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c© 2009 Birkhäuser Verlag, Basel

Zeitschrift für angewandte
Mathematik und Physik ZAMP

An extended similarity theory applied to heated flows
in complex geometries
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Abstract. In the traditional similarity theory the influence of temperature- and pressure-de-
pendent fluid properties on the flow field and heat transfer is not described by the basic di-
mensionless parameters, i.e. Prandtl, Reynolds, Rayleigh, . . . number. We present an extended
similarity theory that not only takes into account the variable material properties but also can
handle small variations in other parameters of the physical model like small changes in the (ref-
erence) Prandtl number. The method has general applicability that is suitable for a wide variety
of fluid dynamic and heat transfer situations in which variable properties with a strong depen-
dence on temperature and pressure play a significant role. It is especially useful in predicting the
behaviour of a certain fluid based on the results for a different one. As an example the Nußelt
number of a lid driven heated cavity is determined with fluid properties being temperature de-
pendent.
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1. Introduction

The four physical fluid properties:

• ρ∗ (density)
• c∗p (heat capacity)

• k∗ (heat conductivity)
• µ∗ (dynamic viscosity)

are in general pressure and temperature dependent. The straight forward way
to take these dependences into account requires the insertion of the exact func-
tional formulas into the basic mathematical model equations. Results obtained in
this way only hold true for one fluid and one set of boundary conditions including
a certain rate of heating. Transfering the results to other fluids or flow and heat
transfer regimes in terms of a similarity analysis is not possible. Recent applica-
tions of this approach are Kim, Choi [14], Pantokratoras [19], [20], Ali [1], Valueva
[22], Maleque, Satter [18], Ben-Mansour, Sahin [3], Hernandez, Zamora [8], Depcik
et al. [5], Mahmood et al. [17] and Ligrani, Mahmood [16].
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A more general approximate (ad hoc) method is to correct the solutions ob-
tained for constant fluid properties. Classical methods of this type are the property
ratio and the reference temperature method.

For example, with the property ratio method the result for constant fluid prop-
erties, the Nußelt-number Nucp (cp means constant properties), is corrected in the
following way when only temperature dependences are considered:

Nu = Nucp

(
ρ∗(T ∗1 )
ρ∗(T ∗2 )

)nρ
(

c∗p(T
∗
1 )

c∗p(T ∗2 )

)ncp
(

k∗(T ∗1 )
k∗(T ∗2 )

)nk
(

µ∗(T ∗1 )
µ∗(T ∗2 )

)nµ

.

In this formula T ∗1 , T ∗2 are two characteristic temperatures and nρ, ncp , nk, nµ are
empirically determined exponents. The big disadvantage of this approach is that
the exponents actually depend on T ∗1 , T ∗2 though often they are assumed to be
constants.

The reference temperature method uses a fictitious reference temperature, T ∗R,
that in a similar way is empirically determined under the condition that the the-
oretical results obtained for constant property calculations at this reference tem-
perature represent the real situation for variable fluid properties (see, for example,
Benard et al.[2], Jayaraj et al. [13] and Debrestian, Anderson [4]). The refer-
ence temperature is denoted in the form T ∗R = T ∗1 + j(T ∗2 − T ∗1 ), where T ∗1 and
T ∗2 are characteristic temperatures and j is the empirically determined reference
temperature factor. Again, the disadvantage is that j actually depends on T ∗1
and T ∗2 .

As an alternative an asymptotic method based on an earlier work by the second
author, see Herwig, Schäfer [10] and Herwig [9], will be described in detail in the
next section. It expands the difference between the constant and the variable
property solution in an asymptotic way. This method, called asymptotic correction
method, uses a perturbation parameter which is a small dimensionless characteristic
temperature or pressure difference of the actual flow and heat transfer problem.
This method can also be used to convert the empirical property ratio and reference
temperature methods into analytical methods as shown in Gersten, Herwig [6].

A main issue of this approach is to present the theory in a dimensionless form.
Then, results obtained for one fluid can be systematically transferred to a different
fluid. This can be done in terms of an extended similarity theory even when
certain parameters of the physical model, like geometry parameters, undergo slight
nonsimilar variations. In the last section this method is applied to compute Nußelt
numbers for a benchmark example (heated and lid driven cavity) with several
different fluids and boundary conditions.
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Nomenclature

dimensional quantities

symbol name unit
ρ∗ density kg/m3

c∗p heat capacity J/(kgK)
k∗ heat conductivity W/(mK)
µ∗ dynamic viscosity kg/(ms)
a∗ variable fluid property -
T ∗ temperature K
p∗ pressure Pa
∆T ∗ temperature difference K
L∗ characteristic length m
x∗, y∗ cartesian coordinates m
w∗ characteristic velocity m/s
q̇∗ local heat flux density W/(m2K)
g∗ gravitational acceleration m/s2

B∗ box width m
H∗ box height m
T ∗h hot wall temperature K
T ∗c cold wall temperature K

nondimensional quantities and groups

symbol name
x, y cartesian coordinates
Nu Nußelt number
Re Reynolds number
Pr Prandtl number
Gr Grashof number
Fr Froude number
Ec Eckert number
Ma Mach number
ε temperature difference
θ temperature
Ka, Ka2 K-values, a = ρ, cp, k, µ
Aa, Aa2, Aab A-values, a, b = ρ, cp, k, µ
H box height

Indices
symbol meaning
R reference state
cp constant properties
W wall
l,r left/right wall

2. The ACFD-method

With heat transfer applications in mind we explain the method for a situation
in which the Nußelt number is sought. We restrict ourselves to Newtonian fluids
whose properties ρ∗, c∗p, k

∗, µ∗ are temperature dependent but have a negligible
pressure dependence. The asymptotic correction method can also be called ACFD-
method which stands for asymptotic computational fluid dynamics. It can best
be subdivided into four aspects.
(1) Taylor series expansion of the fluid properties. All temperature dependent
fluid properties a∗ = a∗(T ∗), where a∗ represents ρ∗, c∗p, µ

∗ and k∗, are expanded
in a Taylor series around a reference temperature T ∗R up to an order n ≥ 1. The
nondimensional representation of this Taylor series expansion reads:

a :=
a∗

a∗R
= 1 + εKa1θ +

1
2
ε2Ka2θ

2 + · · ·+ 1
n!

εnKanθn + O(εn+1)

= 1 + ha1θ +
1
2
ha2θ

2 + · · ·+ 1
n!

hanθn + O(εn+1) (2.1)

with: a∗R := a∗(T ∗R)

ε :=
∆T ∗R
T ∗R
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θ :=
T ∗ − T ∗R

∆T ∗R

Ka1 :=
[

∂a∗

∂T ∗
T ∗

a∗

]

R

Ka2 :=
[

∂2a∗

∂T ∗2
T ∗2

a∗

]

R

Kan :=
[

∂na∗

∂T ∗n
T ∗n

a∗

]

R

haj := εjKaj =
[

∂ja∗

∂T ∗j
∆T ∗j

a∗

]

R

, j = 1, 2, . . . , n. (2.2)

In this notation ∆T ∗R is a characteristic dimensional temperature difference of the
problem under consideration. The nondimensional temperature derivatives Ka1,
Ka2, . . . , Kan of order 1 to n are material properties and are called K-values. By
definition, they determine the temperature influenced deviation of the property a∗

referred to the reference value a∗R up to a certain order. The combinations haj are
called temperature influence factors.

fluid air CO2 SF6 NH3

ρ∗/(kg/m3) 1.188 1.815 6.07 0.707
10−6µ∗/(kg/ms) 18.185 14.69 14.695 9.911
10−3k∗/(W/mK) 25.721 16.22 13.17 23.57
c∗p/(kJ/kgK) 1.014 0.846 0.652 2.164
Pr 0.717 0.766 0.727 0.910
Kρ1 -1.000 -1.019 -1.037 -1.046
Kρ2 2.000 2.144 2.037 2.303
Kµ1 0.775 0.969 1.05 1.077
Kµ2 -0.352 -0.155 -0.376 0.390
Kk1 0.891 1.441 1.51 1.499
Kk2 -0.257 0.761 -0.445 0.699
Kcp1 0.068 0.333 0.672 -0.024
Kcp2 -0.076 0.035 -0.567 1.718

Table 1. K-values for different fluids at T ∗R = 293 K and p∗R = 1 bar

As an example K-values Ka1, Ka2 of first and second order at T ∗R = 293 K and
p∗R = 1 bar are given in table 1 for air, carbon dioxide (CO2), sulfur hexafluoride
(SF6) and ammonia (NH3). The K-values for air were taken from [7], those for
CO2, SF6 and NH3 were computed from [23]. Density K-values Kρ1, Kρ2 of SF6

(missing in [23]) are based on data taken from the public online database of the
National Institute of Standards and Technology (NIST). All K-values of table 1
will be used in our benchmark example in the last section.

(2) Asymptotic expansion of the difference between the constant and the variable
property results. In our benchmark example we want to describe the local Nußelt
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Nr. dimensional influence quantity notation unit
1 local heat flux density q̇∗W kg/s3

2 coordinate y∗ m
3 characteristic length L∗ m
4 characteristic velocity w∗ m/s
5 characteristic temperature difference ∆T ∗R K
6 reference density ρ∗R kg/m3

7 reference heat capacity c∗p,R m2/(s2 K)

8 reference heat conductivity k∗R kg m/(s3 K)
9 reference dynamic viscosity µ∗R kg/(m s)
10 reference speed of sound c∗R m/s
11 gravitational acceleration g∗ m/s2

n × temperature derivatives of density
[
∂jρ∗/∂T ∗j

]
R

kg/(m3Kj)

n × temperature derivatives of heat capacity
[
∂jc∗p/∂T ∗j

]
R

m2/(s2Kj+1)

n × temperature derivatives of heat conductivity
[
∂jk∗/∂T ∗j

]
R

kg m/(s3Kj+1)

n × temperature derivatives of dynamic viscosity
[
∂jµ∗/∂T ∗j

]
R

kg/(m s Kj)

Table 2. List of dimensional quantities influencing the problem of a lid driven heated cavity
(benchmark problem)

number as a function of all nondimensional groups of the problem including the
nondimensional temperature influence factors haj , a = ρ, cp, k, µ, j = 1, . . . , n. In
general, one has to carry out a complete formal dimensional analysis of the prob-
lem under consideration. Again, as an example, table 2 contains all quantities
that influence our benchmark problem. In the last four rows of table 2 the index
j runs from 1 to n. Thus there are 11 + 4n influence quantities and 4 dimen-
sions (kg,m,s,K) which according to the Buckingham-Π-theorem results in 7 + 4n
nondimensional groups given in table 3. Therefore

Nu = Nu(Pr,Re, Fr,Ec, Ma, h, y, Geom) (2.3)
h := (hρ1, . . . , hρn, hcp1, . . . , hcpn, hk1, . . . , hkn, hµ1, . . . , hµn) (2.4)

= (h1, . . . , hm)
m := 4n.

In (2.3) Geom stands for further unspecified nondimensional geometry parameters.
The aim is now to decouple the fluid property influences represented by h from
the remaining parameters. For this reason the right hand side of equation (2.3) is
formally expanded in a Taylor series with respect to the multidimensional variable
h around h = 0:

Nu(Pr,Re, Fr,Ec, Ma, h, y, Geom) =
∑
α

Cα hα (2.5)

with: Cα = Cα(Pr,Re, Fr,Ec,Ma, y, Geom) :=
1
α!

[
∂|α|Nu

∂hα

]

h=0

. (2.6)

The summation is taken over all multiindices

α = (αρ1, . . . , αρn, αcp1, . . . , αcpn, αk1, . . . , αkn, αµ1, . . . , αµn)
= (α1, . . . , αm) ∈ Nm

0
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for which we use the common abbreviations

hα := hα1
1 · · ·hαm

m

α! := α1 · · ·αm

|α| := α1 + · · ·+ αm.

Nr. nondimensional group name
1 Nu = q̇∗W L∗/(∆T ∗Rk∗R) Nußelt number
2 y = y∗/L∗ nondimensional coordinate
3 Re = ρ∗Rw∗L∗/µ∗R Reynolds number
4 Pr = µ∗Rc∗p,R/k∗R Prandtl number

5 Fr = w∗/
√

g∗L∗ Froude number
6 Ec = w∗2/(c∗p,R∆T ∗R) Eckert number

7 Ma = w∗/c∗R Mach number

n× hρj =
∆T

∗j
R

ρ∗
R

[
∂jρ∗
∂T∗j

]
R

density temperature influence factors

n× hcpj =
∆T

∗j
R

c∗
p,R

[
∂jc∗p
∂T∗j

]

R

heat capacity temperature influence factors

n× hkj =
∆T

∗j
R

k∗
R

[
∂jk∗
∂T∗j

]
R

heat conductivity temperature influence factors

n× hµj =
∆T

∗j
R

µ∗
R

[
∂jµ∗
∂T∗j

]
R

dynamic viscosity temperature influence factors

Table 3. Nondimensional groups of the benchmark problem

Notice that the first summand of (2.5) for α = 0 by definition (2.6) is the
constant property solution:

C0(Pr,Re, Fr,Ec, Ma, y,Geom) = Nu(Pr,Re, Fr,Ec, Ma, h = 0, y, Geom)
= Nucp(Pr,Re, Fr,Ec,Ma, y, Geom).

Division of (2.5) by Nucp gives

Nu

Nucp
=

Nu(Pr,Re, Fr,Ec, Ma, h, y, Geom)
Nucp(Pr,Re, Fr,Ec,Ma, y, Geom)

=
∑
α

Aαhα (2.7)

Aα = Aα(Pr,Re, Fr,Ec, Ma, y,Geom) (2.8)

:=
Cα(Pr,Re, Fr,Ec,Ma, y, Geom)

Nucp(Pr,Re, Fr,Ec,Ma, y, Geom)
=

1
α!Nucp

[
∂|α|Nu

∂hα

]

h=0

.

The numbers Aα are called A-values. They still depend on Pr, Re, Fr, Ec, Ma,
y, Geom as indicated in (2.8) but not on the variable material properties of the
fluid.

In order to derive an asymptotic expansion in ε (recalling that in c.f. (2.2),
haj = εjKaj) we now reorder the sum (2.7) by collecting terms with equal powers
of εi, i ∈ N0. Up to second order this expansion has the form

Nu

Nucp
= 1 + ε[Kρ1Aρ + Kµ1Aµ + Kk1Ak + Kcp1Acp ] + ε2[Kρ2Aρ2 + Kµ2Aµ2
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+Kk2Ak2 + Kcp2Acp2 + K2
ρ1Aρρ + K2

µ1Aµµ + K2
k1Akk + K2

cp1Acpcp

+Kρ1(Kµ1Aρµ + Kk1Aρk + Kcp1Aρcp
) + Kµ1(Kk1Aµk + Kcp1Aµcp

)

+Kk1Kcp1Akcp ] + O(ε3) (2.9)

= 1 + εA1 + ε2A2 + O(ε3) (2.10)
A1 := Kρ1Aρ + Kµ1Aµ + Kk1Ak + Kcp1Acp

(2.11)
A2 := Kρ2Aρ2 + Kµ2Aµ2 + Kk2Ak2 + Kcp2Acp2 (2.12)

+K2
ρ1Aρρ + K2

µ1Aµµ + K2
k1Akk + K2

cp1Acpcp

+Kρ1(Kµ1Aρµ + Kk1Aρk + Kcp1Aρcp
) + Kµ1(Kk1Aµk + Kcp1Aµcp

)
+Kcp1Kk1Acpk

Aa :=
1

Nucp

[
∂Nu

∂ha1

]

h=0

(2.13)

Aaa :=
1

2Nucp

[
∂2Nu

∂h2
a1

]

h=0

(2.14)

Aa2 :=
1

Nucp

[
∂Nu

∂ha2

]

h=0

(2.15)

Aab :=
1

Nucp

[
∂2Nu

∂ha1∂hb1

]

h=0

(2.16)

where a, b ∈ {ρ, cp, k, µ}, a 6= b.
The big advantage of this asymptotic approach is: Once the A-values are

known, Nu/Nucp can be computed for
• selected fluids (K-value variation)
• selected small driving temperature differences (ε variation)

provided that the nondimensional groups Pr,Re, Fr,Ec, Ma, Geom remain un-
changed.

Figure 1 sketches the process of the ACFD-method that converts the results
from one fluid to a second one: The left branch represents the computation of the
A-values plus the constant property solution. These computations require several
solutions for h → 0, for h see (2.4). They are carried out numerically via CFD-
simulations for certain fictitious fluids. This procedure will be described in detail in
step 3. The right branch of the picture illustrates the application for a certain fluid
(fixed K-values) and certain small temperature differences (ε1, ε2, ε3). Going from
the left to the right branch is only possible if Pr,Re, Fr,Ec, Ma, Geom are kept
the same. Later on, in step 4, we will extend the theory allowing for small varia-
tions in these parameters since for example keeping the reference Prandtl number
constant strongly restricts the number of fluids which might be interchanged.

(3) Computation of the A-values. For complex flow and heat transfer problems,
an analytic determination of the A-values is not possible. Therefore, commercial
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Figure 1. The ACFD-method for converting results from one fluid to a second one

CFD-codes like FLUENT can be used to determine them numerically. This is why
the approach is called ACFD-method: asymptotic computational fluid dynamics
(see [10]). In the numerical determination of the A-values the partial derivatives on
the right-hand sides of (2.13),. . . , (2.16) are formally approximated by appropri-
ate difference quotients. There are many ways to do this. We chose the following
central difference schemes to approximate the derivatives:

Aa =
1

Nucp
lim
s→0

{
Nu(ha1 = s)−Nu(ha1 = −s)

2s

}

0

(2.17)

Aaa =
1

2Nucp
lim
s→0

{
Nu(ha1 = s)− 2Nucp + Nu(ha1 = −s)

s2

}

0

(2.18)

Aa2 =
1

Nucp
lim
s→0

{
Nu(ha2 = s)−Nu(ha2 = −s)

2s

}

0

(2.19)

Aab =
1

Nucp
lim
s→0

1
4s2

{Nu(ha1 = hb1 = s) + Nu(ha1 = hb1 = −s)

−Nu(ha1 = −hb1 = s)−Nu(ha1 = −hb1 = −s)}0 . (2.20)

Here the limiting process lims→0 ... means that s must be small enough to avoid a
higher order influence, but not too small since otherwise truncation errors appear.
The index 0 at the right curly brackets indicates that all other variables hc1, hc2

are set to zero. Each of the eight terms
• Nu(ha1 = s)0, Nu(ha1 = −s)0
• Nu(ha2 = s)0, Nu(ha2 = −s)0
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• Nu(ha1 = hb1 = s)0, Nu(ha1 = hb1 = −s)0, Nu(ha1 = −hb1 = s)0,
Nu(ha1 = −hb1 = −s)0

corresponds to exactly one CFD-simulation. Hence, the calculation of (2.17),
(2.18) and (2.19) needs two CFD-simulations for a fixed small value of s, while
the determination of Aab according to (2.20) needs four CFD-simulations. With
one further CFD-calculation the constant property solution Nucp is determined.
Details of the strategy to determine the A-values are:

- Since the method holds for all Newtonian fluids it also holds for arbitrarily
chosen fictitious fluids for which only one property is temperature dependent
(in some arbitrary way) with all other properties being constant. Such fluids
serve as ”dummy fluids“ from which the general A-values can be determined.
- A CFD-simulation for Nu(ha1 = s)0 might be done with a dummy fluid

whose Ka1-value equals s/ε where ε corresponds to a freely chosen temperature
difference. All other K-values of this dummy fluid are set to zero.
- In the same way a CFD-simulation for Nu(ha1 = −s)0 may use a dummy

fluid whose Ka1-value equals −s/ε and whose other K-values are zero again.
- The two CFD-simulations for Nu(ha2 = ±s)0 use dummy fluids with Ka2 =
±s/ε2.
- Finally, the four CFD-simulations for Nu(ha1 = ±hb1 = ±s)0 use dummy

fluids with Ka1 = ±s/ε and ±Kb1 = ±s/ε.
CFD-programs in general work with dimensional variables. This requires some
retranslations we want to mention here for the readers convenience. In FLUENT,
for example, it is possible to define fictitious fluids with dimensional polynomial
temperature dependent properties a∗ like:

a∗(T ∗) = a∗0 + a∗1T
∗ + a∗2T

∗2. (2.21)

Then a fictitious fluid behaves according to prescribed values of ha1 and ha2 if

a∗0 := a∗R

[
1− ha1T

∗
R

∆T ∗
+

ha2T
∗2
R

2(∆T ∗)2

]
(2.22)

a∗1 := a∗R

[
ha1

∆T ∗
− ha2T

∗
R

(∆T ∗)2

]
(2.23)

a∗2 :=
a∗Rha2

2(∆T ∗)2
(2.24)

where ∆T ∗ is the dimensional characteristic temperature difference and T ∗R is the
dimensional reference temperature.

Finally, all computed A-values are stored in databases as arrays of the form
(y,A(y)) which represent curves with respect to a local coordinate y, i.e. along a
certain line in the flow field. Take, for example, figure 3 in which all first order
A-values have been computed for the benchmark problem.

(4) Variation of reference parameters. Since the reference Prandtl number is a
property of the fluid the Pr-dependence of the A-values restricts the number of



1104 F. Bünger and H. Herwig ZAMP

Figure 2. Two-dimensional heated and driven cavity (HDC)

Figure 3. First order A-values for the benchmark problem (HDC) at both side walls

fluids which might be interchanged. Many gases have a Prandtl number around
0.7 however, so that only small deviations in Pr will have to be taken into account.
The obvious approach is a second Taylor series expansion of the A-values with re-
spect to the Prandtl number around the original reference Prandtl number, now
called PrR. The A-values then read:

Aa(Pr, y) = Aa(PrR, y) +
[
∂Aa(Pr, y)

∂Pr

]

R

∆Pr + O((∆Pr)2) (2.25)

Aa2(Pr, y) = Aa2(PrR, y) +
[
∂Aa2(Pr, y)

∂Pr

]

R

∆Pr + O((∆Pr)2) (2.26)
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Aab(Pr, y) = Aab(PrR, y) +
[
∂Aab(Pr, y)

∂Pr

]

R

∆Pr + O((∆Pr)2) (2.27)

with ∆Pr := Pr − PrR and a, b ∈ {ρ, cp, k, µ}. All other nondimensional groups
Re, Fr,Ec, Ma, Geom are considered to remain constant. They also might be
expanded in Taylor series, so that small variations in the Reynolds number or in
the geometry can be handled, but we will not deal with such variations in this
study.

3. A benchmark-case: the lid driven heated cavity

In this section the ACFD-method is applied to a benchmark case for mixed con-
vection, the heated and driven cavity (HDC): A two-dimensional box, see figure 2,
of hight H∗[m], width B∗[m] filled with a Newtonian fluid whose properties ρ∗,
c∗p, k∗, µ∗ are all temperature dependent. The left wall of the box has a constant
temperature T ∗h [K] (h stands for hot) and the right wall has a lower constant
temperature T ∗c [K] (c stands for cold). Bottom and top of the box are adiabatic
walls. The top wall is moving with a constant velocity w∗ [m/s]. We choose

T ∗R :=
T ∗h + T ∗c

2
= 293K

∆T ∗R := T ∗h − T ∗c
L∗ := B∗ = 10−2m

in the nondimensional groups given in table 3. Here H := H∗/B∗ is a geometric
nondimensional group that replaces the term Geom in (2.3). We examine the local
Nußelt number

Nu = Nu(Pr,Re, Fr,Ec,Ma, h, y,H)

at each position y on the left (heated) or the right (cooled) wall for certain test
cases in order to show the advantages of the ACFD-method.

Measurements of Koseff and Street [15] showed that the flow in a rectangular
lid driven cavity with a span-wise aspect ratio (the ratio of cavity span to width)
ranging from 1 to 3 starts to become turbulent for Reynolds numbers between 6000
and 8000. At Re = 10000 the entire flow is turbulent. For a detailed review with
respect to lid driven cavity flows see Shankar and Deshpande [21]. In our CFD-
simulations Re = 50000 to ensure that the flow is entirely turbulent. FLUENT 6.3
with a RNG k-ε turbulence model and a steady-state 2D solver was used. This
approach is in accordance with FLUENT-simulations done by Isaev et al. [11], [12].

The influence of Fr,Ec, Ma on the Nußelt number is neglected in all considered
test cases since forced convection dominates (no Fr influence), viscous dissipation
is small compared to heat transfer effects (no Ec influence) and Mach numbers
are close to zero. Therefore Nu = Nu(Pr,Re, h, y, H) is left. The focus of this
study is on effects of variable properties. Nevertheless the constant property result
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Figure 4. Nu/Nucp for a heated and lid driven cavity (HDC), Re = 50000
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Figure 5. Results based on a Taylor series expansion of the A-values with respect to the Prandtl
number compared to those without expansion and to full numerical solutions, Re = 50000

should also be given. It is shown in the appendix of this paper.
The example of how to treat variable property effects according to our asymp-

totic method is presented in five consecutive steps:
1. First all A-values A(Pr,Re, y, H) used in (2.9) are computed for

PrR := 0.717
ReR := 50000
HR := 1.

The Prandtl number is that of air at T ∗R = 293 K and p∗R = 1 bar. All first
order A-values Aρ, Acp , Ak, Aµ for both side walls are shown in figure 3.

2. Next, Nu/Nucp according to (2.9) is evaluated for air (K-values from table 1)
at a fixed temperature difference T ∗h − T ∗c = 60K (ε = 0.2). Also Nu/Ncp was
determined from two FLUENT-solutions, one for constant properties and one
with variable properties for air and a heating rate corresponding to ε = 0.2.
Both results are shown in figure 4 a), b) and compare quite well.

3. Now we fix the fluid (air) and vary the temperature difference T ∗h −T ∗c = 30K,
60K, 90K which corresponds to ε = 0.1, 0.2, 0.3. Formula (2.9) immediately
supplies the ACFD-solutions given in figure 4 c), d).

4. We now fix the temperature difference T ∗h − T ∗c = 60K (ε = 0.2) and vary the
fluid by switching from air to carbon dioxide (CO2) and sulfur hexafluoride
(SF6). Since these gases have Prandtl-numbers around 0.7 at the reference
state (cf. table 1) the A-values computed for Pr = 0.717 are appropriate as a
first approximation.
Using the K-values of CO2 and SF6 (cf. table 1) in (2.9) yields the curves
shown in figure 4 e), f).
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Figure 6. Local Nußelt number distribution along the side walls and the flow field of the HDC
for constant fluid properties at Pr = 0.717 and Re = 50000

5. Finally the A-value expansion with respect to the Prandtl number is determined
for the reference Prandtl number PrR = 0.717 as described in aspect (4) of
section 2 (see (2.25), 2.26) (2.27)). Figure 5 compares the ACFD-solution for
NH3 at ε = 0.3 with these corrected A-values to the results without A-value-
Pr-expansion. For comparison figure 5 includes the Nu/Nucp-results from two
FLUENT-simulation for NH3 under the given boundary conditions to assess
the quality of both ACFD-solutions.
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4. Conclusions

An asymptotic method was presented that includes variable property effects in
similarity considerations with respect to complex flows. This is a clear strategy
for a numerical approach to a complex problem. However, also experimental re-
sults that were gained with a certain fluid have to be treated likewise when they
should be used in corresponding situations but with different fluids. It is always
the ”detour“ over the constant property results that is required. Then, however,
experiments have to be accompanied by numerical solutions from which the con-
stant property results can be deduced. One then gets the information whether
variable property effects are crucial or can be neglected (within the error band of
the experiments). In cases in which they are non-negligible their influence can be
quantified by the asymptotic method of this study. The numerical results for this
purpose need not be of highest quality, however, since systematic errors will prob-
ably drop out when corresponding results for two different fluids are determined
on the basis of one common (not high quality) numerical solution of the problem
under consideration.
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Appendix

Figure 6 a),b) shows the Nußelt number for constant fluid properties along the left
and right side walls of the lid driven heated cavity. On both walls maxima in the
Nußelt number distribution occur where the flow“hits the surface” as indicated by
arrows in figure 6 c) of the flow field.

At the left (heated) wall this is the case in the region 0.2 < y < 0.3 where fluid
from the rotating primary vortex approaches the wall. Also fluid from the the sec-
ondary vortex in the left upper corner approaches the wall almost perpendicularly
near y = 1 (before it turns due to the non-slip condition) which causes a strong
increase of the Nußelt number.

In the upper right corner the fluid impinges on the right (cooled) wall with
high velocity (close to that of the moving upper wall) which results in a Nußelt
number maximum near y = 1. The Nußelt number then decreases monotonically
in the region where the flow is parallel to the right wall like it does with a wall
jet. The secondary vortex in the right lower corner causes a small increase of the
Nußelt number at y near 0 only since it is rather weak.
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F. Bünger
Hamburg University of Technology
Thermo-Fluid Dynamics (M-21)
Denickestr. 17 (Building L)
D-21073 Hamburg
Germany
e-mail: florian.buenger@tu-hamburg.de

H. Herwig
Hamburg University of Technology
Thermo-Fluid Dynamics (M-21)
Denickestr. 17 (Building L)
D-21073 Hamburg
Germany
e-mail: h.herwig@tu-hamburg.de

(Received: July 15, 2008)

Published Online First: May 4, 2009

To access this journal online:
www.birkhauser.ch/zamp


