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1. Introduction and statement of the main results

Nonlinear ordinary differential equations appear in many branches of applied mathematics and physics.
For a 3-dimensional system, the existence of two first integrals whose gradients are linearly independent
in R

3 except perhaps in a zero Lebesgue measure set determines completely its phase portrait because the
intersections of the invariant levels of these two first integrals determine the trajectories of the system.
The knowledge of a unique first integral reduces the study of the dynamics of the system from dimension
3 to dimension 2. So, the study of the existence of first integrals is an important subject in the qualitative
theory of differential equations. Many different methods have been used for studying the existence of
first integrals of non-linear differential systems based on Noether symmetries [6], the Darboux theory of
integrability [8,17], the Lie symmetries [1,23], the Painlevé analysis [3], the use of Lax pairs [12], the
direct method [9,10], the linear compatibility analysis method [24], the Carlemann embedding procedure
[7,2], the quasimonomial formalism [4], etc.

In this paper, we use the Darboux theory of integrability to study the existence of first integrals for
the model used by May and Leonard [18] for studying the competition among three species. This model
is

Ẋ = X(1 − X − aY − bZ),

Ẏ = Y (1 − bX − Y − aZ), (1)

Ż = Z(1 − aX − bY − Z),

where a, b ∈ R and the dot denotes derivative with respect to the time t. Note that we are interested in
the integrability of system (1) for all real values of its parameters, and not only for their positive values
which are the ones with biological meaning.

Doing the change of variables

x = Xe−t, y = Y e−t, z = Ze−t, s = et,
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system (1) becomes

x′ = −x(x + ay + bz),
y′ = −y(bx + y + az), (2)
z′ = −z(ax + by + z),

where a, b ∈ R and here the prime denotes derivative with respect to the new time s.
Leach and Miritzis in [13] proved that system (2) has a first integral when either a + b = 2 or a = b,

but in [13], it is unknown whether for other values of the parameters a and b, system (2) has or not other
first integrals. As we shall show for the case a + b = −1, system (2) has also a first integral. Additionally
we also prove that when a = b = −1, the system has two independent first integrals. We note that
the existence of first integrals for system (2) implies the existence of invariants for system (1). Here, an
invariant is a first integral depending on the time.

We have computed the first integrals Hk = Hk(x, y, z) when either a + b = 2 or a = b, and they are

H1 =
xyz

(x + y + z)3
if a + b = 2,

H2 = (xyz)2+a ((x − y)(x − z)(y − z))−(2a+1) if a = b �= 1,

H3 =
x

y
, H4 =

x

z
if a = b = 1,

H2, H5 = x2y2 − x2yz − xy2z + x2z2 − xyz2 + y2z2 if a = b = −1.

Let U ⊂ R
3 be an open subset. We say that the non-constant function H : U → R is a first integral of

the polynomial vector field

X = −x(x + ay + bz)
∂

∂x
− y(bx + y + az)

∂

∂y
− z(ax + by + z)

∂

∂z
, (3)

on U associated to system (2), if H(x(t), y(t), z(t)) = constant for all values of t for which the solution
(x(t), y(t), z(t)) of X is defined on U . Clearly, H is a first integral of X on U if and only if XH = 0 on U .

When H is a polynomial, we say that H is a polynomial first integral. When H is a rational function
which is not a polynomial, we say that H is a proper rational first integral. Finally, when H is an analytic
function, we say that H is an analytic first integral.

Our main results on the integrability of system (2) are the following ones.

Theorem 1. The following statements hold.

(a) The unique polynomial first integrals of system (2) are:
(a.1) H2 when a = b and either −(2 + a)/(2a + 1) or −(2a + 1)/(2 + a) is a nonnegative integer,

and all the polynomial functions in the variable H2.
(a.2) H2 and H5 when a = b = −1, and all the polynomial functions in the variables H2 and H5.
(a.3) H6 = xyz if a+b = −1, and all the polynomial functions in the variable H6. Note that H6 = H2

when a = b = −1/2.
(b) The unique proper rational first integrals of system (2) are:

(b.1) H3 and H4 when a = b = 1, and all proper rational functions in the variable H3 and H4.
(b.2) H1 when a + b = 2 and (a, b) �= (1, 1), and all proper rational functions in the variable H1.
(b.3) H2 when a = b and either (2 + a)/(2a + 1) ∈ Q or (2a + 1)/(2 + a) ∈ Q and a does not satisfy

the conditions of statement (a.1), and all proper rational functions in the variable H2.
(c) All the analytic first integrals are analytic functions in the variable H2 for the values of a = b and

a satisfying the conditions of statement (a.1); all the analytic functions in the variables H2 and H5

when a = b = −1, and all the analytic functions in the variable H6 when a + b = −1.

We remark that since the polynomial differential system (2) is homogeneous, knowing the homoge-
neous polynomial first integrals of the system, we can determine easily all the polynomial and analytic
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first integrals of system (2). For more details, see Proposition 6. So, statement (c) of Theorem 1 follows
from statement (a) of the same theorem.

For proving Theorem 1, we shall use the invariant algebraic surfaces of system (2). This is the basis
of the Darboux theory of integrability. In 1878, Darboux [8] showed how can be constructed the first
integrals of planar polynomial differential systems possessing sufficient invariant algebraic curves. The
Darboux theory of integrability works for real or complex polynomial ordinary differential equations.
As it is explained for instance in [14], the study of complex invariant algebraic curves is necessary for
obtaining all the real first integrals of a real polynomial differential equation.

The vector field X associated to system (2) is defined in (3). We say that h = h(x, y, z) = 0 with
h ∈ C[x, y, z] \ C is an invariant algebraic curve of the vector field X if it satisfies Xh = Kh for some
polynomial K = K(x, y, z) ∈ C[x, y, z], called the cofactor of h = 0. Note that K has degree at most 1.
The polynomial h is called a Darboux polynomial, and we also say that K is the cofactor of the Darboux
polynomial h.

In the next result, we characterize all the irreducible Darboux polynomials of system (2) with non-zero
cofactor. Note that the Darboux polynomials with zero cofactor are the polynomial first integrals, which
have been characterized in Theorem 1. See Proposition 3 for obtaining all the Darboux polynomials of
system (2).

Theorem 2. The unique irreducible Darboux polynomials with non-zero cofactor of system (2) are:
(a) x, y, z with cofactors −(x+ay+bz),−(bx+y+az), and −(ax+by+z), respectively, for all a, b ∈ R.
(b) x + y + z with cofactor −(x + y + z) if a + b = 2.
(c) x − z, y − z and z − x with cofactors −(x + ay + z),−(ax + y + z), and −(x + y + az), respectively,

if b = a �= 1.
(d) All homogeneous polynomials of degree 1 if a = b = 1.

The integrability of other 3-dimensional Lotka-Volterra systems different to system (2) has already
been studied. See for instance [5,11,15,19–21].

In Sect. 2, we state and prove preliminary results for our homogeneous polynomial differential sys-
tem (2). In Sect. 3, we prove some results of system (2) restricted to either x = 0 or y = 0, or z = 0
that are important for proving Theorem 1. In Sect. 4, we start to compute the homogeneous Darboux
polynomials with non-zero cofactor. In Sect. 5, we start the study of the polynomial first integrals. Finally,
in Sect. 6, we prove Theorems 1 and 2.

2. Preliminaries

Here, we provide some general results on the Darboux theory of integrability that we shall use and provide
some first elementary results on system (2).

Proposition 3. Let f be a polynomial and f =
∏s

j=1 f
αj

j its decomposition into irreducible factors in
C[x, y, z]. Then, f is a Darboux polynomial of system (2) if and only if all the fj are Darboux polynomials
of system (2). Moreover, if K and Kj are the cofactors of f and fj, respectively, then K =

∑s
j=1 αjKj.

Proof. See [14]. �

The following result is well known, and it is proved easily using the Darboux theory of integrability.

Proposition 4. System (2) has a proper rational first integral if and only if it has two Darboux polynomials
with the same non-zero cofactor.

Lemma 5. Any Darboux polynomial f �= 0 of system (2) has a cofactor of the form

K = a1x + a2y + a3z. (4)
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Proof. See [22] where the authors prove Lemma 5 in a more general context of arbitrary homogeneous
polynomial systems. �

The following result is well known, see for instance Proposition 1 in [16].

Proposition 6. The following statements hold as follows:
(a) Let f be a polynomial. We write f in sum of its homogeneous parts as f = f1 + · · · + fn. Then, f

is a Darboux polynomial of system (2) with cofactor K if and only if fj is a Darboux polynomial of
system (2) with cofactor K for all j = 1, . . . , n.

(b) Let f be a formal power series. We write f in sum of its homogeneous parts as f =
∑

j≥1 fj, with
fj being homogeneous polynomials of degree j. Then, f is a formal first integral of system (2) if and
only if fj is a polynomial first integral of system (2) for all j ≥ 1.

Proposition 7. The unique irreducible Darboux polynomials of degree 1 with non-zero cofactor of system
(2) are as follows:
(a) x, y, z with cofactors −(x+ay + bz),−(bx+y +az), and −(ax+ by + z) respectively, for all a, b ∈ R.
(b) x + y + z with cofactor −(x + y + z) if a + b = 2.
(c) x − z, y − z and z − x with cofactors −(x + ay + z),−(ax + y + z), and −(x + y + az), respectively,

if b = a �= 1.
(d) All homogeneous polynomials of degree 1 if a = b = 1.

Proof. It follows easily from the definition of Darboux polynomial. �
From statement (b.1) of Theorem 1 system (2) with b = a = 1, or b = a = −1 are completely integrable

(i.e., they have two first integrals whose gradients are linearly independent in R
3 except perhaps in a zero

Lebesgue measure set), in what follows we do not consider these particular systems.
Let σ : C[x, y, z] → C[x, y, z] be the automorphism

σ(x) = y, σ(y) = z, σ(z) = x.

Proposition 8. If g is an irreducible homogeneous Darboux polynomial of degree > 1 for system (2) with
cofactor K given by (4), then f = g · σ(g) · σ2(g) is a homogeneous Darboux polynomial of system (2)
invariant by σ with cofactor α(x + y + z), where α = a1 + a2 + a3.

Proof. Since (2) is invariant under σ and σ2, so by Proposition 3, f = g · σg · σ2g is also a Darboux
polynomial of system (2) with cofactor K + σ(K) + σ2(K) = α(x + y + z), where α = a1 + a2 + a3. �

3. System (2) restricted to x = 0, or y = 0, or z = 0.

We will consider in this section system (2) restricted to either x = 0 or y = 0 or z = 0. Due to the
invariance of system (2) with respect to σ and σ2, it is sufficient to study system (2) restricted to z = 0,
and after applying σ and σ2 to the results obtained for z = 0, we get the results for system (2) restricted
to x = 0 and y = 0, respectively.

Let N be the set of positive integers. For n ∈ N, we define

Cn = {a, b ∈ R : a = 1 − n1, b = 1 − n2, n1n2 = n, n1 + n2 ≤ n, n1, n2 ∈ N}. (5)

Theorem 9. For system (2) restricted to z = 0, the following statements hold.
(a) the unique homogeneous polynomial first integrals are

H = x1−by1−a((b − 1)x + (1 − a)y)−1+ab (6)

if (a, b) ∈ Cn (see (5)), and all homogeneous polynomials in the variable H.
(b) All the irreducible Darboux polynomials with non-zero cofactor are x and y for all a and b; and

additionally (b − 1)x + (1 − a)y when a �= 1 and b �= 1.
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Proof. We consider system (2) restricted to z = 0, i.e.,

ẋ = −x(x + ay), ẏ = −y(bx + y). (7)

It follows by direct computations that H as in (6) is a first integral of system (7). Furthermore, it is a
homogeneous polynomial of degree n ≥ 1 if and only if

1 − a = n1, 1 − b = n2, ab − 1 = n − n1 − n2, n1 + n2 ≤ n, n1, n2 ∈ N,

that is if and only if

1 − a = n1, 1 − b = n2, n1n2 = n, n1 + n2 ≤ n, n1, n2 ∈ N,

which clearly implies that (a, b) ∈ Cn, n > 1, n1 �= 1 and n2 �= 1. Hence, statement (a) is proved.
It also follows by direct computations that the unique irreducible Darboux polynomials of system (7)

of degree one are x and y for all a, b. Moreover, if a �= 1 and b �= 1, the polynomial (b − 1)x + (1 − a)y is
also an irreducible Darboux polynomial of sytem (7).

Let f be an irreducible homogeneous Darboux polynomial of system (7) of degree n ≥ 2. We will
reach a contradiction, and this will conclude the proof of the theorem. Since f is a Darboux polynomial
of system (7), it satisfies

− x(x + ay)
∂f

∂x
− y(bx + y)

∂f

∂y
= (a1x + a2y)f, a1, a2 ∈ C. (8)

We assume that either a1 �= 0 or a2 �= 0. If we restrict (23) to x = 0 and denote by f the
restriction of f to x = 0, we get that f = f(y) �= 0 (otherwise f would be reducible) is a homoge-
neous polynomial of degree n, that is f = α0y

n with α0 ∈ C. On the other hand, f is a homogeneous
Darboux polynomial of degree n of system (7) restricted to x = 0, that is it satisfies

−y2 df

dy
= a2yf i.e. f = α0y

−a2 , α0 ∈ C.

Therefore, equating the two expressions for f , we get a2 = −n. In a similar way, restricting to y = 0, we
get that a1 = −n. Thus, K = −n(x + y) and (23) becomes

− x(x + ay)
∂f

∂x
− y(bx + y)

∂f

∂y
= −n(x + y)f. (9)

Now, we consider three different cases.
Case 1: b �= 1 and a �= 1. In this case, we introduce the change of variables (X,Y ) = ((b − 1)x +

(1 − a)y, y). In these new variables, system (7) becomes

X ′ =
X

1 − b
(X + (a + b − 2)Y ), Y ′ =

Y

1 − b
(bX + (ab − 1)Y ).

We denote f̃ = f̃(X,Y ) = f(x, y). We have that f̃ satisfies

X

1 − b
(X + (a + b − 2)Y )

∂f̃

∂X
+

Y

1 − b
(bX + (ab − 1)Y )

∂f̃

∂Y
=

n

1 − b
(X + (b + a − 2)Y )f̃ . (10)

Now, we denote by f̂ the restriction of f̃ to X = 0. Since f is an irreducible polynomial, we get that
f̂ �= 0 and it satisfies (10) restricted to X = 0, that is

(ab − 1)Y 2

1 − b

df̂

dY
=

n

1 − b
(b + a − 2)Y f̂ .

Solving this linear differential equation, we deduce that f̂ = α0y
n(2−a−b)/(1−ab), with α0 ∈ C. Since f̂

has degree n, we must impose 2 − a − b = 1 − ab, or equivalently (a − 1)(b − 1) = 0. That is a = 1 or
b = 1, a contradiction.
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Case 2: a = 1. In this case, we have b �= 1. Then, (9) becomes

−x(x + y)
∂f

∂x
− y(bx + y)

∂f

∂y
= −n(x + y)f.

Solving this partial differential equation in f , we get that

f(x, y) = xng

(
y

x
− log

(
xb

y

))

,

where g is a function in the variable y/x − log(xb/y). Since f must be a homogeneous polynomial of
degree n, we must have that g = cn with cn ∈ C. Then, f(x, y) = cnxn, a contradiction with the fact
that f is irreducible and n > 1.

Case 3: b = 1. In this case, we have a �= 1. Then, (9) becomes

− x(x + ay)
∂f

∂x
− y(x + y)

∂f

∂y
= −n(x + y)f. (11)

From this equation, we get that x + y must divide ∂f/∂x, and since f is a homogeneous polynomial of
degree n, we obtain that f = f0(y) + (x + y)2g, where f0(y) is a homogeneous polynomial in the variable
y of degree n, i.e., f0(y) = α0y

n with α0 ∈ C and g is a homogeneous polynomial in x, y of degree n − 2.
We will show that g = 0, and we will reach a contradiction with the fact that f is irreducible of degree
n ≥ 2. We consider two subcases.

Subcase 3.1 : g is not divisible by (x + y). Substituting f in (11), we obtain

−2(x + y)(x2 + (1 + a)xy + y2)g − x(x + ay)(x + y)2
∂g

∂x
− y(x + y)3

∂g

∂y

= −n(x + y)3g.

Now simplifying by x + y, the above equation becomes

−x(x + ay)(x + y)
∂g

∂x
− y(x + y)2

∂g

∂y
=

[
2x(x + ay) + 2y(x + y) − n(x + y)2

]
g.

Since 2x(x + ay) + 2y(x + y) − n(x + y)2 is not divisible by x + y, we have that g must be divisible by
x + y, a contradiction.

Subcase 3.2 : g is divisible by x+y. In this case, we have that f = α0y
n+(x+y)mḡ where m ≥ 3, α0 ∈ C

and ḡ is a homogeneous polynomial in x and y of degree n − m. Furthermore, ḡ is not divisible by x + y.
Then, ḡ satisfies, after simplifying by (x + y)m−1

− x(x + ay)(x + y)
∂ḡ

∂x
− y(x + y)2

∂ḡ

∂y
=

[
mx(x + ay) + my(x + y) − n(x + y)2

]
ḡ. (12)

If m = n, then ḡ is a constant, and thus, it follows from (12) that it must be the constant zero. Otherwise
if m < n, then since mx(x + ay) + my(x + y) − n(x + y)2 is not divisible by x + y, it follows again from
(12) that ḡ must be divisible by x + y, a contradiction. �

4. Homogeneous Darboux polynomials with non-zero cofactor invariant by σ

In this section, we study the homogeneous Darboux polynomials of system (2) invariants by σ and with
non-zero cofactor.

Theorem 10. System (2) has no homogeneous Darboux polynomials invariant by σ with cofactor K =
α(x + y + z), α ∈ C \ {0} that are irreducible and of degree n ≥ 2.
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Proof. If we denote by f̃ = f̃(x, y), the restriction of f to z = 0, then f̃ �= 0 because f is irreducible and
it is a homogeneous Darboux polynomial of degree n of system (7) with cofactor α(x + y). Then, from
Theorem 9, we obtain that f̃ = cxm1ym2((b − 1)x + (1 − a)y)n−m1−m2 for some integers 0 ≤ m1,m2 ≤ n

and c ∈ C \ {0}. Then, the cofactor of f̃ is ((1 − b)n2 − n)x + ((1 − a)n1 − n)y. This implies that
α = −n + (1 − a)m1 and (1 − a)m1 = (1 − b)m2. We consider different cases.

Case 1: a = 1, b �= 1. Now, it follows from (1 − a)m1 = (1 − b)m2 that m2 = 0 and α = −n. Then,
f̃ = cxn, c ∈ C \ {0}. Since f is invariant by σ and σ2, applying σ and σ2 to f , we get that f can be
written in the following three forms

f = cxn + zg = cyn + xσ(g) = czn + yσ2(g).

Evaluating cxn + zg = czn + yσ2(g) on z = y = 0, we get c = 0, in contradiction with the fact that c �= 0.
This concludes the proof of the theorem in this case.

Case 2: b = 1, a �= 1. It follows from (1 − a)m1 = (1 − b)m2 and α = −n + (1 − a)m1 that m1 = 0 and
α = −n. Then, f̃ = cyn, c ∈ C \ {0}. Since f is invariant by σ and σ2, we obtain

f = cyn + zg = czn + xσ(g) = cxn + yσ2(g).

Evaluating it on z = y = 0, we get c = 0, in contradiction with the fact that c �= 0.
Case 3: a + b = 2 with (a, b) �= (1, 1). In this case, it follows from (1 − a)m1 = (1 − b)m2 that

m1 = m2 = 0. Then, α = −n and f̃ = c(x+y)n, c ∈ C\{0}. On the other hand, the Darboux polynomial
f satisfies the equation

−x(x + ay + (2 − a)z)
∂f

∂x
− y((2 − a)x + y + az)

∂f

∂y
− z(ax + (2 − a)y + z)

∂f

∂z
= −n(x + y + z)f.

We introduce the change of variables (X,Y,Z) = (x, y, z +x+ y). In these new variables, system (2) with
a + b = 2 becomes

X ′ = −X((a − 1)X + 2(a − 1)Y + (2 − a)Z),
Y ′ = Y (2(a − 1)X + (a − 1)Y − aZ), (13)
Z ′ = −Z2.

We denote f∗ = f∗(X,Y,Z) = f(x, y, z). We have that f∗ satisfies

−X((a − 1)X + 2(a − 1)Y + (2 − a)Z)
∂f∗

∂X
+ Y (2(a − 1)X + (a − 1)Y − aZ)

∂f∗

∂Y
− Z2 ∂f∗

∂Z
= −nZf∗.

Now, we denote by f the restriction of f∗ to Z = 0. We obtain that f satisfies

−(a − 1)X(X + 2Y )
∂f

∂X
+ (a − 1)Y (2X + Y )

∂f

∂Y
= 0.

Since XY (X+Y ) is a first integral of system (23) restricted to Z = 0, we have that f = f(XY (X+Y )) and
it must be a homogeneous polynomial of degree n. Then, f = α0(XY (X +Y ))m for some α0 ∈ C\{0},m
a positive integer and n = 3m. We note that α0 �= 0 since otherwise we get a contradiction with the fact
that f is irreducible. Therefore,

f = α0X
mY m(X + Y )m2 + Zg

for some polynomial g = g(X,Y,Z) of degree n−1. Imposing that f is a Darboux polynomial of equation
(23) with cofactor −nZ we obtain, after simplifying by Z that

α0X
mY m(X + Y )m−1 (((a − 4)m + n)X − ((a + 2)m − n)Y ) + (n − 1)Zg

= X((a − 1)X + 2(a − 1)Y + (2 − a)Z)
∂g

∂X
− Y (2(a − 1)X + (a − 1)Y − aZ)

∂g

∂Y
+ Z2 ∂g

∂Z
.
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Setting ḡ(X,Y ) = g(X,Y, 0), we obtain that ḡ satisfies

α0X
mY m(X + Y )m−1 (((a − 4)m + n)X − ((a + 2)m − n)Y )

= X((a − 1)X + 2(a − 1)Y )
∂ḡ

∂X
− Y (2(a − 1)X + (a − 1)Y )

∂ḡ

∂Y
. (14)

We note that ḡ cannot be zero since otherwise α0 = 0, a contradiction. We now show that

ḡ = Gm−1h, G = XY (X + Y ), h = b0X
2 + b1XY + b3Y

2, b0, b1, b2 ∈ C. (15)

To prove (15), we assume that either ḡ is not divisible by G or G divides g, but Gm−1 does not divide ḡ,
and we shall arrive to contradiction.

Subcase 3.1: ḡ is not divisible by G. We first denote by g1 the restriction of ḡ to X = 0. Then, g1 is
either 0 or a homogeneous polynomial of degree 3m − 1 that satisfies (14) restricted to X = 0. In this
last case, we have

(a − 1)Y 2 dg1

dY
= 0, that is g1 = 0.

Then, ḡ = Xh1 for some homogeneous polynomial h1 = h1(X,Y ) of degree 3m − 2.
Now, we denote by g2 the restriction of ḡ to Y = 0. Proceeding as for g1, we obtain that g2 = 0 and

hence ḡ = Y h2 for some homogeneous polynomial h2 = h2(X,Y ) of degree 3m − 2.
Finally, if we denote by g3, the restriction of g to Y = −X. Then, g3 is a homogeneous polynomial of

degree 3m − 1 that satisfies (14) restricted to Y = −X, i.e.,

(1 − a)X2 dg3

dX
= 0 that is g3 = 0,

and ḡ = (X + Y )h3 for some homogeneous polynomial h3 = h3(X,Y ) of degree 3m − 2. Therefore,

g = XY (X + Y )h4 = Gh4

for some homogeneous polynomial h4 = h4(X,Y,Z) of degree 3m − 4, a contradiction with the fact that
ḡ is not divisible by G.

Subcase 3.2: ḡ is divisible by G but not by Gm−1. We have ḡ = Glh with 1 ≤ l ≤ m−2 and h = h(X,Y )
is a homogenous polynomial of degree 3(m− l) not divisible by G. We note that since G is a first integral
of system (23) restricted to Z = 0, then h satisfies after simplifying by Gl,

α0X
m−lY m−l(X + Y )m−1−l (((a − 4)m + n)X − ((a + 2)m − n)Y )

= (a − 1)X(X + 2Y )
∂h

∂X
− (a − 1)Y (2X + Y )

∂h

∂Y
. (16)

Now proceeding for h as in Case 1, we get that h must be divisible by G, a contradiction.
Thus, ḡ = Gm−1h for some homogeneous polynomial h = h(X,Y ) of degree two that we write as

h = b0X
2 + b1XY + b2Y

2. This proves (15). From (15) and (16) (with l = m−1) we get, after simplifying
by Gm−1 that

α0XY (((a − 4)m + n)X − ((a + 2)m − n)Y )
= (a − 1)X(X + 2Y )(2b0X + b1Y ) − (a − 1)Y (2X + Y )(b1X + 2b2Y ).

The unique solution of this equality is b0 = b1 = b2 = 0 and α0 = 0, in contradiction with α0 �= 0.
Case 4: b = a �= ±1. In this case, it follows from (1 − a)m1 = (1 − b)m2 that m1 = m2 = m. Then,

α = −n + (1 − a)m and f̃ = cxmym(x − y)n−2m, c ∈ C \ {0}. We first show that α = −n. Indeed, if we
denote by f∗ = f∗(z), the restriction of f to x = y = 0 we get that either f∗ = 0 or f∗ is a homogeneous
polynomial of degree n.
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In the first case, we can write f as f = xf1 + yf2 for some homogeneous polynomials f1 = f1(x, y, z)
and f2 of degree n − 1. Without loss of generality, we can assume that f2 does not depend on x. Since f
is invariant by σ, we get that it can be written as

f = xf1 + yf2 = yσ(f1) + zσ(f2) = zσ2(f1) + xσ2(f2),

where f2 = f2(y, z), σ(f2) = σ(f2)(z, x) and σ2(f2) = σ2(f2)(x, y). Doing x = y = 0 in xf1 + yf2(y, z) =
yσ(f1) + zσ(f2)(z, x), we get σ(f2)(z, 0) = 0. Consequently σ(f2)(z, x) = xh(z, x). So f2(y, z) = zh(y, z).
Now, we have f = xf1 + yzh(y, z). Since f̃ = f(x, y, 0) = xf1(x, y, 0) = cxmym(x − y)n−2m, we get that
if m �= 0 then f = cxmym(x − y)n−2m + yzh(y, z), a contradiction with the fact that f is irreducible.
Then, m = 0 and from the definition of α, we get that α = −n.

Now, we assume f∗ �= 0. Then, f∗ is a homogeneous polynomial of degree n, i.e., f∗ = α0z
n, with

α0 ∈ C \ {0}. Moreover, f∗ is also a Darboux polynomial of system (2) restricted to x = y = 0, and we
get

−z2 df∗

dz
= αzf∗ that is f∗ = α0z

−α, α0 ∈ C,

which obviously implies that α = −n.
In short, we have proved that α = −n. Then, f̃ = c(x − y)n and f = c(x − y)n + zg for some

homogeneous polynomial g of degree n − 1 and satisfies

−x(x + ay + az)
∂f

∂x
− y(ax + y + az)

∂f

∂y
− z(ax + ay + z)

∂f

∂z
= −n(x + y + z)f.

We note that in this case x − y is an invariant of system (2). We introduce the change of variables
(X,Y,Z) = (x, x − y, z). In these new variables, system (2) with b = a �= 1 becomes

X ′ = −X((1 + a)X − aY + aZ),
Y ′ = −Y (2X − Y + aZ), (17)
Z ′ = −Z(2aX − aY + Z).

We denote f = f(X,Y,Z) = f(x, y, z). We have that f satisfies

− X((1 + a)X + aZ)
∂f

∂X
− Z(2aX + Z)

∂f

∂Z
= −n(2X + Z)f. (18)

We note that since f is irreducible we have that f �= 0. Furthermore, from the discussion above, we have
that it is divisible by Z. We write it as

f = Zmg, g =
n−m∑

j=0

gj(X)Zj , gj is a homogeneous polynomial of degree n − m − j.

Then, g0 �= 0 is a homogeneous polynomial of degree n − m, and it follows from (18) after simplifying by
zm and then restricting to z = 0, that it satisfies

−(1 + a)X2 dg0

dX
= 2(am − n)Xg0, that is g0 = α0X

2(am−n)/(a+1), α0 ∈ C.

Therefore, since a �= 1 to have that g0 is a polynomial of degree n − m, we must have m = −n, which is
not possible. Then, g0 = 0, a contradiction.

Case 5: a �= 1, b �= 1, a + b �= 2 and b �= a. In this case, we have that α = −n + (1 − a)m1 with
(1 − a)m1 = (1 − b)m2. Then, f̃ = cxm1ym2((b − 1)x + (1 − a)y)n−m1−m2 , c ∈ C \ {0}. We first show that
α = −n. Indeed, if we denote by f∗ = f∗(z) the restriction of f to x = y = 0, we get that either f∗ = 0
or f∗ is a homogeneous polynomial of degree n.

Assume f∗ �= 0. Proceeding as in the first paragraph of Case 4, we get that f can be written as
f = xf1 + yzf2(y, z) for some homogeneous polynomials f1 = f1(x, y, z) and f2 = f2(y, z) of degrees
n − 1 and n − 2, respectively. Since f̃ = f(x, y, 0) = xf1, we get that if m2 �= 0, then f = cxm1ym2(x −



770 J. Llibre and C. Valls ZAMP

y)n−m1−m2 +yzh(y, z), a contradiction with the fact that f is irreducible. Then, m2 = 0 and since a �= 1,
we have m1 = 0 and α = −n.

Assume that f∗ �= 0. Proceeding as in the first paragraph of the proof of Case 4, we get that α = −n.
In short, f satisfies

−x(x + ay + bz)
∂f

∂x
− y(bx + y + az)

∂f

∂y
− z(ax + by + z)

∂f

∂z
= −n(x + y + z)f.

We denote by f̃ = f̃(x, y) the restriction of f to z = 0. Since α = −n, it follows from the discussion
above that f̃ = c((b − 1)x + (1 − a)y)n and f = c((b − 1)x + (1 − a)y)n + zg, where g = g(x, y, z) is a
homogenous polynomial of degree n − 1. Since f is invariant by σ and σ2, we obtain

f = α0((b − 1)x + (1 − a)y)n + zg = α0((b − 1)y + (1 − a)z)n + xσ(g),
= α0((b − 1)z + (1 − a)x)n + yσ2(g).

Evaluating it on x = z = 0, we get

α0(1 − a)nyn = α0(b − 1)nyn, that is (1 − a)n = (b − 1)n,

in contradiction with the fact that a + b �= 2 and b �= a. This concludes the proof of the theorem. �

5. Polynomial first integrals

The main result in this section is as follows:

Theorem 11. System (2) has no homogeneous polynomial first integrals invariant by σ that are not divis-
ible by a Darboux polynomial of degree one with non-zero cofactor.

Before proving Theorem 11, we show the following preliminary result.

Proposition 12. Let n1, n2 ∈ Z with n1 �= n2, n1, n2 ≥ 2 and let g = g(x, y) be a homogeneous polynomial
of degree n1n2 − 1 satisfying

−x(x + (1 − n1)y)
∂g

∂x
− y((1 − n2)x + y)

∂g

∂y
− ((1 − n1)x + (1 − n2)y)g

+ n1n2α0x
n2yn1(−n2x + n1y)n1n2−n1−n2−1F (x, y) = 0, (19)

for some α0 ∈ C with

F (x, y) = (2n2 − n2
2 − n1)x + (−2n1 + n2

1 + n2)y. (20)

Then, α0 = 0.

Proof. We can assume that α0 �= 0 (otherwise there is nothing to prove), and we will arrive to a contra-
diction. We first show that

g = (−n2x + n1y)n1n2−n1−n2−2h0, (21)

with n1n2 − n1 − n2 − 2 > 0 and where h0 = h0(x, y) is a homogeneous polynomial of degree n1 + n2 − 1.
To do it, we assume that either g is not divisible by −n2x + n1y, or −n2x + n1y divides g but (−n2x +
n1y)n1n2−n1−n2−2 does not divide g and we shall arrive to contradiction

We introduce the change of variables

(X,Y ) = (x,−n2x + n1y). (22)
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In these new variables, system (2) restricted to z = 0 becomes

X ′ = − X

n1
((n1 + n2 − n1n2)X + (1 − n1)Y ),

(23)

Y ′ = − Y

n1
((n1 + n2)X + Y ).

We denote g∗ = g∗(X,Y ) = ḡ(x, y). We have that g∗ satisfies

− X

n1
((n1 + n2 − n1n2)X + (1 − n1)Y )

∂g∗

∂X
− Y

n1
((n1 + n2)X + Y )

∂g∗

∂Y

−
(

(1 − n1)X + (1 − n2)
n2X + Y

n1

)

g∗

+n1n2α0X
n2

(
n2X + Y

n1

)n1

Y n1n2−n1−n2−1F ∗(X,Y ) = 0, (24)

where

F ∗(X,Y ) = (2n2 − n2
2 − n1)X + (−2n1 + n2

1 + n2)
Y + n2X

n1
.

Case 1: g∗ is not divisible by Y . Now, let g̃ = g̃(X) be the restriction of g∗ to Y = 0. We have that
g̃ �= 0. Then, g̃ is a homogeneous polynomial of degree n1n2 − 1 and satisfies

−n1 + n2 − n1n2

n1
X2 dg̃

dX
− X

n1
(n1 − n2

1 + n2 − n2
2)g̃ = 0

that is g̃ = α2X
(n2

1+n2
2−n1−n2)/(n1+n2−n1n2) with α2 ∈ C \ {0}. Since g̃ is a polynomial and n2

1 + n2
2 −

n1 − n2 > 0 and n1 + n2 − n1n2 < 0 we get g̃ = 0, a contradiction.
Case 2: g∗ is divisible by Y , but not by Y n1n2−n1−n2−2; i.e., g∗ = Y mg1 with 1 ≤ m < n1n2−n1−n2−2

and g1 = g1(X,Y ) a homogeneous polynomial of degree n1n2 − 2 − m which is not divisible by Y . It
follows from (24) that after simplifying by Y m, g1 satisfies

− X

n1
((n1 + n2 − n1n2)X + (1 − n1)Y )

∂g1

∂X
− Y

n1
((n1 + n2)X + Y )

∂g1

∂Y

−
(

(1 − n1 + m)X + (1 − n2 + m)
n2X + Y

n1

)

g1

+n1n2α0X
n2−m

(
n2X + Y

n1

)n1

Y n1n2−n1−n2−m−1F ∗(X,Y ) = 0. (25)

Let g̃1 be the restriction of g1 = g1(X) to Y = 0, we have that g̃1 �= 0. Then, g̃1 is a homogeneous
polynomial of degree n1n2 − 2 − m and satisfies

− X2

n1
(n1 + n2 − n1n2)

dg̃1

dx
+

X

n1
(n1(n1 − 1 − m) + n2(n2 − 1 − m))g̃1 = 0. (26)

Hence, g̃1 = α2x
(n1(n1−1−m)+n2(n2−1−m))/(n1+n2−n1n2) with α2 ∈ C \ {0}. Since g̃1 is a polynomial of

degree n1n2 − 1 − m, we must have

(n1(n1 − 1 − m) + n2(n2 − 1 − m)) = (n1 + n2 − n1n2)(n1n2 − m − 2).

That is

Tn1,n2 = n2
1 + n1 − n1n2 − mn1n2 − n2

1n2 + n2
2 + n2 − n1n

2
2 + n2

1n
2
2 = 0.

Using that m < n1n2−n1−n2−2, we get that 0 = Tn1,n2 > n2
1+n2

2+n1+n2+n1n2 > 0, a contradiction.
Hence, (21) is proved.
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It follows from (19) and (21) after simplifying by (−n2x + n1y)n1n2−n1−n2−2, we get that h0 satisfies

−x(x + (1 − n1)y)
∂h0

∂x
− y((1 − n2)x + y)

∂h0

∂y

+ ((1 + 2n1 + n2 − n1n2)x + (1 + 2n2 + n1 − n1n2)y) h0

+n1n2α0x
n2yn1(−n2x + n1y)F (x, y) = 0. (27)

We can rewrite (27) in the following way
dh0

dt
+ ((1 + 2n1 + n2 − n1n2)x + (1 + 2n2 + n1 − n1n2)y) h0

+ n1n2α0x
n2yn1(−n2x + n1y)F (x, y) = 0, (28)

where the derivatives are evaluated along a solution of system

x′ = −x(x + (1 − n1)y), y′ = −y((1 − n2)x + y). (29)

We denote (xn1,n2(t), yn1,n2(t)) the solution of system (29) where n1, n2 are parameters. Then, since
(29) is invariant by the change τ(x, y, n1, n2) = (y, x, n2, n1), we have that if we denote by h0,n1,n2(t) =
h0(xn1,n2(t), yn1,n2(t)) the solution of (28), then τ(h0,n1,n2(t)) defined as h0(yn2,n1(t), xn2,n1(t)) also sat-
isfies (28). Therefore, h0,n1,n2(t) and τ(h0,n1,n2(t)) are solutions of the same differential equation.

We shall prove that every solution h0,n1,n2(t) of system (28) is divisible by xn2(t) (respectively yn1(t)).
Hence, since system (28) is invariant under τ , we get that every solution h0,n1,n2(t) will be also divisible
by yn1(t) (respectively xn2(t)). The strategy will be the following. We will first show that any solution
h0,n1,n2(t) of (28) must be divisible by −n2x+n1y. Then, we will consider two cases: n1 > n2 and n1 < n2

(recall that n1 �= n2). In the first case, we will show that h0,n1,n2(t) must be divisible by xn2 and thus by
the explanation above also by yn1 , and in the second case, we will show that it must be divisible by yn1

and consequently by xn2 . In short, we will have proved that any solution h0,n1,n2(t) of (27) must be of
the form

h0,n1,n2(t) = cxn2yn1(−n2x + n1y), c ∈ C,

and thus

g = cxn2yn1(−n2x + n1y)n1n2−n1−n2−1, c ∈ C.

Then, it follows from (19) after simplifying by xn2yn1(−n2x + n1y)n1n2−n1−n2−1 that

0 = c(n1x + n2y) + n1n2α0F (x, y)
= c(n1x + n2y) + n1n2α0((2n2 − n2

2 − n1)x + (−2n1 + n2
1 + n2)y).

The unique solutions of this equation are

c = n1 = 0; c = n2 = 0; n1 = n2 = 0; c = α0 = 0;
c = n2(2 + (n2 − 3)n2), n1 = 2 − n2;

c =
n2

2α0

2

(
2n2 − 3 ∓

√
3i

)
, n1 =

n2

2

(
1 ∓

√
3i

)
.

Note that all these solutions are in contradiction with the fact that α0 �= 0 and n1, n2 ≥ 2 are integers.
So, the proposition is proved.

To complete the proof, we are left with showing first that h0,n1,n2(t) is divisible by −n2x + n1y and
xn2yn1 by considering the two cases mentioned above.

Now, we assume that h0,n1,n2(t) is not divisible by −n2x+n1y. Introducing the variables (X,Y ) given
in (22) and proceeding as in Case 2 with m = n1n2 − n1 − n2 − 2 and setting h∗

0 = h∗
0(X,Y ) = h0(x, y)

and h̃0 = h̃0(X) = h∗
0(X, 0), we get that h̃0 �= 0 and satisfies

−X2

n1
(n1 + n2 − n1n2)

dh̃0

dx
+

X

n1

(
2n2

1 + 2n2
2 + 3n1n2 − n2

1n2 − n1n
2
2 + n1 + n2

)
h̃0 = 0,
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i.e., the equation (26) with the corresponding value of m. Hence,

h̃0 = α2x
(2n2

1+2n2
2+3n1n2−n2

1n2−n1n2
2+n1+n2)/(n1+n2−n1n2),

with α2 ∈ C \ {0}. Since h̃0 is a homogeneous polynomial of degree n1 + n2 + 1, we must have

2n2
1 + 2n2

2 + 3n1n2 − n2
1n2 − n1n

2
2 + n1 + n2 = (n1 + n2 − n1n2)(n1 + n2 + 1).

That is 0 > Tn1,n2 = (n1 + n2)2 = 0, a contradiction. Hence, h0,n1,n2(t) is divisible by −n2x + n1y.
Now, we assume that n1 > n2, and we will prove that h0,n1,n2(t) is divisible by xn2 . The case n1 < n2

can be studied interchanging x by y and n1 by n2.
Assume n1 > n2 and we consider two cases.
Case a: h0,n1,n2(t) is not divisible by x. Now let h1 = h1(y) be the restriction of h0,n1,n2(t) to x = 0.

We have that h1 �= 0. Then, h1 is a homogeneous polynomial of degree n1 + n2 + 1 and from (27), we get

−y2 dh1

dy
+ (1 + 2n2 + n1 − n1n2)yh1 = 0 i.e., h1 = α2y

2n2+n1+1−n1n2 , α2 ∈ C \ {0}.

Therefore, 2n2 + n1 + 1 − n1n2 = n1 + n2 + 1, a contradiction with the fact that n1, n2 ≥ 2.
Case b: h0,n1,n2(t) is divisible by x, but not by xn2 , i.e., h0,n1,n2(t) = xmh1 with 1 ≤ m < n2 and

h1 = h1(x, y) a homogeneous polynomial of degree n1 + n2 + 1 − m that is not divisible by x. It follows
from (27) that after simplifying by xm, h1 satisfies

−x(x + (1 − n1)y)
∂h1

∂x
− y((1 − n2)x + y)

∂h1

∂y

+ ((1 + 2n1 + n2 − n1n2 − m)x + (1 + 2n2 + n1 − n1n2 − m(1 − n1))y) h1

+n1n2α0x
n2−myn1(−n2x + n1y)F (x, y) = 0.

Let h1 be the restriction of h1 to x = 0. Then, h1 satisfies

−y2 dh1

dy
+ (1 + 2n2 + n1 − n1n2 − m(1 − n1))yh1 = 0

that is

h1 = α2y
2n2+n1−n1n2+1−m(1−n1), α2 ∈ C \ {0}.

Since h1 is a homogeneous polynomial of degree n1 + n2 + 1 − m, we must have

2n2 + n1 + 1 − n1n2 − m(1 − n1) = n1 + n2 + 1 − m that is m = n2 − n2

n1
,

a contradiction with the fact that m is an integer and n2 < n1. This completes the proof of the proposi-
tion. �

Proof of Theorem 11. We proceed by contradiction. Let f be a homogeneous polynomial first integral
of system (2) invariant by σ and that it is not divisible by a Darboux polynomial of degree one with
non-zero cofactor of system (2). We consider three cases.

Case 1: (a, b) �∈ Cn, where Cn is defined in (5). Let f be the restriction of f to z = 0. Then, f is a
homogeneous polynomial, and in view of Theorem 9 (see (6)), we have that f = 0 and thus f = zf1 for
some homogeneous polynomial f1 = f1(x, y, z), a contradiction because z is a Darboux polynomial with
non-zero cofactor.

Case 2: (a, b) ∈ Cn and b �= a. We have that a = 1 − n1, b = 1 − n2 with n1 �= n2, n = n1n2 and
n1, n2 ≥ 2. By means of Proposition 7 and Theorem 10, we have that the unique irreducible Darboux
polynomials of system (2) in this case are x, y and z.

We denote by f the restriction of f to z = 0. In view of Theorem 9, we have that

f = α0x
n2yn1(−n2x + n1y)n1n2−n1−n2 , α0 ∈ C.
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Note that if f = 0, then since f is invariant by σ, f is divisible by xyz and we are done. So, we can assume
that α0 ∈ C \ {0}. Then,

f = α0x
n2yn1(−n2x + n1y)n1n2−n1−n2 + zg,

where g = g(x, y, z) is a homogeneous polynomial of degree n1n2 − 1. Then, g satisfies

−x(x + (1 − n1)y + (1 − n2)z)
∂g

∂x
− y((1 − n2)x + y + (1 − n1)z)

∂g

∂y

−z((1 − n1)x + (1 − n2)y + z)
∂g

∂z
− ((1 − n1)x + (1 − n2)y + z)g

+n1n2α0x
n2yn1(−n2x + n1y)n1n2−n1−n2−1F (x, y) = 0,

with F (x, y) as in (20). If we set ḡ = g(x, y, 0), taking z = 0 in the equation above, we have

−x(x + (1 − n1)y)
∂ḡ

∂x
− y((1 − n2)x + y)

∂ḡ

∂y
− ((1 − n1)x + (1 − n2)y)ḡ

+n1n2α0x
n2yn1(−n2x + n1y)n1n2−n1−n2−1F (x, y) = 0.

By Proposition 12, we get that α0 = 0, a contradiction.
Case 3: (a, b) ∈ Cn and b = a �= ±1. Then n2 = n1 and b = a = 1 − n1. We introduce the change of

variables (X,Y,Z) = (x, y, z − x). In these variables, system (2) becomes

X ′ = −X((2 − n1)X + (1 − n1)Y + (1 − n1)Z),
Y ′ = −Y (2(1 − n1)X + Y + (1 − n1)Z),
Z ′ = −Z(2X + (1 − n1)Y + Z).

We denote f∗(X,Y,Z) = f(x, y, z) and f = f(X,Y ) = f∗(X,Y, 0). Then, f satisfies

−X((2 − n1)X + (1 − n1)Y )
∂f

∂X
− Y (2(1 − n1)X + Y )

∂f

∂Y
= 0.

Solving it, we get that f = f(G) where

G =
Y n1−2(Y − X)3−2n1

X
.

Since G (or the inverse of G) must be a polynomial of degree n ≥ 1, we must have

n1 ≤ 2, n1 ≥ 3
2

that is n1 = 2.

Therefore, n1 = 2 and b = a = −1, and this case is not considered. This completes the proof of the
theorem. �

6. Proof of Theorems 1 and 2

In this section, we prove the two main results of this paper, Theorems 1 and 2.

Proof of Theorem 1. When a = b = ±1, direct computations prove statements (a.2) and (b.1).
Let f be a first integral. Now taking into account that we can always assume that the first integrals are

invariant by σ (otherwise we consider f ·σ(f) ·σ2(f)), that we can restrict the polynomial first integrals to
homogeneous polynomials, and that by Proposition 3, any Darboux polynomial factorizes in irreducible
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Darboux polynomials, by Propositions 4 and 7 and Theorem 11, any first integral (either a polynomial
or a proper rational function) must be of the form

f =

⎧
⎪⎨

⎪⎩

xm1ym2zm3(x + y + z)m4 if a + b = 2,
xm1ym2zm3(x − y)m4(x − z)m5(y − z)m6 if a = b �= ±1,
xm1ym2zm3 for any other (a, b) �= ±(1, 1),

(30)

where m1,m2,m3,m4,m5,m6 are integers. We consider three different cases.
Case 1: a + b = 2. In this case, we have that f is as in (30), i.e., f = xm1ym2zm3(x + y + z)m4 for some
integers m1,m2,m3 and m4 with m1 + m2 + m3 + m4 �= 0. Since f is invariant by σ, we have that f is
equal to

xm1ym2zm3(x + y + z)m4 = ym1zm2xm3(x + y + z)m4 = zm1xm2ym3(x + y + z)m4 .

Therefore, equating the three relations, we get

m1 = m2 = m3 = m. (31)

Thus, f must be of the form f = (xyz)m(x + y + z)m4 . Imposing that f is a first integral, we get
0 = −(m4 + 3m)(xyz)m(x + y + z)m4+1. Then, m4 = −3m, and thus

f =
xyz

(x + y + z)3
.

This completes the proof of statement (b.2).
Case 2: a = b �= ±1. In this case, we have that f is a polynomial or a proper rational first integral if and
only if f = xm1ym2zm3(x − y)m4(x − z)m5(z − y)m6 , for some integers m1,m2,m3,m4,m5 and m6. Since
f is invariant by σ, we have that

f = xm1ym2zm3(x − y)m4(x − z)m5(z − y)m6

= ym1zm2xm3(y − z)m4(y − x)m5(x − z)m6

= zm1xm2ym3(z − x)m4(z − y)m5(y − x)m6 ,

that is

m1 = m2 = m3 = m, m4 = m5 = m6 = l. (32)

Thus, f must be of the form f = (xyz)m ((x − y)(x − z)(y − z))l. Imposing that f is a first integral, we
get

0 = ((2a + 1)m + (2 + a)l) (xyz)m ((x − y)(x − z)(y − z))l (x + y + z).

Then, (2a + 1)m + (2 + a)l = 0. If (2a + 1)/(2 + a) �∈ Q or (2 + a)/(2a + 1) �∈ Q, then system (2) has no
first integrals that are either a polynomial or a proper rational function. Otherwise, it has a first integral
of the form

H(x, y, z) = (xyz)2+a ((x − y)(x − z)(y − z))−(2a+1)
.

Note that H is a polynomial if and only if either −(2+a)/(2a+1), or −(2a+1)/(2+a) is a nonnegative
integer. Otherwise, it is a proper rational function. So, statements (a.1) and (b.3) are proved.
Case 3: a + b �= 2, a �= b. In this case, we have that f = xm1ym2zm3 , for some integers m1,m2 and m3.
Since f is invariant by σ, we have that

f = xm1ym2zm3 = ym1zm2xm3 = zm1xm2ym3 ,

that is

m1 = m2 = m3 = m. (33)

Without loss of generality, we can take m = 1. Imposing that f is a first integral, we get

0 = (1 + a + b)xyz(x + y + z), that is a + b = −1.
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Therefore, if a+b �= −1, system (2) has no first integrals that are either a polynomial or a proper rational
function. If a + b = −1, then it has the first integral

H(x, y, z) = xyz

that is a polynomial. This shows statement (a.3) and concludes the proof of the theorem. �

Proof of Theorem 2. If g is an irreducible homogeneous Darboux polynomial of degree 1 with non-zero
cofactor, then Theorem 2 follows from Proposition 7.

Now, we assume that g is an irreducible homogeneous Darboux polynomial of degree n > 1 for system
(2) with non-zero cofactor K of the form (4). We consider two cases.

Case 1: g is invariant by σ. In this case, it has cofactor K = α(x + y + z) with α ∈ C \ {0}. By
Theorem 10, this is not possible.

Case 2: g is not invariant by σ. Then, from Proposition 8, we can assume that f = g · σ(g) · σ2(g) is
a homogeneous Darboux polynomial invariant by σ, with degree 3n and cofactor K = α(x + y + z) with
α ∈ C\{0}. By Proposition 7 and Theorem 10, f has the form as in (30). We consider different subcases.

Subcase 2.1: a + b = 2. In this case, using that f is invariant by σ, we get the relations of (31).
Furthermore, since the degree of f is 3n, we get that 3m+ l = 3n, i.e., l = 3(n−m). Hence, proceeding as
in the case 1 of the proof of Theorem 1, f = (xyz)m(x + y + z)3(n−m). Therefore, g = xm(x + y + z)n−m,
or g = ym(x + y + z)n−m, or g = zm(x + y + z)n−m, a contradiction with the fact that g is irreducible of
degree greater than or equal to 2.

Subcase 2.2: a = b �= ±1. Using that f is invariant by σ, we get the relations of (32). Furthermore,
since the degree of f is 3n, we get that l = n−m. Hence, f = (xyz)m ((x − y)(x − z)(y − z))n−m. There-
fore, proceeding as in subcase 2.1, we get a contradiction with the fact that g is irreducible of degree
greater than or equal to 2.

Subcase 2.3: a + b �= 2, a �= b. Now, using that f is invariant by σ, we get the relations of (33).
Furthermore, since the degree of f is 3n, we get that m = n. Hence, f = (xyz)n. Therefore, proceeding
as in subcase 2.1, we get a contradiction with the fact that g is irreducible of degree greater than or equal
to 2. �
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1. Almeida, M.A., Magalhães, M.E., Moreira, I.C.: Lie symmetries and invariants of the Lotka-Volterra system. J. Math.
Phys. 36, 1854–1867 (1995)

2. Andrade, R.F.S., Rauh, A.: The Lorenz model and the method of Carleman embedding. Phys. Lett. A 82, 276–
278 (1981)

3. Bountis, T., Grammaticos, B., Ramani, A.: On the complete and partial integrability of non-Hamiltonian sys-
tems. Phys. Rep. 180, 159 (1989)

4. Brenig, L., Goriely, A.: A quasimonomial transformations and integrability. Partially integrable evolution equations
in physics (Les Houches, 1989), pp. 571–572, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 310. Kluwer, Dordrecht
(1990)
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