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On the integrable rational Abel differential equations
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Abstract. In Cheb-Terrab and Roche (Comput Phys Commun 130(1–2):204–231, 2000) a classification of the Abel equations
known as solvable in the literature was presented. In this paper, we show that all the integrable rational Abel differential
equations that appear in Cheb-Terrab and Roche (Comput Phys Commun 130(1–2):204–231, 2000) and consequently in
Cheb-Terrab and Roche (Eur J Appl Math 14(2):217–229, 2003) can be reduced to a Riccati differential equation or to a
first-order linear differential equation through a change with a rational map. The change is given explicitly for each class.
Moreover, we have found a unified way to find the rational map from the knowledge of the explicitly first integral.
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1. Introduction and statement of the results

In this work, we study the class of integrable rational Abel differential equations of the form

dy

dx
= f0(x) + f1(x)y + f2(x)y2 + f3(x)y3, (1)

where fi(x) are rational functions of x. Here integrable means that the Abel differential equation has an
explicit first integral H(x, y) defined in all R

2 except in a Lebesgue set of zero measure.
Abel equations appear in the reduction of order of many second- and high-order families, and hence

are frequently found in the modelling of real problems in varied areas. In [5] it is given a classification
according to invariant theory of the integrable Abel differential equations, i.e. of the Abel equations
known as solvable in the literature.

The classification of the known integrable cases is derived from the analysis of the works of Abel
[1], Apell [2], Liouville [14–16], and Kamke’s textbook [13]. During these last 130 years all the integrable
rational Abel differential equations that have been found have been reduced by Cheb-Terrab and Roche
[5] to four classes depending on one parameter and seven classes formed by a unique equation. All these
classes are summarized in Appendix. We remark that the Class 1 of Appendix can be written into the
form (1) doing the change {X = y, Y = 1/(−x − 3y + 3y2)}.

Our main result is the following.

Theorem 1. Any integrable rational Abel differential equation given in Appendix can be transformed to a
Riccati differential equation or to a first-order linear differential equation doing a change with a rational
map.
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The proof will be given in Sect. 2 by providing for each known integrable rational Abel differential
equation the explicit rational change to a first-order linear differential equation or to a Riccati equation.

Open problem 1. Show that any integrable rational Abel differential equation can be transformed to a
Riccati differential equation or to a first-order linear differential equation doing a change with a rational
or algebraic map.

Note that Theorem 1 proves the Open Problem 1 restricted to all the known integrable rational Abel
differential equations up to now.

It is well known that several different classes of polynomial differential systems can be transformed
into Abel differential equations of the form (1) where, in general, the functions fi(x) are trigonometric
instead of rational, see for instance [7–10]. It is also known that many of these classes of Abel differential
equations are integrable, for instance the ones coming from quadratic polynomial differential equations
having a center, see [17].

Open problem 2. It is unknown if there exists a non-rational Abel differential equation (1) having an
explicit first integral which cannot be transformed into a Riccati differential equation or a first-order
differential linear equation.

2. Proof of Theorem 1

The proof of Theorem 1 is inspired from the explicit expression of the first integral. We consider the
2-dimensional system associated to the Abel equation (1) given by

ẋ = 1, ẏ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3, (2)

and its associated vector field

X =
∂

∂x
+ (f0(x) + f1(x)y + f2(x)y2 + f3(x)y3)

∂

∂y
.

In [6], generalizing all the integrable classes collected in [5], it was presented a single multi-parameter
non-constant invariant class of Abel ordinary differential equations denoted by Abel Inverse–Abel (AIA)
type in the notation of [6]. In addition the class AIA contains a new subclass of Abel Inverse–Riccati
(AIR) type depending on six parameters all of whose members can be systematically transformed into
Riccati-type equations. Moreover, this AIR class includes a four-parameter Liouvillian integrable subclass
denoted by Abel Inverse–Linear (AIL) subclass all of whose members can be mapped into first-order linear
equations. Additionally this family (AIA) includes new integrable cases constructed from the previously
known ones in [5]. Moreover, in [6] it is shown that the integrable equations belonging to family (AIA)
constructed from the previously known ones in [5] can all be transformed through an algebraic change
to the (AIL) or (AIR) class. These changes are not given explicitly, and they should be found by a com-
position of several algebraic changes. For instance, for Class 1, it is clear that by this composition an
algebraic change exists, but it is not possible to give explicitly the change from the sequence of changes
proposed.

All the integrable classes collected in [5], four depending on one parameter, labelled A, B, C and D,
and another seven independent of parameters, labelled 1–7 are particular members of the AIL, AIR and
AIA. More precisely, the classes A, C, 4 and 5 are subclasses of AIL, the classes B, D, and 2 are subclasses
of AIR, and the classes 1, 3, 6, and 7 are subclasses of AIA. It is clear, by the previous paragraph, that
all these classes 1–7, and A–D map to a first-order linear equation or to a Riccati equation through an
algebraic change. Here, we will prove that it is possible to find explicitly a change with a rational map
for each class and in almost all the cases such a map is birational, and consequently Theorem 1 will be
proved.
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It is important to note that we have found a unified way to find the rational map from the explicit
expression of the first integral. It is necessary to separate the transcendental dependence in one variable
and the non-transcendental dependence in the other. This unified method to find the map is very impor-
tant for future works since, up to now, it was not understood how to find such a map when it exists. This
observation can allow to detect the integrability of an equation by a perturbative method of construction
of its first integral.

The first case of the table given in Appendix is the unique that has a rational first integral and conse-
quently in the expression of the first integral does not appear any transcendental function. In this case,
for finding the rational map we shall use Theorem 2 which provides a result of local orbitally linearization
with a map in a neighbourhood of a singular point. Theorem 2 is a straightforward generalization of a
result given in [11]. We need some previous definitions in order to state Theorem 2.

Let F = F (x, y) and K = K(x, y) be smooth functions. If they satisfy XF = KF , then F is called a
Darboux factor and K its cofactor, see for more details [3,4].

We say that system (2) is orbitally linearizable with a map in a neighbourhood U of a singular point
if there exist Darboux factors Fi : U → R with cofactors Ki : U → R for i = 1, . . . , m, and numbers
αi, βi ∈ C, such that

∑m−1
i=1 αiKi(x, y) = λh(x, y) and

∑m
i=2 βiKi(x, y) = µh(x, y).

Theorem 2. Suppose that system (2) is orbitally linearizable with a map in a neighbourhood of a singular
point. Then, using the notation of the definition of orbitally linearizable, the change (x, y) �→ (u, v) =
(
∏m−1

i=1 Fαi
i ,

∏m
i=2 F βi

i ) brings the system into its orbitally linearizable normal form.

Class 1 in [5], discovered by Halphen [12] in connection with elliptic functions, is given by dy/dx =
(3y(1 + y) − 4x)/(x(8y − 1)). This equation can be transformed to

dy

dx
=

3y(y − 1) − x

x(8y − 9)
. (3)

by the change {x = X/4, y = Y − 1} and renaming {X → x, Y → y}. The rational map

X = x3, Y =
27x + 4x2 − 36xy + 8xy2 − 4y3 + 4y4

(x2 − 6xy + 2xy2 + y4)3
,

transforms system (3) into the linear equation dY/dX = −Y/X. This change can be obtained using the
invariant algebraic curves that appear in the first integral given in the appendix and their respective
cofactors and applying Theorem 2 at the singular point (0, 0).

Class 2 in [5], given first by Liouville [15], is given by
dy

dx
= y3 − 2xy2. (4)

The birational map

X = x2 − 1
y
, Y = x,

transforms system (4) into the Riccati equation dY/dX = Y 2 − X. In this case the Abel equation has a
non-Liouvillian first integral, where the transcendental functions in the first integral are in the variable
x2 − 1/y. The change has been obtained by taking x2 − 1/y as a new variable.

Class 3 in [5], was also found by Liouville [16], and is given by

dy

dx
=

y3

4x2
− y2. (5)

Doing first the change {z = x− 1/y, x = x} and later the change {u = z2 − 1/(2x), z = z} we obtain
a Riccati equation du/dz = −u + z2. In short the birational map

X =
2x − 4x2y − y2 + 2x3y2

2xy2
, Y =

xy − 1
y

,



36 J. Giné and J. Llibre ZAMP

transforms system (5) into the Riccati equation dY/dX = Y 2 − X. In this case the Abel equation has
also a non-Liouvillian first integral and the change has been obtained in such a way that transcendental
dependence in the first integral will be only in one variable and the non-transcendental dependence in
the other.

Class 4 in [5] is given by

dy

dx
= y3 − (x + 1) y2

x
. (6)

The change z = x− 1/y transforms system (6) into the Riccati equation dx/dz = x(x− z)/z which has a
Liouville first integral because it has the algebraic particular solution x = 0. Hence, there exists a change
that transforms system (6) into a linear equation. In fact the birational map

X =
1 − 2y − xy

2(−1 + xy)
, Y =

2 + x

x
,

transforms system (6) into the linear equation dY/dX = 4(X + Y )/(1 + 2X)2.
Class 5 in [5], is given by

dy

dx
= − (2x + 3)(x + 1)y3

2x5
+

(5x + 8) y2

2x3
. (7)

The change z = (x + 1)/(x
√

A), where A = 4/y − 10/x − 6/x2 − 4 transforms system (7) into the Riccati
equation

dx

dz
= −x(1 + x + 6z2 + 4xz2)

z(1 + 4z2)
,

which has a Liouville first integral because it has the algebraic particular solution x = 0. Hence there
exists a change that transforms system (7) into a linear equation. More specifically the birational map

X =
2x2 − xy − y

2x2 + xy + x2y
, Y =

1
x

,

transforms system (7) into the linear equation dY/dX = (X + Y )/(2X(X − 1)(3X − 2)).
Class 6 in [5] is given by

dy

dx
= − y3

x2(x − 1)2
+

(1 − x − x2)y2

x2(x − 1)2
. (8)

The change z = (y + x2 − x)/(xy(x − 1)) transforms system (8) into the Riccati equation dx/dz =
−x+x2−1/z, which has a Liouville first integral because it has the algebraic particular solution x = −1/z.
Hence, there exists a change that transforms system (8) into a linear equation. More specifically, the
birational map

X =
x − x2 − y + 2xy − 2x2y

2(−x + x2 + y)
, Y =

−1 + x − y + 2xy

2(−1 + x + y)
,

transforms system (8) into the linear equation dY/dX = 4(X + Y )/(1 + 2X)2.
Class 7 in [5] is given by

dy

dx
=

(4x4 + 5x2 + 1)y3

2x3
+ y2 +

(1 − 4x2)y
2x(x2 + 1)

. (9)

The change z = (x − 2yx4 − 3yx2 − y)/(x(x + yx2 + y)) transforms system (9) into the Riccati equation

dx

dz
= −1 + xz + x2

2 + 2z2
,
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which has a Liouville first integral because it has the algebraic particular solution x = −1/z. Hence there
exists a change that transforms system (9) into a linear equation. More specifically, the birational map

X =
2(x2 + xy + x3y)

y − x + 3x2y + 2x4y
, Y =

y − x + x2y

(x + x3)y
,

transforms system (9) into the linear equation dY/dX = −2(X + Y )/(X(4 + X2).
Class A in [5] is given by

dy

dx
=

(

αx +
1
x

+
1
x3

)

y3 + y2. (10)

The rational map {z = x3/(y + x), u = −yx2/(y + x)} transforms system (10) into the linear equation

dz

du
=

u − u2 + αu3 + 2z

u − u2 + αu3
.

This map has been obtained, as in the Class 3, in such a way that the transcendental dependence in the
first integral will be only in one variable and the non-transcendental dependence in the other. Following
the sequence of transformations indicated in [6] we can also construct the rational map

X =
x2

2
, Y =

x2y

2(x + y)
,

which transforms system (10) into the linear equation dY/dX = 2(X + Y )/(X(1 − 2X + 4αX2)). Both
maps are not birational maps and it seems it does not exist a birational one for this Class A.

Class B in [5], discovered first by Liouville [16], is given by

dy

dx
= 2(x2 − α2)y3 + 2(x + 1)y2. (11)

The birational map {z = x2 + 1/y, x = x} transforms system (11) into the Riccati equation dx/dz =
(x2 − z)/(2(z − α2)). In this case the Abel equation has a non-Liouvillian first integral, where the tran-
scendental functions are in the variable x2 +1/y. The change has been obtained taking x2 +1/y as a new
variable. Following the sequence of transformations indicated in [6] we can also construct the birational
map

X = − 1
x2 + y

, Y = x,

which transforms system (11) into the Riccati equation dY/dX = (X + Y 2)/(2(α2 + X)).
Class C in [5] is given by

dy

dx
=

α(1 − x2)y3

2x
+ (α − 1)y2 − αy

2x
. (12)

The birational map {z = (1 − xy)/y, x = x} transforms system (12) into the Riccati equation dx/dz =
2x(x + z)/(α(z2 − 1)). This Riccati equation has a Liouville first integral because it has the algebraic
particular solution x = 0. Hence there exists a change that transforms system (12) into a linear equation.
In fact, the birational map

X =
√

α y

xy − 1
, Y =

√
α

x
,

transforms system (12) into the linear equation dY/dX = −2(X + Y )/(X(X2 − α)).
Class D in [5], related with Appell’s work [2], is given by

dy

dx
= −y3

x
− (α + x2)y2

x2
. (13)
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The change {z = x − α/x − 1/y, x = x} transforms system (13) into the Riccati equation dx/dz =
α + xz + x2. In this case the Abel equation has a non–Liouvillian first integral, where the transcendental
functions are in the variable x−α/x− 1/y. The change has been obtained taking x−α/x− 1/y as a new
variable. Following the sequence of transformations indicated in [6] we arrive to the same birational map

X =
x + αy − x2y

xy
, Y = x,

which transforms system (13) into the Riccati equation dY/dX = −α + XY + Y 2.

3. Appendix

Class Integrable rational Abel differential equations with a first integral

1 dy/dx = 3 y2−3 y−x
x(8 y−9)

, H(x, y) =
x3(4 x2+(8 y2−36 y+27)x+4 y4−4 y3)

(x2+2 x(y2−3 y)+y4)3
.

2 dy/dx = −2 y2x + y3, H(x, y) =
xAi

(
x2− 1

y

)
+Ai

(
1,x2− 1

y

)

xBi
(
x2− 1

y

)
+Bi

(
1,x2− 1

y

) .

3 dy/dx = y3

4 x2 − y2, H(x, y) =

(
x− 1

y

)
Ai

((
x− 1

y

)2− 1
2x

)

+Ai

(

1,
(
x− 1

y

)2− 1
2x

)

(
x− 1

y

)
Bi

((
x− 1

y

)2− 1
2x

)

+Bi

(

1,
(
x− 1

y

)2− 1
2x

) .

4 dy/dx = y3 − x+1
x

y2, H(x, y) = 1
x
e

1
y

−x − Ei(1, x − 1
y
).

5 dy/dx = − (2 x+3)(x+1)y3

2 x5 + (5 x+8)y2

2 x3 , H(x, y) =
√

A

4
√

4
(x+1)2

x2 A
+1

+
∫ 2 x+1

x
√

A
(
z2 + 1

)−5/4
dz = 0,

A = 4
y

− 10
x

− 6
x2 − 4.

6 dy/dx = − y3

x2(x−1)2
+

(1−x−x2)y2

x2(x−1)2
, H(x, y) = −Ei

(
1, y+x2−x

xy(x−1)

)
+ (x−1) y ε

x−y−x2
xy(x−1)

x−1+y
.

7 dy/dx =
(4 x4+5 x2+1)y3

2 x3 + y2 +
(1−4 x2)y

2 x(x2+1)
H(x, y) = 2 x+A

4√
A2+1(Ax−1)

+
∫ A(

z2 + 1
)−5/4

dz,

A =
x − 2 yx4 − 3 yx2 − y

x (x + yx2 + y)
.

A dy/dx =
(
α x + 1

x
+ 1

x3

)
y3 + y2, H(x, y) = x3

y+x
exp

(
∫ −yx2

y+x 2 dz
z2−z−αz3

)

− ∫ −yx2
y+x exp

(∫
2 dz

z2−z−αz3

)
dz.

B dy/dx = 2
(
x2 − α2

)
y3 + 2 (x + 1) y2, H(x, y) =

(α+x)K
(
α,−

√
x2+ 1

y
−α2

)
+

√
x2+ 1

y
−α2 K

(
1+α,−

√
x2+ 1

y
−α2

)

(α+x)I
(
α,−

√
x2+ 1

y
−α2

)
−

√
x2+ 1

y
−α2 I

(
1+α,−

√
x2+ 1

y
−α2

) .

C dy/dx =
α(1−x2)y3

2 x
+ (α − 1) y2 − αy

2 x
, H(x, y) = α

x

(

1 −
(

1
y

− x
)2

)1/α

− 2
∫

1−xy
y (

1 − z2
) 1−α

α dz.

D dy/dx = − y3

x
− (α+x2)y2

x2 , H(x, y) =
(α+1)M

(

− α
2 − 3

4 , 1
4 , 1

2

(
x− α

x
− 1

y

)2
)

+
(

x
y

−x2
)
M

(

− α
2 + 1

4 , 1
4 , 1

2

(
x− α

x
− 1

y

)2
)

(α2+α)W
(

− α
2 − 3

4 , 1
4 , 1

2

(
x− α

x
− 1

y

)2
)

+2
(

x
y

−x2
)
W

(

− α
2 + 1

4 , 1
4 , 1

2

(
x− α

x
− 1

y

)2
) .

Integrable rational Abel differential equations presented in [5].
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Universitat Autònoma de Barcelona
Bellaterra
08193 Barcelona
Spain
e-mail: jllibre@mat.uab.cat

(Received: November 19, 2008)


	1. Introduction and statement of the results
	2. Proof of Theorem 1
	3. Appendix
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


