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Abstract. In this paper, we consider the viscoelastic wave equation with a delay term in internal feedbacks; namely, we
investigate the following problem

utt(x, t) − Δu(x, t) +

t∫

0

g(t − s)Δu(x, s)ds + μ1ut(x, t) + μ2ut(x, t − τ) = 0

together with initial conditions and boundary conditions of Dirichlet type. Here (x, t) ∈ Ω × (0, ∞), g is a positive real
valued decreasing function and μ1, μ2 are positive constants. Under an hypothesis between the weight of the delay term
in the feedback and the weight of the term without delay, using the Faedo–Galerkin approximations together with some
energy estimates, we prove the global existence of the solutions. Under the same assumptions, general decay results of the
energy are established via suitable Lyapunov functionals.
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1. Introduction

In this paper, we consider the following linear viscoelastic wave equation with a linear damping and a
delay term⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt(x, t) − Δu(x, t) +
t∫
0

g(t− s)Δu(x, s)ds+ μ1ut(x, t) + μ2ut(x, t− τ) = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω
ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ)

(1)

where u = u(x, t) , t ≥ 0 , x ∈ Ω , Δ denotes the Laplacian operator with respect to the x variable, Ω is
a regular and bounded domain of R

N , (N ≥ 1), μ1, μ2 are positive constants, τ > 0 represents the time
delay and u0 , u1, f0 are given functions belonging to suitable spaces.

The purpose of this paper is to study the existence and the asymptotic stability of problem (1), with
a delay term appearing in the control term in the first equation.

Introducing the delay term μ2ut(x, t − τ) makes the problem different from those considered in the
literature.

In recent years, PDEs with time delay effects have become an active area of research; see for example
[2,23] and references therein. In [9], the authors showed that a small delay in a boundary control is
a source of instability. To stabilize a hyperbolic system involving input delay terms, additional control
terms will be necessary; see for instance [17,18,25] and references therein. In [17], the authors examined
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a system of wave equation with a linear boundary damping term with a delay. Namely, they considered
the following system ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt − Δu = 0, x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ Γ0, t > 0,
∂u
∂ν (x, t) = μ1ut(x, t) + μ2ut(x, t− τ) x ∈ Γ1, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,
u(x, t− τ) = g0(x, t− τ) x ∈ Ω, t ∈ (0, τ),

(2)

and proved under the assumption

μ2 < μ1 (3)

that the energy is exponentially stable. On the contrary, if (3) does not hold, they found a sequence
of delays for which the corresponding solution of (2) is unstable. The main approach used in [17] is an
observability inequality combined with a Carleman estimate. The same results were showed if both the
damping and the delay act inside the domain. Let us also mention the result by Xu et al. [25], where they
proved the same result as in [17] for the one space dimension by adopting the spectral analysis approach.
According to the previous results, the decay rate of solutions depends on the delay, and as it was shown
in [19], the decay rate decreases whenever the delay increases. In other words, the decay is slower when
τ becomes larger.

The case of time-varying delay in the wave equation has been studied recently by Nicaise et al. [20]
in one space dimension. In that work, an exponential stability result was given under the condition

μ2 ≤ √
1 − dμ1 (4)

where d is a constant such that

τ ′(t) ≤ d < 1, ∀t > 0. (5)

In the absence of the delay term, that is for μ2 = 0, problems similar to (1) in bounded domains or in
the whole N -dimensional space have been extensively studied and results concerning existence, blow up
and asymptotic behavior of smooth, as well as weak solutions, have been established by several authors
over the past three decades. See in this regard [3,4,6,13–15,22] and references therein.

Here, we recall some results regarding the viscoelastic wave equation.
The single viscoelastic wave equation of the form

utt − Δu+

t∫

0

g (t− s) Δu (x, s) ds+ h(ut) = f(u), (6)

in Ω × (0,∞), subjected to initial conditions and boundary conditions of Dirichlet type has been consid-
ered by Cavalcanti et al. [6] in the case where f = 0 and h(ut) = a(x)ut. More precisely, they studied the
following problem

utt − Δu+

t∫

0

g (t− s) Δu (x, s) ds+ a(x)ut = 0 (7)

in Ω×(0,∞), where a : Ω → R
+ is a function, which may be null on a part of the domain Ω. By assuming

a(x) ≥ a0 on ω ⊂ Ω and

−ζ1g(t) ≤ g′(t) ≤ −ζ2g(t), ∀t ≥ 0

the authors showed an exponential decay result under some geometric restrictions on the subset ω. The
result in [6] has been improved by Berrimi and Messaoudi [4], who showed the same result as in [6], under
weaker conditions on both a and g. In [3], more general abstract version of Eq. (6) has been considered
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and an uniform stability result has been obtained. In fact, the decay rates obtained in [3] are in line with
the ones obtained in [4] for Eq. (6).

Using the piecewise multipliers method, Cavalcanti and Oquendo [8] showed some stability results for
a more general problem than the one considered in [6]. More precisely, they investigated the following
problem

utt − k0Δu+

t∫

0

div[a(x)g (t− s)Δu (x, s)]ds+ b(x)h(ut) + f(u) = 0, (8)

and proved that, under the same conditions on the function g and for a(x)+b(x) ≥ ρ > 0, an exponential
stability result if g decays exponentially and h is linear, and a polynomial stability result for g decaying
polynomially and h nonlinear.

Fabrizio and Polidoro [10] treated the problem (7) with a(x) = a0 and showed that the solution of the
problem (7) decays exponentially only if the relaxation kernel g does. That is to say the presence of the
memory term may prevent the exponential decay due to the linear frictional damping term. We mention
also the paper of Messaoudi [14] in which the author considered a problem related to (6) and proved a
general decay result. In fact, his result allows a large class of relaxation functions and improves earlier
results in which only the exponential and polynomial rates were established.

Cavalcanti et al. [5] investigated the following problem

|ut|ρutt − Δu− Δutt +

t∫

0

g (t− s) Δu (x, s) ds− γΔut = 0, ρ > 0, (9)

in Ω×(0,∞). For γ ≥ 0, they showed a global existence result. Furthermore, they obtained an exponential
decay result for γ > 0 provided that the function g decays exponentially. Using the potential well theory,
Tatar and Messaoudi [15] extended the result in [5] to a situation where a source term of the form |u|p−2

u
is present in Eq. (9).

Recently, Messaoudi and Tatar [16] have studied (9) with (γ = 0) and showed that the viscoelastic
damping term is strong enough to stabilize the system. We mention also the paper [7], in which the
authors investigated a problem similar to (6) with a nonlinear feedback acting on the boundary of the
domain Ω and showed uniform decay rates of the energy without imposing any restrictive growth assump-
tion on the damping term. We refer also to [1,11] for some results on the asymptotic stability and global
nonexistence results of the wave equation with boundary dissipation of the memory type. A wave equation
with acoustic and memory boundary conditions on a part of the boundary of the domain Ω has been also
investigated recently in [24], where the existence and uniqueness of global solution have been proved.

In the present work, we are concerned with problem (1). Our goal here is twofold:
First, using the Faedo–Galerkin approximations together with some energy estimates, and under some

restriction on the parameters μ1 and μ2, the system is showed to be well-posed.
Second, under the hypothesis μ2 ≤ μ1 between the weight of the delay term in the feedback and

the weight of the term without delay, we prove a general decay of the total energy of our problem. Our
method of proof uses some ideas developed in [17] for the wave equation with delay and some estimates
of the viscoelastic wave equation, enabling us to obtain suitable Lyapunov functionals, from which are
derived the desired results. We recall that for μ1 = μ2, Nicaise and Pignotti showed in [17] that some
instabilities may occur. Here, due to the presence of the viscoelastic damping, we prove that our solution
is still asymptotically stable even if μ1 = μ2.

The paper is organized as follows: in the next section, we fix notations and, for the convenience of
the reader, we recall without proofs some useful lemmas. In Sect. 3, we will prove the well-posedness of
the solution. In the section 4, we will show a general decay of the energy defined by (30) provided that
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the weight of the delay is less than the weight of the damping. We will also prove the same decay result
even if the weight of the delay is equal to the weight of the damping.

2. Preliminaries

In this section, we present some material that shall be used in order to prove our main result.
Let us first introduce the following notations:

(φ ∗ ψ) (t) : =

t∫

0

φ (t− τ)ψ (τ) dτ

(φ � ψ) (t) : =

t∫

0

φ (t− τ) |ψ (t) − ψ (τ)| dτ

(φ ◦ ψ) (t) : =

t∫

0

φ (t− τ)
∫

Ω

|ψ (t) − ψ (τ)|2 dxdτ.

The following lemma was introduced in [21]; it will be used later in order to define the new modified
functional energy of problem (1).

Lemma 2.1. For any function φ ∈ C1 (R) and any ψ ∈ H1 (0, T ), we have

(φ ∗ ψ) (t)ψt (t) = −1
2
φ (t) |ψ (t)|2 +

1
2

(φ′ � ψ) (t)

−1
2

d
dt

⎧⎨
⎩(φ � ψ) (t) −

⎛
⎝

t∫

0

φ (τ) dτ

⎞
⎠ |ψ (t)|2

⎫⎬
⎭ .

Lemma 2.2. For u ∈ H1
0 (Ω), we have

∫

Ω

⎛
⎝

t∫

0

g (t− s) (u (t) − u (s)) ds

⎞
⎠

2

≤ (1 − l)C2
∗ (g ◦ ∇u) (t) , (10)

where C∗ is the Poincaré constant and l is given in (G1).

For the proof of Lemma 2.2, we refer to [14].
For the relaxation function g, we assume

(G1) g : R+ → R+ is a C1 function satisfying

g(0) > 0, 1 −
∞∫

0

g(s)ds = l > 0

(G2) There exists a positive nonincreasing differentiable function ζ (t) such that

g′ (t) ≤ −ζ (t) g (t) , ∀t ≥ 0, (11)

and
+∞∫

0

ζ (t) dt = +∞.
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3. Well-posedness of the problem

In this section, we will prove the global existence and the uniqueness of the solution of problem (1). We
will first transform the problem (1) into the problem (14) below, by adding a new unknown, and then,
we use the Faedo–Galerkin approximations together with some energy estimates, to prove the existence
of the unique solution of problem (14).

In order to prove the existence of a unique solution of problem (1), we introduce as in [18], the new
variable

z (x, ρ, t) = ut (x, t− τρ) , x ∈ Ω, ρ ∈ (0, 1) , t > 0. (12)

Then, we have

τzt (x, ρ, t) + zρ (x, ρ, t) = 0, in Ω × (0, 1) × (0,+∞) . (13)

Therefore, problem (1) is equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(x, t) − Δu(x, t) +
t∫
0

g(t− s)Δu(x, s)ds+ μ1ut(x, t) + μ2z(x, 1, t) = 0, x ∈ Ω, t > 0

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1) , t > 0
u(x, t) = 0, x ∈ ∂Ω, t > 0
z(x, 0, t) = ut(x, t) x ∈ Ω, t > 0
u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω
z(x, ρ, 0) = f0(x, t− τ) x ∈ Ω, t ∈ (0, τ)

(14)

The first natural question is the existence of solutions of the problem (14). In this section, we will give a
sufficient condition that guarantees that this problem is well-posed.

First, let ξ be a positive constant such that

τμ2 < ξ < τ (2μ1 − μ2) . (15)

The existence result reads as follows:

Theorem 3.1. Assume that μ1 ≤ μ2. Then given u0 ∈ H1
0 (Ω) , u1 ∈ L2(Ω) , f0 ∈ L2 (Ω × (0, 1)) and

T > 0, there exists a unique weak solution (u, z) of the problem (14) on (0, T ) such that

u ∈ C
(
[0, T ],H1

0 (Ω)
) ∩ C1

(
[0, T ], L2(Ω)

)
,

ut ∈ L2
(
0, T ;H1

0 (Ω)
) ∩ L2 ((0, T ) × Ω) .

Proof. We divide the proof of Theorem 3.1 in two steps: the construction of approximations and then
thanks to certain energy estimates, we pass to the limit.

Step 1 : Faedo–Galerkin approximation.

We construct approximations of the solution (u, z) by the Faedo–Galerkin method as follows. For every
n ≥ 1, let Wn = span{w1, . . . , wn}, be a Hilbertian basis of the space H1

0 (Ω).
Now, we define for 1 ≤ j ≤ n the sequence ϕj(ρ, x) as follows:

ϕj(x, 0) = wj (x) .

Then, we may extend ϕj(x, 0) by ϕj(x, ρ) over L2 (Ω × [0, 1]) and denote Vn = span{ϕ1, . . . , ϕn},
We choose two sequences (u0n) and (u1n) in Wn and a sequence (z0n) in Vn such that u0n → u0

strongly in H1
0 (Ω), u1n → u1 strongly in L2(Ω) and z0n → f0 strongly in L2(Ω × (0, 1)).

We define now the approximations:

un(t, x) =
n∑

j=1

gjn(t)wj (x) , and zn(t, x, ρ) =
n∑

j=1

hjn(t)ϕj(x, ρ) (16)
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where (un(t), zn(t)) are solutions to the finite dimensional Cauchy problem (written in normal form):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

uttn(t)wj dx+
∫
Ω

∇un∇wj −
t∫
0

g(t− s)
∫
Ω

∇un(s)∇wj dxds

+
∫
Ω

(μ1unt(t, x) + μ2zn(x, 1, t))wj dx = 0,

zn (x, 0, t) = utn (x, t)
(un(0), utn(0)) = (u0n, u1n)

(17)

and
{∫

Ω

(τznt (x, ρ, t) + znρ (x, ρ, t)ϕj) dx = 0

zn(ρ, 0) = z0n.
(18)

According to the standard theory of ordinary differential equations, the finite dimensional problem (17),
(18) has solution (gjn(t), hjn(t))j=1,n defined on [0, tn). The a priori estimates that follow imply that in
fact tn = T.

Step 2 : Energy estimates.

Multiplying Eq. (17) by g′
jn(t) integrating over (0, t), using integration by parts and Lemma 2.1 we get,

for every n ≥ 1,

1
2

⎡
⎣

⎛
⎝1 −

t∫

0

g (s) ds

⎞
⎠ ‖∇un (t)‖2

2 + ‖utn (t)‖2
2 + (g ◦ ∇un) (t)

⎤
⎦ + μ1

t∫

0

‖utn (s)‖2
2 ds

+μ2

t∫

0

∫

Ω

zn(x, 1, s)utn(s, x) dxds+
1
2

t∫

0

g (s) ‖∇un (s)‖2
2 ds− 1

2

t∫

0

(g′ ◦ ∇un) (s) ds

=
1
2

[
‖∇u0‖2

2 + ‖u1‖2
2

]
. (19)

Let ξ > 0 to be chosen later. Multiplying Eq. (18) by (ξ/τ)h′
jn(t) integrating over (0, t) × (0, 1),

we obtain:

ξ

2

∫

Ω

1∫

0

z2
n(x, ρ, t) dρdx+

ξ

τ

t∫

0

∫

Ω

1∫

0

znρzn(x, ρ, s) dρdxds

=
ξ

2
‖z0n‖2

L2(Ω×(0,1)) . (20)

Now, to handle the last term in the left-hand side of (20), we remark that we have:

t∫

0

∫

Ω

1∫

0

znρzn(x, ρ, s) dρdxds =
1
2

t∫

0

∫

Ω

1∫

0

∂

∂ρ
z2
n(x, ρ, s) dρdxds

=
1
2

t∫

0

∫

Ω

(
z2
n(x, 1, s) − z2

n(x, 0, s)
)
dxds. (21)
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Summing up the identities (19) and (20) and taking into account (21), we get:

En(t) +
(
μ1 − ξ

2τ

) t∫

0

‖utn (s)‖2
2 ds+

ξ

2τ

t∫

0

∫

Ω

z2
n(σ, 1, s) dσ ds

+μ2

t∫

0

∫

Ω

zn(x, 1, s)utn(s, x) dxds

+
1
2

t∫

0

g (s) ‖∇un (s)‖2
2 ds− 1

2

t∫

0

(g′ ◦ ∇un) (s) ds

= En(0) , (22)

where

En(t) =
1
2

⎡
⎣

⎛
⎝1 −

t∫

0

g (s) ds

⎞
⎠ ‖∇un (t)‖2

2 + ‖utn (t)‖2
2 + (g ◦ ∇un) (t)

⎤
⎦ +

ξ

2
‖zn‖2

L2(Ω×(0,1)) . (23)

At this point, we have to distinguish the following two cases:

Case 1: We suppose that μ2 < μ1. Let us choose then ξ that satisfies inequality (15). Using Young’s
inequality, (22) leads to:

En(t) +
(
μ1 − ξ

2τ
− μ2

2

) t∫

0

‖utn(s)‖2
2 ds+

(
ξ

2τ
− μ2

2

) t∫

0

∫

Ω

z2
n(x, 1, s) dxds

+
1
2

t∫

0

g (s) ‖∇un (s)‖2
2 ds− 1

2

t∫

0

(g′ ◦ ∇un) (s) ds ≤ En (0) .

Consequently, using (15), we can find two positive constants c1 and c2 such that:

En(t) + c1

t∫

0

‖utn(s)‖2
2 ds+ c2

t∫

0

∫

Ω

z2
n (x, 1, s) dxds

+
1
2

t∫

0

g (s) ‖∇un (s)‖2
2 ds− 1

2

t∫

0

(g′ ◦ ∇un) (s) ds ≤ En(0) . (24)

Case 2: We suppose that μ2 = μ1 = μ and choose then ξ = τμ. Whereupon, inequality (24) takes the
form

En(t) +
1
2

t∫

0

g (s) ‖∇un (s)‖2
2 ds− 1

2

t∫

0

(g′ ◦ ∇un) (s) ds ≤ En(0). (25)

Now, in both cases and since the sequences (un0)n∈N
, (un1)n∈N

and (z0n)n∈N
converge, and using (G1)

and (G2), we can find a positive constant C independent of n such that

En(t) ≤ C . (26)

Therefore, using the fact that 1 − ∫ t

0
g(s)ds ≥ l, the last estimate (26) together with (23) give us, for all

n ∈ N, tn = T ; we deduce

(un)n∈N
is bounded in L∞(0, T ;H1

0 (Ω)), (27)
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(utn)n∈N
is bounded in L∞(0, T ;L2(Ω)), (28)

and

(zn)n∈N
is bounded in L∞(0, T ;L2 (Ω × (0, 1))) . (29)

Consequently, we may conclude that:

un ⇀ u weak∗ in L∞(0, T ;H1
0 (Ω)),

utn ⇀ ut weak∗ in L∞(0, T ;L2(Ω)),
zn ⇀ z weak∗ in L∞(0, T ;L2 (Ω × (0, 1))) .

From (27), (28) and (29), we have (un)n∈N
is bounded in L∞ (

0, T ;H1
0 (Ω)

)
. Then, (un)n∈N

is bounded in
L2

(
0, T ;H1

0 (Ω)
)
. Since (utn)n∈N

is bounded in L∞ (
0, T ;L2(Ω)

)
, (utn)n∈N

is bounded in L2
(
0, T ;L2(Ω)

)
.

Consequently (un)n∈N
is bounded in H1

(
0, T ;H1(Ω)

)
.

Since the embedding H1
(
0, T ;H1(Ω)

)
↪→ L2

(
0, T ;L2(Ω)

)
is compact, using Aubin–Lions theorem [12],

we can extract a subsequence (uμ)μ∈N
of (un)n∈N

such that

uμ → u strongly in L2
(
0, T ;L2(Ω)

)
.

Therefore,

uμ → u strongly and a.e on (0, T ) × Ω.

The proof now can be completed arguing as in [12, Théorème 3.1] �

4. Asymptotic behavior

In this section, we show, using the energy method and suitable Lyapunov functionals that under the
hypothesis μ2 ≤ μ1, the energy of the solution of problem (1) decreases exponentially as t tends to
infinity. We will discuss two case, the case where μ2 < μ1 and the case μ2 = μ1. We will separate the two
cases since the proofs are slightly different.

4.1. Exponential stability for µ2 < µ1

In this subsection, we will show that under the assumption μ2 < μ1, the solution of problem (1) decays
to the trivial steady state. To achieve our goal, we will use the energy method combined with the choice
of a suitable Lyapunov functional.

For a positive constant ξ satisfying the inequality (15), we define the functional energy of problem
(14) as

E(t) = E(t, z, u) =
1
2

‖ut(t)‖2
2 +

1
2

⎛
⎝1 −

t∫

0

g (s) ds

⎞
⎠ ‖∇u(t)‖2

2

+
1
2

(g ◦ ∇u) (t) +
ξ

2

∫

Ω

1∫

0

z2(x, ρ, t) dρdx. (30)

Our goal now is to prove that the above energy E (t) is a decreasing function along the trajectories.
More precisely, we have the following result:
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Lemma 4.1. Suppose that (G1) and (G2) hold and let (u, z) be a solution of the problem (14). Then, the
energy functional defined by (30) is a nonincreasing function, that is there exists a positive constant C
such that

dE (t)
dt

≤ −C
⎛
⎝

∫

Ω

u2
t (x, t) dx+

∫

Ω

z2 (x, 1, t) dx

⎞
⎠ +

1
2

(g′ ◦ ∇u) (t) − 1
2
g (t) ‖∇u‖2

2

≤ 0, ∀t ≥ 0 (31)

Proof. Multiplying the first equation in (14) by ut, integrating over Ω and using integration by parts, we
get

d
dt

1
2

(
‖ut‖2

2 + ‖∇u‖2
2

)
+ μ1 ‖ut‖2

2 + μ2

∫

Ω

z(x, 1, t)ut(x, t)dx

=

t∫

0

g (t− s)
∫

Ω

∇ut (t) · ∇u (τ) dxdτ. (32)

Now, using Lemma 2.1, the term in the right-hand side of (32) can be rewritten as follows

t∫

0

g (t− s)
∫

Ω

∇ut (t) · ∇u (τ) dxdτ +
1
2
g (t) ‖∇u‖2

2

=
1
2

d
dt

⎡
⎣

t∫

0

g (τ) ‖∇u‖2
2 dτ − (g ◦ ∇u) (t)

⎤
⎦ +

1
2

(g′ ◦ ∇u) (t). (33)

Consequently, equality (32) becomes

d
dt

1
2

⎧⎨
⎩‖ut(t)‖2

2 +

⎛
⎝1 −

t∫

0

g (s) ds

⎞
⎠ ‖∇u(t)‖2

2 + (g ◦ ∇u) (t)

⎫⎬
⎭

= −μ1 ‖ut‖2
2 − μ2

∫

Ω

z(x, 1, t)ut(x, t)dx− 1
2
g (t) ‖∇u‖2

2 +
1
2

(g′ ◦ ∇u) (t). (34)

We multiply the second equation in (14) by ξz and integrate the result over Ω × (0, 1), to obtain:

ξ

τ

∫

Ω

1∫

0

ztz(x, ρ, t) dρdx = − ξ

2τ

∫

Ω

1∫

0

∂

∂ρ
z2(x, ρ, t) dρdx

= − ξ

2τ

∫

Ω

(
z2(x, 1, t) − z2(x, 0, t)

)
dx . (35)

From (34), (35), using the equation (12) and Young’s inequality, we obtain

dE (t)
dt

= −
(
μ1 − ξ

2τ
− μ2

2

)
‖ut‖2

2 −
(
ξ

2τ
− μ2

2

)∫

Ω

z2(x, 1, t)dx

−1
2
g (t) ‖∇u‖2

2 +
1
2

(g′ ◦ ∇u) (t).

Then, using (15) our conclusion holds. �
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Our stability result reads as follows:

Theorem 4.2. Let u be the solution of (1). Assume that μ2 < μ1 and g satisfies (G1) and (G2). Then,
there exist two positive constants K and λ such that the energy of problem (1) satisfies

E (t) ≤ Ke
−λ

t∫
0

ζ(s)ds
, ∀t ≥ 0. (36)

The proof of Theorem 4.2 will be done through several Lemmas. We construct a functional L (t),
equivalent to the energy E(t), satisfying

dL (t)
dt

≤ −ΛL (t), ∀t ≥ 0,

where Λ is a positive constant. In order to construct such functional, let us first define the following

Ψ (t) :=
∫

Ω

utudx. (37)

Then, we have the following estimate.

Lemma 4.3. Let (u, z) be the solution of (14), then for any δ1 > 0, we have

Ψ (t)
dt

≤
(

1 +
μ1

4δ1

)
‖ut‖2

2 −
(
l

2
− δ1C

2
∗ (μ1 + μ2)

)
‖∇u‖2

2

+
1

4δ1

∫

Ω

z2(x, 1, t)dx+
(1 − l)

2
(g ◦ ∇u) (t) . (38)

Proof. Using the first equation in (14), a direct computation leads to the following identity

Ψ′ (t) = ‖ut‖2
2 − ‖∇u‖2

2 +
∫

Ω

∇u (t) .

t∫

0

g (t− s) ∇u (s) dsdx− μ1

∫

Ω

utudx− μ2

∫

Ω

z(x, 1, t)udx. (39)

Now, the third term in the right-hand side of (39) can be estimated as follows:

∫

Ω

∇u (t) .

t∫

0

g (t− s) ∇u (s) dsdx ≤ 1
2

∫

Ω

|∇u (t)|2 dx+
1
2

∫

Ω

⎛
⎝

t∫

0

g (t− s) ∇u (s) ds

⎞
⎠

2

dx

≤ 1
2

∫

Ω

|∇u (t)|2 dx+
1
2

∫

Ω

⎛
⎝

t∫

0

g (t− s) |∇u (s) − ∇u (t)| + |∇u (t)| ds
⎞
⎠

2

dx.

Using the estimate (10) in Lemma 2.2, Young’s inequality and the fact that
∫ t

0
g(s)ds ≤ ∫ ∞

0
g(s)ds = 1−l,

We get for any η > 0, (see relation (20) in [14])

∫

Ω

⎛
⎝

t∫

0

g (t− s) |∇u (s) − ∇u (t)| + |∇u (t)| ds
⎞
⎠

2

dx

≤ (1 + η)
∫

Ω

⎛
⎝

t∫

0

g (t− s) |∇u (t)| ds
⎞
⎠

2

dx+
(

1 +
1
η

) ∫

Ω

⎛
⎝

t∫

0

g (t− s) |∇u (s) − ∇u (t)| ds
⎞
⎠

2

dx

≤
(

1 +
1
η

)
(1 − l) (g ◦ ∇u) (t) + (1 + η) (1 − l)2

∫

Ω

|∇u (t)|2 dx. (40)
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Consequently, we arrive at

∫

Ω

∇u (t) .

t∫

0

g (t−s) ∇u (s) dsdx ≤ 1
2

(
1+(1+η) (1−l)2

) ∫

Ω

|∇u (t)|2 dx

+
1
2

(
1+

1
η

)
(1−l) (g ◦ ∇u) (t) . (41)

Next, Young’s inequality and Poincaré’s inequality imply that, for any δ1 > 0
∫

Ω

utudx ≤ δ1C
2
∗

∫

Ω

|∇u (t)|2 dx+
1

4δ1

∫

Ω

u2
t dx, (42)

and ∫

Ω

z(x, 1, t)udx ≤ δ1C
2
∗

∫

Ω

|∇u (t)|2 dx+
1

4δ1

∫

Ω

z2(x, 1, t)dx. (43)

By inserting the estimates (41), (42) and (43) into (39) and choosing η = l/ (1 − l), then (38) holds. �

Now, let us introduce the following functional

I (t) :=
∫

Ω

1∫

0

e−2τρz2(x, ρ, t)dρdx. (44)

Differentiating (44) with respect to t and using the second equation in (14), we have

d
dt

⎛
⎝

∫

Ω

1∫

0

e−2τρz2(x, ρ, t)dρdx

⎞
⎠ = −1

τ

∫

Ω

1∫

0

e−2τρzzρ(x, ρ, t)dρdx

= −
∫

Ω

1∫

0

ρe−2τρz2(x, ρ, t)dρdx− 1
2τ

∫

Ω

1∫

0

∂

∂ρ

(
e−2τρz2(x, ρ, t)

)
dρdx.

Then, using an integration by parts, the above formula leads to

d
dt
I (t) ≤ −ρI (t) +

1
2τ

∫

Ω

u2
t (x, t)dx− c

2τ

∫

Ω

z2(x, 1, t)dx (45)

where c is a positive constant.

Proof of Theorem 4.2. Let us define the Lyapunov functional

L (t) := E (t) + εΨ(t) + εI(t),

where ε is a positive real number which will be chosen later. It is straightforward to see that for ε > 0,L (t)
and E(t) are equivalent in the sense that there exist two positive constants β1 and β2 depending on ε
such that for all t ≥ 0

β1E(t) ≤ L (t) ≤ β2E(t) . (46)
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Using the estimates (31), (38) and (45), we may write

d
dt

L (t) ≤ −
(
C − ε

(
1 +

μ1

4δ1

)
− ε

2τ

)
‖ut‖2

2 − ε

(
l

2
− δ1C

2
∗ (μ1 + μ2)

)
‖∇u‖2

2

+
(1 − l)

2
(g ◦ ∇u) (t) −

(
C +

εc

2τ
− ε

4δ1

)∫

Ω

z2(x, 1, t)dx

+
1
2

(g′ ◦ ∇u) (t) − 1
2
g (t) ‖∇u‖2

2 − ερI (t) .

By choosing δ1 and ε small enough, we can find two positive constants γ1 and γ2 such that

L ′ (t) ≤ −γ1E (t) + γ2 (g ◦ ∇u) (t) , ∀t ≥ 0. (47)

By multiplying (47) by ζ (t), we arrive at

ζ (t) L ′ (t) ≤ −γ1ζ (t)E (t) + γ2ζ (t) (g ◦ ∇u) (t) , ∀t ≥ 0.

Recalling (G2) and using (31), we get

ζ (t) L ′ (t) ≤ −γ1ζ (t)E (t) − γ2 (g′ ◦ ∇u) (t)
≤ −γ1ζ (t)E (t) − 2γ2E

′ (t) , ∀t ≥ 0.

That is

(ζ (t)L (t) + 2γ2E (t))′ − ζ ′ (t) L (t) ≤ −γ1ζ (t)E (t) , ∀t ≥ 0.

Using the fact that ζ ′ (t) ≤ 0, ∀ t ≥ 0 and letting

F (t) = ζ (t) L (t) + 2γ2E (t) ∼ E (t) (48)

we obtain

F ′ (t) ≤ −γ1ζ (t)E (t) ≤ −γ3ζ (t) F (t) , ∀t ≥ 0 (49)

A simple integration of (49) over (0, t) leads to

F (t) ≤ F (0) e
−γ3

t∫
0

ζ(s)ds
, ∀t ≥ 0. (50)

A combination of (48) and (50) leads to (36). The proof of Theorem 4.2 is thus completed. �

4.2. Exponential stability for µ1 = µ2

In this subsection, we assume that μ1 = μ2 = μ. As we will see, we cannot directly perform the same proof
as for the case where μ2 < μ1. We point out here that in the absence of the viscoelastic damping, that is
for g = 0, Nicaise and Pignotti have proved recently in [17] that for μ1 = μ2 some instabilities may occur.
Here and due to the presence of the viscoelastic term, we show that the solution is still exponentially
stable even for μ1 = μ2.

Theorem 4.4. Let u be the solution of (1). Assume that μ1 = μ2 and g satisfies (G1) and (G2). Then for
any t0 > 0, there exist two positive constants K̂ and λ̂ such that the solution of problem (1) satisfies

E (t) ≤ K̂e
−λ̂

t∫
t0

ζ(s)ds

, ∀t ≥ t0. (51)

If μ1 = μ2 = μ, then we can choose ξ = τμ in (15) and Lemma 4.1 takes the form
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Lemma 4.5. Suppose that (G1) and (G2) hold and let (u, z) be a solution of the problem (14). Then, the
energy functional defined by (30) is a nonincreasing function and it satisfies

dE (t)
dt

≤ 1
2

(g′ ◦ ∇u) (t) − 1
2
g (t) ‖∇u‖2

2 ≤ 0, ∀t ≥ 0. (52)

The proof of Lemma 4.5 is an immediate consequence of Lemma 4.1, by choosing ξ = τμ.
Now, let us introduce the functional:

χ (t) = −
∫

Ω

ut

t∫

0

g (t− s) (u (t) − u (s)) dsdx. (53)

We start with

Lemma 4.6. Let (u, z) be the solution of (14), then we have the estimate

dχ (t)
dt

≤
(
δ + 2δ (1 − l)2

)
‖∇u‖2

2 +

⎛
⎝δ2 (1 + μ) −

t∫

0

g (s) ds

⎞
⎠ ‖ut‖2

2

+
(

1 − l

2δ
+ 2δ (1 − l) +

μC2
∗

4δ2
+
μC2

∗
4δ4

)
(g ◦ ∇u) (t)

+μδ4
∫

Ω

z2(x, 1, t)dx− g (0)
4δ2

C2
∗ (g′ ◦ ∇u) (t) , (54)

where ε2, δ, δ2 and δ4 are arbitrary positive constants.

Proof. Differentiate (53) with respect to t, to get using the first equation in (14)

χ′ (t) =
∫

Ω

∇u (t) .

⎛
⎝

t∫

0

g (t− s) (∇u (t) − ∇u (s)) ds

⎞
⎠ dx

−
∫

Ω

⎛
⎝

t∫

0

g (t− s) ∇u (s) ds

⎞
⎠ .

⎛
⎝

t∫

0

g (t− s) (∇u (t) − ∇u (s)) ds

⎞
⎠ dx

−
∫

Ω

ut

t∫

0

g′ (t− s) (u (t) − u (s)) dsdx−
⎛
⎝

t∫

0

g (s) ds

⎞
⎠ ‖ut‖2

2

−μ1

∫

Ω

ut

t∫

0

g (t− s) (u (t) − u (s)) dsdx− μ2

∫

Ω

z(x, 1, t)

t∫

0

g (t− s) (u (t) − u (s)) dsdx. (55)

Similarly as in (38), we estimate the right-hand side terms of (55) as follows:
First, using Young’s inequality and (10), we obtain for any δ > 0,

∣∣∣∣∣∣
∫

Ω

∇u (t) .

⎛
⎝

t∫

0

g (t− τ) (∇u (t) − ∇u (τ)) dτ

⎞
⎠ dx

∣∣∣∣∣∣
≤ δ ‖∇u‖2

2 +
1 − l

4δ
(g ◦ ∇u) (t) . (56)
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Also, the second term can be estimated as follows (see [14])

∫

Ω

⎛
⎝

t∫

0

g (t− τ) ∇u (τ) dτ

⎞
⎠ .

⎛
⎝

t∫

0

g (t− τ) (∇u (t) − ∇u (τ)) dτ

⎞
⎠ dx

≤
(

2δ +
1
4δ

)
(1 − l) (g ◦ ∇u) (t) + 2δ (1 − l)2 ‖∇u‖2

2 . (57)

Concerning the third term, we have for δ2 > 0

∫

Ω

ut

t∫

0

g′ (t− τ) (u (t) − u (τ)) dτdx ≤ δ2 ‖ut‖2
2 − g (0)

4δ2
C2

∗ (g′ ◦ ∇u) (t) . (58)

The fifth term can be estimated as follows:
∫

Ω

ut

t∫

0

g (t− s) (u (t) − u (s)) dsdx ≤ δ2 ‖ut‖2
2 +

C2
∗

4δ2
(g ◦ ∇u) (t) . (59)

For the sixth term, we have

∫

Ω

z(x, 1, t)

t∫

0

g (t− s) (u (t) − u (s)) dsdx ≤ δ4

∫

Ω

z2(x, 1, t)dx+
C2

∗
4δ4

(g ◦ ∇u) (t) , δ4 > 0. (60)

Inserting the above estimates (56)–(60) into (55), the assertion of the Lemma 4.6 is established. �

Proof of Theorem 4.4. As in the proof of Theorem 4.2, we define the following Lyapunov function L̂ as:

L̂ (t) := NE(t) + ε1Ψ(t) + χ(t) + ε3I(t) (61)

where N, ε1 and ε3 are positive real numbers which will be chosen later.
Since the function g is positive, continuous and g (0) > 0, then for any t ≥ t0 > 0, we have

t∫

0

g (s) ds ≥
t0∫

0

g (s) ds = g0.

Now, using (38), (52) and (54), we get

dL̂ (t)
dt

≤
{
ε1

(
1 +

μ

4δ1

)
+ (δ2 (1 + μ) − g0) +

ε3
2τ

}
‖ut‖2

2 − ε3I (t)

+
{
δ
(
1 + 2 (1 − l)2

)
− ε1

(
l

2
− 2μδ1C2

∗

)}
‖∇u‖2

2

+
(
N

2
− g (0)

4δ2
C2

∗

)
(g′ ◦ ∇u) (t) +

(
ε1
4δ1

+ μδ4 − ε3c

2τ

) ∫

Ω

z2(x, 1, t)dx

+
{
ε1

(1 − l)
2

+
(

1 − l

2δ
+ 2δ (1 − l) +

μC2
∗

4δ2
+
μC2

∗
4δ4

)}
(g ◦ ∇u) (t) . (62)

Now, we have to choose our constants in (62) very carefully.
First, let us take δ1 small enough such that

2μδ1C2
∗ ≤ l

4
.
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Then, we select δ2 small enough so that

δ2 (1 + μ) ≤ g0
2
.

After that, we pick ε3 so small that
ε3
2τ

≤ g0
8
.

Once ε3 is fixed, then we choose δ4 small so that

μδ4 ≤ ε3c

4τ
.

Further, we take ε1 small such that

ε1 < min
(

1/
(

1 +
μ

4δ1

)
g0
8
,
δ1ε3c

2τ

)
.

Also, let us take δ small so that

δ
(
1 + 2 (1 − l)2

)
<
ε1l

8
.

Finally, we choose N large enough such that

N

4
>
g (0)
4δ2

C2
∗ .

Consequently, there exist two positive constants γ̂1 and γ̂2 such that

dL̂ (t)
dt

≤ −γ̂1E(t) + γ̂2 (g ◦ ∇u) (t) , ∀t ≥ t0. (63)

The remaining part of the proof of inequality (51) can be finished, following the same steps as in the
proof of Theorem 4.2; we omit the details.

The last step in the proof of Theorem 4.4 is to show that L̂ (t) and E(t) are equivalent. So, we have
the following lemma.

Lemma 4.7. There exist two positive constants β̂1 and β̂2 depending on N, ε1 and ε3, such that

β̂1E (t) ≤ L̂ (t) ≤ β̂2E (t) , ∀t ≥ 0. (64)

Proof. We consider the functional

H(t) = ε1Ψ(t) + χ(t) + ε3I(t)

and show that

|H (t)| ≤ CE(t), C > 0. (65)

Using Young’s inequality, Poincaré’s inequality and Lemma 2.2, we obtain

|χ (t)| =

∣∣∣∣∣∣
∫

Ω

ut

t∫

0

g (t− s) (u (t) − u (s)) dsdx

∣∣∣∣∣∣

≤ 1
2

∫

Ω

u2
t dx+

1
2

∫

Ω

⎛
⎝

t∫

0

g (t− s) (u (t) − u (s)) ds

⎞
⎠

2

dx

≤ 1
2

∫

Ω

u2
t dx+

1
2

(1 − l)C2
∗ (g ◦ ∇u) (t) . (66)
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Similarly, we have

|ε1Ψ(t) + ε3I(t)| =

∣∣∣∣∣∣ε1
∫

Ω

utudx

∣∣∣∣∣∣ +

∣∣∣∣∣∣ε3
∫

Ω

1∫

0

e−2τρz2(x, ρ, t)dρdx

∣∣∣∣∣∣

≤ ε1
2

∫

Ω

u2
t dx+

ε1
2

∫

Ω

|∇u|2 dx+ ε3ĉ

∫

Ω

1∫

0

z2(x, ρ, t)dρdx. (67)

Using 1− ∫ t

0
g (s) ds ≥ l, (30), (66) and (67), we get (65) for some positive constant C. Now, it is obvious

that from (61), (65) and choosing N large enough, our result is proved. �

5. Examples and concluding remarks

In this section, we give some examples to illustrate our results and we conclude with few remarks, pointing
out some open problems and future directions worth pursuing.

Example 5.1. Let

g(t) = a1e
−b(1+t)ν

, with a, b, ν > 0,

It is then clear that (11) holds for ζ(t) = bν(1 + t)min(0,ν−1). Consequently, applying (36), we obtain the
following exponential decay

E(t) ≤ Ke−λb(1+t)min(1,ν)
.

Example 5.2. If

g(t) = ae−b[ln(1+t)]ν with a, b > 0, ν > 1.

Then for

ζ(t) =
bν (ln (1 + t))ν−1

1 + t
,

the inequality (36) gives

E(t) ≤ Ke−λb(ln(1+t))ν

.

Example 5.3. If

g (t) =
a

(2 + t)ν (ln (2 + t))b
,

where

a > 0 and

⎧⎨
⎩
ν > 1 and b ∈ R

or
ν = 1 and b > 1

.

Then for

ζ(t) =
ν (ln (2 + t)) + b

(2 + t) (ln (2 + t))b
,

we obtain from (36)

E(t) ≤ K[
(2 + t)ν1 (ln (2 + t))b

]λ
.
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Remark 5.4. The above examples clearly illustrate the effect of the behavior of the function g on the decay
rate of the total energy of our problem. For example, the exponential decay of the relaxation function g is
a sufficient condition to the exponential decay of the solution, whereas for g = 0 and μ1 > μ2, the solution
of problem (1) decays exponentially. See [17] for more details.

5.1. Open problems

There are many interesting questions to be investigated in connection with the problem we have addressed
here. We mention here some of them.

• It is clear that the presence of the linear damping term μ1ut in the first equation of problem (1)
plays a decisive role in our proofs. Thus, the problem of whether the stability properties we have
proved here are preserved when μ1 = 0 is open.

• As we have mentioned above, for the wave equation, some instability results have been shown in
[17] in the case μ2 ≥ μ1. It would be interesting to study the case μ2 > μ1 in our problem (1).

• It would be interesting to investigate the viscoelastic wave equation with a time delay in the bound-
ary condition and a velocity term in the equation. Concerning the wave equation, Datko et al [9]
treated the one-dimensional problem⎧⎨

⎩
utt(x, t) − uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, 0 < x < 1, t > 0,
u(0, t) = 0, t > 0,
ux(1, t) = −ku(1, t− τ), t > 0,

(68)

and show that if the positive constants a and k satisfy

k
e2a + 1
e2a − 1

< 1,

then the delayed feedback system (68) is stable for all sufficiently small delays.
• We have considered here general decay of the relaxation function g, but the best decay rate that we

obtained is exponential. What happens when the function g decays faster than exponentially?
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