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Covariance in linearized elasticity
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Abstract. In this paper we covariantly obtain all the governing equations of linearized elasticity.
Our motivation is to see if one can make a connection between invariance (covariance) properties
of the (global) balance of energy in nonlinear elasticity and those of its counterpart in linear
elasticity. We start by proving a Green-Naghdi-Rivilin theorem for linearized elasticity. We do
this by first linearizing energy balance about a given reference motion and then by postulating its
invariance under isometries of the Euclidean ambient space. We also investigate the possibility
of covariantly deriving a linearized elasticity theory, without any reference to the local governing
equations, e.g. local balance of linear momentum. In particular, we study the consequences of
linearizing covariant energy balance and covariance of linearized energy balance. We show that
in both cases, covariance gives all the field equations of linearized elasticity.
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1. Introduction

Linear elasticity is based on the assumption that displacement gradients are small.
Balances of linear and angular momenta in linear elasticity have the same forms
as those of nonlinear elasticity. Kinematics is described with respect to a reference
state and no distinction is made between the manifold describing the material’s
neutral, “undeformed” state and the spatial manifold (the ambient space) that the
material lives in. These results in the Cauchy and the first Piola—Kirchhoff stress
tensors being the same. In the constitutive equations, stress and strain tensors
are linearly related by a fourth-order tensor of elastic constants. Governing equa-
tions of linear elasticity can be obtained by linearizing those of nonlinear elasticity
about a reference motion. In the geometric theory, where a body’s neutral state
is described by a Riemannian manifold® and it is assumed that the body deforms
in a Riemannian ambient space, one can obtain the governing equations of lin-
ear elasticity by a geometric linearization of the governing equations of nonlinear
elasticity [7]. Recently, Steigmann [11] studied frame indifference of the governing

1 Or possibly a more general manifold with torsion, for the case with dislocations.
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equations of linear elasticity. His main conclusion is that linearized elasticity is
frame-indifferent if it is properly formulated.

It is well known that balance laws in nonlinear elasticity can be obtained by
postulating an energy balance and its invariance under time-dependent isometries
of the ambient space if the latter is Euclidean [4] and diffeomorphisms of the
ambient space if it is Riemannian (covariance) [7, 10, 12]. Now one may ask
what the connection between linearized and nonlinear elasticity is in terms of
energy balance and its invariance. In this paper, we make this connection in both
cases of Euclidean and Riemannian ambient space manifolds.? In the case of a
Euclidean ambient space, we first linearize the invariance conditions for energy
balance around a reference motion. This gives local balance of linear (angular)
momentum for the case of invariance under translations (rotations) with constant
speed.

We next linearize/quadratize the energy balance around a reference motion
(note that working to linear order in the equations of motion corresponds to
working to quadratic order in the energy or the Lagrangian). This lineariza-
tion/quadratization gives two separate equations for the first order and the sec-
ond order terms, and postulating the invariance of the linearized energy balance
under time-dependent rigid translations and rotations of the ambient space gives
the equations of linearized elasticity. We also show that assuming that the refer-
ence motion is a static equilibrium configuration, the quadratized energy balance
is identical to the so-called Power Theorem in linear elasticity. We then obtain
the Lagrangian dynamics for the linearized and quadratized versions of the La-
grangian.

In the case of a general Riemannian ambient space and a Riemannian mate-
rial manifold, we study two things: (i) linearization of the covariance condition
for energy balance, and, (ii) covariance of the linearized energy balance. By “lin-
earization of the covariance condition for energy balance” we mean linearization
of the difference of energy balance for a nearby motion with respect to a reference
motion. We show that this linearization will give the governing equations of lin-
earized elasticity. In the more interesting case, we first linearize energy balance

with respect to a reference motion soﬁt and then postulate the invariance of this
linearized energy balance with respect to diffeomorphisms of the ambient space.
We also extend the ideas of first variation of “energy” of maps [9] to elasticity,
where energy has a more complicated form.

This paper is structured as follows. In §2 we study invariance of linearized
energy balance when the ambient space is Euclidean. We show the connection

2 Note that a Euclidean space is a special Riemannian manifold. It turns out that in this special
case, one can obtain all the governing equations by postulating the invariance of energy balance
under time-dependent isometries. For a general Riemannian manifold, however, the isometry
group may be trivial and hence invariance of energy balance under isometries may be vacuous.
What is postulated in this case is invariance of energy balance under arbitrary diffeomorphisms,
with a given transformation law for the metric tensor. It turns out that one can obtain all the
other balance laws from this approach.
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between energy balance in nonlinear and linear elasticity. In §3 we give a brief
introduction to geometric elasticity in order to make the paper self-contained. We
then review Marsden and Hughes’ idea of geometric linearization of elasticity in
84 and present some new results. We also revisit linearization of elasticity using
variation of maps and ideas from geometric calculus of variations. In §5 we study
different notions of covariance in linearized elasticity. In particular, we covariantly
obtain all the governing equations of linearized elasticity. Conclusions are given
in §6.

2. Linearized elasticity in Euclidean ambient space

It has long been known that one can obtain all the balance laws of elastic-
ity by postulating balance of energy and its invariance under (time-dependent)
rigid translations and rotations of the current configuration with constant speeds
[4].3Here we are interested in formulating a version of the Green—Naghdi-Rivilin
theorem for linearized elasticity.

Let ¢; denote a motion of a body. Energy balance for an arbitrary subbody
U C B is written as

d 1
— p<e—|——v-v)dvz/ p(b-v+r)dv—|—/ (t-v+h)da, (2.1)
dt Jo, ) 2 () D (U)

in spatial coordinates, where p is the mass density, e, r and h are the internal energy
per unit mass, the heat supply per unit mass and the heat flux, respectively, and v,
b, and t are spatial velocity, body force per unit mass, and traction, respectively.
In material coordinates energy balance reads

4 00 (E—i— 1V~V> dV:/po(B-V+R)dV+/ (T-V+H)dA, (2.2)
dt Ju 2 u ou
where F = E(X,F) is the internal energy per unit mass of the undeformed con-
figuration, pg is the mass per unit undeformed volume, and R, H, V, B and T
are the material versions of r, h, v, b and t, respectively. We start with mate-
rial energy balance as it is written for a fixed domain and makes the calculations
simpler.

o
Let us assume that we are given a reference motion ;. Balance of energy for
this fixed motion is written as

d o 1 o o o o o o o o
d 1o _ . . A,
= upo<E+2V V>dV /upo(B V+R>dV+/aM(T V+H)d(23)

3 It turns out that one can obtain all the balance laws under the more general case of “isome-
tries with time-dependent speeds” provided that body force is transformed properly. However,
invariance under isometries with constant speed turns out to be sufficient as in the original work
of Green—Naghdi—Rivilin [4].
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Now consider a smooth variation of this motion ¢; ; parametrized by s, such that

$t,0 :<Oﬂt. For each value of s, the energy balance is of the form (2.2). Now let us
assume that for any value of s, energy balance is invariant under a time-dependent
rigid translation of the deformed configuration, of the form & (x) = x+ (t — to)w
This would give the following two relations for s = 0 and s # 0 [12]

a O 1 o o o
/ % <w~ V+-ow- w) dv = / po(B —A)-wdV +/ T -wdA, (2.4)
u ot 2 u ou
/% W~V+1W~W dV:/pO(BfA)~WdV+/ T -wdA, (2.5)
u ot 2 u au

[e] o]
where A and A are the material accelerations for motions ¥; and ¢, s, respectively.

Arbitrariness of w gives conservation of mass %—t = 0 and subtracting the above
two relations then gives
/ po(A—A) - wdV = / po(B— B) - wdV +/ (T—T) - wdA. (2.6)
u u au

We will next linearize this equation in s. Let us start by defining the linearization

and the quadratization around a motion <OP of a tensor field H(¢;, s) that depends
on s through ¢; s and possibly also explicitly. These definitions are not really
essential at this point since they are given in terms of ordinary derivatives, but
their generalization in the following sections will be less trivial.

Definition 2.1. Given a smooth tensor field H = H parametrized by s, one can
write

H, (ot s) = Ho(:@t) +L(H) s+ %Q(H) 52 + o(s?), (2.7)

where the linearization L(H) and quadratization Q(H) of H are defined as
L(H) = L(H; %) = \ Har), (28)

Q(H) = Q(H; ¢, \ o(pes) (2.9)

Let U(t) denote the time-dependent vector field whose integral curves at time

. . ; ¢} . .
t are given by c/(x) = ¢, le., U = g;,s U represents the linearized

displacement from the reference motion. It can be shown that

L(V)=U, L(A)=TU. (2.10)

Now, the linearization of the invariance equation (2.6) (i.e., the “linearized invari-
ance”) reads

/upOU -wdV = /upOE(B) -wdV + /au L(T) - wdA. (2.11)
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Since £(T) = Div £(P) - N, where P is the stress and N is the unit normal vector
to OU at X € OU, arbitrariness of w and U will imply

poU = poL(B) + Div L(P), (2.12)

which is nothing but linearization of the local balance of linear momentum. Simi-

larly, assuming invariance of energy balance under rotations with constant velocity

and linearizing, one gets the linearization of the balance of angular momentum.
We will next expand the balance of energy (2.2) to second order in the devi-

ation from a reference motion &, and postulate the invariance of the linear term
under isometries of the Euclidean ambient space. This will be equivalent to the
linearization of invariance derived above, since linearization and the calculation of
the change due to a rigid translation/rotation commute with each other.

Let us begin by defining 6F = E— [cj?, oV=V- \o/, /B = B-— ]?’,, etc. Then,
balance of energy for the perturbed motion is written as

d o 1 o o
—/ Po [E +OE + - (V +6V) - (V +5V)} av
dt J, 2
= / Po [(f’, +6B) - (\O/ +6V)+ R +6R} av
u
+ / (T +0T) - (V +8V)+ I +0H| dA. (2.13)
ou

Subtracting (2.3) from (2.13) yields

i/ 00 {5E+ V 5V 4 L6V (SV} dv
dt Jy, 2

=/p0 []°3 -5V+\°f~5B+5B-5V+5R]dV
u

+ / [TV 46TV +6T -6V +6H]dd. (214)
ou

As above, let U be the vector field given by U? = ag;’s
el .

and let W be given

s=0’

by W' = —%=| _,. Working up to second order in s, we have
. 52 .
0V =sU+ ?W + o(s%), (2.15)
.. 32 .
JA =sU+ EW + o(s%), (2.16)

2
5F = sVU + %VW +o(s?), (2.17)
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where F = T'p; = Vi, is the deformation gradient. £ = E(X, F) gives

d s2d| dE )
B = sl T T dslmods T (2.18)
OE dF 52 d OE dF )
_ ok ax sa o 2.1
S(@F d3>3_0+ 2 dsls=0 <8F ds>+0(s) (2.19)
o 2 o o
= sP-VU+ % (VU- CU+P -VW) + o(s?), (2.20)

where C= (59;—8%) is the elasticity tensor and P is the stress tensor, evalu-
s=0

ated at the reference motion. The body force B and the traction T can also be
linearized/quadratized as follows.

B = sg(B)+§Q(B), (2.21)
0T = sﬁ(T)—k%Q(TL (2.22)

where £(T) = Div £(P) - N can be further expanded as

£(T) = Div£(P) N =Div (2] . vU).N = Div (E .VU) N, (2.23)
aF s=0
Now, (2.14) can be expanded to read

{%/u (f’ -VU-I—po\O/-U) dV—/MpO [](é 'U‘i‘\of'ﬁ(B)—FL’,(B)-I’J—i—L(R)} av

7/ {E ~VU'U+1'%~W+EQ(T)~\O/+1Q(H)} dA}52
ou 2 2 2

+o0(s*) = 0. (2.24)

We call (2.24) the perturbed energy balance. As s is arbitrary in (2.24), the
coefficients of s and s? must be zero separately, i.e.

d o o . o . o .
= | [PvU+p v U]V = / po [B U+ V L(B) + L(B) - U+ L(R)| aV
u u

+ /8 ) [T U+ L(T): V +L(H)| dA.  (2.25)
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And*

di/ [ vU. C VU+;1% VW + poU U+ poV W]dV
= / po [ﬁ(B) U+= (1% W+ V-Q(B)) + —Q(R)] v
y 2 2
+/ [E -VU-U+1'f‘-W—le(T)-\Of—le(H)} dA. (2.26)
ol 2 2 2

We call (2.25) the linearized energy balance and (2.26) the quadratized en-
ergy balance.
In clasmcal hnear elastlmty, the initial motion is a stress-free static configura-

tion, i.e. V 0, P 0, and B 0 and it is assumed that there are no heat sources
and fluxes, i.e., 0R = 5H = 0. In this case, the linearized energy balance becomes
trivial, and the quadratized energy balance reads

d

- { VU.C.VU + pOU U} v = / poL(B)-UdV + [ L(T) UdA.
. - (2.27)
This is the so-called Power Theorem in classical linear elasticity [3]. In other
words, under the conditions of classical linear elasticity the linearized energy bal-
ance is vacuous since it is related to the linearization of a function at its minimum,
and one needs to look at the quadratized energy balance.
We can now consider the invariance of the energy balance under isometries

(translations and rotations) of the Euclidean ambient space.

2.1. Invariance of the linearized energy balance under isometries of the
Euclidean ambient space

Let us first consider a rigid translation of the deformed configuration of the fol-
lowing form
x' =&(x) =x+ (t—to)w, (2.28)

where w is a constant vector. Under this change of frame we have

o o
Yy =& opy,  P=E&0 P . (2.29)
Therefore, at t = ¢,

/

V =V4+w, V-=V+w. (2.30)

Also . _
U=U, U-=0U. (2.31)

4 As the second variation of motion W is not common in the elasticity literature, we will comment
on its dynamics in §2.2.
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Linearized balance of energy in the new frame at t = ¢, is written as®

/ Po (103 YU+ P VU + (V +w) - U+ C ~I'J>dv
u
= / Po [1% U+ (V +w) - L(B) + c(R)} av
u

[ (B Evu @ w) N o] aa, (23

where we used the conservation of mass pp = 0. Subtracting (2.25) from (2.33)
yields

/ poU-w dV = / poL(B) - w dV +/ Div (& .VU) “w dV. (2.34)
u u u
Because U and w are arbitrary, we conclude that

Div (¢ .vU) + poL(B) = poU. (2.35)

Let us now consider a rigid rotation of the deformed configuration with constant
angular velocity, i.e.

x' = Stto)x (2.36)
where Q7 = —Q. Therefore, at t = o
ol o °
V=V+Qx, V=V+0Ox. (2.37)
This means that . .
U =1, U =U. (2.38)

o O/
Subtracting balance of energy for ¥, from that of ¥, and using balance of linear
momentum for the perturbed motion, we obtain

/ (¢ .vu):eav =0 (2.39)
u
Because U/ and w are arbitrary, we conclude that

° T o

(c .VU> —C.VU. (2.40)

Therefore, we have proven the following proposition.

Proposition 2.2. Invariance of the linearized balance of energy under time-
dependent rigid translations and rotations of the Fuclidean ambient space with
constant velocity is equivalent to the linearized balances of linear and angular mo-
menta.

5 Note that we assume that

(A’ -B =A-B. (2.32)

Dzt
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2.2. Lagrangian field theory of linearized elasticity

Similar ideas can be used in obtaining equations of linear elasticity in the frame-
work of Lagrangian mechanics. The starting point in the Lagrangian field theory
of elasticity is a Lagrangian density £ = £(X,t, ¢, », F). Hamilton’s principle
of least action states that for the equilibrium configuration the first variation of
the action integral vanishes, i.e., §5 = 0, where

t1
S = /Edth. (2.41)
to B
Given the motions 4,00 and ¢4, where ¢q :s%, we can write
t R th
5/ / £dVdt =0 and (5/ /E(s)dth =0 Vse L (2.42)
t() B t(J B
Or
t1 °
5 / [s(s)— g} dVdt=0 Vse I (2.43)
to B

Assuming that £ = T(¢) — V(X t, ¢, F), where ¥ and U are kinetic energy and
potential energy, respectively, we can write

o 1
£(s)— = L(L)s + Q(i))is2 + o(s?), (2.44)
where
d 15) 0 . 15)
L£(g) = 2(8)=—§~U+—f-U+—£'VU, (2.45)
S 1s=0 8@ 8800 8F
d? 928 928
QLY =—5| L)=———< UeU+2———7 -UsVU
§71s=0 dpde OPOF
2 ) ) 2
L9 vetv+ 2L vusvu
84289% OF OF
+83.W+8—5~W+8—%~VW. (2.46)
oy a& OF

The action principle is now written as

(5[1/85(1:) dth> s+ (5/;1/59()3) dth) %s2+0(52):0. (2.47)

Because s is arbitrary this means that the coefficients of s and s2 should be zero
independently, i.e.

t1 tl
5 / / L(L) dVdt =0, § / / Q(£) dvidt = 0. (2.48)
to B to B



1090 A. Yavari and A. Ozakin ZAMP
We call these the linearized and quadratized action principles, respectively. As-

suming that {U = 0 at the boundary points, the linearized action principle can
be simplified to read

/ A (iﬂ) SUdvdE—0.  (2.49)
8<P a&; OF

This gives nothing but the Euler-Lagrange (EL) equations for the reference motion

®. For the quadratized action principle, there are two independent variations dU
and dW. Note that W appears in the quadratized action linearly and hence it can
be easily shown that its variation reproduces the EL equations for the reference

o
motion ¥. The U-variation can be simplified to read

t1 t1 2 2 2
5U//Q dm_g// P G P Gyl Dw( 08 U)
8@8@ asan 8¢8F
A 2
—i aEU —Div( ?EO-VU>

dt o o

SUdVdt=0.  (2.50)

Therefore

2 2 2 2 2
7L v 25 vu-ZE ue D1v< AT vu)
0000  0QOF 0% 00 0P0F  OFOF

(2.51)

[e]
which is nothing but the linearization of the EL equations about ¥. Therefore, as
it was expected, the quadratized action principle gives the linearized EL equations.

3. Geometric elasticity

In this section, in order to make the paper self-contained, we review some notation
from the geometric approach to elasticity. Refer to [7] for more details and also
[1] and [8].

For a smooth m-manifold M, the tangent space to M at a point p € M is
denoted T, M and the whole tangent bundle is denoted T'M. We denote by B a
reference manifold for our body and by S the space in which the body moves. We
assume that B and S are Riemannian manifolds with metrics G and g, respectively.
Local coordinates on B are denoted by {X“} and those on S by {z%}.

A deformation of the body is a C' embedding ¢ : B — S. The tangent
map of ¢ is denoted F = T : TB — TS, which is often called the deformation
gradient. In local charts on B and S, the tangent map of ¢ is given by the Jacobian
matrix of partial derivatives of the components of ¢, as

F=To:TB—TS, Tp(X,Y)=(p(X),Dp(X)-Y). (3.1)
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If F: B — Risa C! scalar function, X € B and Vx € TxB, then Vx[F]
denotes the derivative of F' at X in the direction of Vx, i.e., Vx[F] = DF(X)-V.
In local coordinates {X“} on B

OF
F] = 4, 2
For f:S — R, the pull-back of f by ¢ is defined by
e f=fop. (3.3)

If F:B — R, the push-forward of F' by ¢ is defined by
o, F=Fopl (3.4)

If Y is a vector field on B, then ¢, Y =Ty Y o1, or using the F notation,
0. Y =F-Y o1 is a vector field on ¢(B) called the push-forward of Y by ¢.
Similarly, if y is a vector field on p(B) C S, then ¢*y = T(p~1) -y o ¢ is a vector
field on B and is called the pull-back of y by .

The cotangent bundle of a manifold M is denoted T*M and the fiber at a point
p € M (the vector space of one-forms at p) is denoted by 7,y M. If 3 is a one-form
on S, i.e., a section of the cotangent bundle T*S, then the one-form on B defined
as

(P"B)x - Vx = Byx) - (Tp - Vx) = Byx) - (F - Vx) (3.5)

for X € B and Vx € TxB, is called the pull-back of 3 by ¢. Likewise, the push-
forward of a one-form a on B is the one form on ((B) defined by p.a = (p~1)*a.

We can associate a vector field 8% to a one-form 3 on a Riemannian manifold
M through the equation

<ﬂx; Vx> = <<,8i, Vx>>x ) (36)

where (,) denotes the natural pairing between the one form fx € T M and the
vector vy € Ty M and where <<ﬁi,vx>>x denotes the inner product between Bf( €
TxM and vy € Tx M induced by the metric g. In coordinates, the components of
B¥ are given by 3% = ¢g* 3.

A type 7: -tensor at X € B is a multilinear map

T:TxB X .. xTxBxTxB x .. x TxB — R. (3.7)

m copies n copies

T is said to be contravariant of order m and covariant of order n. In a local
coordinate chart

T(a!, .., a™, Vi, ., V) =T imy oal Lo Vi Vi, (3.8)

11"

where o € T% B and Vk e TxB.
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Suppose ¢ : B — § is a regular map and T is a tensor of type (ZZ) Push-

forward of T by ¢ is denoted ¢, T and is a (Z) -tensor on ¢(B) defined by

N
~

((p*T)(X)(al, ey @V V) = T(X)((p*al, e @ A O VL 0V, (B
)

where of € T;S, v, € TiS, X = p71(x), 0" (a¥) - v; = aF - (Tp - v;) and ¢*(v;
T(¢~1)v;. Similarly, pull-back of a tensor t defined on ((B) is given by ¢*t
(™)t

A two-point tensor T of type (ZL

Z) at X € Boveramap ¢ :B—Sisa

multilinear map

T:TxBx..xTxBxTxB x..xTxB

m copies n copies
*
XTES X o X TeS X TS X ... x IS — R, (3.10)
T copies s copies

where x = ¢(X).
Let w : U — T'S be a vector field, where Y C S is open. A curvec: [ — S,
where [ is an open interval, is an integral curve of w if

d
d—;’(r) = w(c(r)) Vrel (3.11)
If w depends on the time variable explicitly, i.e., w : U x (—e, €) — T'S, an integral

curve is defined by
d
d—j = w(c(t), ). (3.12)
Let w : S x I — T'S be a vector field. The collection of maps F} s such that for
each s and x, t — F}; 4(x) is an integral curve of w and Fy ;(x) = x is called the
flow of w. Let w be a C! vector field on S, F} ; its flow, and t a C tensor field

on S. The Lie derivative of t with respect to w is defined by

d (.
Lot= (Ft’stt) . (3.13)
If we hold ¢t fixed in t then we denote
d
Lot = —(F* ts) , 3.14
dt b8 s=t ( )
which is called the autonomous Lie deritvative. Therefore
0
Lyt = —t+ Lyt (3.15)

ot

Let y be a vector field on S and ¢ : B — S a regular and orientation preserving
C! map. The Piola transform of y is defined as

Y = Jo'y, (3.16)
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where J is the Jacobian of ¢. If Y is the Piola transform of y, then the Piola
identity holds:
DivY = J(divy) o ¢. (3.17)

A p-form on a manifold M is a skew-symmetric <2> -tensor. The space of

p-forms on M is denoted by QP(M). If ¢ : M — N is a regular and orientation
preserving C! map and a € QP ((M)), then

/ az/ Yra. (3.18)
(M) M

Let 7 : E — S be a vector bundle over a manifold S and let £(S) be the space
of smooth sections of E and X(S) the space of vector fields on S. A connection
on Eisamap V : X(S)x&E(S) — &(S) such that V f, f1, fo € C°(S), Vay,a2 €R

Z) Vf1X1+f2X2Y = flVX1Y + fQVXQY, (319)
it) Vx(a1Y1+a2Ys) =a1Vx(Y1) +a2Vx(Ys), (3.20)
i) Vx(fY) = fVxY + (X/)Y. (3.21)

A linear connection on S is a connection on T'S, i.e., V : X(8) x X(S) — X(S).
In a local chart
V0,05 = 7150k, (3.22)

where ij are Christoffel symbols of the connection and 0; = %. A linear con-
nection is said to be compatible with the metric of the manifold if

Vx(Y,Z)) = (VxY,Z)) + (Y, VxZ). (3.23)

It can be shown that V is compatible with g if and only if Vg = 0. Torsion of
a connection is defined as

T(X,Y) =VxY - VyX — [X,Y], (3.24)

where
X, Y](F) =X(Y(F)) - Y(X(F)) YV F e C™(S), (3.25)

is the commutator of X and Y. V is symmetric if it is torsion-free, i.e.
VxY - VyX =[X,Y]. (3.26)

It can be shown that on any Riemannian manifold (S, g) there is a unique linear
connection V that is compatible with g and is torsion-free with the following
Christoffel symbols

1 9gj1 | Oga Gij
k kl j 9gij
k= -+ = . 2
W= 99 <8£L‘1 dri Ozt (8:27)

This is the FPundamental Lemma of Riemannian Geometry [6] and this
connection is called the Levi-Civita connection.
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Curvature tensor R of a Riemannian manifold (S,g) is a (
TES x TS x TS x TxS — R defined as
R, Wi, Wo, W3) =« (le Vw, W3 — Vi, Vi, w3 — V[whw2]W3) (3.28)
for « € TES, wi,wa, w3 € T%S. In a coordinate chart {z?}

a a,ya 87(15 a e a .e
R bed — 8;21 - a(L‘bd +7ce’7bd — YdeVbe: (329)

é) -tensor R :

Let us next review a few of the basic notions of geometric continuum mechanics.

A body B is identified with a Riemannian manifold B and a configuration of
B is a mapping ¢ : B — S, where S is another Riemannian manifold. The set of
all configurations of B is denoted C. A motion is a curve ¢ : R — C;t — ¢, in C.

For a fixed ¢, ¢:+(X) = ¢(X,¢) and for a fixed X, px(t) = ¢(X,t), where X
is position of material points in the undeformed configuration B. The material
velocity is the map V, : B — R? given by

op(X,t) d
ViX)=V(X,t) = ——*~ = — t). 3.30
() = V(1) = P = Soxt) (330)
Similarly, the material acceleration is defined by
OV (X, 1) d
A(X)=AX,t) = ———F = —Vx(t). 3.31
(X) = A1) = S = Svk() (331)
In components
a ove a y7byre
A= —— + VOV (3.32)

ot
where 7. is the Christoffel symbol of the local coordinate chart {z®}.
Here it is assumed that ¢, is invertible and regular. The spatial velocity of a
regular motion ¢, is defined as

vii@(B) =R vi=Viop (3.33)
and the spatial acceleration a; is defined as
ov
=v=—_"+Vyv. 3.34
a=v En + Vyv ( )
In components
ov®  ov®
a® = o + wvb + Vgcvbvc. (3.35)

Let ¢ : B— S be a C! configuration of B in S, where B and S are manifolds.
Recall that the deformation gradient is denoted by F = T'. Thus, at each point
X € B, it is a linear map

F(X) : Txg — TQD(X)S' (336)

If {2} and {X“} are local coordinate charts on S and B, respectively, the com-
ponents of F are
Op®

FaA(X) - &X—A

(X). (3.37)
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The deformation gradient may be viewed as a two-point tensor
FX): Ti:SxTxB—R; (a,V)r— (a,Txp- V). (3.38)

Suppose B and S are Riemannian manifolds with inner products ((,))x and ((,)),
based at X € B and x € S, respectively. Recall that the transpose of F is defined
by

F': T\ S — TxB, (FV,v), ={(V,Flv) (3.39)
forall V € TxB, v € T4 S. In components
(FT(X)"a = gap(x) F* 5(X) G (X), (3.40)

where g and G are metric tensors on S and B, respectively. On the other hand,
the dual of F, a metric independent notion, is defined by

F(x): TiS — TiB;  (F*(x) - a, W) = (o, F(X)W) (3.41)

forall « € T#S, W € Tx . Considering bases e, and E 4 for S and B, respectively,
one can define the corresponding dual bases e* and EA. The matrix representation
of F* with respect to the dual bases is the transpose of F'* 4. F and F* have the
following local representations

0 0
F=F')— ®dX", F*=F"dXx* : 42
Agpa ©AX7, AdX7® 52 (3.42)
The right Cauchy—Green deformation tensor is defined by
C(X):TxB —TxB, C(X)=FX)"F(X). (3.43)
In components
C4 = (FN)AFop. (3.44)
It is straightforward to show that
C’ = ¢*(g) = F*gF, ie. Cap = (gap 0 @)F 4F’5. (3.45)

Let ¢; : B — S be a regular motion of B in § and P C B a p-dimensional
submanifold. The Transport Theorem says that for any p-form a on S

d
— a:/ Lya, (3.46)
dt Jo,(p) 0 (P)

where v is the spatial velocity of the motion. In a special case when a = fdv and
P = U is an open set, one can write

d af

— fdv = / [— + div(fv)} dv. (3.47)
dt Jo,(p) pu(P) LOt

Balance of linear momentum for a body B is satisfied if for every nice open

set U C B
d

—/ pvdv:/ pbdv+/ tda, (3.48)
t Jouw ) dpu ()
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where p = p(x,t) is mass density, b = b(x,t) is body force vector field and
t = t(x, 1, t) is the traction vector. Note that according to Cauchy’s stress theorem
there exists a contra-variant second-order tensor o = o (x, t) (Cauchy stress tensor)
with components 0% such that t = (o, i)). Note also that ((,)) is the inner product
induced by the Riemmanian metric g. Equivalently, balance of linear momentum
can be written in the undeformed configuration as

% | vy = /u poBdV + /8 ) (P.N)) da, (3.49)

where, P = Jp*o (the first Piola—Kirchhoff stress tensor) is the Piola transform
of Cauchy stress tensor. Note that P is a two-point tensor with components P%4.
Note also that this is the balance of linear momentum in the deformed (physical)
space written in terms of some quantities that are defined with respect to the
reference configuration.

Let us emphasize that balance of linear momentum has no intrinsic meaning
because integrating a vector field is geometrically meaningless, i.e., it is coordinate
dependent. Geometrically, forces (interactions) take values in the cotangent bundle
of the ambient space manifold (see [5] for a detailed discussion). The ambient space
manifold is not linear in general and hence balance of forces cannot be written in
an integral form, in general. In classical continuum mechanics, this balance law
makes use of the linear (or affine) structure of Euclidean space.

Balance of angular momentum is satisfied for a body B if for every nice
open set U C B

d
— px X vdv = / px X bdv + / x X (o, b)) da. (3.50)
t Jouw ) D0 (1)

Balance of linear momentum, similar to balance of angular momentum, makes
use of the linear structure of Euclidean space and this does mot transform in a
covariant way under a general change of coordinates.

Balance of energy holds for a body B if, for every nice open set U C B

d 1
Gl o(ergtem)a= [ oy endos [ (o) +hda
e (U) e (U) O (U)
(3.51)
where e = e(x,t),r = r(x,t) and h = h(x,n,t) are internal energy per unit mass,
heat supply per unit mass and heat flux, respectively.

4. Geometric linearization of nonlinear elasticity

Marsden and Hughes [7] formulated the theory of linear elasticity by linearizing
nonlinear elasticity assuming that reference and ambient space manifolds are Rie-
mannian. Here we review their ideas and obtain some new results. We denote by
C the set of all deformation mappings ¢ : B — S. We do not discuss boundary
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conditions, but assume that deformation mappings satisfy all the displacement
(essential) boundary conditions. One can prove that C is an infinite-dimensional
manifold. We will not go into the theory of infinite-dimensional manifolds in

detail, however, note that for &)te C, an element of ng C can be thought of as
t

o]
being tangent to a curve ¢; s € C, parametrized by s, such that ;¢ =¢;. This
is called a variation of the configuration, and the tangent vector is denoted by

680t =U= % ’S:()th,S'
Suppose 7 : £ — C is a vector bundle over C and let f : C — & be a section of
this bundle. Let us assume that £ is equipped with a connection V. With these

assumptions, linearization of f(y) at s%te C is defined as
c (f;fpt) =V/(@) U, UeT,C. (4.1)
In terms of the parallel transport s of members of £,, | to 54‘2 along a curve ¢y 4
t

tangent to U at %%t, this can be written as

V) U= T a fen) (1.2

s=0 '
In [7], by using a natural parallel translation on £ obtained from the point-
wise parallel translation of two-point tensors over ¢, it is shown that deformation

gradient has the following linearization about ¢;.

c (F; 52) - VU, (4.3)

where ]?‘: T S%t- One can think of F as a vector-valued one-form with the local
representation
F=F" e, ®dX". (4.4)
Thus .
e=L (F; go) = U4 e, ®dXA (4.5)

can be thought of as a geometric linearized strain, which is a vector-valued one
form. See [13] for more discussion on this geometric strain and constitutive equa-
tions written in terms of it. Material velocity is linearized at follows.

£(vie) =1, (4.6)
where U is the covariant time derivative of U, i.e.
. oUu® ob
UGZW-F’Y?CV UC. (47)

Material acceleration is linearized as follows.

c (A; <°p) —U+R(V,U,V), (4.8)
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where R is the curvature tensor of (S,g). In components, the linearized acceler-
ation has the following form
.. ob od
U*+R%eaV UV . (4.9)
Proof of this result is lengthy but straightforward. Note that this is a generalization
of Jacobi equation. Note also that in [7] it is implicitly assumed that R = 0.
The transpose of the deformation gradient is defined as

(FW,z), = (W,F'z)), VW eTxB, zcTyS, (4.10)
and its linearization is given by
£(F7%) = (vu)T. (4.11)
The right Cauchy—Green strain tensor has the following linearization
c (c; <°pt) _ P VU4 (VU)T R (4.12)
Or in component form
£(Co), =g P aU's+gu B U (4.13)
Balance of angular momentum in component form reads
PRy = PP F,, (4.14)
This also implies that
0aA ob obA ca
P F a=P F a. (4.15)

Linearization of this relation about ¢ reads

0aA ob 0 aA b oaA ob
P F at+P U|A+<C CB)F A U%B
obA ca obA obA 0@
—P F a+P U+ (C B) F oAU, (4.16)
Using (4.15) this is simplified to read
oaA oaA bA

P Ula+ (C CB) lg‘b AU%B ZI%bA U \a+ (& CB) ﬁ‘a AU (4.17)

In terms of Cauchy stress this reads

o -Vut a:Vu=Vu o +Vu:a. (4.18)
Or in components
ac ab be ba
8- U \c+ 8’ cd uc|d :8' ua|c+a cd ’Uzc‘d, (419)

where |7
[7] . o
@ =5 FaFip A F and u=Uoy™. (4.20)
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Independent works have been done in the literature of geometric calculus of
variations (see [9] and [2] and references therein) on similar problems. There, the
idea is to obtain the first and second variations of “energy” of maps between two
given Riemannian manifolds. In the following, we make a connection between
these efforts and geometric elasticity.

4.1. Linearization of elasticity using variation of maps

Here we follow Nishikawa [9] but with a notation closer to ours. The main mo-
tivation for studying variational problems in [9] is to understand geodesics in
Riemannian manifolds as minimization problems. Interestingly, these studies are
closely related to elasticity. Let us consider two Riemannian manifolds (B, G) and
(S,g) and a time-dependent motion ¢; : B — S. What Nishikawa denotes by
dy is F in our notation, which is an element of T B ® TS, i.e. a vector-valued
one-form.% One can then define an inner product on T%B ® TyxS such that in this
inner product

|F|? = tr(C). (4.21)
Energy density of the map ¢ is defined as
e(p, X) = %tr[C(X)}. (4.22)

Note that this is a very special energy density, which is not realistic for elastic
bodies.” Energy of the map ¢ is then defined as

E(p) = /B e(, X) dV(X). (4.24)

o
Consider a reference deformation map ®; and a C'* variation of it ¢; ; such

that s € I = (—¢,¢€) and ¢y :&t. As in the previous section, let U be given by

U=UX) = | e, (4.25)

ds
First variation of deformation gradient is defined as
=VU, (4.26)

_ a@t,s
s=0 - V% ( 0X ) —0

a()Ot,s _ a(ptﬂs
Vi (aXA> —VaﬁA( 9s ) @z

6 For a discussion on reformulating continuum mechanics using bundle-valued forms see [5].
7 A modified version which can represent the energy of an elastic body is given by

e(p,X) = pEAP Eap, (4.23)

where Eap = %(CAB — G 4op) is the Lagrangian (material) strain tensor.

VagF(s)

where the identity [9]
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was used. Note that for each s € I and W € TxB, F(s)W € T, (x)S, i.e.
F(s)W lies in different tangent spaces for different values of s and this is why
covariant derivative with respect to s is used.

Tenstion field of ¢ is defined as

7(p) = tr(VF), (4.28)
or in components
T(p) = F* 4 5GA7. (4.29)
It can be shown that assuming that U vanishes on the boundary of B [9]
d
B = [@T V0 = (e e, @)
S s=0 B B

where the first integrand on the right-hand side in components reads (F T) B WU b| B-

A C*™ map ¢, € C*°(B,S) is called a harmonic map if its tension field 7(p)

vanishes identically. In other words, ¢; is a harmonic map if for any variation . s
d E(pts) =0 (4.31)
ds Pts s=0 e ’

In elasticity, this corresponds to an equilibrium configuration in the absence of

body and inertial forces.

The right Cauchy—Green strain tensor for the perturbed motion ¢; ; is defined
as

Cap(s) = F“A(S)FbB(s)gab(s). (4.32)

Note that C(s) lies in the same linear space for all s € I, and the first variation
of C can be calculated as,

d
75 CaB(s) = Vo F4(5)F'5(5)gas(s) + FOa(s)V 2 F'p(s)gan(s).  (4.33)
Therefore
d ob a oa b
ds V_OCAB(S) =F B 9ab U\ A+ F a4 ga U’ B, (4.34)

which is identical to (4.12).
We know that internal energy density has the following form [7]

E=EX,CQC). (4.35)
Thus
E(s) = E(X,C(s)). (4.36)
We also know that
d
E(s) = E(0) + [E S_OE(S)} s+ o(s), (4.37)
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where
d 0 I oT oT
1 g =2E. (VU-GF LG F -VU)
dS s=0 a C

1 o oT oT
=§s-(VU.GF +GF -VU), (4.38)

o
is the linearization of E and where § is the second Piola—Kirchhoff stress. Using
such ideas one can linearize all the governing equations of nonlinear elasticity
about a given reference motion ;. In this work, we are interested in obtaining the

governing equations of linearized elasticity covariantly using energy balance and
its symmetry properties.

5. A covariant formulation of linearized elasticity

As in the invariance postulate of the Euclidean case, there are two possibilities
for investigating the relation of the covariance postulate and linearization in ge-
ometric elasticity: (i) Postulating the invariance of energy balance under spatial
diffeomorphisms of the ambient space and then linearizing the energy balance
about a given motion (Linearization of Covariance), and (ii) First writing energy
balance for a perturbed motion and then postulating its invariance under spatial
diffeomorphisms of the ambient space (Covariance of Linearized Energy Balance).
These two approaches are equivalent to each other for reasons we will mention
below, however, we will derive both cases in detail.

5.1. Linearization of covariant energy balance

For the sake of simplicity, we use the material energy balance. Let us first define
E(X,g) = e(pi(X), g(p1(X)))- (5.1)

We know that under a spatial diffeomorphism §; : S — S [12]
E'(X,g) = E(X,{/g), (5:2)

where £*g is the pull-back of g by &. Let us assume that &, = id, the identity
mapping. At time t = ¢,

—- . 0OF
F=FE+—:8£ 5.3
+ g w8, (5.3)
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where W = wo ¢, 8and w = %gt. Material balance of energy for the motions ﬁ;t

[e] / (o)
and @, = &0 ¢; respectively, reads (at time ¢ = )

[ (B (@R )= [ ((B%) Ry av= [ ({55 i)an

(5.4)

—
S
7N

tyol-
+
7
.l;'}
<
[0}
+
=
?o
<o
+
=
=
N———
QL
=
I
S~
S
N

Subtracting (5.4) from (5.5), one obtains

/upo (%  Swe + <<K,W>>> dv = /u @ f_%,w>>+/au (T. W) aa. (5.)

Similarly, for the motion ¢ s

[ (g—jswsgﬂm,ws») v = [ (uBW.)+ [ (TW)da 5)

ou

where Wy = w o ¢, ;. Therefore, for an arbitrary vector field w we have
/upo g—g Lw.g — % : fwg+ (A, Wy) — <<1§,W>>
- /upo ((B.W.) — (B,W)) + /au (1. W) — (T W) (53)

Note that [12]

/W <<TW>> dA = /u (<<Div f>,W>> + w7 k) v, (5.9

/ <<T,WS>>dA:/(((DivP,WS>>+7-:w5+r:ks)dV, (5.10)
ou u

dv

where, ‘Ci)':fo’lco‘ and 7 = PF are Kirchhoff stresses and w and k have the coordinate

representations kg, = % (Wa‘b + Wb‘a) and wgp = % (Wa|b — Wb‘a) with similar

8 Not to be confused with the W in §2.

/ / /
9 Note that we assume that f& - ](_;, = &*(1& — ](_;,) and hence at t = to, K

o

o/ o
-—B=A-B.
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representations for w, and ks. Note also that

(AW - (AW):ié) = (U+REV, UV, W)
+ <<1§, VUW>>, (5.11)
£((BWY) —(BW):é) = (£BLW) +(B.VuW),  (512)

L (7' s (ws + kg)— 7 (w—l—k);ggt) = [1?’ VU + (E .VU) ]50‘} t(w+k)

+7: VuyVW, (5.13)
c (((DivP,WS» - <<Div 1%,W>> ;ét) - <<Div (& _VU) W>>
+ <<Div P, VUW>> : (5.14)
where
L(B)=VyB +%L:OB(3, Dt.s)- (5.15)
And
L(W) = V(%WSL:O — VW .U = VyW. (5.16)

For the derivative of the internal energy we have the following linearization.

O OE o OE OE
L <8—g (w8 — a_g : £Wg,¢t> =Vy (@) c fwg + a_g : Vu(Lweg).
(5.17)

Thus, (5.8) is now simplified to read

//)0
u

Vo (%) . Swe + %  Vulfweg) + <<U FR(V, U,\°f),W>>

+ <<f&, VUW>>
o/ { (Div (€ ) W) + (Div B, VoW

+[P YU+ (C.vU) F|: (w+K)+ 7: Vylw + k)}dv. (5.18)

v = [ o (). W) + (B.VoW))
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Using the governing equations of the reference motion, this is simplified to read

[ %0 (52) w0 R0 W)+ (. wow) v
- [ mtemwy s [ (on () w)
+[P YU+ (¢.vU) | (w+ k)}dV. (5.19)
Avbitrariness of W and U mplics that
Div (¢.wU) + pL(B) = po (U+R(V, U, V)), (5.20)
R (- A CR G LR
Byvus(Evu)F —BvU+(Evu)R 62)

which are the governing equations of linearized elasticity. Therefore, we have
proven the following proposition.

Proposition 5.1. Linearization of covariant energy balance is equivalent to lin-
earization of all the field equations of elasticity.

5.2. Covariance of linearized energy balance

Next, let us first linearize energy balance about a reference motion and then pos-
tulate its invariance under arbitrary spatial diffeomorphisms. Subtracting the

balance of energy for the motion ﬁ;t from that of ¢y s yields

[ <E CBegav) - <<;;,e>>> = [ (18 v) - (B.V)) v
+/Mp0 (r- R) dV+/8u (i e vy - (Div B,V ) av

+/ (r L VV- 7 V\O/'> dv +/ (H— H)dA = 0. (5.23)
u ou
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Now let us linearize the integrands. Body force power has the following lineariza-
tion

(as-B,as - V)

c(Bvy—(BV):g) =9
_ <<dii a B,V>> + <<]§,% L .V>>
= {e@.v) + {5.0). 524

Similarly, inertial force power has the following linearization

c((a V) - (AV)ié) = d% =0
(2] Ay (L] e )

(0 RE UV + (A0). 529

(as-A,a,- V)

where R is the curvature tensor of the ambient space manifold. Traction power is
linearized as follows

c (((DivP,V)) - <<Div f>,\of>> ;qﬁ’t) - <<Div (E .VU) v>> n <<Div P, U>> .
Internal energy part of energy balance is linearized as follows. Note that

d OF OF
— EdV = — 10" (Lyg)dV = | =— ) : " (Lyg)dV
dt/upo V /upoac 0" (Lyg)dV /upow <8g> ¢*(Lyg)

9E
= — :L,g dV. 5.28
/u Mg g (5.28)
Thus!®
d ° oF oF
— EdV: = — | Ly - v dv.
E(dt/upo v,¢t> /M{vu (p03g> Sug e s V(e g)} v
(5.29)

10 Note that because g is time independent Lyg = £y g.
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Therefore, material balance of energy for the perturbed motion reads

/u [VU (Pog—l;j) cLvg+ Pog—g : VU(SVg)] dav
+ /u oo ((U+ RV, U V) - £B), V) + (A - B,UY))av
~ [ mar-vav+ [ an-via
u ou
+/M{[13 VU+ (¢.wU) F]: V'V + 7 VO av

o [ (o (& wu) V) + (i b.0)) av (530

Under a spatial diffeomorphism & : S — S, we have
U =¢.,U. (5.31)

Let us now find the transformed linearized velocity. Note that for the variations
1,5, velocity is defined as

0
V= —uvi,. 5.32
ot Pt, ( )
Thus '
L(V) = V%VSL:() =U. (5.33)
For the motion wgys =& 0 45, velocity is defined as
0
V= a‘ﬁg,s =& Vs + Wi o (5.34)
Note that
LV) =V o Vil o =6 (Vo Ve) _ +6 [ValGwopn)| . (5:35)
Thus )
LIV') =6 U+ & [Vu(§wopy)]. (5.36)
Hence at ¢t =t . .
U =U+7Z, (5.37)
where Z = VgW = VW - U. We assume that [7]
o/ o/ o o
A — B =¢&.(A —B), (5.38)
Al -B.=¢.(A;—By) Vse I (5.39)
Ol 0/ o

(5.38) implies that at t = tp, A — B =A — B. Because (5.39) holds for every
s € I, it holds, in particular, for its linearization, i.e. at t = tg

o/

. O/ . ] o
U+R(V,U,V)-LB)=U+R(V,U,V) - L(B). (5.40)
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Now under this spatial reframing, the perturbed energy balance (5.30) at time
t = tg reads

[ 7o (e ) (et 2vm)+ m < [Vuleve) + Vultug)] | av
v [0 ( [0+ RE U - £, +W)

+<<fx—1°3,ﬂ+z>>>dv

= /M {[PVU+(¢.vu) F|: (VV+VW)+ 7: (VU4 VZ) | av
+/u <<<Div (E .VU) v +w>> + <<Div P, U+ z>>) dv. (5.41)
Subtracting (5.30) from (5.41) yields
/u lVU (pg%) cLwg+ pog : Vu(Lwg)
+/ o ((U+RV, U V) W)+ (A-B,z))av

:/M{[pVUJr(C vU) } VW 7 VZ v
)

+ /u ({piv (¢ .vu), W)+ (DivP,Z)) av. (5.42)

o
Using the governing equations of the motion ¥y, i.e.

dv

Div P +p0 B= 00 K, (5.43)
o . OF

— 20 2L 5.44
T= 400 g ( )
(e} OT
T=T , (5.45)

(5.42) is simplified to read

/UVU <p0%>  Lwg dV—f—/upo <<I"J+R(\07,U,\Of) —E(B),W>> v
=/u PVU+(C.vU)F| :VWdV—i—/u<<Div (¢.vu) . W)av. (5.46)
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Now arbitrariness of W and U implies that

Div <E -VU> + poL(B) = po (U +R(V,U, \°f)) : (5.47)
Vy 7= 2p0Vy (%) —PVU+ (E .VU) F. (5.48)
Byvus(Evu)F] —BvUL(Evu)F. Ga9)

Thus, we have proved the following proposition.

Proposition 5.2. Covariance of the linearized energy balance is equivalent to
linearization of all the field equations of elasticity.

In other words, one can covariantly obtain all the governing equations of linearized
elasticity by postulating covariance of the linearized energy balance.

Remark. As we mentioned previously, the linearization of covariant energy bal-
ance and covariance of linearized energy balance give the same linearized governing
equations. This is due to the fact that the operations of linearization and transfor-
mation under a diffeomorphism commute with each other. For the case of velocity,
for example, this can be represented as the commutative property of the following
diagram:

v " V' = £,V + W,

c| |e

U — U = 6.0+ . [Vu(&w)]

6. Conclusions

The main motivation for the present work is to understand the connection between
governing equations of linearized elasticity and energy balance and its invariance
(or covariance). We first looked at the case where the ambient space is Euclidean.

Having a reference motion &t, we quadratized the energy balance about S%t- This
leads to two identities: linearized energy balance and quadratized energy balance.
We showed that postulating invariance of the linearized energy balance under
isometries of the ambient space will give all the governing equations of linearized
elasticity. Classical linear elasticity corresponds to choosing a stress-free reference
motion. For such reference motions all the terms in the linearized energy balance
are identically zero and the quadratized energy balance is identical to what is
called “energy balance” or power theorem in classical linear elasticity.

We then studied the case where the ambient space is a Riemannian manifold
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(S, g). We first reviewed some previous ideas in geometric linearization of nonlin-
ear elasticity and presented some new results. We also showed the close connection
between these ideas and those of geometric calculus of variations. We considered
two notions of covariance: (i) linearization of covariant energy balance and (ii)
covariance of the linearized energy balance. We showed that postulating either (i)
or (ii) will give all the governing equations of linearized elasticity. Of course, (ii)
is more interesting. In other words, if one postulates invariance of the linearized

energy balance about a reference motion ¥; under spatial diffeomorphisms of &

[e]
(the same diffeomorphism acts on ¢; and its variations ¢ ), one obtains all the
governing equations of linearized elasticity. In this sense, linearized elasticity can
be covariantly derived.
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