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Abstract. In this paper, we study the energy decay rate for the thermoelastic Bresse system

which describes the motion of a linear planar, shearable thermoelastic beam. If the longitudi-
nal motion and heat transfer are neglected, this model reduces to the well-known thermoelastic
Timoshenko beam equations. The system consists of three wave equations and two heat equa-

tions coupled in certain pattern. The two wave equations about the longitudinal displacement
and shear angle displacement are effectively damped by the dissipation from the two heat equa-

tions. Actually, the corresponding energy decays exponentially like the classical one-dimensional
thermoelastic system. However, the third wave equation about the vertical displacement is only
weakly damped. Thus the decay rate of the energy of the overall system is still unknown. We

will show that the exponentially decay rate is preserved when the wave speed of the vertical
displacement coincides with the wave speed of longitudinal displacement or of the shear angle

displacement. Otherwise, only a polynomial type decay rate can be obtained. These results are
proved by verifying the frequency domain conditions.
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1. Introduction

In their study on networks of flexible beams, Lagnese, Leugering and Schmidt [9]
derived a general model for 3-d nonlinear thermoelastic beams. A special case
of this model is a linear planar, shearable thermoelastic beam whose motion is
governed by the following system of partial differential equations:

ρhẅ1 = (Eh(w′
1 − kw3) − αθ1)

′ − kGh(φ2 + w′
3 + kw1), (1.1)

ρhẅ3 = Gh(φ2 + w′
3 + kw1)

′ + kEh(w′
1 − kw3) − kαθ1, (1.2)

ρIφ̈2 = EIφ′′
2 − Gh(φ2 + w′

3 + kw1) − αθ′3, (1.3)

ρcθ̇1 = θ′′1 − αT0(ẇ
′
1 − kẇ3), (1.4)

ρcθ̇3 = θ′′3 − αT0φ̇
′
2, (1.5)

where w1, w3, φ2 are the longitudinal, vertical and shear angle displacements; θ1, θ3

are the temperature deviations from the reference temperature T0 along the lon-



Vol. 60 (2009) Energy decay rate of the thermoelastic Bresse system 55

gitudinal and vertical directions; E,G, ρ, I,m, h, k, c are positive constants for the
elastic and thermal material properties. The dot and prime are used for the partial
derivatives with respect to time t ≥ 0 and spatial location x ∈ [0, l] respectively.

From this seemingly complicated system (three wave equations coupled with
two heat equations), very interesting special cases can be obtained. In particular,
the isothermal system is exactly the system obtained by Bresse [4] in 1856. The
Bresse system, equations (1.1)-(1.3) with θ1, θ3 removed, is more general than
the well-known Timoshenko system where the longitudinal displacement w1 is not
considered. If both θ1 and w1 are neglected, the Bresse thermoelastic system
simplifies to the following Timoshenko thermoelastic system:

ρhẅ3 = Gh(φ2 + w′
3)

′, (1.6)

ρIφ̈2 = EIφ′′
2 − Gh(φ2 + w′

3) − αθ′3, (1.7)

ρcθ̇3 = θ′′3 − αT0φ̇
′
2, (1.8)

which was studied by Racke and Rivera [13]. For the boundary conditions

w3(t, x) = φ′
2(t, x) = θ3(t, x) = 0, at x = 0, l (1.9)

or

w3(t, x) = φ2(t, x) = θ′3(t, x) = 0, at x = 0, l, (1.10)

they obtained exponential stability for the thermoelastic Timoshenko system (1.6)–
(1.8) when E = G. Moreover, they also proved non-exponential stability for the
case of boundary condition (1.9) when E 6= G by a method used in [5]. We refer
the reader to the references [15], [8] and [2] for the Timoshenko system with other
kinds of damping mechanisms such as viscous damping, and viscoelastic damping
of Boltzmann type acting on the motion equation of w3 or φ2. In all three cases,
the rotational displacement φ2 of the Timoshenko system is effectively damped
due to the thermal energy dissipation in equations (1.7)–(1.8). In fact, the energy
associated with this component of motion decays exponentially. The transverse
displacement w3 is only indirectly damped through the coupling, which can be
observed from (1.6). The effectiveness of this damping depends on the type of
coupling and the wave speeds. When the wave speeds are the same (E = G),
the indirect damping is actually strong enough to induce exponential stability for
the Timoshenko system. But when the wave speeds are different, the Timoshenko
system loses the exponential stability. This phenomenon has been observed for
partially damped second order evolution equations. We quote [3], [1] for the poly-
nomial energy decay rate by the multiplier technique, [7] for the study of optimal
decay rate by spectral compensation, and [16] for the polynomial energy decay
rate of hyperbolic-parabolic coupled system by Riesz basis approach.

In this paper, we study the energy decay rate for the thermoelastic Bresse
system (1.1)–(1.5) with the boundary conditions

w′
1(t, x) = w3(t, x) = φ′

2(t, x) = θ1(t, x) = θ3(t, x) = 0, for x = 0, l, (1.11)
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or

w1(t, x) = w3(t, x) = φ2(t, x) = θ1(t, x) = θ3(t, x) = 0, for x = 0, l, (1.12)

and initial conditions

w1(0, x) = u0(x), ẇ1(0, x) = v0(x), φ2(0, x) = φ0(x), φ̇2(0, x) = ψ0(x),
w3(0, x) = w0(x), θ1(0, x) = θ0(x), θ3(0, x) = ξ0(x),

(1.13)
whose total energy is

E(t) =
1

2

∫ l

0

{

[Eh(w′
1 − kw3)

2 + Gh(φ2 + w′
3 + kw1)

2 + EI(φ′
2)

2]

+ [ρh(ẇ2
1 + ẇ2

3) + ρIφ̇2
2] +

ρc

T0
(θ2

1 + θ2
3)

}

dx. (1.14)

We first show that E(t) decays exponentially if assuming E = G. However, from
the theory of elasticity, E and G denote the Young’s modulus and the shear mod-
ulus, respectively. These two elastic modulus are not equal since

G =
E

2(1 + ν)

where ν ∈ (0, 1
2 ) is the Poisson’s ratio. Thus, the exponential stability for the

case of E = G is only mathematically sound. However, it does provide useful
insight to the study of similar models arising from other applications. This re-
sult is anticipated once we consider the results in [13]. The thermoelastic Bresse
system contains three wave equations, and two of them, (1.1) and (1.3), are effec-
tively damped by the thermal damping from equation (1.4)-(1.5). The third wave
equation, (1.2), is indirectly damped through the coupling and a weak thermal
damping. If the wave speed of the third equation is the same as the wave speed
of the effectively damped wave equation (1.1) or (1.3), then exponential stability
of the overall system is expected.

When E 6= G, E(t) does not decay exponentially. However, in this case we
are able to obtain a polynomial-type of decay rate. Our results also apply to the
thermoelastic Timoshenko system. It is interesting to see that the polynomial
decay rate of the system with the boundary conditions (1.11) is faster than the
one with boundary conditions (1.12). Our main tools are the frequency domain
characterization of exponential decay obtained by Prüss [12] and Huang [6], and
of polynomial decay obtained recently by the authors of the present paper [10].
This technique has been successfully applied to many dissipative systems for expo-
nential stability and analyticity of the associated semigroups. Our results in [10]
extended this technique further to the systems which are only strongly stable but
not exponentially stable. Several examples of such systems and their polynomial
decay rate of energy were given in [10]. We believe that this frequency domain
method for polynomial decay rate of energy will enjoy success same as its counter-
part of exponential decay rate of energy for partially or locally damped distributed
systems.
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For readers’ convenience, we include these two frequency domain conditions
here.

Theorem 1.1. ([6], [12]) A C0 semigroup etA of contractions on a Hilbert space

H is exponentially stable if and only if

ilR ⊂ ρ(A), sup
β∈lR

‖(iβI −A)−1‖ < +∞. (1.15)

Theorem 1.2. ([10]) If a bounded C0 semigroup etA on a Hilbert space H satisfies

ilR ⊂ ρ(A), sup
|β|≥1

1

βj
‖(iβI −A)−1‖ < +∞ (1.16)

for some j > 0, then for any positive integer m there exists a constant Cm > 0
such that

‖etAz0‖H ≤ Cm

(

ln t

t

)
m
j

(ln t)‖z0‖D(Am) (1.17)

for all z0 ∈ D(Am).

This paper is organized as follows. Section 2 is for the semigroup setting of
the thermoelastic Bresse system. Section 3 and 4 are devoted to exponential and
polynomial decay rate of the system energy, respectively.

2. Semigroup setting

To avoid using subscript for the variables, we denote

u = w1, w = w3, φ = φ2, v = ẇ1, y = ẇ3, ψ = φ̇2, θ = θ1, ξ = θ3.

Thus, the state variable vector is z = (u,w, φ, v, y, ψ, θ, ξ).
In order to choose the proper state space for the system, we shall find the static

solution first. Thus, we consider the static system associated with (1.1)-(1.5)

Eh(u′ − kw)′ − αθ′ − kGh(φ + w′ + ku) = 0, (2.1)

Gh(φ + w′ + ku)′ + kEh(u′ − kw) − kαθ = 0, (2.2)

EIφ′′ − Gh(φ + w′ + ku) − αξ′ = 0, (2.3)

θ′′ = 0, (2.4)

ξ′′ = 0. (2.5)

Since θ, ξ both vanish at x = 0 and l, it follows from the equations (2.4)-(2.5)
that θ = ξ ≡ 0. We then multiply (2.1)-(2.3) by u,w, φ and integrate from 0 to l,
respectively. This yields

∫ l

0

[Eh(u′ − kw)2 + Gh(φ + w′ + ku)2 + EI(φ′)2]dx = 0. (2.6)
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In the case of boundary condition (1.12), it is clear from (2.6) that u = w = φ ≡ 0.
But in the case of boundary condition (1.11)

u = −c1 cos kx −
c2

k
, w = c1 sin kx, φ = c2, θ = ξ ≡ 0

are nonzero solutions of (2.1)-(2.5) for any constants c1, c2 as long as c1 sin kl = 0.

Therefore, we will impose

∫ l

0

φ(x)dx = 0 to force φ ≡ 0. Furthermore, u = w ≡ 0

if k 6= nπ
l

. On the other hand, from the dynamical system (1.1) and (1.3), we have

f̈(t) + af(t) = 0

with f(t) =

∫ l

0

[φ(x, t) + ku(x, t)]dx. If the initial condition f(0) = ḟ(0) = 0 is

satisfied, f(t) will be kept at zero for all t > 0. Although a translation of state
variables can shift the equilibrium state to zero, we are going to deal with this by
choosing the state spaces

H1 = H1
∗ × H1

0 × H1
∗ × L2

∗ × L2 × L2
∗ × (L2)2,

H2 = (H1
0 )3 × (L2)5,

where

H1
∗ =

{

f ∈ H1(0, l)
∣

∣

∫ l

0

f(x) = 0
}

, L2
∗ =

{

f ∈ L2(0, l)
∣

∣

∫ l

0

f(x) = 0
}

. (2.7)

Both state spaces are equipped with the inner product which induces the energy
norm

‖z‖2
Hi

= Eh‖u′ − kw‖2 + Gh‖φ + w′ + ku‖2 + EI‖φ′‖2 + ρh‖v‖2 + ρh‖y‖2

+ ρI‖ψ‖2 +
ρc

T0
(‖θ‖2 + ‖ξ‖2). (2.8)

Here and after, ‖ · ‖ denotes the L2(0, l) norm.
Define a linear operator Ai : Hi → Hi(i = 1, 2) by

Aiz =



























v

y

ψ
E
ρ
(u′ − kw)′ − α

ρh
θ′ − kG

ρ
(φ + w′ + ku)

G
ρ
(φ + w′ + ku)′ + kE

ρ
(u′ − kw) − kα

ρh
θ

E
ρ
φ′′ − Gh

ρI
(φ + w′ + ku) − α

ρI
ξ′

1
ρc

θ′′ − αT0

ρc
(v′ − ky)

1
ρc

ξ′′ − αT0

ρc
ψ′



























(2.9)

with

D(A1) = {z ∈ H1

∣

∣w, θ, ξ ∈ H1
0 ∩ H2, u′, φ′, y ∈ H1

0 , v, ψ ∈ H1
∗}, (2.10)

D(A2) = {z ∈ H2

∣

∣u,w, φ, θ, ξ ∈ H1
0 ∩ H2, v, y, ψ ∈ H1

0}. (2.11)
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Thus, the thermoelastic Bresse beam system is transformed into a first order evo-
lution on the Hilbert space Hi:

ż(t) = Aiz(t), z(0) = z0

with i = 1, 2 corresponding to the boundary conditions (1.11) and (1.12), respec-
tively. Here and after we assume that k 6= nπ

l
for all positive integer n when

i = 1.

Theorem 2.1. Ai generates a C0 semigroup Si(t) of contractions on Hi for i =
1, 2.

Proof. It is clear that D(Ai) is dense in Hi. By a straight forward calculation,

Re〈Aiz, z〉H = −
1

T0
(‖θ′‖2 + ‖ξ′‖2) ≤ 0. (2.12)

Hence, Ai is dissipative. It is easy to show that

Aiz = F, ∀ F ∈ Hi (2.13)

where F = (f1, · · · , f8)
T , has unique solution z ∈ D(Ai). In fact, from the first

three equations of (2.13), we get

v = f1, y = f2, ψ = f3.

Substitute them into the last two equation in (2.13) and using the stardard elliptic
PDE theory, we have unique solution

θ ∈ H1
0 ∩ H2, ξ ∈ H1

0 ∩ H2.

Finally, for the unique solvability of solution (u,w, φ) to the fourth, fifth and sixth
equations in (2.13), we define a bilinear form

b((u,w, φ), (ũ, w̃, φ̃))

= Eh〈u′ − kw, ũ′ − kw̃〉 + Gh〈φ + w′ + ku, φ̃ + w̃′ + kũ〉 + EI〈φ′, φ̃′〉.(2.14)

The conclusion follows from the Lax-Milgram theorem. Thus, 0 ∈ ρ(Ai). By the
resolvent identity, for small λ > 0 we have R(λ − A) = H (see Theorem 1.2.4 in
[11]), the conclusion now follows from the Lumer-Phillip theorem. ¤

3. Exponential decay rate: the case of E = G

Theorem 3.1. If E = G, then the semigroup Si(t) is exponentially stable, i.e.,

there exist constant M, ǫ > 0 independent of z0 ∈ Hi such that

‖Si(t)z0‖Hi
≤ Me−ǫt‖z0‖Hi

, t ≥ 0,

for i = 1, 2.
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Proof. By the Theorem 1.1 in section 1, we need to show

ilR ∈ ρ(Ai), (3.1)

and

lim sup
β→∞

‖(iβI −Ai)
−1‖ < ∞. (3.2)

We will establish these conditions by contradiction.
For the case of i = 1, if (3.2) is false, then there exist a sequence zn ∈ D(A1)

with ‖zn‖H1
= 1, and a sequence βn ∈ lR with βn → ∞ such that

lim
n→∞

‖(iβnI −A1)zn‖H1
= 0, (3.3)

i.e., in L2(0, l) we have the following convergence:

iβn(u′
n − kwn) − (v′

n − kyn) → 0, (3.4)

iβn(φn + w′
n + kun) − (ψn + y′

n + kvn) → 0, (3.5)

iβnφ′
n − ψ′

n → 0, (3.6)

iβnvn −
E

ρ
(u′

n − kwn)′ +
kG

ρ
(φn + w′

n + kun) +
α

ρh
θ′n → 0, (3.7)

iβnyn −
G

ρ
(φn + w′

n + kun)′ −
kE

ρ
(u′

n − kwn) +
αk

ρh
θn → 0, (3.8)

iβnψn −
E

ρ
φ′′

n +
Gh

ρI
(φn + w′

n + kun) +
α

ρI
ξ′n → 0, (3.9)

iβnθn −
1

rc
θ′′n +

αT0

ρc
(v′

n − kyn) → 0, (3.10)

iβnξn −
1

ρc
ξ′′n +

αT0

ρc
ψ′

n → 0. (3.11)

Our goal is to derive ‖zn‖H1
→ 0 as a contradiction, which will be proceeded

by showing that each term in (2.8) converges to zero. Instead of using the fact
βn → ∞, we shall only use its consequence that βn is bounded away from zero in
our proof of condition (3.2). Although this makes our argument somewhat more
complicated, it can greatly simplify the proof of condition (3.1).

From (3.3) and (2.12), we obtain

Re〈(iβn −A1)zn, zn〉H1
=

1

T0
(‖θ′n‖

2 + ‖ξ′n‖
2) → 0. (3.12)

Thus, by the Poincare’s inequality,

‖θn‖ → 0, ‖ξn‖ → 0. (3.13)

Eliminating ψ′
n in (3.11) by (3.6), and taking the inner product with

ρcφ′

n

βn
in
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L2(0, l), we obtain

−
1

βn

〈ξ′′n, φ′
n〉 + iαT0‖φ

′
n‖

2

= −
1

βn

ξ′nφ̄′
n

∣

∣

l

0
+ 〈ξ′n,

φ′′
n

βn

〉 + iαT0‖φ
′
n‖

2 → 0. (3.14)

The boundary terms in (3.14) vanish due to the boundary conditions on φn. More-

over,
∥

∥

∥

φ′′

n

βn

∥

∥

∥
is bounded which can be easily seen from (3.9). This, combined with

(3.12), implies that the second term in (3.14) converges to zero. Hence, we have

‖φ′
n‖ → 0. (3.15)

In view of (3.6), we see that
∥

∥

∥

ψ′

n

βn

∥

∥

∥
converges to zero. Since

∫ l

0

ψndx = 0, by the

Poincare’s inequality we also know that
∥

∥

∥

ψn

βn

∥

∥

∥
converges to zero. Hence, the inner

product of (3.9) with ψn

βn
in L2(0, l) leads to

‖ψn‖ → 0. (3.16)

Similarly, we can eliminate v′
n − kyn from (3.10) by (3.4), then take the inner

product of the resulting equation with ρc(u′
n − kwn) in L2(0, l) to get

−
1

βn

〈θ′′n, u′
n − kwn〉 + iαT0‖u

′
n − kwn‖

2

= −
1

βn

θ′n(ū′
n − kw̄n)

∣

∣

l

0
+

〈

θ′n,
(u′

n − kwn)′

βn

〉

+ iαT0‖u
′
n − kwn‖

2 → 0. (3.17)

Again, the boundary terms in (3.17) vanish. Since
∥

∥

∥

(u′

n−kwn)′

βn

∥

∥

∥
is bounded due to

(3.7), the second term in (3.17) converge to zero. Hence,

‖u′
n − kwn‖ → 0. (3.18)

This further leads to 1
βn

‖v′
n −kyn‖ → 0. Therefore, 1

βn
‖v′

n‖ is bounded. From the

L2(0, l) inner product of (3.9) and vn

βn
we obtain

〈

φn + w′
n + kun,

vn

βn

〉

→ 0.

Now, we take the inner product of (3.7) with vn

βn
in L2(0, l), and integrate by part

to the second term in the resulting expression. It is easy to see from there that
the second, third and last terms in the expression all converge to zero. We then
obtain

‖vn‖ → 0. (3.19)

So far, we have not used (3.5) and (3.8), which is certainly needed in the last part
of our proof, i.e., showing

‖φn + w′
n + kun‖ → 0, ‖yn‖ → 0. (3.20)
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However, the above strategy of using the heat equations (3.10)-( 3.11) to get the
dissipation of the elastic part of the energy does not work anymore since (3.8)
is only weakly damped. Hence, we will proceed with a different approach which
relies on the assumption of the same wave speed (E = G). For the Bresse system,
this makes all three wave equations to have the same wave speed. But we actually
only need a pair of them, one effectively damped and the other not, satisfying
this requirement. In the following we only use the equations (1.2) and (1.3) to get
(3.20).

Taking the inner product of (3.9) with φn + w′
n + kun and (3.8) with φ′

n in
L2(0, l), respectively, we have

〈iβnψn, φn + w′
n + kun〉 −

E

ρ
〈φ′′

n, φn + w′
n + kun〉 +

Gh

ρI
‖φn + w′

n + kun‖
2 → 0,

(3.21)

〈iβnyn, φ′
n〉 −

G

ρ
(φn + w′

n + kun)φ
′

n

∣

∣

l

0
+

G

ρ
〈φn + w′

n + kun, φ′′
n〉 → 0.

(3.22)

The boundary terms in (3.22) vanish. Moreover, the first term in (3.22) can be
written as the following,

〈iβnyn, φ′
n〉 = −〈yn, iβnφ′

n〉

= −〈yn, ψ′
n〉 + o(1)

= 〈y′
n, ψn〉 + o(1)

= 〈ψn + y′
n + kvn, ψn〉 + o(1)

= −〈φn + w′
n + kun, iβnψn〉 + o(1),

Therefore, the real part of the sum of (3.21) and (3.22) yields the first part of
(3.20). The inner product of (3.8) with yn

βn
gives us the second part of (3.20).

For the case of i = 2, the above arguments also apply. The only difference is
that this time we have to estimate the boundary terms in (3.14), (3.17) and (3.22).
First, we have

∣

∣

∣

∣

1

βn

ξ′n(x)φ′
n(x)

∣

∣

∣

∣

≤ C‖ξ′n‖
1

2

∥

∥

∥

∥

ξ′′n
βn

∥

∥

∥

∥

1

2

‖φ′
n‖

1

2

∥

∥

∥

∥

φ′′
n

βn

∥

∥

∥

∥

1

2

and
∣

∣

∣

∣

1

βn

θ′n(x)(u′
n(x) − kwn(x))

∣

∣

∣

∣

≤ C‖θ′n‖
1

2

∥

∥

∥

∥

θ′′n
βn

∥

∥

∥

∥

1

2

‖u′
n − kwn‖

1

2

∥

∥

∥

∥

(u′
n − kwn)′

βn

∥

∥

∥

∥

1

2

for x = 0, l and some constant C > 0. Since
∥

∥

∥

ξ′′

n

βn

∥

∥

∥
,
∥

∥

∥

φ′′

n

βn

∥

∥

∥
,
∥

∥

∥

θ′′

n

βn

∥

∥

∥
and

∥

∥

∥

(u′

n−kwn)′

βn

∥

∥

∥

are all bounded, the boundary terms in (3.14) and (3.17) converge to zero due to
(3.12).

We now claim that the boundary terms in (3.22) also converge to zero. In fact,
taking the inner product of (3.9) with 2ρxφ′

n and (3.8) with 2ρx(φn + w′
n + kun)
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in L2(0, l), respectively, then integrating by parts we obtain

ρ‖ψn‖
2 + E‖φ′

n‖
2 − El|φ′

n(l)|2 → 0, (3.23)

ρ‖yn‖
2 + G‖φn + w′

n + kun‖
2 − Gl|w′

n(l)|2 → 0. (3.24)

In view of (3.15)-(3.16) and ‖zn‖H2
= 1, we know that |φ′

n(l)| converges to zero
and |w′

n(l)| is uniformly bounded in n. Similarly, repeating above process with
2ρ(x − l)φ′

n and 2ρ(x − l)(φn + w′
n + kun) we have the same estimate for |φ′

n(0)|
and |w′

n(0)|. Moreover, φn and un already vanish on the boundary due to the
boundary conditions. Hence, the claim is proved.

To prove the condition (3.1) we again use a contradiction argument. We already
know that 0 ∈ ρ(A1). Assuming β 6= 0 and iβ ∈ σ (A1), there exists a sequence
zn ∈ D(A1) with ‖zn‖H1

= 1 for all n such that

lim
n→∞

‖ (iβI −A1) zn‖H1
= 0.

Let’s recall the statement we made following (3.11). Since we did not use the fact
βn → ∞ to verify condition (3.2), a repetition of the above argument with βn

replaced by β leads to the same contradiction. The proof is thus achieved.

Remark 3.1. When E = G, all three wave equations (1.1)-(1.3) have the same
wave speed. However, in the proof of (3.20), we only used the fact that equations
(1.2) and (1.3) have the same wave speed. Actually our method works as long as
there is a pair of wave equations (one of them is effectively damped and the other
is not) with the same wave speed. To illustrate this point, we include another
proof of (3.20) which only requires equations (1.1) and (1.2) to have the same
wave speed.

For the case i = 1, taking the inner product of (3.7) with φn + w′
n + kun and

(3.8) with u′
n − kwn in L2(0, l), respectively, we have

〈iβnvn, φn + w′
n + kun〉 −

E

ρ
〈(u′

n − kwn)′, φn + w′
n + kun〉

+
kG

ρ
‖φn + w′

n + kun‖
2 → 0, (3.25)

〈iβnyn, u′
n − kwn〉 −

G

ρ
(φn + w′

n + kun)(u′
n − kwn)

∣

∣

l

0

+
G

ρ
〈φn + w′

n + kun, (u′
n − kwn)′〉 → 0. (3.26)

The boundary terms in (3.26) vanish again. Moreover, the first term in (3.26) can
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be written as the following,

〈iβnyn, u′
n − kwn〉 = −〈yn, iβn(u′

n − kwn)〉

= −〈yn, v′
n − kyn〉 + o(1)

= 〈y′
n, vn〉 + k‖yn‖

2 + o(1)

= 〈iβn(φn + w′
n + kun), vn〉 + k‖yn‖

2 + o(1),

= −〈φn + w′
n + kun, iβnvn〉 + k‖yn‖

2 + o(1),

Therefore, the real part of the sum of (3.25) and (3.26) leads to (3.20).
For the case i = 2, a similar argument also shows that the boundary terms in

(3.26) converge to zero.

4. Polynomial decay rate: the case of E 6= G

From the proof of Theorem 4.1 in [10], we can see that the thermoelastic Bresse
system (1.1)-(1.5) with the boundary condition (1.11) is not exponentially stable
when E 6= G. The idea is to find a sequence of λn ∈ lR with |λn| → ∞ and a
sequence zn ∈ D(A1) with ‖zn‖H1

= 1 such that ‖(iλnI − A1)zn‖H1
→ 0. In

the case of boundary condition (1.11), this approach worked well due to the fact
that all eigenmodes are separable, i.e., the system operator can be decomposed
to a block-diagonal form according to the frequency when the state variables are
expanded into Fourier series. However, in the case of boundary condition (1.12),
this approach has no success in the literature to our knowledge. A complicated
technique developed in [14] is promising. We will not dive into the details here.
Our main results are the following polynomial-type decay rate estimations.

Theorem 4.1. If E 6= G, then there exists a constant Cm > 0 independent of

z0 ∈ D(Am
i ) such that

‖Si(t)z0‖Hi
≤ Cm

(

ln t

t

)
m
j

(ln t)‖z0‖D(Am
i

), m = 1, 2, · · ·

with

j =

{

4 i = 1,
8 i = 2.

Remark 4.1. It is interesting to see that the polynomial decay rate depends
on the boundary conditions. Although we can’t guarantee that our estimate of
the decay rate is optimal since we are only verifying sufficient conditions, the
reader will see from the following proof that the best l is chosen in order to get a
contradiction. However, we do not have a physical explanation why case one has
a faster decay rate than case two.

Proof. By Theorem 1.2 in section 1, we need to show

ilR ∈ ρ(Ai), (4.1)
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and

lim
β→∞

1

βj
‖(iβI −Ai)

−1‖ < ∞. (4.2)

Condition (4.1) has been verified in last section. We first establish condition (4.2)
for i = 1 by contradiction. If (4.2) is false, then there exist a sequence zn ∈ D(A1)
with ‖zn‖H1

= 1, and a sequence βn ∈ lR with βn → ∞ such that

lim
n→∞

β4
n‖(iβnI −A1)zn‖H1

= 0, (4.3)

i.e., in L2(0, l) we have the following convergence:

β4
n[iβn(u′

n − kwn) − (v′
n − kyn)] → 0, (4.4)

β4
n[iβn(φn + w′

n + kun) − (ψn + y′
n + kvn)] → 0, (4.5)

β4
n[iβnφ′

n − ψ′
n] → 0, (4.6)

β4
n

[

iβnvn −
E

ρ
(u′

n − kwn)′ +
kG

ρ
(φn + w′

n + kun) +
α

ρh
θ′n

]

→ 0, (4.7)

β4
n

[

iβnyn −
G

ρ
(φn + w′

n + kun)′ −
kE

ρ
(u′

n − kwn) +
αk

ρh
θn

]

→ 0, (4.8)

β4
n

[

iβnψn −
E

ρ
φ′′

n +
Gh

ρI
(φn + w′

n + kun) +
α

ρI
ξ′n

]

→ 0, (4.9)

β4
n

[

iβnθn −
1

ρc
θ′′n +

αT0

ρc
(v′

n − kyn)
]

→ 0, (4.10)

β4
n

[

iβnξn −
1

mc
ξ′′n +

αT0

mc
ψ′

n

]

→ 0. (4.11)

Our goal is to derive ‖zn‖H1
→ 0 as a contradiction. From (4.3) and (2.12), we

obtain

Re〈β4
n(iβn −A)zn, zn〉H =

1

T0
(‖β2

nθ′n‖
2 + ‖β2

nξ′n‖
2) → 0. (4.12)

Thus, by the Poincare’s inequality,

‖β2
nθn‖ → 0, ‖β2

nξn‖ → 0. (4.13)

Dividing (4.11) by β3
n and replacing βnψ′

n by iβ2
nφ′

n in view of (4.6) leads to

−βnξ′′n + iαT0β
2
nφ′

n → 0 in L2(0, l).

Now we take the inner product of the above with φ′
n in L2(0, l) to get

−βn〈ξ
′′
n, φ′

n〉 + αT0i‖βnφ′
n‖

2

=
〈

β2
nξ′n,

φ′′
n

βn

〉

+ αT0i‖βnφ′
n‖

2 → 0. (4.14)

This implies that

‖βnφ′
n‖ → 0 (4.15)
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because of (4.12) and the uniform boundedness of ‖
φ′′

n

βn
‖ in n. Thus, ‖ψ′

n‖ also
converges to zero, which leads to

‖ψn‖ → 0. (4.16)

Repeating the above process to (4.10) and (4.4) also gives

‖βn(u′
n − kwn)‖ → 0, (4.17)

which further leads to ‖v′
n − kyn‖ → 0. Therefore, ‖v′

n‖ is uniformly bounded in
n. From the L2(0, l) inner product of (4.9) and vn

β5
n

we obtain

〈

φn + w′
n + kun,

vn

βn

〉

→ 0.

Now, we take the inner product of (4.7) with vn

βn
in L2(0, l), and integrate by part

to the second term in this expression. It is easy to see from there that the second,
third and last terms in that expression all converge to zero. We then obtain

‖vn‖ → 0. (4.18)

Let fn(x) =

∫ x

0

[φn(p) + w′
n(p) + kun(p)]dp so that fn(0) = 0 and f ′

n = φn + w′
n +

kun. Note that we also have fn(l) = 0 since φn, un ∈ H1
∗ . We can rewrite the

L2(0, l) inner product of (4.9) and
ρIf ′

n

β4
n

as

−iρI〈ψ′
n, βnfn〉 + EI

〈

βnφ′
n,

f ′′
n

βn

〉

+ Gh‖f ′
n‖

2 → 0. (4.19)

It follows from (4.5) and (4.8) that ‖βnfn‖ and 1
βn

‖f ′′
n‖ are both uniformly bounded

in n. Thus, the first two terms on the left hand side of (4.19) converge to zero
which implies that

‖f ′
n‖ = ‖φn + w′

n + kun‖ → 0. (4.20)

Finally, we take the inner product of (4.8) and yn

βn
in L2(0, l) to get

‖yn‖ → 0. (4.21)

Now every term in ‖zn‖H1
has converged to zero, which is a contradiction. Thus,

the proof for the case of i = 1 is complete.
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Similarly, for the case of i = 2, if condition (4.2) is false, we have

β8
n[iβn(u′

n − kwn) − (v′
n − kyn)] → 0, (4.22)

β8
n[iβn(φn + w′

n + kun) − (ψn + y′
n + kvn)] → 0, (4.23)

β8
n[iβnφ′

n − ψ′
n] → 0, (4.24)

β8
n

[

iβnvn −
E

ρ
(u′

n − kwn)′ +
kG

ρ
(φn + w′

n + kun) +
α

ρh
θ′n

]

→ 0, (4.25)

β8
n

[

iβnyn −
G

ρ
(φn + w′

n + kun)′ −
kE

ρ
(u′

n − kwn) +
αk

ρh
θn

]

→ 0, (4.26)

β8
n

[

iβnψn −
E

ρ
φ′′

n +
Gh

ρI
(φn + w′

n + kun) +
α

ρI
ξ′n

]

→ 0, (4.27)

β8
n

[

iβnθn −
1

ρc
θ′′n +

αT0

ρc
(v′

n − kyn)
]

→ 0, (4.28)

β8
n

[

iβnξn −
1

ρc
ξ′′n +

αT0

ρc
ψ′

n

]

→ 0. (4.29)

and

Re〈β8
n(iβn −A2)zn, zn〉H =

1

T0
(‖β4

nθ′n‖
2 + ‖β4

nξ′n‖
2) → 0. (4.30)

Thus, by the Poincare’s inequality,

‖β4
nθn‖ → 0, ‖β4

nξn‖ → 0. (4.31)

Dividing (4.29) by β7
n and replacing βnψ′

n by iβ2
nφ′

n in view of (4.24) leads to

−βnξ′′n + iαT0β
2
nφ′

n → 0 in L2(0, l).

Now we take the inner product of the above with φ′
n in L2(0, l) to get

−βn〈ξ
′′
n, φ′

n〉 + αT0i‖βnφ′
n‖

2

= −βnξ′nφ̄′
n

∣

∣

l

0
+ 〈β2

nξ′n,
φ′′

n

βn

〉 + αT0i‖βnφ′
n‖

2 → 0. (4.32)

Observing that (4.32) has extra boundary terms than (4.14), in order to get
‖βnφ′

n‖ → 0 we must show that the boundary terms in (4.32) converges to zero.
From the following sharp estimate

|βnξ′n(x)φ̄′
n(x)| ≤ C‖β4

nξ′n‖
1

2

∥

∥

∥

∥

ξ′′n
βn

∥

∥

∥

∥

1

2

‖φ′
n‖

1

2

∥

∥

∥

∥

φ′′
n

βn

∥

∥

∥

∥

1

2

,

we see that at least j = 8 is needed for obtaining (4.15)-(4.18) again. Next, we

take the inner product of (4.27) with
ρIf ′

n

β8
n

in L2(0, l) to get

iρIβnψn(l)f̄n(l) − iρI〈ψ′
n, βnfn〉 − EIφ′

nw̄′
n

∣

∣

l

0
+ EI

〈

βnφ′
n,

f ′′
n

βn

〉

+ Gh‖f ′
n‖

2 → 0,

(4.33)
where fn has been defined before. But with the boundary condition (1.12), fn(l)
does not equal to zero anymore. Comparing with (4.19), if we can show the
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boundary terms in (4.33) converge to zero, then the same argument for obtaining
(4.20)-(4.21) is also valid here. Since

|βnψn(l)f̄n(l)| ≤ C‖βnfn‖
1

2 ‖f ′
n‖

1

2 ‖βnψn‖
1

2 ‖ψ′
n‖,

and ‖βnψn‖ is uniformly bounded in n which can be seen from the L2(0, l) inner
product of (4.27) and ψn

β7
n
, the first boundary term in (4.33) does converge to zero.

In order to show
∣

∣

∣
φ′

nw̄′
n

∣

∣

l

0

∣

∣

∣
→ 0,

we divide (4.26) and (4.27) by β8
n. Then by the same multiplier technique in

deriving (3.23) and (3.24), we again obtain that w′
n(x) is bounded and φ′

n(x)
converges to zero for x = 0 and l. ¤

Remark 4.2. The thermoelastic Timoshenko system and thermoelastic Bresse
system both belong to an abstract linear system consisting of coupled conservative
hyperbolic equations and dissipative parabolic equations. Their difference is that
the latter has more state variables and corresponding equations. But, their basic
structure is the same. Therefore, it is plausible to study such an abstract system
to obtain general results.
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