∫

0

∫

Ω

u′′
m(t)u′

m(t)dxdt +

T∫

0

∫

Ω

∇um(t) · ∇u′
m(t)dxdt

−
T∫

0

t∫

0

g(t − τ)
∫

Ω

∇um(τ) · ∇u′
m(t)dxdτdt

+α

T∫

0

∫

Γ1

|u′
m(t)|2 dΓdt +

T∫

0

∫

Γ1

h(u′
m(t))u′

m(t)dΓdt

=

T∫

0

∫

Ω

|um(t)|p−1
um(t)u′

m(t)dxdt +

T∫

0

∫

Γ1

|um(t)|k−1
um(t)u′

m(t)dΓdt.

From convergences (2.37), (2.38), (2.44)–(2.47) and (2.55), we deduce that

lim
m→∞

T∫

0

∫

Γ1

h(u′
m(t))u′

m(t)dΓdt

= −
T∫

0

∫

Ω

u′′(t)u′(t)dxdt −
T∫

0

∫

Ω

∇u(t) · ∇u′(t)dxdt

+

T∫

0

t∫

0

g(t − τ)
∫

Ω

∇u(τ) · ∇u′(t)dxdτdt − α

T∫

0

∫

Γ1

|u′(t)|2 dΓdt

+

T∫

0

∫

Ω

|u(t)|p−1
u(t)u′(t)dxdt +

T∫

0

∫

Γ1

|u(t)|k−1
u(t)u′(t)dΓdt. (2.56)

Exploiting (2.50), (2.51), (2.56) and using the Green’s formula, we see that

lim
m→∞

T∫

0

∫

Γ1

h(u′
m(t))u′

m(t)dΓdt =

T∫

0

∫

Γ1

χu′(t)dΓdt. (2.57)

Since h is nondecreasing monotone function, we have, for all ϕ ∈ Lq+1(Γ1),
T∫

0

∫

Γ1

(h(u′
m(t)) − h(ϕ)) (u′

m(t) − ϕ) dΓdt ≥ 0.

This yields
T∫

0

∫

Γ1

h(u′
m(t))ϕdΓdt +

T∫

0

∫

Γ1

h(ϕ) (u′
m(t) − ϕ) dΓdt

≤
T∫

0

∫

Γ1

h(u′
m(t))u′

m(t)dΓdt, (2.58)
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and then

lim inf
m→∞

T∫

0

∫

Γ1

h(u′
m(t))ϕdΓdt + lim inf

m→∞

T∫

0

∫

Γ1

h(ϕ) (u′
m(t) − ϕ) dΓdt

≤ lim inf
m→∞

T∫

0

∫

Γ1

h(u′
m(t))u′

m(t)dΓdt.

Considering the convergence (2.57), (2.40) and (2.41), we obtain

T∫

0

∫

Γ1

(χ − h(ϕ)) (u′(t) − ϕ) dΓdt ≥ 0,

which implies that χ = h(u′).

Uniqueness. Let u1 and u2 be two solutions of problem (2.18). Then, z = u1 − u2 verifies

∫

Ω

z′′(t)wdx +
∫

Ω

∇z(t) · ∇wdx −
t∫

0

g(t − τ)
∫

Ω

∇z(τ) · ∇wdxdτ

+α

∫

Γ1

z′(t)wdΓ +
∫

Γ1

(h(u′
1) − h(u′

2) wdΓ

=
∫

Ω

(
|u1|p−1

u1 − |u2|p−1
u2

)
wdx +

∫

Γ1

(
|u1|k−1

u1 − |u2|k−1
u2

)
wdΓ, (2.59)

for all w ∈ H1
Γ0

. Replacing w = z′(t) in (2.59) and observing that h is monotone, it holds that

1
2

d
dt

(
‖z′(t)‖2

2 + ‖∇z(t)‖2
2

)
+ α ‖z′(t)‖2

2,Γ1
≤ d

dt

⎛
⎝

t∫

0

g(t − τ)
∫

Ω

∇z(τ) · ∇z(t)dxdτ

⎞
⎠

−g(0) ‖∇z(t)‖2
2 −

t∫

0

g′(t − τ)
∫

Ω

∇z(τ) · ∇z(t)dxdτ

+
∫

Ω

(
|u1|p−1

u1 − |u2|p−1
u2

)
z′(t)dx +

∫

Γ1

(
|u1|k−1

u1 − |u2|k−1
u2

)
z′(t)dΓ. (2.60)

Utilizing (2.4), Hölder’s inequality and Young’s inequality, we have

t∫

0

g′(t − τ)
∫

Ω

∇z(τ) · ∇z(t)dxdτ ≤ 1
2

‖∇z‖2
2 +

‖g′‖L1

2

t∫

0

g′(t − τ) ‖∇z(τ)‖2
2 dτ. (2.61)
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Using the fact that p−1
2p + 1

2p + 1
2 = 1 and k−1

2k + 1
2k + 1

2 = 1 again, and, then, from Hölder’s inequality
and Young’s inequality, we see that∫

Ω

(
|u1|p−1

u1 − |u2|p−1
u2

)
z′(t)dx

≤ c4

∫

Ω

(
|u1|p−1 + |u2|p−1

)
|z(t)| |z′(t)| dx

≤ c4

2

(
‖u1‖p−1

2p + ‖u2‖p−1
2p

)(
‖∇z‖2

2 + ‖z′‖2
2

)
, (2.62)

and ∫

Γ1

(
|u1|k−1

u1 − |u2|k−1
u2

)
z′(t)dΓ

≤ c5

(
‖u1‖k−1

2k.Γ1
+ ‖u2‖k−1

2k,Γ1

)
‖z‖2k,Γ1

‖z′‖2,Γ1

≤ ε ‖z′‖2
2,Γ1

+
c2
5

4ε

(
‖u1‖k−1

2k.Γ1
+ ‖u2‖k−1

2k,Γ1

)2

‖∇z‖2
2 , (2.63)

where ε > 0 and ci, i = 4, 5 are some positive constants. Integrating (2.60) over (0, t) and taking estimates
(2.61)–(2.63), (2.22) and (2.26) into account, we deduce that

1
2

(
‖z′(t)‖2

2 + ‖∇z(t)‖2
2

)
+ (α − ε)

t∫

0

‖z′(s)‖2
2,Γ1

ds

≤ c6

2

t∫

0

‖z′‖2
2 ds +

(
‖g′‖2

L1

2
+ g(0) +

c2
5

4ε

) t∫

0

‖∇z(s)‖2
2 ds,

where c6 is a positive constant. Thus, choosing ε sufficiently small and employing Gronwall’s lemma, we
conclude that

‖z′(t)‖2 = ‖∇z(t)‖2 = 0 for all t ∈ [0, T ].

In order to obtain the existence of weak solutions for problem (1.1), we use standard arguments of
density with truncated problem and obtain the next result.

Theorem 2.6. Let the initial data
{
u0, u1

} ∈ H1
Γ0

× L2 (Ω). Suppose that the hypotheses (A1)-(A2) and

(1.2) hold. Assume further that l
∥∥∇u0

∥∥2

2
< λ2

0 and E(0) < d. Then, there exists a weak solution u of the
problem (1.1) satisfying

u ∈ C
(
[0, T );H1

Γ0

) ∩ C1
(
[0, T );L2 (Ω)

)
,

with l ‖∇u(t)‖2 + (g ◦ ∇u)(t) < λ2
0 for some T > 0. Moreover, we have the following energy relation

satisfied

E(t) +

t∫

0

∫

Γ1

uth(ut)dΓds +

t∫

0

1
2
(g′ ◦ ∇u)(s)ds +

1
2

t∫

0

g(s) ‖∇u(s)‖2
2 ds = E(0). (2.64)

Proof. Since u0 ∈ H1
Γ0

, u1 ∈ L2 (Ω), and, moreover, l
∥∥∇u0

∥∥2

2
< λ2

0 and E(0) < d. Then, l
∥∥∇u0

∥∥2

2
=

λ2
0 − δ1 and E(0) = d − δ2 for some positive numbers δi, i = 1, 2. Now, we consider

D(−Δ) =
{

v ∈ H1
Γ0

∩ H2 (Ω) ,
∂v

∂ν
= 0 on Γ1

}
.
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Let sequences
{
u0

m, u1
m

}
in D(−Δ) and H1

Γ0
(Ω), respectively, such that

u0
m → u0 in H1

Γ0
and u1

m → u1 in L2 (Ω) as m → ∞. (2.65)

So,
{
u0

m, u1
m

}
satisfy, for all m ≥ m0, for some m0 ∈ N , the compatibility conditions

∂u0
m

∂ν
+

1
m

u1
m + h(u1

m) = f1,m

(
u0

m

)
on Γ1,

where α is chosen equal to 1
m and f1,m(s) is the sequence of Lipschitz continuous (truncated) functions

defined by (2.16). And, moreover, l
∥∥∇u0

m

∥∥2

2
< λ2

0 and E(u0
m(0)) < d. Then, for each m ∈ N , there exists

a regular solution um : Ω × (0,∞) → R of (2.15) with initial data
{
u0

m, u1
m

}
. So, we can verify

u′′
m(t) − Δum(t) +

t∫
0

g(t − s)Δum(s)ds = f1,m(um), in Ω × (0,∞),

um = 0, on Γ0 × (0,∞),
∂um

∂ν − ∫ t

0
g(t − s) ∂

∂ν um(s)ds + 1
mu′

m + h(u′
m) = f2,m(um), on Γ1 × (0,∞),

um(0) = u0
m, u1

m(0) = u1
m, x ∈ Ω,

(2.66)

where f2,m(s) is the sequence of Lipschitz continuous (truncated) functions defined in (2.17). By the
same argument used to prove the estimates given in (2.26) and (2.27), we arrive at

l ‖∇um(t)‖2 + (g ◦ ∇um)(t) < λ2
0, (2.67)

1
2

‖u′
m(t)‖2

2 +
l

2
‖∇um(t)‖2 +

1
2
(g ◦ ∇um)(t)

+
1
m

t∫

0

‖u′
m(s)‖2

2,Γ1
ds +

t∫

0

∫

Γ1

u′
mh(u′

m)dΓds

≤ L1, (2.68)

and

t∫

0

∫

Γ1

(
|h(u′

m)|
q+1

q + |u′
m|q+1

)
dΓds ≤ L(mq,Mq, L1, T ). (2.69)

Similar to deriving (2.25), by (2.1), (2.2) and (2.66), we have

∫

Ω

F1,m(um)dx +
∫

Γ1

F2,m(um)dΓ ≤
∫

Ω

F1(um)dx +
∫

Γ1

F2(um)dΓ

≤ c1

(
λp+1

0

l
p+1
2

+
λk+1

0

l
k+1
2

)
, (2.70)
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where Fi,m(s) =
∫ s

0
fi,m(τ)dτ and Fi(s) =

∫ s

0
fi(τ)dτ, i = 1, 2 with f1(s) = |s|p−1

s and f2(s) = |s|k−1
s

and c1 = max
{

cp+1
∗

p+1 ,
Bk+1

∗
k+1

}
. Hence, from (2.67)–(2.70), we get

{um} is bounded in L∞(0, T ;H1
Γ0

), (2.71)

{u′
m} is bounded in L∞(0, T ;L2(Ω)), (2.72)

{F1,m(um)} is bounded in L∞(0, T ;L1(Ω)), (2.73)

{F2,m(um)} is bounded in L∞(0, T ;L1(Γ1)), (2.74){
1√
m

u′
m

}
is bounded in L2(0, T ;L2(Γ1)), (2.75)

{u′
m} is bounded in Lq+1(0, T ;Lq+1(Γ1)), (2.76)

{h(u′
m)} is bounded in L

q+1
q (0, T ;L

q+1
q (Γ1)). (2.77)

Next, we will prove that

f1,m(um) → f1(u) in L2(0, T ;L2(Ω)), (2.78)

f2,m(um) → f2(u) in L2(0, T ;L2(Γ1)). (2.79)

Following the similar arguments as in [7], we obtain the proof. Indeed, we have

T∫

0

∫

Ω

|f1,m(um) − f1(u)|2 dxds

≤ 2

T∫

0

∫

Ω

|f1,m(um) − f1(um)|2 dxds + 2

T∫

0

∫

Ω

|f1(um) − f1(u)|2 dxds.

Observe that from the definition of truncated sequence given by (2.16) and making use of the Dominated
Convergence Theorem, it follows that

T∫

0

∫

Ω

|f1(um) − f1(u)|2 dxds → 0 as m → ∞.

So, it remains to show that

T∫

0

∫

Ω

|f1,m(um) − f1(um)|2 dxds → 0 as m → ∞. (2.80)

In fact, from the definition of the truncated sequence given by (2.16), we can write

T∫

0

∫

Ω

|f1,m(um) − f1(um)|2 dxds

≤ 2

⎛
⎝

T∫

0

∫

Ωm

|f1(um)|2 dxds +

T∫

0

∫

Ωm

(
|f1(m)|2 + |f1(−m)|2

)
dxds

⎞
⎠ , (2.81)
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where Ωm = {x ∈ Ω; |um(x)| > m}. Then, by the embedding H1
Γ0

↪→ L
2n

n−2 (Ω) and (2.67), we have for
n > 2

⎛
⎝
∫

Ωm

m
2n

n−2 dx

⎞
⎠

n−2
2n

≤
⎛
⎝
∫

Ωm

|um| 2n
n−2 dx

⎞
⎠

n−2
2n

≤ c∗λ0

l
1
2

.

Therefore,

meas(Ωm) ≤ c∗λ0

l
1
2

m
−2n
n−2 . (2.82)

Analogously, for n = 2, the above inequality remains valid with any exponent for m. From the fact that
p < n

n−2 and (2.82), we infer

∫

Ωm

|f1(um)|2 dx ≤
⎛
⎝
∫

Ωm

|um| 2n
n−2 dx

⎞
⎠

p(n−2)
n

(meas(Ωm))
n−p(n−2)

n → 0, (2.83)

as m → ∞. Also, we have∫

Ωm

|f1(m)|2 dx = meas(Ωm)m2p ≤ c∗λ0

l
1
2

m2p− 2n
n−2 → 0, (2.84)

as m → ∞. Combining these results in (2.81), (2.83) and (2.84) we obtain (2.80) which proved the desired
result (2.78). Similarly, as in [14], we have the result (2.79).

Taking the above estimates into account, there exists a sequence, which we still denote by {um}, such
that

um ⇀ u weak star in L∞(0, T ;H1
Γ0

), (2.85)

u′
m ⇀ u′ weak star in L∞(0, T ;L2(Ω)), (2.86)

u′
m ⇀ u′ weakly in Lq+1(0, T ;Lq+1(Γ1)), (2.87)

h(u′
m) ⇀ χ weakly in L

q+1
q (0, T ;L

q+1
q (Γ1)), (2.88)

for some χ ∈ L
q+1

q (0, T ;L
q+1

q (Γ1)). Defining zm,l = um − ul, m, l ∈ N , from (2.66), it holds that

1
2

d
dt

(∥∥z′
m,l(t)

∥∥2

2
+ ‖∇zm,l(t)‖2

2

)
+

1
m

‖u′
m(t)‖2

2,Γ1
− 1

m

∫

Γ1

u′
mu′

ldΓ

−1
l

∫

Γ1

u′
mu′

ldΓ +
1
l

‖u′
l(t)‖2

2,Γ1
+
∫

Γ1

(h(u′
m) − h(u′

l)) (u′
m − u′

l) dΓ

≤ d
dt

⎛
⎝

t∫

0

g(t − τ)
∫

Ω

∇zm,l(τ) · ∇zm,l(t)dxdτ

⎞
⎠− g(0) ‖∇zm,l(t)‖2

2

−
t∫

0

g′(t − τ)
∫

Ω

∇zm,l(τ) · ∇zm,l(t)dxdτ +
∫

Ω

(f1,m(um) − f1,l(ul)) z′
m,l(t)dx

+
∫

Γ1

(f2,m(um) − f2,l(ul)) z′
m,l(t)dΓ.
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Employing Cauchy–Schwarz inequality, we have

1
2

d
dt

(∥∥z′
m,l(t)

∥∥2

2
+ ‖∇zm,l(t)‖2

2

)
+
∫

Γ1

(h(u′
m) − h(u′

l)) (u′
m − u′

l) dΓ

≤
(

1
m

+
1
l

)∫

Γ1

(
|u′

m(t)|22 + |u′
l(t)|22

)
dΓ

+
d
dt

⎛
⎝

t∫

0

g(t − τ)
∫

Ω

∇zm,l(τ) · ∇zm,l(t)dxdτ

⎞
⎠

−g(0) ‖∇zm,l(t)‖2
2 −

t∫

0

g′(t − τ)
∫

Ω

∇zm,l(τ) · ∇zm,l(t)dxdτ

+
∫

Ω

(f1,m(um) − f1,l(ul)) z′
m,l(t)dx +

∫

Γ1

(f2,m(um) − f2,l(ul)) z′
m,l(t)dΓ. (2.89)

Integrating (2.89) over (0, t) and applying the similar estimate as in deriving (2.35), we obtain

1
2

(∥∥z′
m,l(t)

∥∥2

2
+ ‖∇zm,l(t)‖2

2

)
+

t∫

0

∫

Γ1

(h(u′
m) − h(u′

l)) (u′
m − u′

l) dΓds

≤ ∥∥u1
m − u1

l

∥∥2

2
+
∥∥∇u0

m − ∇u0
l

∥∥2

2
+
(

1
m

+
1
l

) t∫

0

∫

Γ1

(
|u′

m(t)|22 + |u′
l(t)|22

)
dΓds

+c7

t∫

0

∫

Ω

|∇um − ∇ul|2 dxds +

t∫

0

∫

Ω

(f1,m(um) − f1,l(ul)) z′
m,l(t)dxds

+

t∫

0

∫

Γ1

(f2,m(um) − f2,l(ul)) z′
m,l(t)dΓds, (2.90)

where c7 is some positive constant.
Convergences (2.65), (2.78), (2.79) and (2.85) imply the convergence to zero (when m, l → ∞) of the

terms on the right-hand side of (2.90). Therefore, we deduce that

um → u in C0(0, T ;H1
Γ0

) ∩ C1(0, T ;L2(Ω)) (2.91)

and

lim
m,l→∞

t∫

0

∫

Γ1

(h(u′
m) − h(u′

l)) (u′
m − u′

l) dΓds = 0. (2.92)

From (2.87), (2.88) and (2.92), we also obtain

lim
m→∞

t∫

0

∫

Γ1

(h(u′
m)u′

m − h(u′
l)u

′ − χu′
m) dΓds + lim

l→∞

t∫

0

∫

Γ1

h(u′
l)u

′
ldΓds = 0.
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Consequently, again using (2.87), (2.88) and changing m to l, we see that

2 lim
m→∞

t∫

0

∫

Γ1

h(u′
m)u′

mdΓds = 2

t∫

0

∫

Γ1

χu′dΓds. (2.93)

By (2.92) combined with (2.87), (2.88) and the monotonicity of h, we get that χ = h(u′).
The above convergences (2.78), (2.79), (2.85)–(2.88) allow us to pass the limit in (2.64) in order to

obtain

utt(t) − Δu(t) +
t∫
0

g(t − s)Δu(s)ds = |u|p−1
u, in D′ (Ω × (0, T )) ,

u = 0, on Γ0 × (0,∞),
∂u
∂ν −

t∫
0

g(t − s) ∂
∂ν u(s)ds + h(ut) = |u|k−1

u, in L
q+1

q (0, T ;L
q+1

q (Γ1))

u(0) = u0, ut(0) = u1, x ∈ Ω.

Finally, for the last assertion in the theorem, we first derive the energy identity for the approximate
solutions um,

E(t) +
1
m

t∫

0

∫

Γ1

|u′
m|2 dΓds +

t∫

0

∫

Γ1

u′
mh(u′

m)dΓds

+

t∫

0

1
2
(g′ ◦ ∇um)(s)ds +

1
2

t∫

0

g(s) ‖∇um(s)‖2
2 ds = E(0),

and then, due to the monotonicity of h and (2.91)–(2.92), we pass to the limit. Therefore, we complete
the proof. �

3. Uniform decay

In this section, we prove decay rate estimates for regular solutions of the following problem

u′′(t) − Δu(t) +
∫ t

0
g(t − s)Δu(s)ds = |u|p−1

u, in Ω × (0,∞),
u = 0, on Γ0 × (0,∞),

∂u
∂ν − ∫ t

0
g(t − s) ∂

∂ν u(s)ds + αu′ + h(u′) = |u|k−1
u, on Γ1 × (0,∞),

u(0) = u0, ut(0) = u1, x ∈ Ω,

(3.1)

where α > 0 is a positive constant. Further, we observe that the same result remains true when one
considers truncated Lipschitz functions instead of f1(s) = |s|p−1

s and f2(s) = |s|k−1
s. Based on this fact

and considering the density arguments used in Sect. 2, we also can extend our result to weak solutions
of problem (1.1). We consider h satisfies (2.5) with q = 1 i.e.,

α1 |s| ≤ |h(s)| ≤ α2 |s| for all |s| ≥ 1. (3.2)

Adopting the proof of [27], we still have the following result.

Lemma 3.1. Let u be the solution of (3.1), then, under assumptions (A1)–(A2), E(t) is a nonincreasing
function on [0, T ) and

E′(t) = −α ‖ut‖2
2,Γ1

−
∫

Γ1

uth(ut)dΓ +
1
2
(g′ ◦ ∇u)(t) − 1

2
g(t) ‖∇u(t)‖2

2 ≤ 0. (3.3)
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Theorem 3.2. Let u0 ∈ H1
Γ0

∩ H2 (Ω) , u1 ∈ H1
Γ0

and (A1)–(A2) and (1.2) hold. Assume further that

l
∥∥∇u0

∥∥2

2
< λ2

0 and E(0) < d, then the problem (3.1) admits a global solution.

Proof. It follows from (2.14) and (2.11) that

1
2

‖ut‖2
2 + c0

(
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

≤ 1
2

‖ut‖2
2 + F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

≤ 1
2

‖ut‖2
2 + J(u(t))

= E(t) < E(0) < d. (3.4)

Thus, we establish the boundedness of ut in L2 (Ω) and the boundedness of u in H1
Γ0

. Moreover, from
(2.1) and (2.2), we also obtain

‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
≤ cp+1

∗ ‖∇u‖p+1
2 + Bk+1

∗ ‖∇u‖k+1
2

≤ 1
l

(
cp+1
∗

(
E(0)
lc0

) p−1
2

+ Bk+1
∗

(
E(0)
lc0

) k−1
2
)

l ‖∇u‖2
2

≤ L
(
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

,

which implies that the boundedness of u in Lp+1 (Ω) and in Lk+1 (Γ1) with L = 1
l

(
cp+1
∗

(
E(0)
lc0

) p−1
2

+Bk+1
∗

(
E(0)
lc0

) k−1
2
)

. Hence, it must have T = ∞. �

Now, we shall investigate the asymptotic behavior of the energy function E(t). First, we define some
functionals and establish several lemmas. Let

G(t) = ME(t) + εΦ(t) + Ψ(t), (3.5)

where

Φ(t) =
∫

Ω

utudx, (3.6)

Ψ(t) =
∫

Ω

ut

t∫

0

g(t − s) (u(s) − u(t)) dsdx, (3.7)

and M, ε are some positive constants to be be specified later.

Lemma 3.3. There exist two positive constants β1 and β2 such that the relation

β1E(t) ≤ G(t) ≤ β2E(t) (3.8)

holds, for ε > 0 small enough while M > 0 is large enough.

Proof. By Hölder’s inequality, Young’s inequality and (2.1), we deduce that

|Φ(t)| ≤ 1
2

‖ut‖2
2 +

c2
∗
2

‖∇u‖2
2 , (3.9)

and

|Ψ(t)| ≤ 1
2

‖ut‖2
2 +

1
2

∫

Ω

⎛
⎝

t∫

0

g(t − s) (u(t) − u(s)) ds

⎞
⎠

2

dx

≤ 1
2

‖ut‖2
2 +

c2
∗ (1 − l)

2
(g ◦ ∇u) (t), (3.10)
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where the last inequality is obtained due to
∫ t

0
g(s)ds ≤ ∫∞

0
g(s)ds = 1 − l. Hence, it follows from

(3.5),(3.9) and (3.10) that

G(t) = ME(t) + εΦ(t) + Ψ(t)

≤ ME(t) + c1 ‖ut‖2 + c2 ‖∇u‖2
2 + c3 (g ◦ ∇u) (t)

and

G(t) ≥ ME(t) − c4

(
‖ut‖2

2 + ‖∇u‖2
2 + (g ◦ ∇u) (t)

)
,

where c1 = ε+1
2 , c2 = εc2

∗
2 , c3 = c2

∗(1−l)
2 , and c4 = max(c1, c2, c3). Thus, selecting ε > 0 small enough and

M sufficiently large, there exist two positive constants β1 and β2 such that

β1E(t) ≤ G(t) ≤ β2E(t).

�

Lemma 3.4. Let (A1)–(A2) and (1.2) hold, then, for any t0 > 0, the functional G(t) verifies, along
solution of (3.1),

G′(t) ≤ −α1E(t) + α2 (g ◦ ∇u) (t) + α3

∫

Γ1

h2(ut)dΓ,

where αi, i = 1, 2, 3 are some positive constants independent of α.

Proof. In the following, we estimate the derivative of G(t). From (3.6) and (3.1), we have

Φ′(t) = ‖ut‖2
2 − ‖∇u‖2

2 +
∫

Ω

∇u(t)

t∫

0

g(t − s)∇u(s)dsdx

−
∫

Γ1

h(ut)udΓ − α

∫

Γ1

utudΓ + ‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
. (3.11)

Employing Hölder’s inequality, Young’s inequality, (2.2) and (2.3), the third and fourth terms on the
right-hand side of (3.11) can be estimated as follows, for η, δ > 0,

∫

Ω

∇u(t)

t∫

0

g(t − s)∇u(s)dsdx

≤
[
1
2

+
1
2
(1 + η)(1 − l)2

]
‖∇u‖2

2 +
1
2
(1 +

1
η
)(1 − l) (g ◦ ∇u) (t) (3.12)

and
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∣∣∣∣∣∣
∫

Γ1

h(ut)udΓ

∣∣∣∣∣∣ ≤ δ ‖u‖2
2,Γ1

+
1
4δ

∫

Γ1

h2(ut)dΓ

≤ δB2
∗ ‖∇u‖2

2 +
1
4δ

∫

Γ1

h2(ut)dΓ. (3.13)

As for the fifth term, we consider, without loss of generality that α ≤ 1. Thus, for δ > 0, we obtain∣∣∣∣∣∣α
∫

Γ1

utudΓ

∣∣∣∣∣∣ ≤ δB2
∗ ‖∇u‖2

2 +
α

4δ
‖ut‖2

2,Γ1
. (3.14)

A substitution of (3.12)–(3.14) into (3.11) yields

Φ′(t) ≤ ‖ut‖2
2 −

(
1
2

− 1
2
(1 + η)(1 − l)2 − 2δB2

∗

)
‖∇u‖2

2

+
1
2
(1 +

1
η
)(1 − l) (g ◦ ∇u) (t) +

1
4δ

∫

Γ1

h2(ut)dΓ

+
α

4δ
‖ut‖2

2,Γ1
+ ‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

.

Letting η = l
1−l > 0 and δ = l

8B2∗
in above inequality, we obtain

Φ′(t) ≤ − l

4
‖∇u‖2

2 + ‖ut‖2
2 +

1 − l

2l
(g ◦ ∇u) (t) +

2B2
∗

l

∫

Γ1

h2(ut)dΓ

+
2αB2

∗
l

‖ut‖2
2,Γ1

+ ‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
. (3.15)

Next, we estimate Ψ′(t). Taking the derivative of Ψ(t) in (3.7) and using (3.1), we obtain

Ψ′(t) =
∫

Ω

∇u(t)

t∫

0

g(t − s) (∇u(t) − ∇u(s)) dsdx

−
∫

Ω

⎛
⎝

t∫

0

g(t − s)∇u(s)ds

⎞
⎠
⎛
⎝

t∫

0

g(t − s) (∇u(t) − ∇u(s)) ds

⎞
⎠dx

+
∫

Γ1

h(ut)

t∫

0

g(t − s) (u(t) − u(s)) dsdΓ + α

∫

Γ1

ut

t∫

0

g(t − s) (u(t) − u(s)) dsdΓ

−
∫

Γ1

|u|k−1
u

t∫

0

g(t − s) (u(t) − u(s)) dsdΓ

−
∫

Ω

|u|p−1
u

t∫

0

g(t − s) (u(t) − u(s)) dsdx

−
∫

Ω

ut

t∫

0

g′(t − s) (u(t) − u(s)) dsdx −
⎛
⎝

t∫

0

g(s)ds

⎞
⎠ ‖ut‖2

2 . (3.16)
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Similar to deriving (3.15), in what follows we will estimate the right-hand side of (3.16). Using Young’s
inequality, Hölder’s inequality, and (2.3), for δ > 0, we have

∣∣∣∣∣∣
∫

Ω

∇u(t)

t∫

0

g(t − s) (∇u(t) − ∇u(s)) dsdx

∣∣∣∣∣∣

≤ δ ‖∇u‖2
2 +

1
4δ

∫

Ω

⎛
⎝

t∫

0

g(t − s) (∇u(t) − ∇u(s)) ds

⎞
⎠

2

dx

≤ δ ‖∇u‖2
2 +

1 − l

4δ
(g ◦ ∇u) (t), (3.17)

and
∣∣∣∣∣∣
∫

Ω

⎛
⎝

t∫

0

g(t − s)∇u(s)ds

⎞
⎠
⎛
⎝

t∫

0

g(t − s) (∇u(t) − ∇u(s)) ds

⎞
⎠dx

∣∣∣∣∣∣
≤ 2δ (1 − l)2 ‖∇u‖2

2 +
(

2δ +
1
4δ

)
(1 − l) (g ◦ ∇u) (t). (3.18)

Utilizing Hölder’s inequality, Young’s inequality and (2.2) and noting that α ≤ 1, the third term and
fourth term on the right-hand side of (3.16) can be estimated as

∣∣∣∣∣∣
∫

Γ1

h(ut)

t∫

0

g(t − s) (u(t) − u(s)) dsdΓ

∣∣∣∣∣∣
≤ 1

2

∫

Γ1

h2(ut)dΓ +
(1 − l)B2

∗
2

(g ◦ ∇u) (t), (3.19)

and
∣∣∣∣∣∣α
∫

Γ1

ut

t∫

0

g(t − s) (u(t) − u(s)) dsdΓ

∣∣∣∣∣∣
≤ α

2
‖ut‖2

2,Γ1
+

(1 − l)B2
∗

2
(g ◦ ∇u) (t) (3.20)

As for the fifth and sixth terms on the right-hand side of (3.16), using Hölder’s inequality, Young’s
inequality, (2.1)–(2.3) and (3.4), we obtain

∫

Γ1

|u|k−1
u

t∫

0

g(t − s) (u(t) − u(s)) dsdΓ

≤ δ ‖u‖2k
2k,Γ1

+
(1 − l)B2

∗
4δ

(g ◦ ∇u) (t)

≤ δB2k
∗

(
E(0)
lc0

)k−1

‖∇u‖2
2 +

(1 − l)B2
∗

4δ
(g ◦ ∇u) (t), (3.21)
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and ∣∣∣∣∣∣
∫

Ω

|u|p−1
u

t∫

0

g(t − s) (u(t) − u(s)) dsdx

∣∣∣∣∣∣
≤ δ ‖u‖2p

2p +
(1 − l)c2

∗
4δ

(g ◦ ∇u) (t)

≤ δc2p
∗

(
E(0)
lc0

)p−1

‖∇u‖2
2 +

(1 − l)c2
∗

4δ
(g ◦ ∇u) (t). (3.22)

Exploiting Hölder’s inequality, Young’s inequality and (A1) to estimate the seventh term, we have∣∣∣∣∣∣
∫

Ω

ut

t∫

0

g′(t − s) (u(t) − u(s)) dsdx

∣∣∣∣∣∣
≤ δ ‖ut‖2

2 − g(0)c2
∗

4δ
(g′ ◦ ∇u) (t). (3.23)

Then, combining these estimates (3.17)–(3.23), (3.16) becomes

Ψ′(t) ≤ −
⎛
⎝

t∫

0

g(s)ds − δ

⎞
⎠ ‖ut‖2

2 + c5δ ‖∇u‖2
2 + c6 (g ◦ ∇u) (t)

+
α

2
‖ut‖2

2,Γ1
− g(0)c2

∗
4δ

(g′ ◦ ∇u) (t) +
1
2

∫

Γ1

h2(ut)dΓ, (3.24)

where c5 = 1 + 2(1 − l)2 + c2p
∗
(

E(0)
lc0

)p−1

+ B2k
∗
(

E(0)
lc0

)k−1

and c6 = (1 − l)
(

1
2δ + 2δ + B2

∗ + c2
∗+B2

∗
4δ

)
.

Hence, we conclude from (3.5), (3.3), (3.15), and (3.24) that

G′(t) = ME′(t) + εΦ′(t) + Ψ′(t)

≤ −
(

M

2
− g(0)c2

∗
4δ

)
(−g′ ◦ ∇u) (t) − (g0 − δ − ε) ‖ut‖2

2 − α

(
M − 2B2

∗
l

− 1
2

)
‖ut‖2

2,Γ1

+
(

c5δ − εl

4

)
‖∇u‖2

2 +
(

c6 +
(1 − l)ε

2l

)
(g ◦ ∇u) (t)

+
(

1
2

+
c2
∗ε
l

)∫

Γ1

h2(ut)dΓ + ε
(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
,

where we have used the fact that for any t0 > 0,
t∫

0

g(s)ds ≥
t0∫

0

g(s)ds = g0, ∀ t ≥ t0,

because g is positive and continuous with g(0) > 0. At this point, we choose ε > 0 small enough so that
Lemma 3.3 holds and ε < g0

2 . Once ε is fixed, we choose δ to satisfy

δ < min
{

εl

8c5
,
g0

4

}
,

and then pick M sufficiently large such that

M > max
{

g(0)c2
∗

2δ
,
2B2

∗
l

+
1
2

}
.
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Hence, for all t ≥ t0, we arrive at

G′(t) ≤ −εl

8
‖∇u‖2

2 − g0

4
‖ut‖2

2 + c7 (g ◦ ∇u) (t) + c8

∫

Γ1

h2(ut)dΓ

+ε
(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
,

which yields

G′(t) ≤ −α1E(t) + α2 (g ◦ ∇u) (t) + α3

∫

Γ1

h2(ut)dΓ, (3.25)

or

E(t) ≤ −β3G
′(t) + β4 (g ◦ ∇u) (t) + β5

∫

Γ1

h2(ut)dΓ,

where ci, i = 7, 8, αj , j = 1, 2, 3 and βk, k = 3, 4, 5 are all positive constants independent of α. �

Before stating our main result, we need to recall that if φ is a proper convex function from R to
R ∪ {∞}, then its convex conjugate φ∗ is defined as

φ∗(y) = sup
x∈R

{xy − φ(x)} . (3.26)

Now, we are ready to prove our main results by adopting and modifying the arguments in [13,14]. We
consider the following partition of Γ1

Γ+
1 = {x ∈ Γ1 ||ut| > 1} ,Γ−

1 = {x ∈ Γ1 ||ut| ≤ 1} .

Theorem 3.5. Let u0 ∈ H1
Γ0

∩H2 (Ω) , u1 ∈ H1
Γ0

be given and (A1)− (A2) and (1.2) hold. Suppose further

that l
∥∥∇u0

∥∥2

2
< λ2

0 and E(0) < d. Then, for each t0 > 0 and k1, k2 and ε0 are positive constants, the
solution energy of (3.1) satisfies

E(t) ≤ k2H
−1
1

⎛
⎝k1

t∫

0

ξ(s)ds

⎞
⎠ , t ≥ t0, (3.27)

where

H1(t) =

1∫

t

1
H2(s)

ds (3.28)

and

H2(t) =
{

t, if H is linear on [0, 1],
tH ′(ε0t), if H ′(0) = 0 and H ′′ > 0 on(0, 1]. (3.29)

Proof. Let u0 ∈ H1
Γ0

∩H2 (Ω) , u1 ∈ H1
Γ0

such that l
∥∥∇u0

∥∥2

2
< λ2

0 and E(0) < d, then the global existence
of solution u of (3.1) is guaranteed directly by Theorem 3.2. Next, we consider the following two cases:
(i) H is linear on [0, 1] and (ii) H ′(0) = 0 and H ′′ > 0 on (0, 1].

Case 1: H is linear on [0, 1]. In this case, there exists α′
1 > 0 such that |h(s)| ≤ α′

1 |s|, for all s ∈ R. By
(3.3), we have ∫

Γ1

h2(ut)dΓ ≤ α′
1

∫

Γ1

uth(ut)dΓ ≤ −α′
1E

′(t),
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which together with (3.25) implies that

(G(t) + c9E(t))′ ≤ −α1H2(E(t)) + α2 (g ◦ ∇u) (t), (3.30)

where H2(s) = s and c9 = α′
1α3.

Case 2: H ′(0) = 0 and H ′′ > 0 on (0, 1].
In this case, we first estimate

∫
Γ1

h2(ut)dΓ on the right-hand side of (3.25). Given (3.2), noting that
H−1 is concave and increasing and using Jensen’s inequality and (3.3), we deduce that∫

Γ1

h2(ut)dΓ =
∫

Γ+
1

h2(ut)dΓ +
∫

Γ−
1

h2(ut)dΓ

≤ Mq

∫

Γ+
1

uth(ut)dΓ +
∫

Γ−
1

h2(ut)dΓ

≤ −MqE
′(t) +

∫

Γ−
1

H−1 (uth(ut)) dΓ

≤ −MqE
′(t) +

1
c10

H−1

⎛
⎜⎝c10

∫

Γ−
1

uth(ut)dΓ

⎞
⎟⎠

≤ −MqE
′(t) +

1
c10

H−1 (−c10E
′(t)) ,

where c10 = 1
vol(Γ−

1 )
. Hence, (3.25) becomes

F1(t)′ ≤ −α1E(t) + c11H
−1 (−c10E

′(t)) + α2 (g ◦ ∇u) (t), ∀t ≥ t0, (3.31)

where c11 = α3
c10

and

F1(t) = G(t) + Mqα3E(t). (3.32)

Now, we define

F2(t) = H ′(ε0E(t))F1(t) + βE(t), (3.33)

where ε0 > 0 and β > 0 to be determined later. Then, using E′(t) ≤ 0, H ′′(t) ≥ 0, and (3.31), we obtain

F ′
2(t) = ε0E

′(t)H ′′(ε0E(t))F1(t) + H ′(ε0E(t))F ′
1(t) + βE′(t)

≤ −α1H
′(ε0E(t))E(t) + α2H

′(ε0E(t)) (g ◦ ∇u) (t)
+c11H

′(ε0E(t))H−1 (−c10E
′(t)) + βE′(t). (3.34)

Let H∗ denote the Legendre transform of H defined by (3.26), then (see [2])

H∗(s) = s (H ′)−1 (s) − H
[
(H ′)−1 (s)

]
, if s ∈ R+ (3.35)

and H∗ satisfies the following inequality

AB ≤ H∗(A) + H(B), for A, B ≥ 0. (3.36)

Further, using (3.35) and noting that H ′(0) = 0, (H ′)−1 is increasing and H is also increasing yield

H∗(s) ≤ s (H ′)−1 (s), s ≥ 0. (3.37)
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Taking H ′ (ε0E(t)) = A and H−1 (−c10E
′(t)) = B in (3.34), applying (3.37) and (3.36), noting that

0 ≤ H ′(ε0E(t)) ≤ H ′(ε0E(0)) due to H ′ is increasing, we obtain

F ′
2(t) ≤ −α1H

′(ε0E(t))E(t) + c11H
∗ (H ′(ε0E(t))) + c13 (g ◦ ∇u) (t) + (β − c12) E′(t)

≤ − (α1 − c11ε0) H ′(ε0E(t))E(t) + c13 (g ◦ ∇u) (t) + (β − c12) E′(t).

Thus, choosing 0 < ε0 < α1
c11

, β > c12 and using E′(t) ≤ 0 by (3.3), we obtain

F ′
2(t) ≤ −c14H

′(ε0E(t))E(t) + c13 (g ◦ ∇u) (t)
= −c14H2(E(t)) + c13 (g ◦ ∇u) (t), (3.38)

where H2(s) = sH ′(ε0s), c12 = c10c11 , c13 = α2 · H ′(ε0E(0)) > 0 and c14 is a positive constant.
Let

G1(t) =
{

G(t) + c9E(t), if H is linear on [0, 1],
F2(t), if H ′(0) = 0 and H ′′ > 0 on (0, 1].

Then, by Lemma 3.3 and the definition of F2 by (3.32)–(3.33), there exist β′
1, β′

2 > 0 such that

β′
2E(t) ≤ G1(t) ≤ β′

1E(t) (3.39)

and from (3.30) and (3.38), we have

G′
1(t) ≤ −c15H2(E(t)) + c16 (g ◦ ∇u) (t), t ≥ t0, (3.40)

where c15 and c16 denote some positive constants. Additionally, using (3.39) and ξ(t) ≤ ξ(0) by (A1), we
see that

ξ(t)G1(t) + 2c16E(t) ≤ l1E(t), t ≥ t0, (3.41)

where l1 = β′
1ξ(0) + 2c16 > 0. Now, we define

F3(t) = ε (ξ(t)G1(t) + 2c16E(t)) , 0 < ε <
1
l1

, (3.42)

which is equivalent to E(t) by (3.39). Using (3.40), (2.4) and (3.3), we arrive at

F ′
3(t) = ε (ξ′(t)G1(t) + ξ(t)G′

1(t) + 2c16E
′(t))

≤ −c15εξ(t)H2(E(t)) + c16εξ(t) (g ◦ ∇u) (t) + 2c16εE
′(t)

≤ −c15εξ(t)H2(E(t)) − c16ε (g′ ◦ ∇u) (t) + 2c16εE
′(t)

≤ −c15εξ(t)H2(E(t)).

Exploiting the fact that H2 is increasing, using (3.41) and noting 0 < ε < 1
l1

by (3.42), we obtain

F ′
3(t) ≤ −c15εξ(t)H2

(
1
l1

(ξ(t)G1(t) + 2c16E(t))
)

≤ −c15εξ(t)H2 (ε (ξ(t)G1(t) + 2c16E(t)))
= −c15εξ(t)H2 (F3(t)) .

Given that H ′
1(t) = − 1

H2(t)
by (3.28), we have

F ′
3(t)H

′
1(F3(t)) ≥ c15εξ(t), t ≥ t0.
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Integrating this over (t0, t) and noting that H−1
1 is decreasing on (0,1], we deduce that

F3(t) ≤ H−1
1

⎛
⎝H1(F3(t0)) + c15ε

t∫

0

ξ(s)ds − c15ε

t0∫

0

ξ(s)ds

⎞
⎠

≤ H−1
1

⎛
⎝c15ε

t∫

0

ξ(s)ds

⎞
⎠ ,

where we require ε > 0 sufficiently small so that H1(F3(t0)) − c15ε
∫ t0
0

ξ(s)ds > 0. Consequently, the
equivalent relation between of F3 and E yields

E(t) ≤ k2H
−1
1

⎛
⎝k1

t∫

0

ξ(s)ds

⎞
⎠ , t ≥ t0,

where k1 and k2 are positive constants. Hence, we complete the proof. �

Remark 3.6. From the definition of H2 by (3.29), we deduce that lim
t→0

H1(t) = ∞. Thus, if
∫∞
0

ξ(t)dt = ∞,

we have the strong stability of (3.1): that is,

lim
t→∞ E(t) = 0.

4. Blow-up

In this section, we investigate the blow-up properties for problem (1.1). To state our results, we make
extra assumptions on g and h:

(A3) h is monotone, continuous and satisfies

mq |s|q+1 ≤ h(s)s ≤ Mq |s|q+1
, for all s ∈ R, (4.1)

where mq and Mq are positive constants with q > k
r−k and r = 2(n−1)

n−2 .
(B3)

∞∫

0

g(s)ds <
1

1 + 1

(θ(1−α)2+2α(1−α))(θ−2)

, (4.2)

where 0 < α < 1 is a fixed number and θ is a positive constant given in (4.11).

To prove our result, the following lemma is needed.

Lemma 4.1. Suppose that (A1) and (1.2) hold and assume further that l ‖∇u0‖2
2 > λ2

0 and E(0) < αd,
then there exists λ2 > λ0 such that, for all t ∈ [0, T ),

l ‖∇u(t)‖2
2 + (g ◦ ∇u)(t) ≥ λ2

2 (4.3)

and

‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
≥ 1

c′
0

(
Bp+1

Ω

p + 1
λp+1

2 +
Bk+1

Γ

k + 1
λk+1

2

)
, (4.4)

where c′
0 = max( 1

p+1 , 1
k+1 ).



Vol. 63 (2012) General decay and blow-up of solutions for a viscoelastic 97

Proof. Considering that E(t) is nonincreasing by (2.64), we get

E(t) ≤ E(0) < αd,

for all t > 0. Applying arguments similar to those used in deriving (2.22), we can obtain (4.3). Indeed, from
the properties of F given in Remark 2.2 (i), there exist λ′

2 < λ0 < λ2 such that F (λ′
2) = F (λ2) = E (0).

Then, as F (0) = 0, l
∥∥∇u0

∥∥2

2
> λ2

0 and the continuity in time of F

(√
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

we deduce

that

l ‖∇u(t)‖2
2 + (g ◦ ∇u)(t) ≥ λ2

2, ∀t ∈ [0, T ).

In addition, from the definition of E(t) by (2.6), using (2.3), (4.3) and the definition of F by (2.8), we
see that

‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
≥ 1

c′
0

(
1
2

(
l ‖∇u(t)‖2 + (g ◦ ∇u)(t)

)
− E(0)

)

≥ 1
c′
0

(
1
2
λ2

2 − F (λ2)
)

=
1
c′
0

(
Bp+1

Ω

p + 1
λp+1

2 +
Bk+1

Γ

k + 1
λk+1

2

)
.

Hence, we complete the proof. �

Following the approach developed by Cavalcanti et al. in [3], we are ready to state and prove the
blow-up result.

Theorem 4.2. Let (A1), (A3), (A4) and (1.2) hold and k > q. For any fixed number 0 < α < 1, suppose
that u0 ∈ H1

Γ0
(Ω) , u1 ∈ L2 (Ω) with l

∥∥∇u0
∥∥2

2
> λ2

0, E(0) < αd. Assume that either one of the following
conditions holds:
(i) E(0) < 0,
(ii) E(0) ≥ 0, E(0) <

αλ2
0(k−1)

2(k+1) if p > k or E(0) <
αλ2

0(p−1)
2(p+1) if k > p,

(iii) E(0) ≥ 0, E(0) ≥ αλ2
0(k−1)

2(k+1) if p > k and the difference p − k is small enough or E(0) ≥ αλ2
0(p−1)

2(p+1) if
k > p and the difference k − p is small enough.

Then, the solution u of (1.1) blows up in finite time, i.e., there exists T ∗ < ∞ such that

lim
T→T ∗−

(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
= ∞. (4.5)

Proof. By contradiction, we suppose that the solution of problem (1.1) is global. Set

H(t) = E2 − E(t), (4.6)

where

E(0) < E2 < αd. (4.7)

By (2.64), we see that H ′(t) ≥ 0. Thus, we obtain

H(t) ≥ H(0) = E2 − E(0) > 0. (4.8)

Define

Z(t) = H1−γ(t) + ε

∫

Ω

utudx, (4.9)
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where 0 < ε < 1 to be determined later and

0 < γ < min
{

1
q + 1

− 1
k + 1

,
1
2

− 1
p + 1

}
.

Next, we prove that there exist positive constants ci, i = 1 − 5 such that the following inequality holds:

Z ′(t) ≥ (1 − γ)H−γ(t)H ′(t) + c1ε

∫

Ω

u2
t dx + c2ε

(
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

+c3ε ‖u‖p+1
p+1 + c4ε ‖u‖k+1

k+1,Γ1
+ c5εH(t) − ε

∫

Γ1

h (ut) udΓ. (4.10)

Taking the derivative of (4.9) and using equation (1.1), we obtain

Z ′(t) = (1 − γ)H−γ(t)H ′(t) + ε

∫

Ω

u2
t dx + ε

∫

Ω

uttudx

= (1 − γ)H−γ(t)H ′(t) + ε

∫

Ω

u2
t dx − ε ‖∇u‖2

2

+ε
(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
− ε

∫

Γ1

h (ut) udΓ

+ε

∫

Ω

∇u(t)

t∫

0

g(t − s)∇u(s)dsdx.

Exploiting Hölder’s inequality and Young’s inequality, for η > 0,

∫

Ω

∇u(t)

t∫

0

g(t − s)∇u(s)dsdx

=
∫

Ω

t∫

0

g(t − s)∇u(t) · (∇u(s) − ∇u(t)) dsdx +

t∫

0

g(t − s)ds ‖∇u(t)‖2
2

≥ −η(g ◦ ∇u)(t) +
(

1 − 1
4η

) t∫

0

g(s)ds ‖�u(t)‖2
2 .

Thus,

Z ′(t) ≥ (1 − γ)H−γ(t)H ′(t) + ε

∫

Ω

u2
t dx + ε

⎛
⎝−1 −

(
1
4η

− 1
) t∫

0

g(s)ds

⎞
⎠ ‖∇u‖2

2

−εη(g ◦ ∇u)(t) + ε
(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ

)
− ε

∫

Γ1

h (ut) udΓ.
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Adding the term θ (H(t) − E2 + E(t)) and using the definition of E(t) by (2.6), we deduce that

Z ′(t) ≥ (1 − γ)H−γ(t)H ′(t) + ε

(
1 +

θ

2

)∫

Ω

u2
t dx

+ε

⎛
⎝θ

2
− 1 −

(
θ

2
+

1
4η

− 1
) t∫

0

g(s)ds

⎞
⎠ ‖∇u‖2

2

+ε

(
θ

2
− η

)
(g ◦ ∇u)(t) + ε

(
1 − θ

p + 1

)
‖u‖p+1

p+1

+ε

(
1 − θ

k + 1

)
‖u‖k+1

k+1,Γ1
+ εθH − εθE2 − ε

∫

Γ1

h (ut) udΓ,

where θ is considered as follows

If p > k, take θ = p + 1 − ε1, with 0 < p − k < ε1 < p − 1;
if k > p, take θ = k + 1 − ε1, with 0 < k − p < ε1 < k − 1.

(4.11)

To obtain (4.10), we take η to satisfy

1 − l

2(1 − α)l(θ − 2)
< η <

θ(1 − α)
2

+ α

which is possible because of (4.2). Then, using the fact that l ‖∇u(t)‖2
2 + (g ◦ ∇u)(t) ≥ λ2

2 by (4.3) to get

⎛
⎝θ

2
− 1 −

(
θ

2
+

1
4η

− 1
) t∫

0

g(s)ds

⎞
⎠ ‖∇u‖2

2

+
(

θ

2
− η

)
(g ◦ ∇u)(t) − θE2

≥ α

(
θ

2
− 1

)(
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

− θE2

= α

(
θ

2
− 1

)
λ2

2 − λ2
0

λ2
2

(
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

+α

(
θ

2
− 1

)
λ2

0

λ2
2

(
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

− θE2

≥ c6

(
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

+ K(θ),

where

c6 = α

(
θ

2
− 1

)
λ2

2 − λ2
0

λ2
2

> 0

via (4.11) and

K(θ) = α

(
θ

2
− 1

)
λ2

0 − θE2. (4.12)
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Similar to the situation with [3], we would like to obtain K(θ) is also positive. In fact, in the case p > k,
we have

K(θ) = α

(
θ

2
− 1

)
λ2

0 − θE2

=
(−αλ2

0

2
+ E2

)
ε1 +

α(p − 1)λ2
0

2
− (p + 1)E2,

because θ = p + 1 − ε1. Further, from E2 < αd and the definition of d by (2.10), we observe that

−αλ2
0

2
+ E2 < α

(−λ2
0

2
+ d

)

= α

(
−λ2

0

2
+

λ2
0

2
− Bp+1

Ω

p + 1
λp+1

0 − Bk+1
Γ

k + 1
λk+1

0

)
< 0

and
α(p − 1)λ2

0

2
− (p + 1)E2

> α

(
(p − 1)λ2

0

2
− (p + 1)d

)

= α

(
(p − 1)λ2

0

2
− (p + 1)

(
λ2

0

2
− Bp+1

Ω

p + 1
λp+1

0 − Bk+1
Γ

k + 1
λk+1

0

))

≥ α
(
−λ2

0 + Bp+1
Ω λp+1

0 + Bk+1
Γ λk+1

0

)

= αλ2
0

(
−1 + Bp+1

Ω λp−1
0 + Bk+1

Γ λk−1
0

)
= 0,

where we used the identity (2.13). Similarly, if k > p, we get

K(θ) = α

(
θ

2
− 1

)
λ2

0 − θE2

=
(−αλ2

0

2
+ E2

)
ε1 +

α(k − 1)λ2
0

2
− (k + 1)E2,

with
α(k − 1)λ2

0

2
− (k + 1)E2 ≥ 0.

Hence, from above arguments, we note that for p > k,

K(θ) > 0 if and only if 0 < ε1 < Hp, (4.13)

and in case k > p,

K(θ) > 0 if and only if 0 < ε1 < Hk, (4.14)

where

Hp =
(p + 1)E2 − α(p−1)λ2

0
2

E2 − αλ2
0

2

and Hk =
(k + 1)E2 − α(k−1)λ2

0
2

E2 − αλ2
0

2

.

To derive the inequality (4.10), we choose ε1 small enough such that

1 − p + 1 − ε1

k + 1
> 0, if p > k,
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and

1 − k + 1 − ε1

p + 1
> 0, if k > p.

This implies that ε1 > p − k, if p > k (respectively ε1 > k − p, if k > p). However, as we have already
considered ε1 < p − 1, if p > k (respectively ε1 < k − 1, if k > p) in (4.11). Thus, we consider

p − k < ε1 < p − 1, if p > k (respectively k − p < ε1 < k − 1, if k > p).

Using this fact and (4.13)–(4.14), we require ε1 such that

p − k < ε1 < min {p − 1,Hp} , if p > k (4.15)
(respectively k − p < ε1 < min {k − 1,Hk} , if k > p).

Now, we consider the following cases to obtain desired inequality (4.10).

(1) If E(0) < 0, then, we can choose E2 such that E(0) < E2 < 0 < αd. However, in this case, we note
for p > k that

E2 < 0 if and only if p − 1 < Hp

and in case k > p,

E2 < 0 if and only if k − 1 < Hk.

Hence, when E(0) < 0, we take ε1 > 0 small enough satisfying p − k < ε1 < p − 1 < Hp, if p > k
(respectively k − p < ε1 < k − 1 < Hk, if k > p) to obtain inequality (4.10).

(2) When 0 ≤ E(0) < αd and p > k, we note that if p − k < Hp, then E2 <
αλ2

0(k−1)
2(k+1) , so we have two

possibilities: (i) E(0) <
αλ2

0(k−1)
2(k+1) (ii) E(0) ≥ αλ2

0(k−1)
2(k+1) .

In the first case, it is sufficient to show that λ2
0(k−1)
2(k+1) < d. However, this is already proved in [3]. Thus,

we conclude that when 0 ≤ E(0) <
αλ2

0(k−1)
2(k+1) , we can choose E2 such that

0 < E(0) < E2 <
αλ2

0(k − 1)
2(k + 1)

< αd.

Moreover, using above inequality and taking (4.15) into account, we can choose ε1 such that

p − k < ε1 < min

{
p − 1, Hp =

(p + 1)E2 − α(p−1)λ2
0

2

E2 − αλ2
0

2

}
= Hp. (4.16)

Finally, when E(0) ≥ αλ2
0(k−1)

2(k+1) , it does not seem possible to find ε1 verifying the inequality (4.16).
Hence, in this case we are forced to obtain the difference p−k sufficiently small. Now, returning to (4.11)
and (4.12), we note that

lim
ε1→0

θ = θ∗,

where

θ∗ = p + 1, if p > k or θ∗ = k + 1, if k > p.
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Letting ε1 → 0 in (4.12), using E2 < αd by (4.7) and the definition of d by (2.10), we deduce that

lim
ε1→0

K(θ) = α

(
θ∗

2
− 1

)
λ2

0 − θ∗E2

> α

(
θ∗

2
− 1

)
λ2

0 − αθ∗d

= αλ2
0

(
−1 +

θ∗

p + 1
Bp+1

Ω λp−1
0 +

θ∗

k + 1
Bk+1

Γ λk−1
0

)
.

For the case p > k, substituting θ∗ = p + 1 and using the identity (2.13), we see that

lim
ε1→0

K(θ) > αλ2
0

(
−1 +

θ∗

p + 1
Bp+1

Ω λp−1
0 +

θ∗

k + 1
Bk+1

Γ λk−1
0

)

> αλ2
0

(
−1 + Bp+1

Ω λp−1
0 + Bk+1

Γ λk−1
0

)
= 0,

which proves the desired inequality (4.10). The analysis is analogous, for the case k > p, so we omit the
detailed proof.

Under the above arguments, we have the desired inequality (4.10): that is, there exist positive constants
ci, i = 1 − 5, such that

Z ′(t) ≥ (1 − γ)H−γ(t)H ′(t) + εc1

∫

Ω

u2
t dx

+εc2

(
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

+ εc3 ‖u‖p+1
p+1

+εc4 ‖u‖k+1
k+1,Γ + εc5H − ε

∫

Γ1

h (ut) udΓ. (4.17)

Using (A3), Hölder’s inequality, k > q and Young’s inequality, the last term on the right-hand side of
(4.17) can be estimated as, for δ1 > 0,∫

Γ1

h (ut) udΓ ≤ Mq ‖ut‖q
q+1,Γ1

‖u‖q+1,Γ1

≤ c6 ‖ut‖q
q+1,Γ1

‖u‖k+1,Γ1

≤ c6 ‖ut‖q
q+1,Γ1

(
‖u‖k+1

k+1,Γ1
+ ‖u‖p+1

p+1

) 1
q+1

(
‖u‖k+1

k+1,Γ1
+ ‖u‖p+1

p+1

)−γ1

≤
(
c7 (δ1) ‖ut‖q+1

q+1,Γ1
+ δ1

(
‖u‖k+1

k+1,Γ1
+ ‖u‖p+1

p+1

))(
‖u‖k+1

k+1,Γ1
+ ‖u‖p+1

p+1

)−γ1

, (4.18)

where c6 = Mqvol (Γ1)
k−q

(k+1)(q+1) , γ1 = 1
q+1 − 1

k+1 > 0 and c7 (δ1) > 0 is a constant. Moreover, from (4.6),
the definition of E(t) by (2.6), (4.3), (4.7) and the definition of d by (2.10), we have

H(t) = E2 − E(t)

≤ E2 − 1
2
l ‖∇u(t)‖2 − 1

2
(g ◦ ∇u)(t) +

1
p + 1

‖u‖p+1
p+1 +

1
k + 1

‖u‖k+1
k+1,Γ1

< αd − 1
2
λ2

2 +
1

p + 1
‖u‖p+1

p+1 +
1

k + 1
‖u‖k+1

k+1,Γ1

=
αλ2

0 − λ2
2

2
− αBp+1

Ω

p + 1
λp+1

2 − αBk+1
Γ

k + 1
λk+1

2 +
1

p + 1
‖u‖p+1

p+1 +
1

k + 1
‖u‖k+1

k+1,Γ1
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≤ 1
p + 1

‖u‖p+1
p+1 +

1
k + 1

‖u‖k+1
k+1,Γ1

≤ c′
0

(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
, (4.19)

which together with (4.18) implies that∫

Γ1

h (ut) udΓ ≤ cγ1
0

[
c7 (δ1) ‖ut‖q+1

q+1,Γ1
+ δ1

(
‖u‖k+1

k+1,Γ1
+ ‖u‖p+1

p+1

)]
H(t)−γ1 , (4.20)

where c′
0 = max

(
1

p+1 , 1
k+1

)
. In addition, from (2.94) and (4.1), we have

H ′(t) ≥
∫

Γ1

h (ut) utdΓ ≥ mq ‖ut‖q+1
q+1,Γ1

.

Substituting the above inequality into (4.20), noting that H is increasing by (4.8) and letting 0 < γ < γ1,
we obtain ∫

Γ1

h (ut) udΓ ≤ cγ1
0

[
c8 (δ1) H ′(t) + δ1

(
‖u‖k+1

k+1,Γ1
+ ‖u‖p+1

p+1

)]
H(t)−γ1

≤ cγ1
0

[
c8 (δ1) H ′(t)H(t)−γH(0)γ−γ1

+ δ1

(
‖u‖k+1

k+1,Γ1
+ ‖u‖p+1

p+1 + l ‖∇u‖2
2 + (g ◦ ∇u)(t)

)
H(0)−γ1

]
,

where c8 (δ1) = c7(δ1)
mq

. Thus,

Z ′(t) ≥ (
1 − γ − εcγ1

0 c8(δ1)H(0)γ−γ1
)
H−γ(t)H ′(t) + εc1 ‖ut‖2

2

+ε
(
c2 − δ1H(0)−γ1

) (
l ‖∇u‖2

2 + (g ◦ ∇u)(t)
)

+ε
(
c3 − δ1H(0)−γ1

) ‖u‖p+1
p+1 + ε

(
c4 − δ1H(0)−γ1

) ‖u‖k+1
k+1,Γ1

+ εc5H(t).

At this point, choosing δ1 > 0 small enough and ε > 0 small enough such that

c2 − δ1H(0)−γ1 > 0,

c3 − δ1H(0)−γ1 > 0,

c4 − δ1H(0)−γ1 > 0,

1 − γ − εcγ1
0 c8(δ1)H(0)γ−γ1 > 0,

and

H1−γ(0) + ε

∫

Ω

u0u1dx > 0.

Thus,

Z ′(t) ≥ εc9

(
‖ut‖2

2 + l ‖∇u‖2
2 + (g ◦ ∇u)(t) + ‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

+ H
)

(4.21)

and

Z(0) = H1−γ(0) + ε

∫

Ω

u0u1dx > 0,

where c9 is a positive constant. Consequently,

Z(t) ≥ Z(0) > 0, ∀t ≥ 0.
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Now set θ1 = 1
1−γ . As γ < γ1 < 1, it is evident that 1 < θ1 < 1

1−γ1
. Applying Young’s inequality and

Hölder’s inequality in (4.9), we see that

Z (t)θ1 ≤ 2θ1−1

⎡
⎢⎣H (t) +

⎛
⎝ε

∫

Ω

utudx

⎞
⎠

θ1
⎤
⎥⎦ . (4.22)

Further, using Hölder’s inequality and Young’s inequality, for p > 1, we have⎛
⎝
∫

Ω

utudx

⎞
⎠

θ1

≤ c10 ‖ut‖θ1
2 ‖u‖θ1

p+1 ≤ c11

(
‖u‖θ1β1

p+1 + ‖ut‖θ1β2
2

)
,

where c10 = (vol(Ω))
θ1(p−1)
2(p+1) , 1

β1
+ 1

β2
= 1, and c11 = c11(c10, β1, β2) > 0. Taking θ1β2 = 2 to get

θ1β1 = 2
1−2γ ≤ p + 1. Then, taking (4.19) into consideration, we deduce that

‖u‖θ1β1
p+1 ≤

[
c0

H(0)

(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)] θ1β1
p+1

(
c0

H(0)

)− θ1β1
p+1

≤ c12

(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
,

where c12 =
(

c0
H(0)

)1− θ1β1
p+1

. Hence, (4.22) becomes

Z (t)θ1 ≤ c13

[
H (t) + ‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

+ ‖ut‖2
2

]
, (4.23)

here, c13 is some positive constant. Combining (4.21) and (4.23) together, we obtain

Z ′ (t) ≥ c14Z (t)θ1 , t ≥ 0, (4.24)

here, c14 = c9ε
c13

. An integration of (4.24) over (0, t) yields

Z (t) ≥
(
Z (0)1−θ1 − c14 (θ1 − 1) t

)− 1
θ1−1

.

As Z (0) > 0, (4.24) shows that Z becomes infinite in a finite time

T ≤ T ∗ =
Z(0)1−θ1

c14 (θ1 − 1)
.

Moreover, in view of the inequality induced by (2.6) and (2.64), we have
1
2

‖ut(t)‖2
2 +

(
l ‖∇u(t)‖2

2 + (g ◦ ∇u)(t)
)

≤ E(0) +
1

p + 1
‖u‖p+1

p+1 +
1

k + 1
‖u‖k+1

k+1,Γ1
,

which together with (4.23) and (4.19) implies that

lim
T→T ∗−

(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
= ∞.

Thus, we obtain (4.5). Hence, the proof is completed. �
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