
Z. Angew. Math. Phys. 62 (2011), 1101–1116
c© 2011 Springer Basel AG
0044-2275/11/061101-16
published online June 11, 2011
DOI 10.1007/s00033-011-0134-3

Zeitschrift für angewandte
Mathematik und Physik ZAMP

On the uniform stress state inside an inclusion of arbitrary shape in a three-phase
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Abstract. The stress field inside a two-dimensional arbitrary-shape elastic inclusion bonded through an interphase layer to
an infinite elastic matrix subjected to uniform stresses at infinity is analytically studied using the complex variable method
in elasticity. Both in-plane and anti-plane shear loading cases are considered. It is shown that the stress field within the
inclusion can be uniform and hydrostatic under remote constant in-plane stresses and can be uniform under remote constant
anti-plane shear stresses. Both of these uniform stress states can be achieved when the shape of the inclusion, the elastic
properties of each phase, and the thickness of the interphase layer are properly designed. Possible non-elliptical shapes of
inclusions with uniform hydrostatic stresses induced by in-plane loading are identified and divided into three groups. For
each group, two conditions that ensure a uniform hydrostatic stress state are obtained. One condition relates the thickness of
the interphase layer to elastic properties of the composite phases, while the other links the remote stresses to geometrical and
material parameters of the three-phase composite. Similar conditions are analytically obtained for enabling a uniform stress
state inside an arbitrary-shape inclusion in a three-phase composite loaded by remote uniform anti-plane shear stresses.
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1. Introduction

It is known that constant stresses at infinity will induce a uniform stress state inside an elastic inclusion
perfectly bonded to an infinite elastic matrix when the inclusion has an elliptical or ellipsoidal shape
and classical elasticity is used (e.g., [5,12,13,15,28]). However, the stress field inside an inclusion of non-
elliptical or non-ellipsoidal shape is generally non-uniform. The Faber polynomials and Laurent series
can be employed to determine the non-uniform stress field within a two-dimensional (2-D) inclusion of
irregular shape (e.g., [7,14,23,28]).

Can the stress field in a non-elliptical or non-ellipsoidal inclusion be uniform when the inclusion/matrix
interface is imperfect or when an interphase layer of finite thickness exists between the inclusion and the
matrix? Antipov and Schiavone [1] have shown that the stress field within a non-elliptical inclusion imper-
fectly bonded to an infinite matrix with a spring–layer-type interface can still be uniform when the matrix
is subjected to remote constant anti-plane shear stresses and when the imperfect interface is judiciously
designed.

Ru [17] has demonstrated that a uniform hydrostatic stress state can be achieved inside an elliptical
inclusion that is perfectly bonded to an infinite elastic matrix (loaded by uniform far-field stresses)
through an interphase layer of finite thickness. Such uniform hydrostatic stress states are important for
designing harmonic shapes, which is an inverse elasticity problem (e.g., [2,4,17,24,27]).

However, no work has been reported on how to achieve uniform hydrostatic stresses inside a non-
elliptical inclusion when the matrix is subjected to remote in-plane stresses. This motivated the current
study.
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Fig. 1. Three-phase composite with an inclusion of arbitrary shape

In the present paper, the existence of a uniform hydrostatic stress state inside an arbitrary-shape (non-
elliptical) inclusion bonded through an interphase layer to an infinite elastic matrix subjected to remote
uniform in-plane stresses is shown. Possible non-elliptical inclusion shapes that enable such uniform
hydrostatic stress states are identified and divided into three groups. For each group, two conditions are
analytically obtained. One links the thickness of the interphase layer to elastic constants of the composite,
while the other establishes a relation among the remote applied stresses, geometrical parameters and elas-
tic properties of the three-phase composite. By following similar procedures, possible inclusion shapes and
the related conditions for generating uniform stress fields inside inclusions under remote anti-plane shear
stresses are also identified.

2. Formulation

Consider an arbitrary-shape elastic inclusion bonded to an infinite elastic matrix through an interphase
layer, as shown in Fig. 1. Let S1, S2, and S3 denote, respectively, the inclusion, the interphase layer,
and the matrix. These three phases are perfectly bonded to each other at two interfaces L1 and L2.
The matrix S3 is subjected to uniform (constant) in-plane stresses σ∞

xx, σ
∞
yy and σ∞

xy at infinity. Note
that the subscript j or the superscript (j) will be used to indicate relevant quantities in region (phase)
Sj in the sequel.

For plane deformations of an isotropic, linearly elastic material, the in-plane displacements u and v,
stresses σxx, σyy and σxy, and resultant forces fx and fy of the tractions acting on an arbitrary boundary
segment AB can be expressed in terms of two analytic functions φ(z) and ψ(z) of the complex variable
z = x+ iy as (e.g., [8,10,11,16,20])

2μ(u+ iv) = κφ(z) − zφ′(z) − ψ(z),
(1)

fx + ify = −i[φ(z) + zφ′(z) + ψ(z)]BA ,

σxx + σyy = 2[φ′(z) + φ′(z)],
(2)

σyy − σxx + 2iσxy = 2[z̄φ′′(z) + ψ′(z)],
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where κ = (3 − ν)/(1 + ν) for plane stress deformations or κ = 3 − 4ν for plane strain deformations
(with the latter assumed in the current study), μ and ν (with μ > 0 and 0 ≤ ν ≤ 0.5) are, respectively,
the shear modulus and Poisson’s ratio, and i is the usual imaginary number with i2 = −1. Also, the
overhead bar represents the conjugate, and the prime denotes the derivative with respect to z (e.g.,
φ′(z) = dφ/dz, φ′′(z) = d2φ/dz2) here and throughout the paper.

2.1. Uniform hydrostatic stress state under in-plane loading

Consider the conformal mapping function (e.g., [6,21]):

z = ω(ξ) = R

(
ξ +

N∑
n=1

an

ξn

)
, ξ = ω−1(z), (3)

where ω is the transformation (or mapping) function from a complex variable ξ in the ξ-plane to the
complex variable z = x+ iy in the physical z-plane, R is a real scaling constant, and an(n = 1, 2, . . ., N)
are complex constants. This mapping function can conformally map the domain S2 ∪ S3 in the z-plane
onto the domain |ξ| ≥ 1 in the ξ-plane. That is, the exterior of the inner interface curve L1 in the z-plane
is mapped onto the exterior of the unit circle |ξ| = 1 in the ξ-plane (see Fig. 2), with L1 mapped to
|ξ| = 1. Because the mapping function ω(ξ) in Eq. (3) is conformal (and thus one-to-one) for |ξ| ≥ 1, one
can design the thickness of the interphase layer S2 enclosed by L1 and L2 in the z-plane such that the
outer interface curve L2 is mapped to |ξ| = ρ− 1

2 , where ρ (with 0 < ρ < 1) is a parameter measuring the
relative thickness of S2 in the physical plane. Clearly, |ξ| = ρ− 1

2 (corresponding to L2) is a circle co-axial
with the smaller unit circle |ξ| = 1 (corresponding to L1) in the ξ-plane (see Fig. 2). Several variants of the
mapping function given in Eq. (3) have been used to study three-phase inclusion problems. For example,
Ru and his co-workers [17,19] have investigated three-phase elliptical inclusion problems through using
the mapping function z = ω(ξ) = R(ξ + 1

ξ ), which is a special case of Eq. (3) with only the first two terms
included, to map two confocal elliptical interfaces in the z-plane onto two co-axial circles in the ξ-plane.
Very recently, Lu and Gao [14] have analyzed a three-phase coated inclusion problem by employing the
mapping function of the same form as that given in Eq. (3) to map two closed, arbitrary-shape contours
(as two surfaces of a coating of an inclusion) in the z-plane onto two concentric circles in the ξ-plane.
Their analysis is based on the use of the Faber series.

With the use of Eq. (3), the physical regions S2 and S3 are mapped onto the circular regions 1 < |ξ| <
ρ− 1

2 and |ξ| > ρ− 1
2 in the ξ-plane, respectively. To ensure conformal mapping, it is required that ω′(ξ) �= 0

for any ξ in the domain |ξ| > 1. For simplicity, the following notation will be used interchangeably:

φi(z) = φi(ξ), ψi(z) = ψi(ξ) (i = 1, 2, 3). (4)

In the ξ-plane, the traction and displacement continuities on the two interfaces of the three-phase
composite can be expressed as

φ2(ξ) + ω(ξ)φ′
2(ξ)

ω′(ξ)
+ ψ2(ξ) = φ1(ξ) + ω(ξ)φ′

1(ξ)

ω′(ξ)
+ ψ1(ξ),

κ2φ2(ξ) − ω(ξ)φ′
2(ξ)

ω′(ξ)
− ψ2(ξ) = κ1

Γ1
φ1(ξ) − 1

Γ1
ω(ξ)φ′

1(ξ)

ω′(ξ)
− 1

Γ1
ψ1(ξ)

⎫⎬
⎭ on |ξ| = 1, (5)

φ3(ξ) + ω(ξ)φ′
3(ξ)

ω′(ξ)
+ ψ3(ξ) = φ2(ξ) + ω(ξ)φ′

2(ξ)

ω′(ξ)
+ ψ2(ξ),

κ3φ3(ξ) − ω(ξ)φ′
3(ξ)

ω′(ξ)
− ψ3(ξ) = Γ3κ2φ2(ξ) − Γ3ω(ξ)φ′

2(ξ)

ω′(ξ)
− Γ3ψ2(ξ)

⎫⎬
⎭ on |ξ| = ρ− 1

2 , (6)

where Γ1 ≡ μ1/μ2 and Γ3 ≡ μ3/μ2, as defined, are the shear modulus ratios. In addition, the boundary
conditions of uniform applied stresses at infinity dictate that

φ3(ξ) ∼= ARξ +O(1), ψ3(ξ) ∼= BRξ +O(1) as |ξ| → ∞, (7a,b)
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Fig. 2. Three-phase composite in the ξ-plane

where the constants A and B are determined from the remote constant stresses as

A =
σ∞

xx + σ∞
yy

4
, B =

σ∞
yy − σ∞

xx + 2iσ∞
xy

2
, (8)

assuming that there is no remote rigid-body rotation associated with the applied stresses.
Note that in reaching Eqs. (5) and (6) use has been made of Eqs. (1) and (4), and in obtaining Eqs.

(7) and (8) use has been made of Eqs. (2) and (4). Also, “O(1)” in Eq. (7) is the usual big-Oh notation
in asymptotic analysis, representing a constant.

For the stresses inside the inclusion S1 to be uniform and hydrostatic, it follows from Eq. (2) that the
two analytic functions φ1(z) and ψ1(z) can be taken to be

φ1(z) =
X

R
z, ψ1(z) = 0, (9)

where X is a real constant to be determined.
According to the analytic continuation method in the complex variable theory (e.g., [22]), Eq. (5)

indicates that the two analytic functions φ2(ξ) and ψ2(ξ) in the region 1 ≤ |ξ| ≤ ρ− 1
2 can be expressed as

φ2(ξ) =
Γ1 + κ1

Γ1(κ2 + 1)
φ1(ξ) +

Γ1 − 1
Γ1(κ2 + 1)

[
ω(ξ)
ω̄′(1/ξ)

φ̄′
1(1/ξ) + ψ̄1(1/ξ)

] (
1 ≤ |ξ| ≤ ρ− 1

2

)
, (10)

ψ2(ξ) =
κ1 + 1
1 − Γ1

φ̄1(1/ξ) − Γ1κ2 + 1
1 − Γ1

φ̄2(1/ξ) − ω̄(1/ξ)
ω′(ξ)

φ′
2(ξ)

(
1 ≤ |ξ| ≤ ρ− 1

2

)
. (11)

Using Eqs. (10) and (11) in Eq. (6) results in the following two conditions on the interface |ξ| = ρ− 1
2 :

φ3(ξ) =
Γ3κ2 + 1
κ3 + 1

φ2(ξ) − (1 − Γ3)(Γ1κ2 + 1)
(1 − Γ1)(κ3 + 1)

φ2(ρξ)

+
(1 − Γ3)(κ1 + 1)
(1 − Γ1)(κ3 + 1)

φ1(ρξ) +
1 − Γ3

κ3 + 1
ω(ξ) − ω(ρξ)

ω̄′
(

1
ρξ

) φ̄′
2

(
1
ρξ

)
on |ξ| = ρ− 1

2 ,

(12)
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ω̄

(
1
ρξ

)
φ′

3(ξ) + ω′(ξ)ψ3(ξ) =
κ3 − Γ3κ2

κ3 + 1
ω′(ξ)φ̄2

(
1
ρξ

)
+

(κ3 + Γ3)(κ1 + 1)
(1 − Γ1)(κ3 + 1)

ω′(ξ)φ̄1

(
1
ξ

)

− (κ3 + Γ3)(Γ1κ2 + 1)
(1 − Γ1)(κ3 + 1)

ω′(ξ)φ̄2

(
1
ξ

)
+
κ3 + Γ3

κ3 + 1

[
ω̄

(
1
ρξ

)
− ω̄

(
1
ξ

)]
φ′

2(ξ)

on |ξ| = ρ− 1
2 . (13)

It can be shown that φ3(ξ) and ψ3(ξ) to be obtained from Eqs. (12) and (13) will be analytic in the
region |ξ| > ρ− 1

2 and satisfy the asymptotic conditions in Eqs. (7a,b) when

φ2(ξ) = λω(ξ)
(
1 ≤ |ξ| ≤ ρ− 1

2

)
, (14)

where λ is a complex constant.
It should be mentioned that Eqs. (9) and (14) hold for the general case with Γ1 �= 1 and Γ3 �= 1. The

special cases with Γ1 = 1 and/or Γ3 = 1 are separately discussed below.
Using Eqs. (9) and (3) in Eqs. (10) and (11) then yields

φ2(ξ) =
X(2Γ1 + κ1 − 1)

Γ1(κ2 + 1)

(
ξ +

N∑
n=1

an

ξn

)
, ψ2(ξ) =

2X [Γ1(κ2 − 1) + 1 − κ1]
Γ1(κ2 + 1)

(
1
ξ

+
N∑

n=1

ānξ
n

)
(15)

for 1 < |ξ| < ρ− 1
2 . Substituting Eqs. (9) and (15) into Eqs. (12) and (13) and then using the analytic

continuation method will lead to, with the help of Eq. (3),

φ3(ξ) =
X(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2]

Γ1(κ2 + 1)(κ3 + 1)

(
ξ +

N∑
n=1

an

ξn

)

+
2X(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

Γ1(κ2 + 1)(κ3 + 1)

(
ρξ +

N∑
n=1

an

ρnξn

)
,

ψ3(ξ) =
2X(2Γ1 + κ1 − 1) [Γ3(1 − κ2) + κ3 − 1]

Γ1(κ2 + 1)(κ3 + 1)

(
1
ρξ

+
N∑

n=1

ānρ
nξn

)

+
2X(Γ3 + κ3) [Γ1(κ2 − 1) + 1 − κ1]

Γ1(κ2 + 1)(κ3 + 1)

(
1
ξ

+
N∑

n=1

ānξ
n

)

−
2X(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

(
1
ρξ +

∑N
n=1 ānρ

nξn
)(

ρξ −∑N
n=1

nan

ρnξn

)
Γ1(κ2 + 1)(κ3 + 1)

(
ξ −∑N

n=1
nan

ξn

) (16)

for |ξ| > ρ− 1
2 .

Clearly, φ3(ξ) given in Eq. (16) satisfies the asymptotic conditions in Eq. (7a). For ψ3(ξ) in Eq. (16)
to satisfy Eq. (7b), it has been found that the conformal mapping function ω(ξ) listed in Eq. (3) can take
one of the following forms:
(a) N = 2:

z = ω(ξ) = R

(
ξ +

a1

ξ
+
a2

ξ2

)
, (17)

which was suggested in [24] for the design of harmonic shapes under non-uniform loading. As an
example of this mapping function, Fig. 1 is drawn by taking a1 = 0.2, a2 = 0.1i and ρ = 1/1.69.

(b) N = 3 with a2 = 0:

z = ω(ξ) = R

(
ξ +

a1

ξ
+
a3

ξ3

)
, (18)
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which can be employed to approximate a rectangle (centered at origin with its sides parallel to the
coordinate axes) (e.g., [18,25]) by taking a1 = (P + P̄ )/2 and a3 = (P − P̄ )2/24, with P = e2ikπ

where k is the aspect ratio of the rectangle.
(c) N ≥ 4 with a1 = a2 = · · · = aN−1 = 0:

z = ω(ξ) = R

(
ξ +

aN

ξN

)
(N ≥ 4), (19)

which can be adopted to describe a hypotrochoid by taking 0 ≤ aN ≤ 1/N (e.g., [6,16]).

These three cases will be discussed in detail next.
Case (a) : N = 2

Using Eqs. (16) and (7a,b), along with Eqs. (17) and (3) for the conformal mapping function z = ω(ξ),
gives, after comparing the coefficients of ξ and ξ2,

AR =
X {(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2] + 2ρ(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]}

Γ1(κ2 + 1)(κ3 + 1)
,

BR =
2ā1X

{[
Γ3 + κ3 + ρ2(Γ3 − 1)

]
[Γ1(κ2 − 1) + 1 − κ1] − ρ(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 1 − κ3]

}
Γ1(κ2 + 1)(κ3 + 1)

,

(20a–c)
ρ2(2Γ1+κ1−1) [Γ3(κ2 − 1) + 1 − κ3]−

[
Γ3+κ3+ρ3(Γ3−1)

]
[Γ1(κ2−1)+1−κ1]=0.

Solving Eq. (20c), which is a cubic equation in ρ, yields the values of ρ for given material properties.
With ρ determined, Eqs. (20a,b) can then be solved to obtain

X =
RΓ1(κ2 + 1)(κ3 + 1)(σ∞

xx + σ∞
yy)

4(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2] + 8ρ(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]
,

ā1f(ρ) =
σ∞

yy − σ∞
xx + 2iσ∞

xy

σ∞
xx + σ∞

yy

,

(21a,b)

where

f(ρ) ≡ [Γ3 + κ3 + ρ2(Γ3 − 1)] [Γ1(κ2 − 1) + 1 − κ1] − ρ(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 1 − κ3]
(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2] + 2ρ(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

. (22)

The other parameter a2 involved in the conformal mapping function given in Eq. (17) can be chosen
arbitrarily provided that it satisfies the conformal mapping requirement of ω′(ξ) �= 0 (i.e., ξ3−a1ξ−2a2 �=
0 from Eq. (17)) for |ξ| > 1. The case with a1 being real and a2 being imaginary was discussed in [24].
It should also be mentioned that for the three-phase elliptical inclusion problem the parameter ρ can be
chosen arbitrarily [17], while for the current three-phase arbitrary-shape inclusion problem ρ has to be
determined from Eq. (20c).
Case (b) : N = 3 with a2 = 0

Using Eqs. (16) and (7a,b), along with Eqs. (18) and (3) for the conformal mapping function z = ω(ξ),
gives, after comparing the coefficients of ξ and ξ3,

AR =
X {(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2] + 2ρ(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]}

Γ1(κ2 + 1)(κ3 + 1)
,

BR =
2X
({

ā1(Γ3 + κ3) + ρ2(Γ3 − 1)
[
ā1 − a1ā3(1 − ρ2)

]}
[Γ1(κ2 − 1) + 1 − κ1]

−ā1ρ(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 1 − κ3]

)
Γ1(κ2 + 1)(κ3 + 1)

, (23a–c)

ρ3(2Γ1+κ1−1) [Γ3(κ2 − 1)+1−κ3]−
[
Γ3+κ3+ρ4(Γ3 − 1)

]
[Γ1(κ2 − 1)+1−κ1] = 0.
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Fig. 3. Two interfaces L1 and L2 described by the conformal mapping function z = R
(
ξ + a1

ξ
+ a3

ξ3

)
with a1 = 0.2,

a3 = −1/3 and ρ = 1/1.69

Solving Eq. (23c), a quartic equation in ρ, yields the values of ρ for given material properties. With ρ
determined, Eqs. (23a,b) then give

X =
RΓ1(κ2 + 1)(κ3 + 1)(σ∞

xx + σ∞
yy)

4(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2] + 8ρ(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]
, (24a)

ā1f(ρ) + a1ā3g(ρ) =
σ∞

yy − σ∞
xx + 2iσ∞

xy

σ∞
xx + σ∞

yy

, (24b)

where f(ρ) is given in Eq. (22), and g(ρ) is defined by

g(ρ) =
ρ2(1 − ρ2)(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2] + 2ρ(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]
. (25)

For given remote stresses and material constants, Eq. (24b) provides a relation between the two geo-
metrical parameters a1 and a3. In addition, a1 and a3 must satisfy the conformal mapping requirement
of ω′(ξ) �= 0 (i.e., ξ4 − a1ξ

2 − 3a3 �= 0 from Eq. (18)) for |ξ| > 1. This is equivalent to requiring that
|a1 ±

√
a2
1 + 12a3| ≤ 2, which follows from evaluating the roots of the equation ξ4 − a1ξ

2 − 3a3 = 0(qua-
dratic in ξ2) and requiring each root not to be outside the circle |ξ| = 1.

Figure 3 shows the shapes of the two interfaces L1 and L2 given by Eq. (18) with a1 = 0.2, a3 = −1/3,
and ρ = 1/1.69. Note that the chosen values of a1 and a3 satisfy |a1 ±

√
a2
1 + 12a3| = 2 (rather than

the inequality), giving ω′(ξ) = 0 or ξ4 − a1ξ
2 − 3a3 = 0. This explains the appearance of the four sharp

corners on L1 in Fig. 3, which correspond to the four roots of ξ4 − a1ξ
2 − 3a3 = 0 that are located on

the unit circle |ξ| = 1 on the ξ-plane.
Case (c) : N ≥ 4 with a1 = a2 = · · · = aN−1 = 0

Using Eqs. (16) and (7a,b), along with Eqs. (19) and (3) for the conformal mapping function z = ω(ξ),
gives, after comparing the coefficients of ξ and ξN ,

σ∞
xx = σ∞

yy =
2X {(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2] + 2ρ(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]}

RΓ1(κ2 + 1)(κ3 + 1)
, σ∞

xy = 0,

ρN (2Γ1+κ1−1) [Γ3(κ2−1)+1−κ3]−[Γ3+κ3+ρN+1(Γ3−1)] [Γ1(κ2−1)+1−κ1] = 0. (26)

Equation (26) shows that in this case the remote uniform stresses can only be hydrostatic.
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Table 1. Values of ρ when ν1 = ν2 = ν3 = 1/3

N = 2 N = 3 N = 4 N = 5 N = 10 N = 20

Γ1 = 0.9, Γ3 = 0.1 0.2805 0.4277 0.5283 0.5999 0.7740 0.8796
Γ1 = 0.8, Γ3 = 0.4 0.5386 0.6598 0.7310 0.7777 0.8811 0.9384
Γ1 = 2, Γ3 = 5 0.6436 0.7523 0.8108 0.8472 0.9222 0.9608
Γ1 = 1.2, Γ3 = 10 0.2936 0.4432 0.5441 0.6151 0.7852 0.8864

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Γ
1

Γ 3

ν
1
=ν

2
=ν

3
=1/3, N=2

ρ=0.3
ρ=0.6 ρ=0.8 ρ=0.9 ρ=0.96 ρ=1

Fig. 4. Permissible Γ1 and Γ3 for given values of ρ with ν1 = ν2 = ν3 = 1/3 and N = 2

Note that in all of the three cases discussed above, ρ cannot be arbitrarily chosen for given mate-
rial parameters Γ1,Γ3, κ1, κ2, and κ3. This means that the “thickness” of the interphase layer has to be
properly designed. In fact, ρ (with 0 ≤ ρ ≤ 1) has to be determined from the following equation:

ρN (2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 1 − κ3] − [Γ3 + κ3 + ρN+1(Γ3 − 1)] [Γ1(κ2 − 1) + 1 − κ1] = 0 (27)

for N ≥ 2. Equation (27) represents Eqs. (20c), (23c), and (26) when N = 2, 3, and ≥ 4, respectively.
Let the left-hand side of Eq. (27) be denoted by h(ρ). Then, it can be readily shown that when

μ2
κ2−1 <

μ1
κ1−1 <

μ3
κ3−1 or μ2

κ2−1 >
μ1

κ1−1 >
μ3

κ3−1 , there is h(0)h(1) < 0, thereby ensuring the existence of
one value of ρ on the interval 0 < ρ < 1 as the root of Eq. (27). For a range of material properties satis-
fying the conditions identified above, the numerical analysis further shows that Eq. (27) gives a unique
value of ρ on 0 ≤ ρ ≤ 1. For example, when ν1 = ν2 = ν3 = 1/3, the values of ρ obtained from solving
Eq. (27) for four different combinations of Γ1 and Γ3 are listed in Table 1. From this table, it is seen
that ρ is an increasing function of N for fixed values of Γ1 and Γ3. This implies that the interphase layer
becomes thinner as N increases (see Fig. 2).

Figure 4 illustrates the permissible Γ1 and Γ3 satisfying Eq. (27) for given values of ρ when ν1 = ν2 =
ν3 = 1/3 and N = 2. It is clearly observed from Fig. 4 that for the given material parameters, the value
of ρ determined from Eq. (27) is unique for both Γ3 > Γ1 > 1 and Γ3 < Γ1 < 1.

For a properly designed interphase, the uniform hydrostatic stresses inside the inclusion can be readily
obtained from Eqs. (9) and (2), along with Eqs. (3) and (17), (18) or (19), as

σ(1)
xx = σ(1)

yy =
2X
R
, σ(1)

xy = 0; φ1(z) =
X

R
z, ψ1(z) = 0 (z ∈ S1), (28)

where X is given in Eq. (21a) for N = 2, in Eq. (24a) for N = 3, or in Eq. (26) for N ≥ 4.
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In addition, it follows from Eqs. (2) and (15) that the mean stress is uniformly distributed in the
interphase layer as

σ(2)
xx + σ(2)

yy =
4X(2Γ1 + κ1 − 1)
RΓ1(κ2 + 1)

(z ∈ S2). (29)

Also, from Eqs. (28) and (29) and the relation σ
(2)
xx + σ

(2)
yy = σ

(2)
nn + σ

(2)
tt (i.e., the first stress invariant in

plane deformations, with σnn and σtt being the radial and tangential stresses, respectively), the tangential
(hoop) stress is constant along the entire interface L1 (on the interphase layer side) and is given by

σ
(2)
tt =

2X [Γ1(3 − κ2) + 2(κ1 − 1)]
RΓ1(κ2 + 1)

(z ∈ L1). (30)

Note that having a constant hoop stress on an interface or a hole boundary is very desirable in a stress
minimization design (e.g., [2,4,17,24,26,27]). For instance, the hoop stress along the inner interface L1 in
Fig. 3 can be designed to be constant even though there are four sharp corners on L1 (noting that sharp
corners are usually locations of stress concentration or even stress singularity). In fact, an arbitrary-shape
inclusion, which is directly bonded to a surrounding matrix (in the absence of an interphase layer), can
be designed to be harmonic (see Appendix A for a brief discussion).

The specific expressions of φ3(ξ) and ψ3(ξ) for the three cases can be obtained from Eqs. (16)–(19)
and (3) once ρ,X, and aN are determined or identified. These are presented in Appendix B.

It should be pointed out that when the three phases are all incompressible with ν1 = ν2 = ν3 = 1/2
(and thus κ1 = κ2 = κ3 = 1 for plane strain deformations considered here) or when Γ1 = (κ1 − 1)/(κ2 − 1)
and Γ3 = (κ3 − 1)/(κ2 − 1) with ν2 �= 1/2, Eq. (27) is identically satisfied for any possible value of
ρ on the interval 0 ≤ ρ ≤ 1, and f(ρ) = g(ρ) ≡ 0 according to Eqs. (22) and (25). As a result,
for all of the three cases discussed above, the remote uniform stresses can only be hydrostatic with
σ∞

xx = σ∞
yy = 2X/R, σ∞

xy = 0, which follows from Eqs. (21b), (24b), (2)–(4), and (16).
It can be shown that the forms of the two analytic functions in the inclusion given in Eq. (9), which

are obtained for the general case with Γ1 �= 1 and Γ3 �= 1 and ensure a uniform hydrostatic stress state
inside the arbitrary-shape (non-elliptical) inclusion in the three-phase composite, are also valid for the
two special cases with Γ1 = 1,Γ3 �= 1 and Γ1 �= 1,Γ3 = 1.

It follows from Eq. (27) that when Γ1 = 1,Γ3 �= 1, the thickness parameter of the interphase layer, ρ,
is defined by

ρN (1 + κ1) [Γ3(κ2 − 1) + 1 − κ3] − [Γ3 + κ3 + ρN+1(Γ3 − 1)
]
(κ2 − κ1) = 0 (31)

and when Γ1 �= 1,Γ3 = 1 the thickness parameter ρ is explicitly given by

ρ =
[
(κ3 + 1) [Γ1(κ2 − 1) + 1 − κ1]

(κ2 − κ3)(2Γ1 + κ1 − 1)

] 1
N

(N ≥ 2). (32)

However, for the special case with Γ1 = Γ3 = 1, the two analytic functions in the inclusion S1 no longer
have the same forms as those given in Eq. (9), where ψ1(ξ) ≡ 0. Consequently, the analytic functions in
the interphase layer S2 and in the matrix S3 will also be different, as shown next.

2.1.1. Three phases with the same shear modulus: A special case. When the three phases have the same
value of shear modulus, Γ1 = Γ3 = 1 and the two analytic functions in the inclusion can be expressed as

φ1(z) =
X

R
z, ψ1(z) =

Y

R
z, (33)

where X is a real constant, and Y is a complex constant to be determined. After enforcing the continuity
conditions of tractions and displacements across |ξ| = 1 and |ξ| = ρ− 1

2 and using the analytic continuation
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method, the analytic functions in the interphase and in the matrix can be obtained as

φ2(ξ) = X(κ1+1)
κ2+1

(
ξ +

N∑
n=1

an

ξn

)
,

ψ2(ξ) = 2X(κ2−κ1)
κ2+1

(
1
ξ +

N∑
n=1

ānξ
n

)
+ Y

(
ξ +

N∑
n=1

an

ξn

)
⎫⎪⎪⎬
⎪⎪⎭

(
1 < |ξ| < ρ− 1

2

)
, (34)

φ3(ξ) = X(κ1+1)
κ3+1

(
ξ +

N∑
n=1

an

ξn

)
,

ψ3(ξ) = 2X(κ1+1)(κ3−κ2)
(κ2+1)(κ3+1)

(
1
ρξ +

N∑
n=1

ānρ
nξn

)

+ 2X(κ2−κ1)
κ2+1

(
1
ξ +

N∑
n=1

ānξ
n

)
+ Y

(
ξ +

N∑
n=1

an

ξn

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(
|ξ| > ρ− 1

2

)
. (35)

In order to satisfy the remote asymptotic conditions in Eq.(7), the conformal mapping function ω(ξ)
defined in Eq. (3) needs to have the following form:

ω(ξ) = R

(
ξ +

a1

ξ
+
aN

ξN

)
(N ≥ 2). (36)

By following a procedure similar to that used earlier for the general case with Γ1 �= 1 and Γ3 �= 1, the
thickness parameter ρ for the current case can be determined to be

ρ =
[
(κ3 + 1)(κ1 − κ2)
(κ1 + 1)(κ3 − κ2)

] 1
N

(N ≥ 2). (37)

To ensure that ρ determined from Eq. (37) satisfies the condition of 0 ≤ ρ ≤ 1, it is required that

κ2 < κ1 < κ3 or κ2 > κ1 > κ3, (38)

which places a constraint on κ1, κ2, and κ3 (and thus on Poisson’s ratios ν1, ν2, and ν3).
Along with Eqs. (37) and (38), the two constants X and Y can be determined from Eqs. (35),

(7a,b), (8), (3), and (36) as

X =
R(κ3 + 1)(σ∞

xx + σ∞
yy)

4(κ1 + 1)
,

Y =
R(σ∞

yy − σ∞
xx + 2iσ∞

xy)
2

+
ā1R(σ∞

xx + σ∞
yy)(κ1 − κ2)(κ3 + 1)(1 − ρ1−N )
2(κ1 + 1)(κ2 + 1)

. (39)

This indicates that the uniform stresses within the inclusion are now unconditional (i.e., there is no
restriction on the remote constant stresses to be applied).

In the physical z-plane, the analytic functions presented in Eqs. (34) and (35) for the special case with
Γ1 = Γ3 = 1 can be expressed as, with the help of Eq. (4),

φ2(z) = X(κ1+1)
R(κ2+1) z,

ψ2(z) = 2X(κ2−κ1)
κ2+1

{
1

ξ(z) + ā1ξ(z) + āN [ξ(z)]N
}

+ Y
R z

}
(z ∈ S2), (40)

φ3(z) = X(κ1+1)
R(κ3+1) z,

ψ3(z) = 2X(κ1+1)(κ3−κ2)
(κ2+1)(κ3+1)

[
1

ρξ(z) + ā1ρξ(z)
]

+ 2X(κ2−κ1)
κ2+1

[
1

ξ(z) + ā1ξ(z)
]

+ Y
R z

⎫⎪⎪⎬
⎪⎪⎭ (z ∈ S3). (41)

Note that in reaching Eq. (41) use has been made of Eq. (37).
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2.2. Uniform stress state in anti-plane shear deformations

The anti-plane shear problem discussed here is similar to that addressed in Sect. 2.1 except that the
three-phase composite is now loaded by remote uniform anti-plane shear stresses σ∞

zx and σ∞
zy.

In anti-plane shear deformations with u = v = 0, w = w(x, y), the non-vanishing shear stresses σzx

and σzy, displacement w, and traction tz on a lateral boundary surface can be expressed in terms of a
single analytic function f(z) = f(ω(ξ)) ≡ f(ξ) as (e.g., [9,22])

w =
1
μ

Im[f(ξ)], σzy + iσzx =
f ′(ξ)
ω′(ξ)

, tz = − d
ds
Re[f(ξ)], (42)

where s is the arc length parameter along the boundary curve on a cross-section.
In order to achieve a uniform stress state within the inclusion S1, f1(z) needs to have the following

form:

f1(z) =
Π
R
z, (43)

where Π is a complex constant to be determined.
By enforcing the continuity conditions of tractions and displacements across the two perfectly bonded

interfaces L1 and L2 and using the analytic continuation method, the analytic function in the interphase
layer and in the matrix can be determined to be

f2(ξ) =
1 + Γ1

2Γ1
Π

(
ξ +

N∑
n=1

an

ξn

)
− 1 − Γ1

2Γ1
Π̄

(
1
ξ

+
N∑

n=1

ānξ
n

) (
1 < |ξ| < ρ− 1

2

)
, (44)

f3(ξ) =
Π(1 + Γ1)(1 + Γ3)

4Γ1

(
ξ +

N∑
n=1

an

ξn

)
− Π̄(1 − Γ1)(1 + Γ3)

4Γ1

(
1
ξ

+
N∑

n=1

ānξ
n

)

+
Π̄(1+Γ1)(1−Γ3)

4Γ1

(
1
ρξ

+
N∑

n=1

ānρ
nξn

)
− Π(1−Γ1)(1−Γ3)

4Γ1

(
ρξ+

N∑
n=1

an

ρnξn

) (
|ξ| > ρ− 1

2

)
,

(45)

where Γ1 ≡ μ1/μ2 and Γ3 ≡ μ3/μ2, which are the same as those used in Sect. 2.1 for the in-plane loading
case. Note that in reaching Eqs. (44) and (45) use has been made of Eqs. (42), (43), and (3).

In order to satisfy the remote asymptotic condition of

f3(ξ) ∼= R
(
σ∞

zy + iσ∞
zx

)
ξ +O(1) as |ξ| → ∞, (46)

the conformal mapping function ω(ξ) also has the form given in Eq. (36). This identified inclusion shape
(as characterized by Eq. (36)) with uniform stresses in the inclusion is in agreement with that provided
in [1] for generating a uniform stress state inside an inclusion bonded to a surrounding matrix through a
‘spring-layer type’ imperfect interface with vanishing thickness.

Also, it follows from Eqs. (36), (45), and (46) that the thickness parameter ρ is given by

ρ =
[
(1 − Γ1)(1 + Γ3)
(1 + Γ1)(1 − Γ3)

] 1
N

(N ≥ 2) (47)

and the constant Π satisfies

Π [(1 + Γ1)(1 + Γ3) − ρ(1 − Γ1)(1 − Γ3)] + Π̄ā1 [ρ(1 + Γ1)(1 − Γ3) − (1 − Γ1)(1 + Γ3)]
= 4RΓ1(σ∞

zy + iσ∞
zx). (48)

For ρ determined from Eq. (47) to satisfy the condition of 0 ≤ ρ ≤ 1, it is required that

μ2 < μ1 < μ3 or μ2 > μ1 > μ3, (49)

which places a constraint on the shear moduli μ1, μ2, and μ3.
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Clearly, Eq. (48) shows that the constant Π can always be obtained for given material parameters
Γ1 and Γ2 and remote uniform shear stresses σ∞

zx and σ∞
zy, thereby indicating that in anti-plane shear

deformations the stresses inside the inclusion are unconditionally uniform.
From Eqs. (43)–(45), (3), and (36), the analytic functions in the physical z-plane for the current

anti-plane shear problem can be expressed as, with the help of Eq. (4),

f1(z) =
Π
R
z (z ∈ S1), (50)

f2(z) =
Π(1 + Γ1)

2RΓ1
z − Π̄(1 − Γ1)

2Γ1

{
1
ξ(z)

+ ā1ξ(z) + āN [ξ(z)]N
}

(z ∈ S2), (51)

f3(z) =
Π(1 + Γ1)(1 + Γ3)

4RΓ1
z − Π̄(1 − Γ1)(1 + Γ3)

4Γ1

[
1
ξ(z)

+ ā1ξ(z)
]

+
Π̄(1 + Γ1)(1 − Γ3)

4Γ1

[
1

ρξ(z)
+ ā1ρξ(z)

]

−Π(1 − Γ1)(1 − Γ3)
4Γ1

{
ρξ(z) +

a1

ρξ(z)
+

aN

ρN [ξ(z)]N

}
(z ∈ S3). (52)

Note that in reaching Eq. (52) use has been made of Eq. (47).

3. Conclusions

In this study, the existence of a uniform hydrostatic stress state inside a 2-D elastic inclusion bonded to a
uniformly loaded infinite elastic matrix through an interphase layer is demonstrated for in-plane loading.
It is shown that such a uniform hydrostatic stress field within the inclusion in the three-phase composite
can be achieved by properly designing the inclusion shape, the elastic constants of the composite phases,
and the thickness of the interphase layer. Three types of possible (non-elliptical) shapes of such inclusions
are found, and two conditions that ensure a uniform hydrostatic stress state are derived for each type. The
first condition links the interphase layer thickness to elastic properties of the composite phases, and the
second relates the remote stresses to geometrical and material parameters of the three-phase composite.

Possible inclusion shapes and related conditions for generating a uniform stress field inside an elastic
inclusion in a three-phase composite loaded by remote constant anti-plane shear stresses are also identified
by following similar procedures.

Solutions of elementary forms are derived for several cases—both general and specific—which satisfy
these conditions and involve either in-plane or anti-plane shear loading.
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Appendix A: Harmonic elastic inclusions of arbitrary shape

Consider an arbitrary-shape elastic inclusion S1 bonded to an infinite elastic matrix S2 through a perfect
interface L. The inclusion S1 is called harmonic if the uniformity of the mean stress in the matrix S2

remains unperturbed after S1 is embedded.
In order to make the inclusion harmonic, the stress field within the inclusion needs to be uniform and

hydrostatic. By enforcing the traction and displacement continuity conditions on the interface L, it can
be shown that the two analytic functions φ1(z), ψ1(z) in the inclusion (with the shear modulus μ1) and
the two analytic functions φ2(z), ψ2(z) in the matrix (with the shear modulus μ2) will have the following
forms:

φ1(z) =
AΓ(κ2 + 1)
2Γ + κ1 − 1

z, ψ1(z) = 0 (z ∈ S1), (A1)

φ2(z) = Az, ψ2(z) =
2A [Γ(κ2 − 1) − κ1 + 1]

2Γ + κ1 − 1
D(z) (z ∈ S2), (A2a,b)

where Γ ≡ μ1/μ2, A is a real constant, and D(z) = z̄ for z ∈ L and is analytic outside L except at infinity,
where it exhibits the following asymptotic behavior:

D(z) → P (z) +O(1) as |z| → ∞, (A3)

with P (z) being a polynomial in z [18]. Combining Eqs. (A2b) and (A3) gives

ψ2(z) =
2A [Γ(κ2 − 1) − κ1 + 1]

2Γ + κ1 − 1
P (z) +O(1) as |z| → ∞. (A4)

From Eqs. (2) and (A1) it follows that

σ(1)
xx = σ(1)

yy =
2AΓ(κ2 + 1)
2Γ + κ1 − 1

, σ(1)
xy = 0 (z ∈ S1), (A5)

which show that the stress field inside the inclusion S1 is indeed uniform and hydrostatic.
Using Eqs. (2), (A2a), and (A4) yields

σ(2)
xx + σ(2)

yy = 4A (z ∈ S2), (A6)

which says that the mean stress does remain uniform (constant) anywhere in the matrix S2 in the presence
of the inclusion S1.

Furthermore, it can be shown from Eqs. (A5), (A6) and the relations σ(2)
xx +σ(2)

yy = σ
(2)
nn+σ(2)

tt , σ
(2)
nn = σ

(1)
nn

on L that the hoop stress is constant along the entire interface L (on the matrix side) and is given by

σ
(2)
tt =

2A [Γ(3 − κ2) + 2(κ1 − 1)]
2Γ + κ1 − 1

(z ∈ L). (A7)

As an example, when the interface L is described by the conformal mapping function:

z = ω(ξ) = R

(
ξ +

a1

ξ
+
iλ

ξ2

)
(|ξ| = 1), (A8)

where a1 and λ are two real constants, the polynomial P (z) can be determined as

P (z) = a1z − iλz2/R. (A9)

From Eqs. (A2a), (A4), and (A9), it then follows that the remote stresses have the following forms:

σ∞
xx = N1 −Ky, σ∞

yy = N2 +Ky, σ∞
xy = −Kx, (A10)
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where N1, N2, and K are three real constants given by

N1 ≡ 2A
[
1 − Γ(κ2 − 1) + 1 − κ1

2Γ + κ1 − 1
a1

]
, N2 ≡ 2A

[
1 +

Γ(κ2 − 1) + 1 − κ1

2Γ + κ1 − 1
a1

]
,

K ≡ 4Aλ [Γ(κ2 − 1) + 1 − κ1]
R(2Γ + κ1 − 1)

,

(A11)

with A, a1 and λ being three real constants to be determined from the inclusion shape. Clearly, Eq. (A10)
shows that the remote stresses needed for making the inclusion harmonic have to be linearly distributed
(rather than uniform).

Conversely, for given remote (non-uniform) stresses (with the restriction that the mean stress is con-
stant), the polynomial P (z) can be determined from the far-field boundary conditions using Eqs. (2),
(A2a), and (A4). The shape of the harmonic inclusion described by z = ω(ξ)(|ξ| = 1) can then be
obtained from P (z) using Eq. (A3). It should be pointed out that the non-uniform loading discussed here
is different from that considered in [3].

Appendix B: Expressions of φ3(ξ) and ψ3(ξ)

When N = 2, φ3(ξ) and ψ3(ξ) can be obtained from Eqs. (16), (17) and (3) as

φ3(ξ) =
X(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2]

Γ1(κ2 + 1)(κ3 + 1)

(
ξ +

a1

ξ
+
a2

ξ2

)

+
2X(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

Γ1(κ2 + 1)(κ3 + 1)

(
ρξ +

a1

ρξ
+

a2

ρ2ξ2

)
,

ψ3(ξ) =
2ā1X {(Γ3 + κ3) [Γ1(κ2 − 1) + 1 − κ1] + ρ(2Γ1 + κ1 − 1) [(κ3 − 1) − Γ3(κ2 − 1)]}

Γ1(κ2 + 1)(κ3 + 1)
ξ

+
2X {(2Γ1 + κ1 − 1) [(κ3 − 1) − Γ3(κ2 − 1)] + ρ(Γ3 + κ3) [Γ1(κ2 − 1) + 1 − κ1]}

Γ1(κ2 + 1)(κ3 + 1)
1
ρξ

+
2X(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

{
(ā1 + ā2ρξ)

(
a1 − ρ2ξ2 + 2a2

ρξ

)
− 1 + a1

ρ2ξ2 + 2a2
ρ3ξ3

}
Γ1(κ2 + 1)(κ3 + 1)

(
ξ − a1

ξ − 2a2
ξ2

) (B1)

for |ξ| > ρ− 1
2 .

When N = 3, φ3(ξ) and ψ3(ξ) can be determined from Eqs. (16), (18) and (3) as

φ3(ξ) =
X(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2]

Γ1(κ2 + 1)(κ3 + 1)

(
ξ +

a1

ξ
+
a3

ξ3

)

+
2X(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

Γ1(κ2 + 1)(κ3 + 1)

(
ρξ +

a1

ρξ
+

a3

ρ3ξ3

)
,

ψ3(ξ) =
2X
(
ā1(Γ3 + κ3) [Γ1(κ2 − 1) + 1 − κ1]
+ā1ρ(2Γ1 + κ1 − 1) [κ3 − 1 − Γ3(κ2 − 1)]

)
Γ1(κ2 + 1)(κ3 + 1)

ξ

+
2X {(2Γ1 + κ1 − 1) [κ3 − 1 − Γ3(κ2 − 1)] + ρ(Γ3 + κ3) [Γ1(κ2 − 1) + 1 − κ1]}

Γ1(κ2 + 1)(κ3 + 1)
1
ρξ

+
2X(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

(−1 + a1ā1 + 3a3ā3 + (a1ā3 − ā1)ρ2ξ2 − ā3ρ
4ξ4

+a1+3ā1a3
ρ2ξ2 + 3a3

ρ4ξ4

)

Γ1(κ2 + 1)(κ3 + 1)
(
ξ − a1

ξ − 3a3
ξ3

) (B2)
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for |ξ| > ρ− 1
2 .

When N ≥ 4, φ3(ξ) and ψ3(ξ) can be obtained from Eqs. (16), (19) and (3) as

φ3(ξ) =
X(2Γ1 + κ1 − 1) [Γ3(κ2 − 1) + 2]

Γ1(κ2 + 1)(κ3 + 1)

(
ξ +

aN

ξN

)

+
2X(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

Γ1(κ2 + 1)(κ3 + 1)

(
ρξ +

aN

ρNξN

)
,

ψ3(ξ) =
2X {(2Γ1 + κ1 − 1) [(κ3 − 1) − Γ3(κ2 − 1)] + ρ(Γ3 + κ3) [Γ1(κ2 − 1) + 1 − κ1]}

Γ1(κ2 + 1)(κ3 + 1)
1
ρξ

+
2X
{
āN (2Γ1 + κ1 − 1) [(κ3 − 1) − Γ3(κ2 − 1)] ρN

+āN (Γ3 + κ3) [Γ1(κ2 − 1) + 1 − κ1]

}
Γ1(κ2 + 1)(κ3 + 1)

ξN

+
2X(1 − Γ3) [Γ1(κ2 − 1) + 1 − κ1]

[
−1 +NaN āN − āNρ

N+1ξN+1 + NaN

ρN+1ξN+1

]
Γ1(κ2 + 1)(κ3 + 1)

(
ξ − NaN

ξN

) (B3)

for |ξ| > ρ− 1
2 .
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