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Abstract. In this paper, we develop a thermodynamic framework that is capable of describing the response of viscoelastic
materials that are undergoing chemical reactions that takes into account stoichiometry. Of course, as a special sub-case, we
can also describe the response of elastic materials that undergo chemical reactions. The study generalizes the framework
developed by Rajagopal and co-workers to study the response of a disparate class of bodies undergoing entropy producing
processes. One of the quintessential feature of this framework is that the second law of thermodynamics is formulated
by introducing Gibbs’ potential, which is the natural way to study problems involving chemical reactions. The Gibbs
potential–based formulation also naturally leads to implicit constitutive equations for the stress tensor. Another feature
of the framework is that the constraints due to stoichiometry can also be taken into account in a consistent manner. The
assumption of maximization of the rate of entropy production due to dissipation, heat conduction, and chemical reactions
is invoked to determine an equation for the evolution of the natural configuration κp(t)(B), the heat flux vector and a
novel set of equations for the evolution of the concentration of the chemical constituents. To determine the efficacy of the
framework with regard to chemical reactions, those occurring during vulcanization, a challenging set of chemical reactions,
are chosen. More than one type of reaction mechanism is considered and the theoretically predicted distribution of mono,
di and polysulfidic cross-links agree reasonably well with available experimental data.
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1. Introduction

A general thermodynamic framework has been put together, that builds upon, and extends significantly
the work of numerous investigators (see Onsager [26], Eckart [10], Ziegler [41], Ziegler and Wehrli [42],
and others) by Rajagopal and co-workers (see Rajagopal and Srinivasa [28–31], Rao and Rajagopal [34],
Kannan and Rajagopal [18], Prasad and Rajagopal [27]) within which one can explain disparate responses
such as the viscoelasticity of fluids and solids, traditional ‘plasticity’, super-plasticity, twinning and phase
transitions undergone by solids, response of single crystal superalloys, the mechanics of mixtures, and
crystallization of polymer melts, to name a few. The quintessential idea of the framework is that bodies
respond to external stimuli in such a manner that the rate at which entropy is produced in a thermody-
namic process is maximized. That is, constitutive relations that are appropriate from among a class of
competing constitutive relations are those which assume the rate of entropy production to be maximal.
In many bodies, the production of entropy leads to a change in the underlying ‘natural configuration’
of the body reflecting microstructural changes which take place in the body as the material symmetry
associated with the underlying ‘natural configuration’ can evolve. The ‘natural configuration’ is a config-
uration, associated with the current configuration, that a body takes when all the external stimuli in its
current configuration are removed. Which ‘natural configuration’ the body assumes might depend on how
the external stimuli are removed. It is the ability to model the symmetry changes that can take place in
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the natural configuration during a thermodynamic process that allows one to describe phase transitions
within the construct of such a theory.

Recently, Malek and Rajagopal [21] used the framework to discuss the response of mixtures. How-
ever, they did not take into account the possibility of reactions between the constituents of the mixture.
Chemical reactions play a vital role in the response of living matter, the most fecund and worthy area
for research, as well as many other technological applications such as polymerization, oxidation of bodies,
degradation, etc. This would require the integration of the stoichiometry that governs the chemical reac-
tions, an aspect that has not been probed within the confines of the framework. It seems imperative that
we should investigate whether the general framework that has been put into place could be used to study
processes involving chemical and biochemical reactions. In this paper, we investigate this question and
show that we can indeed use the framework to study chemical and biochemical reactions.

There are several fundamental questions concerning the thermodynamics of living matter that are
far from well understood despite several attempts that have been made in the past. To date, there is
no general thermodynamic framework within which the response of the thermodynamics of living mat-
ter can be explained satisfactorily. For instance, how living matter generates entropy while growing and
atrophying is a case in point. The attempts at providing a thermodynamic basis for living matter is
highly unsatisfactory, despite the efforts of giants like Schrodinger [35]. We shall not attempt to provide
a basis for the thermodynamics of living matter. Our aim in this paper is much more modest, and it is a
very small step in the direction of trying to understand the thermodynamics associated with biochemical
reactions. We shall study simple chemical reactions within the context of the theoretical framework that
is available, appealing to the fact that the rate of entropy production is maximized during the reaction.

There are several interesting and difficult questions concerning chemical and biochemical reactions
that need to be answered. For instance, given a number of chemical constituents or species, we can ask
several questions concerning their ability to react. We can use techniques in graph theory wherein we
consider the chemicals to be nodes and the reactions between chemicals as edges. One question that
naturally comes to mind is the following: given a number of chemicals that are capable of reacting which
reactions ought to be enhanced or made possible and how, and which reactions retarded or eliminated,
and how, in order to achieve a desired end? That is, given an input to a complicated cascade of reac-
tions how do we modify them to ensure that we have a desired output? With regard to the graph, the
corresponding question is which edge is to be cut or which new edge is to be brought into play? Our
ability to cut an edge might require the introduction of one or more chemicals (one or more nodes) that
prevents the reaction between pre-existing chemicals (nodes) and our capability to add an edge might
imply, for instance, the introduction of a catalyst (a node). A related important problem is the design of
a set of reactions based on appropriate chemicals in order to produce a desired cascade of reactions. Yet
another question is whether the rate at which entropy is maximized dictates which cascade of reactions
are possible and how they proceed? In a recent paper, Malik et al. [22] consider a much simpler mechan-
ical problem consisting in masses (represented as nodes) and springs (represented as edges) to answer
the corresponding questions for a purely mechanical system. Their analysis shows that even the much
simpler mechanical problem that involves no reactions but each edge being associated with an ordinary
differential equation is an exceedingly challenging problem.

We consider the chemical reactions by modeling them within the context of simple stoichiometric
equations. We introduce a constitutive relation for the rate of entropy production that is due to chemical
reactions, and we shall study the implications of the requirement of the maximization of the rate of
entropy production. We also consider the effect of deformation of the mixture of chemicals and a ther-
mal process, i.e., heat conduction, on the chemical reactions, and the effect of chemical reactions on the
thermo-mechanical behavior of the mixture. Further, we assume that there is no relative motion among
the chemical constituents (no diffusion), i.e., we shall assume that the body is a constrained mixture.
We shall not consider biochemical reactions but merely restrict ourselves to simpler chemical reactions
because, in addition to considering the effect of thermal and mechanical stimuli on chemical reactions,
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one needs to consider the effect of diffusion of the chemical constituents, pH, electric potential, and so
forth, on the chemical reactions. However, the ideas presented in this framework are an important first
step in understanding the thermodynamics associated with biochemical reactions.

Let us consider a chemically reacting system with M reactions involving N chemical species, i.e.,

ν11S1 + ν12S2 + · · · + ν1NSN = 0
ν21S1 + ν22S2 + · · · + ν2NSN = 0

(1.1)
...
νM1S1 + νM2S2 + · · · + νMNSN = 0,

where Si, i = 1, 2 . . . N represent the chemical species and νij , i = 1, 2 . . . M and j = 1, 2 . . . N are integers
and represent the ‘stoichiometric’ co-efficients. In the above equation, i.e., Eq. (1.1), reactants and the
products are grouped in the left-hand side of the equality symbol. Notice that the word stoichiometric is
within quotation marks. This terminology is different from the usual sense in which the word is used, in
that, the coefficients must only satisfy the mass balance individually for each reaction, unlike the set of
atom-balance equations that must be satisfied for determining stoichiometric co-efficients corresponding
to each reaction.

2. Kinematics

Let us consider a mixture containing N chemical species deforming, and chemically reacting with each
other according to Eq. (1.1). Further, we shall assume that the N species coexist at a point and move
together with the same velocity without relative motion among them (i.e., no diffusion), i.e., we are
considering a constrained mixture. We shall assume that the deforming body is viscoelastic in nature.
Kinematics that is provided below is sufficient to study the deformation of a constrained mixture, which
behaves like a viscoelastic material.

Motion is a one to one mapping that assigns to each point XκR
∈ κR(B), where κR(B) is the reference

configuration, a point x ∈ κt(B), where κt(B) is the current configuration, B being the abstract body,
for each t ∈ �, i.e.,

x = χκR
(XκR

, t). (2.1)

The motion is assumed to be sufficiently smooth to make all the following derivatives meaningful.
Velocity and acceleration of a particle X at time t are given through

v =
∂χκR

∂t
(2.2)

and

a =
∂2χκR

∂t2
(2.3)

The deformation gradient is defined through

F κR
=

∂χκR

∂XκR

(2.4)

and multiplicatively decomposed as follows:

F κR
= F κp(t)(XκR

, t)G(XκR
, t), (2.5)
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Fig. 1. Configurations associated with a deforming viscoelastic body

where G is a mapping from the reference configuration to current natural configuration1 (see Fig. (1)),
i.e., κp(t)(B) and F κp(t) is a mapping from configuration κp(t)(B) to the current configuration.

The velocity gradient is defined through

L = Ḟ κR
F −1

κR
, (2.6)

where the dot signifies the material time derivative. Similarly, one can define a tensor Lκp(t) associated
with the evolution of natural configuration κp(t)(B), i.e.,

Lκp(t) = ĠG−1. (2.7)

The velocity gradient tensor L and tensor Lκp(t) can be uniquely decomposed into a symmetric and
an anti-symmetric part, i.e.,

L =
1
2
(L + LT ) +

1
2
(L − LT ) = D + W (2.8)

and

Lκp(t) =
1
2

(
Lκp(t) + LT

κp(t)

)
+

1
2

(
Lκp(t) − LT

κp(t)

)
= Dκp(t) + W κp(t) . (2.9)

The left and right Cauchy-Green stretch tensors are defined through

BκR
= F κR

F T
κR

(2.10)

and

CκR
= F T

κR
F κR

, (2.11)

respectively. Similarly, one can define the left and the right Cauchy-Green stretch tensors associated with
the tensor F κp(t) as

Bκp(t) = F κp(t)F
T
κp(t)

(2.12)

1We will be interested in viscoelastic bodies that have an instantaneous elastic response, the general response of the
body being capable of description as a one-parameter family of responses from an evolving natural configuration. It is how-
ever possible that the response of a body cannot be described within such a concept and one may require to approach the
modeling the response of such bodies differently. One such approach is the Gibbs potential formulation that is considered
by Rajagopal and Srinivasa [31]. The preferred natural configuration is the configuration that the body takes, based on the
allowable process class, when the external stimuli are removed. A detailed discussion of the notion of natural configuration
can be found in Rajagopal and Srinivasa [29].
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and

Cκp(t) = F T
κp(t)

F κp(t) , (2.13)

respectively.
By taking the material time derivative of Eqs. (2.12) and (2.13), and on using Eqs. (2.5)–(2.9), one arrives
at

�
Bκp(t) = Ḃκp(t) − LBκp(t) − Bκp(t)L

T = −2F κp(t)Dκp(t)F
T
κp(t)

(2.14)

and

Ċκp(t) + LT
κp(t)

Cκp(t) + Cκp(t)Lκp(t) = 2F T
κp(t)

DF κp(t) , (2.15)

respectively. In Eq. (2.14), the tensor
�
Bκp(t) represents the upper convected derivative of tensor Bκp(t) .

Similarly, using Eq. (2.14), one can show that
�

B−1
κp(t)

=
˙

B−1
κp(t)

+ B−1
κp(t)

L + LT B−1
κp(t)

= 2F −T
κp(t)

Dκp(t)F
−1
κp(t)

= −B−1
κp(t)

�
Bκp(t)B

−1
κp(t)

, (2.16)

where
�

B−1
κp(t)

represents lower convected derivative of the tensor B−1
κp(t)

.
The principal invariants of any second-order tensor A are given through

IA = tr(A), IIA =
1
2

{
[tr(A)]2 − tr(A2)

}
, and, IIIA = det(A). (2.17)

If a material is assumed to be incompressible, then

tr(L) = div(v) = 0 (or det(BκR) = 1) . (2.18)

In addition to the above constraint, one may assume that the natural configuration evolves in such a
way that

tr(Dκp(t)) = tr(Lκp(t)) = 0. (2.19)

We shall assume that the mixture is compressible, and therefore, we shall not enforce the constraints
(2.18) and (2.19).

3. Balance equations

3.1. Balance of chemical constituents

For the systems in which there is interconversion of one species to another, the balance of mass in the
local form can be shown as (see Rajagopal and Tao [32])

∂ρi
κt

∂t
+ div(ρi

κt
v) =

Dρi
κt

Dt
+ ρi

κt
div(v) = mi, (3.1)

where mi is the rate of production of mass of the ith constituent per unit volume of mixture in the
current configuration κt(B) and ρi

κt
is the mass of the ith species per unit volume of the mixture in the

current configuration. In deriving the Eq. (3.1), we have invoked the assumption that at any material
point corresponding to the mixture, there is no relative velocity among various species. Since we do
not allow for relative motion between the constituents, we do not need to differentiate among Xi

κR
as

Xi
κR

= XκR
, i = 1, 2, . . . , N , and therefore, there is only one material derivative represented by D()/Dt.

Recall that a material point XκR
consist in all the species as a result of the assumption of co-occupancy.
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The rate of production of mass of the ith constituent is non-zero as there is interconversion of one species
into another as a result of chemical reactions.
One can define the concentration (in terms of the volume) of the ith species in the current configuration,
denoted by n̄i, as n̄i := ρi

κt
/Mi, where Mi is the molar mass of the ith species, a constant. By rewriting

the Eq. (3.1) in terms of n̄i, one arrives at

∂n̄i

∂t
+ div(n̄iv) = ˙̄ni + n̄idiv(v) =

mi

M i
, i = 1, 2, . . . , N, i no sum, (3.2)

where the dot in Eq. (3.2) signifies the rate of change of concentration of the ith species with respect
to time for a fixed XκR

. The total rate of change of concentration of ith constituent, i.e., ˙̄ni, is given
through the sum of contributions due to rate of change of volume and rate of change of production of the
same species. Since there cannot be net production of mass,

N∑
i=1

mi = 0. (3.3)

One can rewrite Eq. (3.2) by introducing the concentration in terms of moles per unit mass of the
mixture, i.e., ρκt

ni = n̄i, i = 1, 2, . . . , N , where ni is number of moles of ith species per unit mass of
mixture. Then, on appealing to the conservation of mass for the mixture, Eq. (3.2) can be rewritten as

ρκt
ṅi =

mi

M i
, i = 1, 2, . . . , N, (3.4)

where ṅi’s denote the material rate of change of concentration with respect to time, corresponding to each
of the chemical species S1, S2 . . . SN , respectively. Note that when concentration is expressed in terms
of moles per unit volume, the rate of change of concentration of any species has contributions due to
volume change and that due to chemical reactions. However, when concentration is expressed in terms
of the mass, the rate of change of the same is only due to chemical reactions. Now, we shall arrive at an
expression for mass production in terms of stoichiometric co-efficients.

Let M1, M2 . . . MN represent the masses of one mole of species S1, S2, . . . , SN , respectively. Then,
each of the reactions (1.1) must satisfy the mass balance equation, i.e.,

νi1M1 + νi2M2 + · · · + νiNMN = 0, i = 1, 2, . . . , M. (3.5)

One can rewrite the above equations in the following form:
N∑

j=1

νijMj = 0, i = 1, 2, . . . , M, (3.6)

where νij , j = 1, 2, . . . , N represents the stoichiometric coefficients corresponding to the ith reaction.
Unless stated otherwise, the first index i represents the ith reaction and the last index j represents the
jth chemical constituent. Each νij is determined, using Eq. (3.6), such that they are integers.

It is quite clear from Eq. (1.1) that for the kth reaction, at some fixed conditions such as temperature,
stress, etc., νk1 moles of S1, νk2 moles of S2, and so forth are consumed in some time interval, which
implies that the rate of change of concentration per unit mass of the mixture is not the same for each of
the species. For a fixed reaction, it is customary to introduce a quantity called the extent of reaction in
such a way that the change in the concentration of each chemical species normalized with respect to its
respective stoichiometric co-efficient remains the same for that reaction, i.e.,

ξk =
nk

1(t) − nk
1(0)

νk1
=

nk
2(t) − nk

2(0)
νk2

= · · · =
nk

N (t) − nk
N (0)

νkN
, k = 1, 2 . . . , M, (3.7)

where ξk, k = 1, 2, . . . M represent the extent of the reaction (or a point on the reaction co-ordinate)
corresponding to reactions 1, 2 . . . M , respectively, and dnk

l

dt represents the kth reaction contributions to
the total rate of change of concentration with respect to time corresponding to species Sl. It is important
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that one does not define the extent of chemical reaction in terms of change in concentration expressed in
terms of the volume because the change in concentration, as seen earlier, can be brought forth by volume
changes and not just the chemical reactions. The extent of reaction depends on the concentration of
chemical constituents, temperature, stress, etc. However, at any given time, Eq. (3.7) is always satisfied.

By taking the material time derivative of Eq. (3.7), one arrives at the following equation:

1
νk1

dnk
1

dt
=

1
νk2

dnk
2

dt
= · · · =

1
νkN

dnk
N

dt
= ξ̇k, k = 1, 2 . . . , M. (3.8)

The total rate of change of concentration per unit mass of the mixture, associated with Sth
l species is

given through:

ṅl =
dnl

dt
=

M∑
k=1

dnk
l

dt
, l = 1, 2 . . . , N. (3.9)

From Eqs. (3.8) and (3.9), it is clear that

ṅj =
M∑
i=1

νij ξ̇i, j = 1, 2, . . . , N. (3.10)

By substituting Eqs. (3.4) and (3.10) into Eq. (3.2), one can arrive at an equation for concentration
in terms of the volume, i.e.,

˙̄nj + n̄jdiv(v) = ρκt

M∑
i=1

νij ξ̇i, j = 1, 2, . . . , N. (3.11)

By substituting Eq. (3.6) in Eq. (3.10), one arrives at
N∑

j=1

ṅjMj = 0. (3.12)

3.2. Balance of mass for the mixture as a whole

Using the definition n̄i := ρi
κt

/Mi, the fact that
∑N

i=1 ρi
κt

= ρκt
, the assumption that there is no relative

motion among the N chemical constituents and the Eq. (3.3), and summing the Eq. (3.2) over all the
species, one arrives at the balance of mass for the mixture as a whole, i.e.,

ρ̇κt
+ ρκt

div(v) = 0, (3.13)

where ρκt
is the density of the mixture in the current configuration. Upon integrating over time, Eq.

(3.13) becomes

ρκR
= ρκt

det(F κR
), (3.14)

where ρκR
is the density of the mixture in the reference configuration F κR

. Further, since the mechan-
ical response of the mixture is described with respect to the evolving configuration κp(t)(B), one may
define the density with respect to κp(t)(B), i.e.,

ρκR
= ρκp(t)det(G), (3.15)

where ρκp(t) is density of mixture in the natural configuration κp(t)(B).
By operating by the material time derivative on both sides of Eqs. (3.14) and (3.15), one can rewrite
both the equations as and

ρ̇κp(t) + ρκp(t)tr(Lκp(t)) = 0, (3.16)

respectively.
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3.3. Balance of linear momentum for the mixture as a whole

Since all the interaction forces amongst the various chemical species add up to zero, it is sufficient to
consider the balance of linear momentum for the mixture as a whole, i.e.,

div(T T ) + ρκt
b = ρκt

v̇, (3.17)

where T is Cauchy stress tensor and b is specific body force. If relative motion between the various species
were to be considered, then the balance of linear momentum for every species is required. Further, one
should also consider interaction terms arising as a result due to the interplay between the various con-
stituents due to the relative velocity, relative accelerations, relative spins, relative deformation histories,
relative gradients of temperature and density, etc., as well as the conversion of one species to another.
However, these internal interaction terms are assumed to vanish when one averages the equation for a
mixture as a whole. For details, refer to Rajagopal and Tao [32].

Since the mixture is assumed to exist in more than one natural configuration, it is natural to describe
the stress response with respect to the evolving natural configurations. Accordingly, one can define the
second Piola Kirchhoff stress tensor as follows:

S = det(F κp(t))F
−1
κp(t)

TF −T
κp(t)

. (3.18)

3.4. Consequence of balance of angular momentum

In addition to the moment produced by external forces, we shall assume that the only source of internal
angular momentum is due to production of mass, which upon summing over all the species vanishes.
Accordingly, in the absence of internal body couples, one can show that for a mixture as a whole (see
Rajagopal and Tao [32])

T = T T . (3.19)

3.5. Balance of energy for the mixture as a whole

Balance of energy for the mixture under consideration, in the local form, is given through

ρκt
ε̇ = T · D − div(q) + ρκt

r, (3.20)

where ε is specific internal energy for the mixture as a whole, q is heat flux and r is specific radiant
heating. The above form for the energy equation is a consequence of the fact that we have a constrained
mixture. In general mixtures, the term for the heat flux vector and the radiant heating will be defined
in terms of the terms associated with the individual components. Refer to Rajagopal and Tao [32] for
details.

4. Restrictions on constitutive equations

4.1. Second law of thermodynamics

We shall formulate a mathematical statement of second law of thermodynamics that is amenable to
developing constitutive equations. To that end, we introduce an entropy equation in the form (see Green
and Naghdi [16])

ρκt
η̇ − ρκt

r

θ
+ div

(q

θ

)
= ρκt

ζ, (4.1)
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where θ, q, r, η and ζ are absolute temperature, heat flux, specific radiant heating, specific entropy and
total rate of entropy production per unit mass, respectively, associated with the mixture. We shall assume
that every constituent coexists at a point and undergoes the same motion, and that the only source of
entropy supply to a sub-part of a body is through conduction (no radiant heating), and neglect entropy
supply, which could be facilitated through relative motion among chemical constituents. It is important
to note that chemical reactions do not occur without collision of chemical constituents with sufficient
energy (molecular motion), and thus, relative motion is important. However, the motion we are neglect-
ing is large-scale diffusion of chemical constituents. Thus, the entropy equation as expressed by Eq. (4.1)
is sufficient for the problem under consideration.
Using the equation for energy balance and entropy equation in the local form, eliminating the specific
radiant heating term between the two equations, one arrives at the following equation:

T · D − ρκt
ε̇(η, n1, n2, . . . , nN ,Cκp(t)) + ρκt

η̇θ − 1
θ
q · grad(θ) = ρκt

θζ. (4.2)

In general, when one considers radiant heating, it is essential to obtain constitutive restrictions on
the radiant heating, and second law of thermodynamics expressed in the form of Eq. (4.2) is insufficient
because specific radiant heating does not show up explicitly (see §1 of Rajagopal and Tao [33]).
Now, we will assume the existence of sufficiently smooth, specific Gibbs potential, which is introduced
through the Legendre transform:2

G(θ, n1, n2, . . . , nN ,S) = ε − ηθ − 1
2ρκp(t)

S · Cκp(t) . (4.3)

Notice that the conjugate variables 1
2ρκp(t)

Cκp(t) and S are present in the definition for the Gibbs

potential rather than the specific volume and pressure, which can be recovered by setting the constitu-
tive equation for stress of an ideal gas, i.e., T = −pI, where p is pressure, thereby reducing Eq. (4.3) to
G = ε−ηθ+ 3

2pv, where v is specific volume. Equation (4.3) is required to describe the thermo-mechanical
response of a viscoelastic material using the idea of evolving natural configurations.

By substituting Eq. (4.3) into Eq. (4.2), and on using Eq. (2.15), one arrives at

−ρκt
Ġ(θ, n1, n2, . . . , nN ,S) − ρκt

ηθ̇ − ρκt

2ρκp(t)

Ṡ · Cκp(t)

+
ρκt

2ρκp(t)

S · (LT
κp(t)

Cκp(t) + Cκp(t)Lκp(t))

− ρκt

2ρκp(t)

tr(Dκp(t))S · Cκp(t) − 1
θ
q · grad(θ) = ρκt

θζ ≥ 0. (4.4)

The above equation is the form of second law of thermodynamics that is suitable for what follows. It
can be rewritten as:

−ρκt

(
∂G

∂θ
+ η

)
θ̇ − ρκt

(
∂G

∂S
+

1
2ρκp(t)

Cκp(t)

)
· Ṡ

−ρκt

N∑
i=1

μiṅi +
ρκt

2ρκp(t)

S · (LT
κp(t)

Cκp(t) + Cκp(t)Lκp(t))

− ρκt

2ρκp(t)

tr(Dκp(t))S · Cκp(t) − 1
θ
q · grad(θ) = ρκt

θζ ≥ 0, (4.5)

2One cannot always use a Legendre transform to obtain a Gibbs potential formulation from a Helmholtz potential
formulation as shown by Rajagopal and Srinivasa [31]. In fact, for some systems, one cannot even define a Helmholtz
potential. Similarly, there are systems for which one cannot define a Gibbs potential. Here, we are making the assumption
that one can define a Helmholtz potential and a Gibbs potential for the system under consideration in a meaningful manner.
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where μi := ∂G
∂ni

, i = 1, 2, . . . , N is the chemical potential associated with chemical constituents S1,
S2, . . . , SN , respectively.

One way to satisfy the above equation is by setting

η = −∂G

∂θ
(4.6a)

and
1

2ρκp(t)

Cκp(t) = −∂G

∂S
. (4.6b)

The Eqs. (4.6a) and (4.6b) represent the relation between the conjugate pairs η and θ, and 1
2ρκp(t)

Cκp(t)

and S. If the Gibbs potential is smooth, the Eqs. (4.6a) and (4.6b) are meaningful, and hence the Legendre
transform can be defined. Thus, the Eq. (4.5) assumes a reduced form:

−ρκt

N∑
i=1

μiṅi +
ρκt

2ρκp(t)

S · (LT
κp(t)

Cκp(t) + Cκp(t)Lκp(t))

− ρκt

2ρκp(t)

tr(Dκp(t))S · Cκp(t) − 1
θ
q · grad(θ) = ρκt

θζ = ξ. (4.6c)

We need to ensure that Eq. (4.6c) is satisfied for all possible thermo-mechanical and chemical processes
undergone by a viscoelastic material.

4.2. Galilean invariance

Two frames {x, t} and {x∗, t∗}, each being associated with an observer, are said to be related by a
Galilean transformation, if

χ∗(X, t∗) = c0 + c1t + Q (χ(X, t) − x0), X ∈ B, (4.7a)

and

t∗ = t + a, (4.7b)

where x∗ = χ∗(X, t∗), x = χ(X, t), B is the abstract body, Q is a constant, but an arbitrary orthogonal
tensor,3 and c0, c1, x0 and a are arbitrary constants.

Usually, one requires that the constitutive relations be frame indifferent. However, there is some
controversy concerning the status of frame-indifference. For the development of some theories such as
elasticity, Galilean invariance is sufficient to obtain the theory in its entirety. For our purposes also,
Galilean Invariance is sufficient.

The mappings, i.e., Eqs. (4.7), apart from preserving distance between two material points as viewed
from both frames, time intervals between any two events and direction of time, also ensure that the
acceleration vector a associated with any material point as calculated with reference to both frames are
related through a∗ = Qa.
A scalar φ, vector v, and a tensor A are said to be Galilean invariant if

φ∗ = φ, (4.8a)
v∗ = Qv (4.8b)

3If one requires agreement on orientation of directed line segments, then one needs to restrict Q to be a proper
orthogonal transformations.
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and

A∗ = QAQT , (4.8c)

where φ∗, v∗ and A∗ are corresponding quantities relative to an observer in the frame {x∗, t∗}. Using
the definitions (4.8) for invariant quantities together with Eq. (4.7), one can determine whether the
kinematical quantities defined in Sect. (2) are Galilean invariant or not. For example

F ∗ =
∂χ∗

∂X
= Q

∂χ

∂X
= QF (4.9)

shows that the tensor F is not Galilean invariant.4 We will assume that F ∗
κR

=QF κR
. Similarly, we shall

assume that the tensor F ∗
κp(t)

=QF κp(t) . Accordingly, using Eq. (2.5), tensor G∗ =G, and consequently,
using Eqs. (2.7) and (4.7b), L∗

κp(t)
=Lκp(t) . It is easy to check that C∗

κp(t)
=Cκp(t) .

If one requires the Cauchy stress tensor T to be Galilean invariant, then S∗ = S implying that S is
not Galilean invariant. However, the Gibbs potential G, which is a function of S, is Galilean invariant,
i.e.,

G(θ∗, n∗
1, n

∗
2, . . . , , n

∗
N ,S∗) = G(θ, n1, n2, · · · , nN ,S). (4.10)

One requires that the functional form of the Gibbs potential to be the same with respect to both the
observers. In Eq. (4.10), n∗

i = ni, i = 1, 2, . . . , N because n
′
is represent the concentration of the chemical

constituents in terms of the mass. Next, we will assume that the total rate of entropy production per
unit mass, i.e., ζ, or equivalently, ξ is a function of θ, ρ, ṅ1, ṅ2, . . . , ṅN ,S,Dκp(t) and grad(θ). We shall
require that the functional form of ξ be Galilean invariant with respect to change of observer, i.e.,

ξ(θ∗, ρ∗, ṅ∗
1, ṅ

∗
2, . . . , ṅ

∗
N ,S∗,D∗

κp(t)
, grad∗(θ∗))

= ξ(θ, ρ, ṅ1, ṅ2, . . . , ṅN ,S,Dκp(t) , grad(θ))

= ξ(θ, ρ, ṅ1, ṅ2, . . . , ṅN ,S,Dκp(t) ,Qgrad(θ)), ∀Q ∈ O, (4.11)

where O is the set of orthogonal tensors. The Eq. (4.11) must be satisfied for any set of arbitrarily fixed
variables θ, ρ, ṅ1, ṅ2, . . . , ṅN ,S and Dκp(t) .

4.3. Material symmetry

We shall require that

G(θ, n1, n2, . . . , nN ,S) = G(θ, n1, n2, . . . , nN ,HSHT ), H ∈ Osub, (4.12)

where H is an orthogonal tensor and Osub is the set of all constant orthogonal tensors such that
Eq. (4.12) is satisfied. If Osub is the full orthogonal group, then the material is said to be isotropic,5

and if Osub is a proper subgroup of the orthogonal group, then the material is said to anisotropic.
Mathematically, if Osub is the full orthogonal group, the Gibbs potential is an isotropic scalar-valued

function. Recall that the Gibbs potential is Galilean invariant, and thus, we will have to ensure that
Eq. (4.12) is satisfied. By invoking the representation theorem for isotropic scalar-valued functions (see
Spencer and Rivlin [37]), one arrives at G = G(θ, n1, n2, . . . , nN , IS , IIS , IIIS).

4In obtaining Eq. (4.9), one assumes that κR(B) is a surrogate for the abstract body and that κR(B) is not a specific
observable configuration of the body, and thus in both frames, the particle XκR ∈ κR(B) is the same, and there is nothing

like a X∗
κR

that is observable in the ∗ frame (see Tao and Rajagopal [38] for a discussion of the ramifications of this issue).
5There are some that would not define isotropy through invariance with respect to the full orthogonal group but would

insist only on the group of proper orthogonal transformations as isotropy is defined only through rotational invariance.
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We will require that

ξ(θ, ρκt
, ṅ1, ṅ2, . . . , ṅN ,Dκp(t) , grad(θ)) = ξ(θ, ρκt

, ṅ1, ṅ2, . . . , ṅN ,HDκp(t)H
T ,Hgrad(θ)), H ∈ Osub.

(4.13)

If Osub is the full orthogonal group, then the above equations implies that ξ is an isotropic scalar-
valued function. Accordingly, using the representation theorem for such functions (see Smith [36] and
Truesdell and Noll [39]), one arrives at

ξ = ξ(θ, ρκt
, ṅ1, ṅ2, . . . , ṅN , IDκp(t)

, IIDκp(t)
, IIIDκp(t)

, grad(θ) · grad(θ),

Dκp(t)grad(θ) · grad(θ),D2
κp(t)

grad(θ) · grad(θ)). (4.14)

4.4. Stoichiometric equations

Now, we shall determine the number of independent ṅi’s. To that end, we shall follow a proof similar to
that employed by Brinkley [3] and Bjornbom [2].

Definition 4.1. The set of chemical reactions, i.e., Eq. (1.1) are said to be independent if the rows of νij

are linearly independent.

Theorem 4.2. If N chemical species undergo M reactions according to Eq. (1.1), then, there are Rank(νij)
independent rates of change of concentration per unit mass of mixture, and the Rank(νij) is at most N −1.

Proof: Referring to Eq. (3.6), notice that each row of νij ∈ Null(M1 M2 . . . MN ).6 Since
Rank(M1 M2 . . . MN ) = 1, using rank-nullity theorem, dim(Null(M1 M2 . . . MN )) = N − 1, where
‘dim’ represents the word ‘dimension’. Therefore, one can have a maximum of N −1 linearly independent
vectors belonging to Null(M1 M2 . . . MN ), i.e., a maximum of N − 1 linearly independent rows of νij ,
which implies that Rank(νij) is at most N − 1.

Using Eqs. (3.3) and (3.4), it is clear that
∑N

j=1 Mj ṅj = 0, i.e., (ṅ1 ṅ2 . . . ṅN ) ∈ Null(M1 M2

. . . MN ). However, since every realizable (ṅ1 ṅ2 . . . ṅN ) is brought forth by the chemical reactions rep-
resented by Eq. (3.10), (ṅ1 ṅ2 . . . ṅN ) only spans a sub-space of Null(M1 M2 . . . MN ) because the
rows of νij spans a sub-space of Null(M1 M2 . . . MN ), which is at most of dimension N − 1. If all the
rows of νij are not linearly independent, then, some rows of νij can be written as a linear combination of

linearly independent rows of νij , i.e., Eq. (3.10) can be rewritten as ṅj =
∑M

′

i=1νijαi, j = 1, 2, . . . , N, αi ∈
�,M

′ ≤ N − 1, where � is the set of real numbers and M
′
is the dimension of the space spanned by the

rows of νij , which is same as that of Rank(νij). Thus, there are M
′

independent αi, which implies that
there are M

′
independent ṅi’s. �

Remark 4.3. Since ṅj , j = 1, 2, . . . , N represent the rate of change of concentration with respect to
time, unlike νij , which are non-negative integers, ṅj ’s are real numbers. Therefore, αi ∈ � is meaningful.
Physically, different values for αi’s (rate of extent of reactions) can be realized, for example, by changing
the concentration of the various chemical species, temperature, etc.

Remark 4.4. One may invoke a more restrictive conservation of atoms instead of the mass balance
expressed through Eq. (3.6). In such a case, every row of νij is chosen such that the conservation of atoms
is satisfied, which would imply that the balance of mass, i.e., Eq. (3.6), is automatically satisfied. If the
rank of the formula matrix7 is R, then, one can apply Brinkley’s criterion, i.e., there can be a maximum of

6We are referring to a 1 × N matrix, which is a fixed quantity for a given chemical system and do not change with the
choice of basis vectors.

7A matrix with each row/column containing information about the number of like atoms in each of the species. Every
type of atom that make up the N species is included in each row/column.
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N −R independent chemical reactions (see Brinkley [3] and Bjornbom [2]). In other words, M
′ ≤ N −R.

Thus, the upper bound for M
′
gets revised to N − R, and the rest of the theory discussed in this paper

is not affected by invoking the conservation of atoms.

Remark 4.5. Sometimes, the various chemical compounds that make up the chemically reacting system
can be lumped into several species such that the conservation of atoms is automatically satisfied, whenever
the balance of mass is satisfied (for example, see Sect. 5.4.4). In such cases, ensuring balance of mass is
sufficient.

As a result of the above theorem, there are M
′

independent ṅi. Therefore, there must be N − M
′

relationships among ṅi, i = 1, 2, . . . N . To determine these relationships, we shall rewrite Eq. (3.10) as
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ṅ1

ṅ2

...
ṅN

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ν11 ν21 · · · νM1

ν12 ν22 · · · νM2

...
...

...
ν1N ν2N · · · νMN

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̇1

ξ̇2

...
ξ̇M

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

. (4.15)

In the above equation, the jth row of the matrix νij represents stoichiometric coefficients associated
with the jth chemical species, corresponding to each of the M chemical reactions. Without loss of gener-
ality, let us assume that the first M

′
rows of Eq. (4.15) are linearly independent. Then, M

′
+1th and the

subsequent rows can be written as a linear combination of the first M
′
rows, i.e., there exists non-trivial,

real, (β(j−M ′ )1 β(j−M ′ )2 . . . β(j−M ′ )M ′ ), j = M
′
+ 1,M

′
+ 2, . . . ,M

′
+ N − M

′
such that

M
′∑

i=1

β(j−M ′ )i(ν1i ν2i . . . νMi) = (ν1j ν2j . . . νMj), j = M
′
+ 1,

M
′
+ 2, . . . ,M

′
+ N − M

′
, (4.16)

respectively. It immediately follows, after rewriting the indices, that

M
′∑

i=1

βjiṅi = ṅM ′+j , j = 1, 2, . . . , N − M
′
, (4.17)

which provide the N − M
′
linear constraints on ṅi, i = 1, 2, . . . , N .

5. Special constitutive equations

Balance equations described in the above section are not sufficient to fully describe a chemically reacting
system. One should augment balance equations with additional constitutive equations. In this section,
we describe how to obtain constitutive equations for the stress tensor, specific entropy, specific internal
energy, heat flux and equations that govern the conversion of one species to another.

5.1. Constitutive assumptions on total rate of entropy production and the second law of thermodynamics

If one assumes that ζ = ζcond + ζdiss + ζchem, where ζcond, ζdiss and ζchem are the rates of entropy produc-
tion due to conduction, dissipation and chemical reactions, respectively. We shall require that ζcond ≥ 0,
ζdiss ≥ 0 and ζchem ≥ 0. Thus, we are requiring more than what the second law requires. Not only do we
assume an additive decomposition for the rate of entropy production, we also require that each of these
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terms be individually non-negative. Such an assumption is not overly restrictive as we could restrict the
processes to correspond to just one in which we have conduction, etc., and in such processes the rate of
entropy production will be non-negative. However, we are in fact assuming that the fact that all the var-
ious basic mechanisms for producing entropy do not in some sense interact and create additional means
of producing entropy. The first term of Eq. (4.6c) is associated with chemical reactions because this term
vanishes if ṅi’s are zero. Similarly, it is easy to recognize that the second term and the third term are
associated with evolution of configuration κp(t)(B), i.e., these terms are associated with dissipation. The
fourth term is associated with thermal conduction. As a result, the Eq. (4.6c) reduces to

−1
θ
q · grad(θ) = ρκt

θζcond ≥ 0, (5.1a)
ρκt

2ρκp(t)

S · (LT
κp(t)

Cκp(t) + Cκp(t)Lκp(t)) − ρκt

2ρκp(t)

tr(Dκp(t))S · Cκp(t) = ρκt
θζdiss ≥ 0 (5.1b)

and

− ρκt

N∑
i=1

μiṅi = ρκt
θζchem ≥ 0. (5.1c)

5.2. Heat conduction

Heat flux vector q should be chosen such that Eq. (5.1a) is satisfied. Alternatively, one can prescribe
a constitutive equation for ρθζcond, i.e., K

θ grad(θ) · grad(θ), K > 0, where K is the thermal conduc-
tivity. The constitutive assumption made for ρθζcond is that it is non-negative and is equal to zero if
and only if grad(θ) = 0, and its mathematical structure is consistent with that of an isotropic material
with respect to heat conduction. Further, the expression K

θ grad(θ) · grad(θ) is also Galilean invariant.
Equation (5.1a) imposes a constraint on the components of the heat flux vector, in that one can pick two
components independently and the third is determined using Eq. (5.1a). To determine the constitutive
equation for the heat flux vector, we shall assume that the expression K

θ grad(θ) · grad(θ) is maximized
with respect to grad(θ) with Eq. (5.1a) as constraint. We are thus requiring a much more stringent
requirement than that the total entropy production be maximized. We are requiring that the rate of
entropy production due to mechanical working being transformed to heat, due to conduction, due to
chemical reaction, each be individually maximized. Accordingly, we shall define the augmented function
Π through

Π(θ, grad(θ), q, λ̃) =
K

θ
grad(θ) · grad(θ) + λ̃

(
K

θ
grad(θ) · grad(θ) +

1
θ
q · grad(θ)

)
. (5.2)

Thus,

∂Π
∂grad(θ)

= 0 ⇒ 1 + λ̃

λ̃

(
2
K

θ
grad(θ)

)
+

1
θ
q = 0. (5.3)

By taking inner product of Eq. (5.3) with grad(θ), and comparing it with the constraint, the expression
1+λ̃

λ̃
is determined to be 1

2 . Accordingly, the above equation implies that

q = −Kgrad(θ). (5.4)

The Eq. (5.4) is a constitutive equation for heat flux vector and is the same as that of Fourier’s equa-
tion for heat flux. To determine whether grad(θ) = − q

K is a maximum (see Chong and Zak [4]), which is
a regular point, one has to determine the Hessian of the function Π with respect to grad(θ), and evaluate
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the resultant expression at λ̃ = −2 and grad(θ) = − q
K , and show that it is negative definite. Accordingly,

one arrives at
∂2Π

∂grad(θ)2 λ̃=−2,grad(θ)=− q
K

= −2
K

θ
I, (5.5)

which implies that Eq. (5.5) is negative definite. Thus, grad(θ) = − q
K maximizes the rate of entropy

production due to heat conduction.

5.3. Thermo-mechanical behavior

In this section, we shall derive constitutive equations for specific entropy, specific internal energy, the
expression relating the Cauchy stress tensor and the stretch tensor Bκp(t) , and an evolution equation for
the natural configuration κp(t)(B).

We will assume that the Cauchy stress tensor associated with the mixture is given through the sum
of partial Cauchy stress tensor associated with each of the chemical species (see [32]), i.e., T =

∑N
i=1 T i.

Recall that the assumption of a constrained mixture involves only balance equations for the mixture as a
whole, and therefore, one needs to make assumptions on partial Cauchy stresses. We shall further assume
that T i = χiT , i = 1, 2, . . . , N , where χi is the mole fraction, which is defined as χi = ni∑N

i=1 ni
. Accord-

ingly, since the tensor F κp(t) is assumed to be the same for all the species, using Eq. (3.18), it follows
that Si = χiS, i = 1, 2, . . . , N , where Si is partial second Piola Kirchhoff stress tensor associated with
the ith species. One begins the derivation of constitutive equations by prescribing constitutive equations
for the specific Gibbs potential of the mixture and the rate of dissipation function, i.e.:

G(θ, n1, n2, . . . , nN ,S) =
N∑

i=1

{
χiCi

(
θ − θ0 − θ ln

(
θ

θ0

))
− 1

2ρκp(t)

tr(Si)

− E
(1)
i θ0

4ρκp(t)θ
tr(S2

i ) − E
(2)
i θ2

0

6ρκp(t)θ
2
tr(S3

i )

}
, E

(1)
i ≥ 0, E

(2)
i ≥ 0.

=
N∑

i=1

{
χiCi

(
θ − θ0 − θ ln

(
θ

θ0

))
− χi

1
2ρκp(t)

tr(S)

−(χi)
2 E

(1)
i θ0

4ρκp(t)θ
tr(S2) − (χi)

3 E
(2)
i θ2

0

6ρκp(t)θ
2
tr(S3)

}
,

N∑
i=1

(χi)
2 E

(1)
i θ0

θ
< 2

√√√√ N∑
i=1

(χi)
3 E

(2)
i θ2

0

θ2
, (5.6a)

where E
(1)
i , E

(2)
i and Ci, i = 1, 2, . . . , N are assumed to be constants, and

ρκt
θζdiss = ξdiss(θ, n1, n2, . . . , nN ,S,Dκp(t))

= η1(θ, n1, n2, . . . , nN )Dκp(t) · Dκp(t)

+ η2(θ, n1, n2, . . . , nN )SDκp(t) · SDκp(t) ,

η1(θ, n1, n2, . . . , nN ) > 0, η2(θ,n) > 0, (5.6b)

respectively. The Eqs. (5.6a) and (5.6b) are consistent with the assumption that the body is isotropic.
In general, the Gibbs potential will have additional terms corresponding to the chemical reactions, and the
combined thermo-mechanical and chemical response could be studied. For the sake of simplicity, chem-
ical reactions are not included in this subsection. However, in the next subsection, a separate example,
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namely rubber chemistry is studied and special constitutive equations representing chemical reactions
are derived. The chemical potential of the ith species can be computed by determining ∂G

∂ni
. Notice that

Eq. (5.6b) is non-negative and the second term of the same equation accounts for the contribution of
the stress with regard to the rate of dissipation, however, it does not differentiate between tensile and
compressive loads. For example, the mechanical behavior of granular materials is different under tensile
and compressive loads.

On substituting Eq. (5.6a) in Eqs. (4.6a) and (4.6b), one arrives at the constitutive equations for the
specific entropy and the stretch tensor Cκp(t) , i.e.:

η =
N∑

i=1

{
χiCi ln

(
θ

θ0

)
− (χi)

2 E
(1)
i θ0

4ρκp(t)θ
2
tr(S2) − (χi)

3 2E
(2)
i θ2

0

6ρκp(t)θ
3
tr(S3)

}
(5.7a)

and

Cκp(t) = I +
N∑

i=1

{
(χi)

2 E
(1)
i θ0

θ
S + (χi)

3 E
(2)
i θ2

0

θ2
S2

}
. (5.7b)

The expression for specific entropy in Eq. (5.7a) is consistent with that of a material, which upon
tensile loading results in decrease in entropy, and vice versa. Since the stretch tensor Cκp(t) is positive
definite, the right-hand side of Eq. (5.7b) must also be positive definite. Since the eigen values for the
tensor S can be negative, one has to place restrictions on the parameters associated with Eq. (5.7b).

To that end, the restriction
∑N

i=1 (χi)
2 E

(1)
i θ0
θ < 2

√∑N
i=1 (χi)

3 E
(2)
i θ2

0
θ2 is sufficient to ensure that the right-

hand side of Eq. (5.7b) is positive definite. Further, notice that when the tensor S = 0, one recovers that
Cκp(t) = I. By premultiplying Eq. (5.7b) by F κp(t) and post-multiplying by F T

κp(t)
, one arrives at

1
det(F κp(t))

Bκp(t)(Bκp(t) − I) =
N∑

i=1

{
(χi)

2 E
(1)
i θ0

θ
T + det(F κp(t))(χi)

3 E
(2)
i θ2

0

θ2
TB−1

κp(t)
T )

}
, (5.8)

which is an implicit relation of the form f(n1, n2, . . . , nN ,Bκp(t) ,T ) = 0. Using Eqs. (4.3), (5.7a) and
(5.7b), the specific internal energy is given through

ε =
N∑

i=1

χiCi(θ − θ0). (5.9)

The above equation implies that the internal energy is only a function of temperature. The Eqs. (5.7a)
and (5.9) are consistent with a material exhibiting entropic behavior.

The specific heat capacity of the mixture at constant stress, i.e., CS is given through

∂ε

∂θ
= CS =

N∑
i=1

χiCi. (5.10)

Since the internal energy must increase with an increase in the temperature, it is necessary that
CS > 0.
Now, we will derive an equation to describe how the natural configuration evolves. First, note that the
second law of thermodynamics, namely Eq. (5.1b), constraints how a natural configuration evolves, in
that the tensor Lκp(t) related to evolution of natural configuration must be chosen such that Eq. (5.1b) is
satisfied. Since Eq. (5.1b) is a scalar, for a fixed set of parameters θ, n1, n2, . . . , nN ,S,Cκp(t) , ρ and ρκp(t) ,
eight components of tensor Lκp(t) can be chosen independently, and the ninth component is chosen such
that the second law of thermodynamics is satisfied, which implies that there are infinite number of choices
for the tensor Lκp(t) . As a constitutive restriction, we shall invoke the assumption of maximization of the
rate of dissipation, in that, we shall assume that the natural configuration κp(t)(B) evolves in such a way
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that the rate of dissipation is maximized with Eq. (5.1b) as a constraint. Accordingly, the augmented
function Γ is defined as

Γ = η1(θ, n1, n2, . . . , nN )Dκp(t) · Dκp(t)

+ η2(θ, n1, n2, . . . , nN )SDκp(t) · SDκp(t)

+ λ̂
{
η1(θ, n1, n2, . . . , nN )Dκp(t) · Dκp(t)

+ η2(θ, n1, n2, . . . , nN )SDκp(t) · SDκp(t)

− ρκt

2ρκp(t)

S · (LT
κp(t)

Cκp(t) + Cκp(t)Lκp(t)) +
ρκt

2ρκp(t)

tr(Dκp(t))S · Cκp(t)

}
, (5.11)

where λ̂ is a Lagrange multiplier.
A necessary condition for existence of an extremum is given through

∂Γ
∂Dκp(t)

= 0

⇒ 1 + λ̂

λ̂

{
2η1(θ, n1, n2, . . . , nN )Dκp(t) + η2(θ, n1, n2, . . . , nN )

(
S2Dκp(t) + Dκp(t)S

2
)}

+
ρκt

2ρκp(t)

S · Cκp(t)I − ρκt

2ρκp(t)

2Cκp(t)S = 0. (5.12)

It is clear from Eq. (5.7b) that the tensors Cκp(t) and S have the same eigen vectors and therefore
commute. Starting from Eq. (5.12), it can be shown that using the procedure described by Rajagopal and
Srinivasa [28], that the tensors Dκp(t) and S also have the same eigen vectors, i.e., the tensors Cκp(t) ,
S and Dκp(t) have the same eigen vectors. Since the rate of dissipation function is defined with respect

to the tensor Dκp(t) , the extremization is carried out with respect to tensor Dκp(t) . The expression 1+λ̂
λ̂

is determined by operating the inner product of Eq. (5.12) with the tensor Lκp(t) , and using properties
of the trace operator and comparing with the constraint, i.e., the expression within the curly braces of
Eq. (5.11), yielding 1+λ̂

λ̂
= 1

2 .
The extremum Do

κp(t)
computed using Eq. (5.12) is

Do
κp(t)

= − λ̂

1 + λ̂

{
2η1I + 2η2S

2
}−1

{
ρκt

2ρκp(t)

S · Cκp(t)I − ρκt

2ρκp(t)

2Cκp(t)S

}
. (5.13)

In obtaining the above equation, we have used the fact that the tensors Dκp(t) and S commute, and
the fact that the tensor 2η1I + 2η2S

2 is invertible. Further, the above expression for the tensor Do
κp(t)

also implies that there is a unique extremum.
Note that since the tensors Cκp(t) and S commute, it follows that the tensors Bκp(t) and T commute,
and hence the latter pair possess the same eigen vectors. By pre-multiplying Eq. (5.12) with the tensor
F κp(t) and post-multiplying it by the tensor F T

κp(t)
, using the fact that the pairs Cκp(t) and S, and Bκp(t)

and T commute, utilizing the Eqs. (2.14), (3.14) and (3.15), and by substituting Eq. (5.7b) in Eq. (5.12),
one can show that the evolution equation for the natural configuration κp(t)(B) is given through

�
Bκp(t) =

{
tr(T )Bκp(t) − 2T

(
I + det(F κp(t))

N∑
i=1

(χi)
2 E

(1)
i θ0

θ
B−1

κp(t)
T

+det(Bκp(t))
N∑

i=1

(χi)
3 E

(2)
i θ2

0

θ2
B−2

κp(t)
T 2

)}(
η1I + η2det(Bκp(t))B

−2
κp(t)

T 2
)−1

. (5.14)
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In deriving the above equation, we have also used the fact that the tensor η1I +η2det(Bκp(t))B
−2
κp(t)

T 2

is invertible. Note that using Eq. (2.16), one can also rewrite Eq. (5.14) in terms of the lower convected
derivative of the tensor B−1

κp(t)
. Further, one can also establish the evolution equation for the natural

configuration κp(t)(B) in terms of the lower and the upper convected derivatives, i.e.,

�
Bκp(t)

(
η1I +

η2

2
det(Bκp(t))B

−2
κp(t)

T 2
)

− η2

2
det(Bκp(t))B

−1
κp(t)

T 2
�

B−1
κp(t)

Bκp(t)

=

{
tr(T )Bκp(t) − 2T

(
I + det(F κp(t))

N∑
i=1

(χi)
2 E

(1)
i θ0

θ
B−1

κp(t)
T + det(Bκp(t))

×
N∑

i=1

(χi)
3 E

(2)
i θ2

0

θ2
B−2

κp(t)
T 2

)}
. (5.15)

Now, we shall determine the nature of the extremum (5.13). To that end, assuming sufficient smooth-
ness for the rate of dissipation function, one can show that the Hessian of augmented function Γ with
respect to the tensor Dκp(t) evaluated at the stationary point Do

κp(t)
with λ̂ = −2 is given through

∂2Γ
∂Dκp(t)∂Dκp(t) Do

κp(t)
,λ̂=−2

= (1 + λ̂)
{
2η1Z + 2η2Z(S2 � I)Z}

= −{2η1Z + 2η2Z(S2 � I)Z} , (5.16)

where Z is a fourth-order symmetrizer tensor8 and the square tensor product9 is defined as (A�B)C :=
ACBT, ∀ C ∈ Lin(V, V ), where A,B and C are second- order tensors (see Jog [17]) and V is a vector
space. Using the Cartesian basis, the components of the Eq. (5.16) is rewritten in a convenient form:

∂2Γ
∂(Dκp(t))pq∂(Dκp(t))ij

= −2
{

η1
1
2
(δipδjq + δiqδjp) + η2

1
4
[
(S2)ipδjq

+(S2)iqδjp + (S2)jqδip + (S2)jpδiq

]}
. (5.17)

Since the tensors S and I are symmetric, it is easy to see that the right-hand side of Eq. (5.17) repre-
sents the components of a fourth-order tensor with a major and two minor symmetries. The right-hand
side of Eq. (5.16) is negative definite because on applying the definition for a negative definite tensor,10

one can show that −2{η1tr(A2) + η2tr(A2S2)} < 0, ∀ nonzero A ∈ Lin(V, V ), i.e., the extremum Do
κp(t)

is a maximum. In other words, for each time t, there is an unique tensor Dκp(t) associated with the
evolution Eq. (5.14) for the natural configuration κp(t)(B) in such a way that it satisfies the constraint
due to the second law of thermodynamics and it maximizes the rate of dissipation.
Alternatively, one can represent a three-dimensional fourth-order tensor with a major and minor sym-
metries as a symmetric, six-dimensional second-order tensor (see Moakher [23]). The six-dimensional,
symmetric second-order tensor has the same eigen values as that of the fourth-order tensor with a major

8The symmetrizer tensor Z is defined as ZA := A+AT

2
, ∀ A ∈ Lin(V, V ), where V is a vector space. The action of

a fourth-order tensor A ⊗ B on second-order tensors is defined as (A ⊗ B)C := tr(BCT)A, ∀ C ∈ Lin(V, V ), where A
and B are second-order tensors.

9The action of a fourth-order tensor on any fourth- order tensor can be obtained by defining the action of the fourth-
order tensor on a second-order tensor. One can show that the action of a fourth-order tensor A⊗B on another fourth-order
tensor C � D is given through (A ⊗ B)(C � D) = A ⊗ (CTBD), and (C � D)(A ⊗ B) = CADT ⊗ B, where A, B,
C and D are second-order tensors.

10A fourth-order tensor A with major and minor symmetries is said to be positive definite if AB·B > 0, ∀ nonzero B ∈
Linsym(V, V ), where Linsym(V, V ) is the space of symmetric second-order tensors. A fourth-order tensor A with a major
and minor symmetries is said to be negative definite if AB · B < 0, ∀ nonzero B ∈ Linsym(V, V ).
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and minor symmetries. If the six eigen values of the six-dimensional second-order tensor are positive,
then the fourth-order tensor is positive definite, and vice versa.

5.4. Chemical kinetics

For a given functional form for G, the inequality (5.1c) restricts ṅi’s, in that ṅi’s must be chosen such
that

∑N
i=1 μiṅi ≤ 0 in addition to the constraints imposed by Eq. (4.17). Further, after choosing suitable

values for ṅi’s, one can calculate the total rate of entropy production due to the chemical reactions using
Eq. (5.1c). Alternatively, one can prescribe a non-negative function for ζchem. Then, the equation (5.1c)
becomes an equality constraint for ṅi’s. We shall require that ξchem must be zero for a fixed composition,
and positive when compositional changes occur. To that end, we shall define ξchem as follows:

− ρκt
μiṅi = ξ̂chem(ρκt

, θ, {ni},S, {ṅi}) = ξchem = Aij ṅj ṅi, (5.18)

where the set {ni} denotes the members n1, n2, . . . , nN and the set {ṅi} denotes the members
ṅ1, ṅ2, . . . , ṅN . The above equation is tantamount to assuming that ξchem is a quadratic polynomial
in N variables, namely ṅ1 through ṅN , and for convenience, may be expressed using the matrix represen-
tation. Further, Einstein’s summation convention is followed and the matrix A is positive definite with
scalar, real-valued entries, i.e.,

A =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f11(ρκt
, θ, {ni},S) f12(ρκt

, θ, {ni},S) · · · f1N (ρκt
, θ, {ni},S)

f21(ρκt
, θ, {ni},S) f22(ρκt

, θ, {ni},S) · · · f2N (ρκt
, θ, {ni},S)

...
...

...
fN1(ρκt

, θ, {ni},S) fN2(ρκt
, θ, {ni},S) · · · fNN (ρκt

, θ, {ni},S)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

. (5.19)

Notice that the matrix A, for a given quadratic polynomial, has fixed entries, in that, for a given
chemical system and the constitutive assumption invoked for ξchem, the entries associated with the
matrix A do not change with the choice of basis vectors. Unless expressed otherwise, for each of
the repeated indices, the summation is carried out from the index 1 to N . Note that ξchem is also
a function of the density of the mixture because it can account for the fact that the higher the
volumetric concentration the higher the rate of entropy production due to chemical reactions, should
chemical reactions occur. By requiring A to be positive definite, the Eq. (5.18) is non-negative for all
non-zero {ṅi} and is equal to zero if and only if {ṅi} = {0}. Also, notice that ξ̂chem is a quadratic function
with respect to {ṅi}. Notice that for a given ρκt

, θ, {ni} and S, the set {ṅi} can assume any value as
long as it satisfies the constraints, i.e., Eqs. (4.6c) or (5.18) and (4.17), which immediately implies that
infinite choices for {ṅi} are possible. In this section, we shall arrive at suitable equations for the evolution
of the composition of the system.
We shall assume that for a given ρκt

, θ, {ni} and S, {ṅi} is chosen such that the function ξ̂chem is
maximized subject to the constraints, the Eqs. (4.17) and (5.18), i.e.,

Φ(ρκt
, θ, {ni},S, {ṅi}, λ̄, {λi}) = Aij ṅj ṅi + λ̄(Aij ṅj ṅi + ρκt

μiṅi)

+
N−M

′∑
j=1

λj

⎛
⎝

M
′∑

i=1

βjiṅi − ṅM ′+j

⎞
⎠ (5.20a)

= Aij ṅj ṅi + λ̄(Aij ṅj ṅi + ρκt
μiṅi) +

N−M
′∑

i=1

Yijṅjλi, (5.20b)
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where λ̄ and λj , j = 1, 2, · · · , N − M
′

are Lagrange multipliers introduced to enforce the constraints,
i.e., Eqs. (4.17) and (5.18), respectively. The matrix Y is defined as

Y =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

β11 β12 · · · β1M ′ −1 0 · · · 0
β21 β22 · · · β2M ′ 0 −1 · · · 0
...

...
...

...
...

...
β(N−M ′)1 β(N−M ′)2 · · · β(N−M ′)M ′ 0 0 · · · −1

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

. (5.21)

For a given chemically reacting system, the entries of the matrix Y are constants and do not vary with
the choice of basis vectors. Since the last N − M

′
columns of the matrix Y are linearly independent, and

the fact that the rank of the same matrix can be at most N − M
′
implies that the rank of the matrix Y

is N − M
′
.

A necessary condition for the existence of an extremum is given through ∂Φ
∂ṅi

= 0, i = 1, 2, . . . , N , i.e.,

(
1 + λ̄

λ̄

)
(Aij + Aji)ṅj + ρκt

μi +
1
λ̄

N−M
′∑

j=1

Yjiλj = 0, i = 1, 2, . . . , N. (5.22)

Now, we shall proceed to determine the Lagrange multipliers. By multiplying Eq. (5.22) with ṅi

and summing over the index i from i = 1 to N , and comparing the result with the constraint (5.18),
1+λ̄

λ̄
is determined to be 1

2 . Further, by premultiplying Eq. (5.22) by
{

(Aij+Aji)
2

}−1

(by definition, A is
non-singular), one arrives at

ṅi = −ρκt
(P−1)ijμj − 1

λ̄

N−M
′∑

k=1

(P−1)ijYkjλk, i = 1, 2, . . . , N, (5.23)

where P = (Aij+Aji)
2 . The N − M

′
values for λl

λ̄
are determined by premultiplying the Eq. (5.23) by the

matrix Y and using the constraints, i.e., Eq. (4.17), one arrives at

Yij(P−1)jk

⎛
⎝ρκt

μk +
N−M

′∑
l=1

Ylkλ̃l

⎞
⎠ = 0, (5.24)

where λ̃i = λi

λ̄
.

Theorem 5.1. The matrix Y P−1Y T is invertible.

Proof. Let rowi(Y ), i = 1, 2, . . . N − M
′

and coli(P−1), i = 1, 2, . . . N be the rows of the matrix
Y and columns of P−1, respectively. Then, the matrix multiplication operation Y P−1 is represented
by the (N − M

′
) × N matrix with the entries corresponding to the ith row being given through{

rowi(Y ) · col1(P−1) rowi(Y ) · col2(P−1) . . . rowi(Y ) · colN (P−1)
}
, where rowi(Y ) ·colj(P−1) =

∑N
p=1

Yip(P−1)pj , i.e., ijth component of the matrix Y P−1. Now, we shall determine the rank of the matrix
Y P−1 by multiplying each row by a scalar, summing the resultant expression and equating it to the zero
vector, i.e.,
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⎧
⎨
⎩

N−M
′∑

i=1

αirowi(Y ) · col1(P−1)
N−M

′∑
i=1

αirowi(Y ) · col2(P−1) . . .

N−M
′∑

i=1

αirowi(Y ) · colN (P−1)

⎫
⎬
⎭ = �0N ,

αi ∈ �, i = 1, 2, . . . , N − M
′
, (5.25)

where �0N represents the N-dimensional zero vector. The above equation implies that for the kth entry,

k = 1, 2, . . . N ,
∑N−M

′

i=1 αirowi(Y ) = �0N or colk(P−1) = �0N or
∑N−M

′

i=1 αirowi(Y ) is ‘perpendicular’ to
colk(P−1). Since rowi(Y ), i = 1, 2, . . . , N − M

′
are linearly independent, there are no non-zero αi’s for

which
∑N−M

′

i=1 αirowi(Y ) = �0N . None of the columns of the matrix P−1, i.e., colk(P−1), k = 1, 2, . . . N
can be zero because the matrix P (and its inverse) is positive definite. Therefore, the columns of P−1

cannot be zero. Recall that the vector
∑N−M

′

i=1 αirowi(Y ) spans N − M
′
sub-space of the N dimensional

space spanned by the columns of P−1. Further, since the rank of P−1 is N , there are no non-zero vectors
belonging to the N dimensional space that are ‘perpendicular’ to all the columns of the matrix P−1, only

the zero vector is ‘perpendicular’ to all the columns. Consequently, the vector
∑N−M

′

i=1 αirowi(Y ) cannot
be simultaneously perpendicular to all the columns of P−1. Therefore, the only possibility to satisfy Eq.
(5.25) is by letting α1 = α2 = · · · = αN−M = 0, i.e., the rank of the matrix Y P−1 is N − M

′
.

Now, we shall determine the rank of square matrix Y P−1Y T of size N − M
′
, which is obtained by

post-multiplying Y P−1 with Y T . Let rowi(Y P−1), i = 1, 2, . . . N − M
′
, represent the rows of the matrix

Y P−1. Using the definition of linear independence of vectors, similar to that detailed in the preceding
paragraph, i.e.,

⎧
⎨
⎩

N−M
′∑

i=1

αirowi(Y P−1) · row1(Y )
N−M

′∑
i=1

αirowi(Y P−1) · row2(Y ) . . .

N−M
′∑

i=1

αirowi(Y P−1) · rowN−M ′ (Y )

⎫
⎬
⎭ = �0N−M ′ , αi ∈ �, i = 1, 2, . . . , N − M

′
. (5.26)

Since rowi(Y P−1), i = 1, 2, . . . , N − M
′
are linearly independent,

∑N−M
′

i=1 αi

rowi(Y P−1) = �0N if and only if α1 = α2 = · · · = αN−M ′ = 0, and rowi(Y ), i = 1, 2, . . . , N − M
′

are basis vectors and cannot be the vector �0N . The other way to satisfy Eq. (5.26) is if the vector∑N−M
′

i=1 αirowi(Y P−1) ∈ Null(Y ), which, upon using the Rank-Nullity theorem, one determines that
Null(Y ) must be of dimension M

′
. Further, the N dimensional space can be decomposed into a N − M

′

dimensional space (V) spanned by basis rowi(Y ), i = 1, 2, . . . , N−M
′
and the M

′
-dimensional, orthogonal

sub-space V⊥ spanned by the basis rowi(Y ⊥), i = 1, 2, . . . ,M
′
, where each of the vectors belonging to V⊥

is perpendicular to all the vectors spanned by the basis rowi(Y )’s, it can be deduced that Null(Y ) ≡ V⊥.
Recall that rowi(Y P−1)’s are a basis for a N − M

′
dimensional space, and since rowi(Y P−1), i =

1, 2, . . . , N − M
′

is assumed to span Null(Y ) (or V⊥), it immediately implies that N − 1 ≥ M
′ ≥ N/2

if N is even and N − 1 ≥ M
′ ≥ (N + 1)/2 if N is odd. However, as the matrix P−1 is positive definite

and symmetric, (P−1)ij(rowk(Y ))j(rowk(Y ))i = rowk(Y P−1) ·rowk(Y ) > 0, k = 1, 2, . . . , N −M
′
, which

implies that rowi(Y P−1) /∈ Null(Y ), i = 1, 2, . . . , N −M
′
, and consequently, in general, it does not imply

that the vectors rowi(Y P−1)’s span the same sub-space as that spanned by rowi(Y )’s. Further, since,
rowi(Y P−1) /∈ Null(Y ), i = 1, 2, . . . , N − M

′
, it implies that an inner product of any non-zero vector

belonging to the sub-space spanned by rowi(Y P−1)’s with all the rowi(Y )’s cannot be equal to zero simul-
taneously, which implies that the only way to satisfy Eq. (5.26) is by letting α1 = α2 = · · · = αN−M ′ = 0.
Therefore, the matrix Y P−1Y T is invertible. �
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From this point forward, the summation up to N −M
′
is also understood. The Eq. (5.24) implies that

Yij = 0 or P−1
ij = 0 or ρκt

μi + Yjiλ̃j = 0 or every row of matrix Y is simultaneously orthogonal to all the
columns of P−1 or every row of matrix P−1 is orthogonal to the vector with components ρκt

μi + Yjiλ̃j

or ρκt
Yip(P−1)pqμq + Yip(P−1)pqYrqλ̃r = 0. Since the matrices Y and P−1 are of full rank, Yij 	= 0 and

(P−1)ij 	= 0. The vector with components ρκt
μi +Yjiλ̃j 	= 0 because, if it were equal to the vector zero, it

implies that ṅi = 0, and there can be no change in the composition of chemical mixture. Due to reasons
discussed in the Theorem (5.4), Yip(P−1)pj 	= 0, (P−1)ij

(
ρκt

μj + Ypj λ̃p

)
	= 0, and, for a given specific

Gibbs potential G, ξchem and stoichiometry, the Lagrange multiplier λ̃i is uniquely determined to be:

λ̃i = −ρκt

((
Y P−1Y T

)−1
)

ip

(
Y P−1

)
pq

μq, i = 1, 2, . . . , N − M
′
. (5.27)

Now, we shall determine the nature of the extremum, i.e., Eq. (5.23). To that end, by substituting
Eq. (5.27) in Eq. (5.23), one arrives at the evolution equation for each of the chemical species:

ṅi = −ρκt
(P−1)ij

{
δjr − Ypj

((
Y P−1Y T

)−1
)

pq

(
Y P−1

)
qr

}
μr

= −ρκt
(P−1)ip {δpq − Ppq} μq, i = 1, 2, . . . , N, (5.28)

where δij is an identity matrix of size N and the square matrix P := Y T

(
Y P−1Y T

)−1
Y P−1. One can also rewrite Eq. (5.28) in terms of concentration expressed in moles per

unit volume, i.e., using Eqs. (3.10), (3.11) and (5.28), one can show the following matrix equation:

˙̄ni + n̄idiv(v) + ρ2
κt

(P−1)ip {δpq − Ppq} μq = 0, i = 1, 2, . . . , N. (5.29)

Referring to Eq. (5.28), for a given ρκt
, θ, {ni} and S, there is a unique {ṅi} satisfying the constraints

(5.18) and (4.17), which maximizes the function ξ̂chem. Before commenting on this further, let us examine
the geometrical implications of Eq. (5.28).

Eventhough Zeleznik and Gordon [40] considered a more general system with l elements making up
m compounds (existing in p phases) reacting through r chemical reactions, the effect of deformation on
chemical reactions, and vice versa, was not considered in their study. Further, extremization of the rate
of entropy production due to chemical reaction to obtain the evolution equation for the composition of
mixture is new and was not considered by them.

5.4.1. Geometrical properties of evolution equation. Notice that PP = P, which implies that the
matrix P is idempotent. On using a property of idempotent matrices, i.e., the rank of such a matrix
is equal to its trace, one can determine, using the properties of the trace operator that Rank(P) =
trace

{(
Y P−1Y T

) (
Y P−1Y T

)−1
}

= trace(IN−M ′ ) = N −M
′
, where IN−M ′ is an identity matrix of size

N − M
′
. Now, we shall show that P is a projection. Let �v =

∑N−M
′

i=1 αirowi(Y ) = Y T �α, �α ∈ �N−M
′
,

where �N−M
′

is an arbitrary real-valued N − M
′
-tuple. Further, P�v = PY T �α = Y T �α = �v and upon

using the rank-nullity theorem, dim(null(P)) = M
′
. Thus, P acts as an identity matrix for all the vectors

belonging to the N − M
′

dimensional sub-space spanned by the rowi(Y )’s. Any �u ∈ V ⊕ V⊥ can be
represented as �u = Y T �α + (Y ⊥)T �β = �v + �v⊥, �α ∈ �N−M

′
, �β ∈ �M

′
, where Y ⊥ is a M

′ × N matrix
with basis vectors rowi(Y ⊥), i = 1, 2, . . . ,M

′
making up the rows of matrix Y ⊥. The action of P on

�u, i.e., P�u = Y T �α = �v implies that the matrix P projects an arbitrary vector �u onto the sub-space V.
Further, it is clear from the properties of P that P 	= IN , and hence, one obtains, in general, non-trivial
solutions for the evolution Eq. (5.28). Similarly, one can show that the matrix IN − P is also idempotent
and projects any �u ∈ V ⊕ V⊥ onto V⊥.

It is clear that if �μ always lies in the sub-space spanned by rowi(Y )’s, then �̇n = �0N , i.e., the chemical
reactions do not occur. On the other hand, if �μ ∈ V ⊕ V⊥, then the projection IN − P projects �μ onto
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V⊥, and if �μ ∈ V⊥, then (IN − P) �μ = �μ. By understanding the geometrical properties of Eq. (5.28),
to obtain non-trivial solutions, it is clear that the specific Gibbs potential must be defined such that its
gradient (the vector containing chemical potential of all species) should not always lie in the sub-space
spanned by the rowi(Y )’s.

Now, we shall determine the nature of the differential equation, i.e., Eq. (5.28). To show that the
point �̇n satisfying the constraints, i.e., Eqs. (4.17) and (5.18), is a regular point (see [4]), one computes
the gradient of A�̇n · �̇n+ρκt

�μ · �̇n with respect to �̇n and evaluates the gradient at �̇n = −ρκt
P−1 {IN − P} �μ,

which is given through −2ρκt
(IN − P)�μ + ρκt

�μ = −2ρκt
�μ⊥ + ρκt

�μ. It is clear that unless �μ ∈ V,
one cannot express −2ρκt

�μ⊥ + ρκt
�μ as a linear combination of the gradient of Y �̇n, i.e., rowi(Y ), i =

1, 2, . . . , N − M
′
, and hence, �̇n = −ρκt

P−1 {IN − P} �μ is a regular point. Further, assuming smoothness
of Φ(θ, {ni}, {ṅi}, λ̄, {λi}, a necessary and sufficient condition for the existence of a maximum satisfying
the constraints (4.17) and (5.18) is that Hessian of the function Φ with respect to �̇n, evaluated at a regular
point �̇n = −ρκt

P−1 {IN − P} �μ, λ̄ = −2 and �λ = 2ρκt

(
Y P−1Y T

)−1 (
Y P−1

)
�μ, is negative definite, i.e.

∂2Φ
∂�̇n∂�̇n

= 2(1 + λ̄)P = −2P, (5.30)

which implies that Eq. (5.30) is negative definite. In summary, we have shown that there exists a unique
ṅi given by Eq. (5.28), which maximizes the rate of entropy production due to chemical reactions.

5.4.2. Gibbs-Duhem equation. Suppose one assumes that the specific Gibbs potential function G to be
homogeneous of degree one with respect to �n, i.e., G(θ, α�n,S) = αG(θ, �n,S) with θ and S as parameters,
and on using Euler’s theorem for homogeneous functions, G can be represented as follows:

G =
∂G

∂�n
· �n = �μ · �n. (5.31)

As usual, by taking the derivative of Eq. (5.31) with respect to time and comparing with equation
Ġ(θ, �n,S) = ∂G

∂θ θ̇ + ∂G
∂�n · �̇n + ∂G

∂S · Ṡ, one arrives at the generalized Gibbs-Duhem equation:

∂G

∂θ
θ̇ +

∂G

∂S
· Ṡ = −ηθ̇ − 1

2ρκp(t)

Cκp(t) · Ṡ = �̇μ · �n. (5.32)

It is worth noting that in deriving Eq. (5.28), we did not make any assumptions concerning the nature
of function G. The only requirement is that for obtaining non-trivial solutions, the gradient of G with
respect to �n should not always lie in the N − M

′
dimensional sub-space spanned by rowi(Y )’s, i.e.,

sub-space V.

5.4.3. De Donder affinity and conditions for equilibrium. At equilibrium, �̇n = �0N , and Eq. (5.28) reduces
to (IN − P) �μ = �0N , which implies that �μ ∈ V. From Eq. (4.16), it is clear that Yipνjp = νipYjp = 0. It is

also true that νijYpjαp = νijμj = 0, ∀{αi} ∈ �M
′

because the chemical potential, under the condition

of equilibrium, belongs to the sub-space V, and can be represented as �μ = Yijαj , {αi} ∈ �M
′
. Further,

if �μ ∈ V, then �̇n = �0N . Consequently, the equation ν�μ = �0M ′ can be rewritten as rowi(ν) · �μ = 0, i =
1, 2, · · · ,M and are both necessary and sufficient conditions for equilibrium. The negative of the quantity
rowi(ν) · �μ is known as the de Donder affinity of the ith reaction. Notice that not all i’s are independent,
only M

′
of them are independent.

The conditions obtained for equilibrium are the same as that obtained by minimizing the Gibbs free
energy, which is assumed to be homogeneous of degree one (see [7] for a single reaction and [40] for many
reactions), at constant temperature and pressure. However, for obtaining the result ν�μ = �0M ′ , we made
no assumption about Gibbs free energy or the temperature field.



354 K. Kannan and K. R. Rajagopal ZAMP

5.4.4. An application: rubber chemistry.

5.4.4.1. Introduction. Rubber, in its natural form, is a sticky liquid-like material with poor mechanical
properties. To improve its mechanical behavior, natural rubber is crosslinked using sulfur to form a net-
worked polymer. Such a process is called vulcanization. In 1841, Charles Goodyear vulcanized natural
rubber with sulfur, which took several hours to complete. Later, certain chemicals such as thiocarbani-
lides were found to accelerate the rate of crosslinking reactions where sulfur was used as a crosslinking
agent. Vulcanization using such chemicals is known as accelerated rubber vulcanization. Some examples
of the class of accelerators are thiocarbanilides, thiurams, dithiocarbamates, amines, benzothiazoles and
benzothiazolesulfenamides.
Numerous chemical reactions occur during vulcanization. The basic framework for chemical reactions that
occur during accelerated sulfur vulcanization is described below (see Ghosh et al. [15]): The chemical reac-
tions are grouped under three categories, namely accelerator chemistry, crosslinking and post-crosslinking
chemistry. The accelerator combines with the sulfur to form an active sulfurating agent, which can react
with an unsaturated site in a rubber chain to form a crosslink precursor, termed as accelerator-terminated
pendent group. The formation of active sulfurating agent marks the end of the first category of reactions,
namely accelerator chemistry. The crosslink precursors have many sulfur atoms (polysulfidic), usually,
a distribution of sulfur atoms. The crosslink precursors get activated and combine with an unsaturated
site in a neighboring rubber chain to form a crosslink. The crosslinks are also polysufidic in nature. Dur-
ing post-crosslinking reactions, the newly formed crosslinks may degrade to form cyclic sulfides or other
main-chain modification or desulfurate to form a more stable crosslinks with fewer sulfur atoms. For
a detailed description of the chemical reaction mechanisms for accelerated rubber vulcanization by the
action of different classes of accelerators, and vulcanization by the action of metal oxides and peroxides,
we refer the reader to Coran [6].
Coran [5] proposed a lumped model for accelerated vulcanization of rubber, in that, only the most impor-
tant chemical species are retained and several similar chemical species are lumped into a single species.
Coran considered four chemical species, viz., accelerator and/or its reaction products, A, crosslink pre-
cursor, B, an activated crosslink precursor, B∗, and the vulcanizate, V u. Each of the four species has
a distribution of sulfur atoms, which are lumped into its respective species. The reaction scheme is as
follows:

A
k1−→B

k2−→B∗ k3−→αV u (5.33a)

and

A + B∗ k4−→βB, (5.33b)

where k1 through k4 are the rate constants and α and β are introduced to adjust for the stoichiometry.
It has been experimentally observed that the crosslinking reactions do not occur in a significant manner
during the initial phase termed as an induction (scorch delay) region, which is significant for benzothiazole
class of accelerators. During this phase, primarily the reactions pertaining to the accelerator chemistry
occur, and almost all the accelerator is consumed prior to the formation of crosslinks. Coran [5] assumed
that the accelerator and its reaction products with sulfur retard the formation of crosslinks. Reaction
(5.33b) emulates the retarding action. It is clear from the reaction (5.33a) that the reactions associated
with the accelerator and sulfur is not represented explicitly. By selecting a suitable value for the rate
constant k1, one can ensure that the accelerator is consumed prior to the formation of crosslinks and
by selecting a suitable value the rate constant k4 (and the other rate constants), one can ensure that
the induction region is emulated. It was observed that for natural rubber–based formulations, the peak
concentration of the vulcanizate reduces with the increase in temperature. Recognizing this effect, Ding
et al. [9] introduced a competitive reaction (5.33c), i.e.,

B∗ k5−→γD. (5.33c)
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Later, Ding and Leonov [8] added a reaction to account for the phenomenon of reversion, which was
observed during the vulcanization of natural rubber, i.e.,

V u
k6−→γD. (5.33d)

The reactions (5.33a)–(5.33d) do have some limitations, in that the distribution of the type of cross-
links cannot be predicted and the reaction (5.33d) indicates that all of the crosslinks degrade given
sufficient time. It has been observed that (see Loo [19] and [20]) the monosulfidic crosslinks are very
stable even at 200◦C, which is attributed to the strong C–S bond compared to the much weaker S–S
bond found in disulfidic and polysulfidic crosslinks. The vulcanization of rubber is usually carried out at
about 140◦C. Therefore, in normal processing range, not all the formed crosslinks degrade. Fan et al. [11]
introduced a simple reaction scheme with three rate constants involving four species, namely polysulfidic
pendent group, polysulfidic crosslink, mono and disulfidic crosslink, and main chain modifications (or
dead ends). This model was able to capture the distribution of crosslinks reasonably well. However, this
model is incapable of predicting the induction time (or scorch time), and therefore, cannot predict the
time at which peak crosslink density is achieved. This model could be used if induction time is negli-
gible. Ghosh et al. [15] developed a comprehensive reaction scheme by taking into account the detailed
chemical reactions that occur during the induction, crosslinking and post-crosslinking region. There are
111 reactants and products. This reaction scheme can predict the distribution of crosslinks, apart from
the others. However, one needs to solve a large system of nonlinear, ordinary differential equations (111
equations).
We propose a lumped model by taking into account the various types of crosslinks and derive a set of
differential equations representing chemical kinetics using the equations developed in Sect. 5.4. Further,
only di and polysulfidic crosslinks are allowed to degrade and desulfurate. Since vulcanization of many
rubber products such as automobile tires, etc. takes place at constant deformation, the effect of deforma-
tion is neglected. However, the temperature will have a profound effect on the extent of vulcanization,
which we take into account.

5.4.4.2. Modified reaction scheme. Geyser and McGill [12] showed that the reaction of tetramethylthiu-
ram disulfide (TMTD), an accelerator, and sulfur (1:0.25 molar ratio) at 130◦C produced polysulfides of
TMTD, i.e., (CH3)2NC = SSxS = CN(CH3)2, x = 3, 4, · · · , 8 in such a way that at all times, the concen-
tration of polysulfide with x = 3 was the highest, followed by x = 4, etc. A similar trend was observed by
Geyser and McGill [13] for TMTD/Sulfur/ZnO system, when ZnO is used as an activator. Morgan and
McGill [24], using high-performance liquid chromatography (HPLC) analysis of equimolar concentration
of 2-bisbenzothiazole-2,2-disulfide (MBTS)/Sulfur/ZnO system at 152◦C, observed a similar trend for
polysulfides of MBTS, another accelerator. Morgan and McGill [25], using 2,3-dimethyl-2-butene (TME)
as a model compound for polyisoprene (rubber), employing HPLC analysis of 33.9 : 1.1 : 1 : 1 molar
ratio of TME/MBTS/Sulfur/ZnO at 150◦C, showed a similar trend for the polysulfidic pendent group
TME − Sx − Bt, x = 3, 4, · · · , 6 and polysulfidic crosslinks TME − Sx − TME, x = 3, 4, · · · , 10. Geyser
and McGill [14], for TME/TMTD/Sulfur/ZnO system, observed a similar trend for polysulfidic pendent
groups. Based on these studies, we propose a reaction scheme that results in a distribution of di and poly-
sulfidic crosslinks, which emulates the observations made on model compounds such as TME. If required,
one may decouple the formation and degradation of disulfidic crosslinks, i.e., reaction (5.34d) from the
set of reactions (5.34d)–(5.34j), by introducing two additional rate constants. Accordingly, Coran and
co-worker’s reaction scheme (5.33a)–(5.33d) may be modified as follows:

A
k1−→B

k2−→B∗ k3−→V u1 (5.34a)

A + B∗ k4−→2B (5.34b)

B∗ k5−→D1, (5.34c)
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2B∗ k6−→V u2
k7−→D2 (5.34d)

3B∗2/3k6−→ V u3
2k7−→D3 (5.34e)

4B∗1/2k6−→ V u4
3k7−→D4 (5.34f)

5B∗2/5k6−→ V u5
4k7−→D5 (5.34g)

6B∗1/3k6−→ V u6
5k7−→D6 (5.34h)

7B∗2/7k6−→ V u7
6k7−→D7 (5.34i)

8B∗1/4k6−→ V u8
7k7−→D8 (5.34j)

and

V u2
k8−→V u1 + A (5.34k)

V u3
k8−→V u2 + A (5.34l)

V u4
k8−→V u3 + A (5.34m)

V u5
k8−→V u4 + A (5.34n)

V u6
k8−→V u5 + A (5.34o)

V u7
k8−→V u6 + A (5.34p)

V u8
k8−→V u7 + A, (5.34q)

where k1 through k8 are rate parameters, V ui, i = 1, 2, . . . , 8 and Di, i = 1, 2, . . . , 8 represents crosslinks
and dead ends, respectively, containing i sulfur atoms. The expected rate constants associated with vari-
ous chemical reactions are represented based on the chemical structure of the various constituents. Such
information is used in the Sect. 5.4.4.3 to arrive at the differential equations representing the evolution
of concentration of all the chemical species. As a result of the manner in which the lumping is carried
out, the molar masses of the chemical species A, B, B∗, V u1 and D1 are the same, whereas, that of the
chemical species V ux, x = 2, 3, . . . , 8 and Dx, x = 2, 3, . . . , 8 are x times M, where M is the molar mass
of species A. Notice that the reactions (5.34a) through (5.34q) are stoichiometrically balanced, i.e., νij

corresponding to each of the reactions is determined such that Eq. (3.6) is satisfied.11 For conventional
rubber compounds, it is reasonable to assume that up to octa sulfidic crosslinks are produced. In the
above reactions, the chemical species A represents a number of rubber molecules and a molecule of active
sulfurating agent that can aid in the formation of a crosslink with a single sulfur atom (monosulfidic).
The active sulfurating agent in the lumped species A reacts with a rubber molecule to produce a pendent
group. Thus, the lumped species B represents a molecule of pendent group along with many rubber mole-
cules, which is assumed to be in abundance. A similar interpretation can be given to the activated form of
B, i.e., B∗. The set of reactions (5.34a)– (5.34q) does not explicitly include the mechanisms for the forma-
tion of polysufides of accelerator and pendent group. Instead, simplistically, it is assumed that disulfidic
crosslinks are produced from two B∗, trisulfidic crosslinks are produced from three B∗, and so forth. One
may assume that the rate at which V u3, V u4, V u5, and so forth, are produced at 2/3rd, 1/2, 2/5th, etc.,
respectively, of the rate at which V u2 is produced. Further, we assume that only V ui, i = 2, 3, . . . , 8 can
degrade (see Loo [19] and [20]) to its respective dead ends. The crosslink V ux, x = 2, 3, . . . , 8 has x − 1
S–S bonds. By assuming that the bond strength of S–S bonds in V ux, x = 2, 3, . . . , 8 to be the same,
the rate at which V ux, x = 3, 4, . . . , 8 degrades must be x − 1 times the rate at which V u2 degrades. For

11As a result of the way in which lumping of chemical compounds is carried out, conservation of atoms is automatically
satisfied, whenever balance of mass is satisfied. For example, two units of species B∗ and one unit of V u2 will have the

same number of atoms of each type.
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the reasons discussed in the pages 625–627 of Ghosh et al. [15], the rate at which desulfurization occurs
must be independent of the number of S−S bonds, and hence, the reactions (5.34k) through (5.34q) have
the same rate constant. After desulfurization, the released sulfur atom is again available for crosslinking,
which is emulated through the release of chemical species A.

5.4.4.3. Differential equations. A typical rubber vulcanization process occurs at constant deformation.
Therefore, we shall assume that the change in volume is zero, and consequently, there is no distinction
between ṅj and ˙̄nj . The reactions (5.34a)–(5.34q) contain 19 chemical species. The rank of νij is 18.
Therefore, according to the theorem (4.2), there is exactly one constraint involving the rate of change
of concentration of 19 chemical species, or the rank of the matrix Y is 19 − 18 = 1. Let A denote the
first species, B the second, B∗ the third, V u1 through V u8 denote the fourth through the eleventh,
respectively, and D1 through D8 represents the twelfth through the nineteenth species. By substituting
suitable values for molar masses corresponding to each of the chemical species, and on using Eq. (3.12),
one arrives at

d[A]
dt

+
d[B]
dt

+
d[B∗]

dt
+

8∑
i=1

i
d[V ui]

dt
+

8∑
i=1

i
d[Di]

dt
= 0. (5.35)

The above equation is the only required constraint and is ordered according to the numbering of the
chemical species. Comparing Eqs. (4.17), (5.21) and (5.35), the matrix Y is given through

Y = {−1/8 − 1/8 − 1/8 − 1/8 − 1/4 − 3/8 − 1/2 − 5/8 − 3/4
−7/8 − 1 − 1/8 − 1/4 − 3/8 − 1/2 − 5/8 − 3/4 − 7/8 − 1}. (5.36)

The rate of entropy production (times ρκt
θ) due to chemical reactions is assumed to be the same as

that of Eq. (5.18), with Aij = I19, where I19 is the identity matrix in a nineteen dimensional space. Such
an assumption is tantamount to assuming that the total rate of entropy production (times ρκt

θ) is the
sum of the individual quadratic expression involving the rate of change of concentration of each of the
chemical species per unit mass of mixture. Accordingly, the matrix P is given through P = I19. Since the
chemical reactions occur at constant deformation, v = 0, and the Eq. (5.29) reduces to ˙̄ni = −ρ2

κt
μ⊥

i , i =
1, 2, . . . , 19, where μ⊥

i are the entries associated with the projection of chemical potential vector μ onto
V⊥. The components of the vector μ⊥ are assumed to be

μ⊥
1 = − 1

ρ2
κt

{
−k1(θ)[A] − k4(θ)[A][B∗] + k8(θ)(

8∑
i=2

[V ui])

}
, (5.37a)

μ⊥
2 = − 1

ρ2
κt

{k1(θ)[A] − k2(θ)[B] + 2k4(θ)[A][B∗]} , (5.37b)

μ⊥
3 = − 1

ρ2
κt

{k2(θ)[B] − k3(θ)[B∗] − k4(θ)[A][B∗] − k5(θ)[B∗] − 14k6(θ)[B∗]} , (5.37c)

μ⊥
4 = − 1

ρ2
κt

{k3(θ)[B∗] + k8(θ)[V u2]}, (5.37d)

μ⊥
i+3 = − 1

ρ2
κt

{
2k6(θ)

i
[B∗] − (i − 1)k7(θ)[V ui] + k8(θ){[V ui+1] − [V ui]}

}
, i = 2, 3, . . . , 7, (5.37e)

μ⊥
11 = − 1

ρ2
κt

{
k6(θ)

4
[B∗] − 7k7(θ)[V u8] − k8(θ)[V u8]

}
, (5.37f)

μ⊥
12 = − 1

ρ2
κt

{k5(θ)[B∗]} (5.37g)
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and

μ⊥
i+11 = − 1

ρ2
κt

{(i − 1)k7(θ)[V ui]} , i = 2, 3, . . . , 8. (5.37h)

Not all of μ⊥
i , i = 1, 2, . . . , 19 can be specified independently. This is because of the constraint

ρκt
Y1jṅj = Y1j ˙̄nj + Y1jn̄jdiv(v) = Y1j ˙̄nj = −ρ2

κt
Y1jμ

⊥
j = 0 obtained using Eqs. (3.2), (3.4), (5.28),

(5.29) and Y1j ṅj = 0, where the components of the matrix Y are given in Eq. (5.36). In other words,
18 components of μ⊥ can be specified independently, and the last component is specified such that the
constraint is satisfied. The Eqs. (5.37a)–(5.37h) satisfy this constraint. One may determine the chemical
potential of all the 19 species using the relation μ⊥

i = (I19 −P)ijμj . Recall that the matrix I19 −P is not
invertible. Accordingly, the differential equations for the rate of change of concentration per unit volume
is given through

d[A]
dt

= −k1(θ)[A] − k4(θ)[A][B∗] + k8(θ)

(
8∑

i=2

[V ui]

)
(5.38a)

d[B]
dt

= k1(θ)[A] − k2(θ)[B] + 2k4(θ)[A][B∗] (5.38b)

d[B∗]
dt

= k2(θ)[B] − k3(θ)[B∗] − k4(θ)[A][B∗] − k5(θ)[B∗] − 14k6(θ)[B∗], (5.38c)

d[V u1]
dt

= k3(θ)[B∗] + k8(θ)[V u2] (5.38d)

d[V ui]
dt

=
2k6(θ)

i
[B∗] − (i − 1)k7(θ)[V ui] + k8(θ){[V ui+1]

−[V ui]}, i = 2 to 7 (5.38e)
d[V u8]

dt
=

k6(θ)
4

[B∗] − 7k7(θ)[V u8] − k8(θ)[V u8] (5.38f)

and
d[D1]

dt
= k5(θ)[B∗] (5.38g)

d[Di]
dt

= (i − 1)k7(θ)[V ui], i = 2 to 8. (5.38h)

An Arrhenius expression is prescribed for each of the rate constants, i.e., ki(θ) = Ai
oexp

(
Ei

a

Rθ

)
,

i = 1, 2, . . . , 8, where R is the universal gas constant, Ai
o and Ei

a represent the pre-exponential and
activation energy associated with the ith rate parameter. The differential equations (5.38a)– (5.38h) rep-
resent a set of nonlinear, ordinary differential equations, which is of first order in each of the chemical
species.

5.4.4.4. Results and discussion. To check the efficacy of the Eqs. (5.38a)–(5.38h), one needs to compare
the predictions of the model with that of the experimental data. Loo [19] determined the distribution
of mono, di and polysulfidic crosslinks for a conventional rubber compound containing 0.5:2.5 parts by
weight of N-cyclohexyl-2-benzothiazole sulfenamide (CBS) and sulfur. Chemical probes were used to
selectively cleave polysulfidic and disulfidic crosslinks in vulcanizates, vulcanized at 140, 160, 180 and
200◦C. The concentration of each type of chemical crosslink as a function of time was determined using a
combination of chemical probes and by measuring elastic properties. The data obtained, after converting
mol/gRH to mol/m3, are shown in the Figs. (2, 3, 4, 5).

Assuming that the density of the rubber mixture to be 1 g/cc, the concentration of sulfur is calcu-
lated to be 2.5×106

32×111 = 704mol/m3. Since the species A is assumed to possess one sulfur atom, the initial
concentration of A is 704mol/m3. The initial concentration of the rest of the chemical species is set
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Fig. 2. Evolution of different type of crosslinks at 140◦C
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Fig. 3. Evolution of different type of crosslinks at 160◦C

to zero. The set of ordinary differential equations, i.e., Eqs. (5.38a)–(5.38h) is solved numerically using
MATLAB with suitable initial conditions. The two sets of rate parameters k1 through k8 are determined
such that the data at 140 and 200◦C is matched. The fits are shown in the Figs. (2) and (5). Assuming
Arrhenius expression for the rate constants, the pre-exponential and activation energy can be determined
(see Abhilash et al. [1]) and is shown in Table (1). The Figs. (3) and (4) show the predictions of the
model. The predictions of the model agree reasonably well with that of experimental data. By decoupling
the rate constants associated with the production and degradation of V u2, one can obtain better results
with respect to the prediction of concentration of di sulfidic crosslinks.

6. Conclusions

A fairly general thermodynamic framework has been put into place, which can be used to study the
thermo-mechanical response of a viscoelastic materials undergoing large deformation and chemical reac-
tions. For the first time, the rate of entropy production due to the chemical reactions is taken into
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Fig. 4. Evolution of different type of crosslinks at 180◦C
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Fig. 5. Evolution of different type of crosslinks at 200◦C

consideration, in addition to the rates of entropy production due to dissipation and conduction, and
using the notion that the processes that are undergone by the body are those that maximize the rate
of entropy production, the response of the viscoelastic body is studied. The framework also incorporates
the stoichiometry associated with chemical reactions in a consistent manner. Such a framework can be
used to study growth and degradation of biological tissues, degradation of polymeric materials, etc. The
efficacy and usefulness of the procedure is evaluated by corroborating the predictions of the theory against
a complex process in which chemical reactions play a key role, namely that of the vulcanization of rubber.
Special constitutive equations of the implicit type were derived with regard to the thermo-mechanical
behavior of a viscoelastic liquid, an outcome which is natural for Gibbs potential based formulations. For
such constitutive equations, the relaxation time will be dependent upon the state of stress. There are
plenty of problems of interest such as the effect of pressure on fluids, the effect of state of stress on the
mechanical behavior of granular materials, the response of polymeric composites to extreme environmen-
tal conditions, for example high temperatures, that lead to oxidation, etc., which could be studied using
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Table 1. Pre-exponential and activation energy

Rate parameter Pre-exponential Activation energy
(J mol−1)

k1 (min−1) 1.331 × 1023 2.065 × 105

k2 (min−1) 2.298 × 106 5.215 × 104

k3 (min−1) 2.033 × 102 1.272 × 104

k4 (min−1mol−1m−3) 1.551 × 108 5.685 × 104

k5 (min−1) 4.805 × 105 2.296 × 104

k6 (min−1) 6.122 × 101 4.399 × 103

k7 (min−1) 1.482 × 1014 1.331 × 105

k8 (min−1) 7.412 × 1013 1.331 × 105

constitutive equations derived using this framework. It is worth noting that if one supplements the chem-
ical reactions, for example, associated with degradation of the viscoelastic material, the interdependent
effect of thermo-mechanical and chemical response, which the framework is capable of describing, could
have been demonstrated as well. For the sake of simplicity, the effect of deformation on the chemical
reactions was not included in this example; however, such an effect could be easily incorporated within
the scope of the theory.
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