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The initial value problem for the cubic nonlinear
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Abstract. We study the initial value problem for the cubic nonlinear Klein—-Gordon equation

{utt‘i"u_uzz:ﬂus: (t,CE)ERXR, (01)

u (0) = ug,ut (0) =u1, =z € R,
where 4 € R and the initial data are real-valued functions. We obtain a sharp asymptotic
behavior of small solutions without the condition of a compact support on the initial data which
was assumed in the previous works.
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1. Introduction
We study the initial value problem for the cubic nonlinear Klein—-Gordon equation

{vtt—l—v—vm:/w37 (t,x) € R x R, (1.1)

U(O) = Vo, Ut (0) =01,% € Ra

where p € R and the initial data vy, v, are real-valued.

Our purpose is to obtain the large time asymptotic profile of small solutions
to the Cauchy problem (1.1) without the restriction of a compact support on the
initial data which was assumed in the previous works [3], [15]. Their method is
based on the transformation of the equation by virtue of the hyperbolic polar co-
ordinates following [14]. Then the new equation have two nonlinear terms, one of
them is the cubic nonlinearity with a critical decay rate and the other one having
a better time decay rate however leads to a derivative loss. The application of the
hyperbolic polar coordinates implies restricting to the interior of the light cone
and so requiring the compactness condition. When p < 0, the global existence
of solutions to (1.1) can be easily proved in the energy space, which is however
insufficient for determining the large time asymptotic behavior of solutions. The
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sharp L°°-time decay estimates of solutions and non existence of the usual scat-
tering states for equation (1.1) were shown in [8] under the conditions that the
initial data are regular and have a compact support.

The initial value problem for the nonlinear Klein—-Gordon equation with cubic
nonlinearities depending on v, vy, ¥y, U2z, Vs and having a suitable non resonance
structure was studied by [13], [18], [19], where small solutions were found in the
neighborhood of the free solutions if the initial data are small, regular and decay
fast at infinity. Hence the cubic nonlinearities are not necessarily critical, however
the resonant nonlinear term v3 was excluded in these works. In paper [13], the
nonlinearities were classified into two types, one of them can be treated by the
method of normal forms [24] and the other reveals an additional time decay rate
via the operator xzd; +t0, [14]. This method was extended to a system of nonlinear
Klein-Gordon equations by [26]. Some sufficient conditions on cubic nonlineari-
ties were given in [3], which allow us to prove global existence and to find sharp
asymptotics of small solutions to the Cauchy problem (1.1) with small and regular
initial data having a compact support. The case of the cubic nonlinearity v was
included in [3] as an example, moreover it was proved that the asymptotic pro-
file differs from that of the linear Klein—Gordon equation. Global existence and
Le°-time decay estimates of small solutions to the Klein-Gordon equation with cu-
bic nonlinearity \fu|2 v were obtained in paper [27] if the initial data are complex,
smooth and have a compact support. However the large time asymptotics was not
found for this case. There are few results concerning the final state problem for
the nonlinear Klein—Gordon equation. The modified wave operator which maps
the neighborhood of H?? into H*? was constructed in paper [11] (see also [16] for
the case of regular final data with a compact support).

In paper [20] it was proved the completeness of the scattering operator in the
energy space for equation (1.1) with cubic nonlinearity uv® replaced by a higher
order nonlinear term — [v[’~" v, p > 5 (see also [1], [2], [9] for higher space dimen-
sions). The scattering problem and time decay rates for small solutions of (1.1)
with super-critical nonlinearities 0| v, or |v|” were studied in papers [7], [12],
[22], [23], [25]. Quadratic nonlinearities in two space dimensions seem to be critical
with respect to the large time asymptotic behavior, like cubic nonlinearities in one
space dimension. However it was proved in [21] that every quadratic nonlinearity
is nonresonance, namely it has super-critical time decay property. Indeed global
existence, time decay of small solutions and stability of solutions in the neighbor-
hood of the free solutions were established in [21] by combining the method of
normal forms of [24] and the vector field by [14] (see also papers [6], [7], [8] for
further developments). In [4], the sharp asymptotic behavior of small solutions to
quadratic Klein—-Gordon equations in two space dimensions was also obtained via
the vector field and hyperbolic polar coordinates implying the compact support
condition for the initial data.

We define a new dependent variable u = % (U +1 <i8$>71 vt) and initial data
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uy = 3 (vo +i (i) " vl) , where (z) = V14 22. In the case of the real-valued

function v the nonlinear Klein-Gordon equation (1.1) can be rewritten as

(8 4+ (i0,)) u = 4ip (i0,) " (Rew)®, (t,z) € R xR, (1.2)

u(0) = ug, z € R, '

where Reu = % (u+7), u is a complex conjugate of u. Then the solution v of
(1.1) is represented by v = 2Reu.

We denote the Lebesgue space LP = {¢ € &';||¢[|1, < oo}, with the norm

16l = (fr |6 @) dz) /7 i 1 < p < o0 and @y~ = sup,er | (#)] if p = oo.
The weighted Sobolev space Hy»® = {¢ € L?; [[(x)" (i9,)™ ¢, < oo}, for m,s €
R, 1 < p < oo. For simplicity we write H™* = Hy"*. The index 0 we usually
omit if it does not cause a confusion. The direct Fourier transform ¢ (&) of the
function ¢ (z) is defined by

S S
f¢7¢—m/Re ¢ (z) dx

then the inverse Fourier transformation is given by

f—l(b m§¢

77

Our main result is

Theorem 1.1. Let uy € H*' and the norm |ug||gs. = €. Then there exists
g0 > 0 such that for all 0 < € < gg the Cauchy problem (1.2) has a unique global
solution

u(t) € C([0,00) ;H4’1)

satisfying the time decay estimate

1

lu(®)llg, <Ce(l+1) 2.
Furthermore there ezists a unique final state /V[7+ € HY NnH%! such that

< Cestr—1

Hu (t) — 67i<iaz>t]_—71W+e%(§>2|/V‘7+|2 log ¢
HL.0

and N o,
[0t ) — 7, 207 e

3,1
- < Cez2tV™ 1,
where v € (0, i)

From this result it follows that there exists the inverse modified wave operator
(MW.,) ™" such that

(MW,) ! iug e HY — W, € HYY,

As a consequence of Theorem 1.1 we find the corresponding result concerning
the initial value problem (1.1).
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Corollary 1.2. Let vg € H*', v; € H>! be real valued functions and the norm
llvollgga + [|v1]lgsa = €. Then there exists eg > 0 such that for all 0 < € < ¢ the
initial value problem (1.1) has a unique global solution

v (t) € C([0,00); H*') N C* ([0,00); H>')

satisfying the time decay estimate

N[

o (0) g, < Ce (1 +1)

Furthermore there exists a unique final state /V[Zr € H NHY such that

3 1
< (Cezt _74,
H!.0

where v € (O, i)
Remark 1.1. By Corollary 1.2, the second and the third estimates of Lemma 3.1

below, along with the representation (1.5) for the free evolution group we have for
t>0

L ~ Bip 2| |2
671<Zaz>t_7:71W+6 S (E) |W+| log t

- 7O ()

2
. . 34 2 =
Xe—z\/—t2_x2_z%+3T“(t2t_712) W+<ﬁ> logt
—~  Biu 2|7 |2 _3
o[t )
H1.3

where the function 6 (x) = 1 for |z| < 1 and 6 (x) = 0 for |z| > 1. Therefore we
need a regularity of /V[7+ to obtain a sharp asymptotics of solutions to (1.2) in L*>®
sense. However we only have W, € H%! N H!. Hence we can not find a sharp
asymptotic formula for solutions w (¢) in L sense.

An important tool for obtaining the time decay estimates of solutions to the
nonlinear Klein—Gordon equation is implementation of the operator

J = (16$> efi<i8m)txei(i61)t — f-fl <§> €7i<£>ti85€i<g>t.7: — <Z(9$> z+ it@x,

which is analogous to the operator x + itd, = e~ 5% 2e%9 in the case of the
nonlinear Schrédinger equations. The operator J was used previously in paper
[12] for constructing the scattering operator for nonlinear Klein-Gordon equations
with a super critical nonlinearity. We have [z, (i0,)*] = a (i8,)* 2 8,, therefore
the commutator [£,J] = LJ — JL = 0 holds, where £ = J; + i (i0,,) is a linear
part of equation (1.2). Since J is not a purely differential operator it is apparently
difficult to calculate the action of J on the nonlinearity in equation (1.2). So,
instead we use the first order differential operator
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which is closely related to J by the identity P = Lx — ¢J and acts easily on the
nonlinearity. Moreover, it almost commutes with £, since [£, P] = —i (i0,) " 9,.L.

For the convenience of the reader we briefly explain our strategy. Since the
nonlinear Klein-Gordon equation (1.1) is a relativistic version of the nonlinear
Schrodinger equation

{ivt + v = pulv)*v, (t,z) e R xR,

v (0) = vg,z € R. (1.3)

we can expect that the methods developed for (1.3) could be also useful for the
nonlinear Klein-Gordon equations. The inverse modified wave operator for (1.3)
was constructed in [10], where the main idea was to translate equation (1.3) into
another one multiplying both sides of (1.3) by the operator F 3192 Also we used
the factorization of the free Schrodinger evolution group
—HH G () dy

i

e_§t82¢ —

1 iz?

V2mit ‘
=t <e ¢> (5) = mMDFMs,

where M = e%,ng (y) = ﬁgb (%). Then we obtained from (1.3)

i (fe%tagv)t = pFMF D Mo

[ —_— i 2 2 — i 2
=t FMF ’}"Me?tawv FMebt:y

i 2 2 i 2
=t ‘f@itamv Fez'ay 4 R,

2
].'

where the nonlinearity is decomposed into the resonant term ut~? ‘]—" 3192y

929 and the remainder R. The resonant term can be canceled by the change of

. i192 . .
the dependent variable Fez'% v with a new variable
i St —1 Lt02
(feftaiv> ehin ‘fﬂ Y

In this way the L - estimate of Fe:(9)ty follows. We also follow this idea
in the present. We multiply both sides of (1.2) by (id,) Fe®(¥=) and put ¢ =
(&) Feilidalty to get
@ = 4ipFe'li%) (Reu)®
_ in

= o ¢ + %J—‘e“i‘%)t <u3 +ut+3 |u|2ﬂ) (1.4)

+O (tig Hu||f{41) .

ezt

2
dr

Thus we see that the nonlinearity in the right-hand side of (1.4) is decomposed into
3ip

2 . . - .
51 |¢]” @, nonresonance cubic nonlinearities and the remainder

the resonant term
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0 (t*% Hu||§{41> This fact is exploited in Lemma 3.3 and Lemma 3.1 below. Then

in Lemma 3.4 we will show that the nonresonance terms have a better time decay
property through the integration by parts. Furthermore the first resonant term
of the right-hand side of (1.4) can be removed when we multiply both sides by

e~ J{ %10’ 47 Then the L*®-estimate of (€) Fei(i9:)ty follows and the energy
method yields a-priori estimate of ||u|gga.:-

We now decompose the free evolution group e~ 0«1t = F~1e=i{&) F of (1.2)
into the main and remainder terms similarly to the factorization of the free Schrodin-
ger evolution group. We denote the dilation operator by

Dod = |w\_% ¢ (zw™1), (D) ' =D..

1
w

Define the multiplication factor

M (t) _ efit(im>0(z)

)

where 0 () =1 for |z] < 1 and 6 () = 0 for || > 1. We introduce the operator
Bp=e i1 (wc)fg 0(x)¢ (m (ix)fl) .

Thus DM (t) Bo is a well-known leading term of the large time asymptotics of
solutions of the linear Klein-Gordon equation (9; + i (i0,)) u = 0 with initial data
¢. The inverse operator B~1 acts on the functions ¢ (z) defined on (—1,1) as
follows

Blo=cf () o6

for all £ € R. We now introduce the operators

V(t) =B~ 'M (t) Dy L F e e
and

W(t) = (1—0)D ' Flem O
so that we have the representation for the free Klein—-Gordon evolution group

e MOt =l = Folem M8 = DM (t) BV (t) + DV (1)
=DM (t) B+D:M (t) B(V (t) — 1)+ DWWV (¢) . (1.5)

The first term of the right-hand side of (1.5) describes the leading term of the large
time asymptotics inside of the light cone. The second term is a remainder inside

of the light cone and the last term represents the large time asymptotics outside
of the light cone. We also have

j:ei(iagg)t = eit<£>f _ Vfl (t) 871M (t) Dt_l + Wfl (t) Dt_l
=B 'MH)D; '+ (V) - 1) BT M) D+ W (1) Dy
where the right-inverse operators

V=L(t) = O FD,M (t) B
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WL(t) =" O FD, (1 -6).

We prove our main result in the next section. In Section 3 we prove several lemmas
involved in the proof of the main result.

2. Proof of Theorem 1.1

We introduce the function space
Xy ={¢cC([0,T];L?);|¢llx, < oo},
where

Ilx, = sup (07716 Ollgs + (07 176 ()l
t€[0,T]

07T W lazs + 02 16 Ol ) -

and v > 0 is small.
The local existence in the function space Xt can be proved by a standard
contraction mapping principle. We state it without a proof.

Theorem 2.1. Let ug € H*! and the norm ||ug||gza. = €. Then there exist g > 0
and T > 1 such that for all 0 < € < gq the initial value problem (1.2) has a unique
local solution u € C ([0, T]; H*') with the estimate |lullx, < v/z.

Let us prove that the existence time 7' can be extended to infinity which then
yields the result of Theorem 1.1. By contradiction, we assume that there exists a
minimal time T > 0 such that the a-priori estimate [lul|x, < /¢ does not hold,
namely, we have ||u|x . < /€. We apply the energy method to (1.2) to obtain

d 2 —1
g Nl = Cllullgy llullge < Ce () flullg -

Hence by Theorem 2.1
[ullggs < Ce (1) (2.1)

Next we use the commutator relations

P =(P—ilio.) 0. L.

[z, (i0,)] = a (i0,)* 2 8y, [P, (i0,)%] = a (i0,)* > 8,04,
Opu = 4ip (i0,) " (Rew)® — i (i0,) u
to get
LPu = 12ip (i0,) " (Rew)® RePu + 4 (id,) "2 0, (Reu)?
12 (i0,) "> 8, ((Reu)2 Re (41‘# (i0,) " (Rew)® — i (i8,) u)) .
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Then by the energy method (i.e., multiplying both sides of the above equation by
(i@x)4m, taking the real part and integrating over the space) we obtain

& Pullgs < Ol IPulgs + O s, Tl + O i s
< Ce(t) " |Pullgs + Ce2 ().
Therefore by Theorem 2.1 it follows
[Pullggs < Ce (1) (2.2)

The energy estimate and the identity Lz = 2L — ¢ <i6m>71 O, imply
d 2
g el < Cllullp ol + el

< Ce(t) ™ [leullge + C* (1)

which yields

|z < Ce (87 (2.3)
Then by the identity
J =iP — izl — (i0,) " 0, (2.4)
and (2.1) we obtain
|Tuless < Cet)” (2.5)

By Lemma 3.2, (2.1), (2.3) and the relation (2.4) we find that
_1 1 1 1
sz, < €0l (llull s + 17wl )
91 1 y_1 1
< Ce ()77 4 Ce? (1)7 2 ||PullZs -
Then by the energy method, Theorem 2.1 and (2.2) we obtain
d
5 Pullas < C lleliz IPullgz + C lullen ullgz, [Pl
+C [lullys ullgs + C lullgg el
< Ce () [Pullgs + C* (07 [Pullen
Y 1
+Ce? (1) [Pulligs [Pullen
-1 2\ 3v—1 531 3
< Ce {8y |Pullggs + C2 (0 + Ce2 ()27 | Pull i
< Ce () | Pullggs + Ce2 ).

Therefore
[Pullggs < Ce (). (2.6)

By identity (2.4) and (2.6) we see that
| Tulls < Ce () (27)
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We use Lemma 3.3 to obtain for the new variable ¢ (t) = (£) Fe'(=ty ()

4
D = it ™10 YA DL e OGP 10 (1 gl ) (28)
j=1
in L™, 2 < r < co. Then we apply Lemma 3.4 to show that the first term of the
right hand side of (2.8) is decomposed into the resonant and nonresonance terms,
and then we obtain

sup || (t) [l < Ce. (2.9)
t>1

By the decomposition of the free evolutions group we have the identity
(i0,) u (t) = (DeM (t) BV (t) + DWW (b)) (€) Fei0=ty ()
= DM (t) B (€) Fe'l0=)ty (1) (2.10)
+ (DM OB (O V(1) = 1)+ D (1)) (§) Fe 0 u (1),

By the second and the third estimates of Lemma 3.1 we find that the last term of
the right-hand side of (2.10) is a remainder term. Indeed we have the estimate

)z, < € [Pedd (1) B &) Fe @ Itu )|

+Ce (1)

(&) Felity (1)

HL.3
<Ot Fsuplle ()l +C () T ()|
which along with the estimates (2.7) and (2.9) yields

sup (t) 2 [|lu (¢)[lg < Ce. (2.11)
t>1 o

From (2.1), (2.5), (2.7) and (2.11) it follows that
lullx, < Ce< Ve

which implies the desired contradiction. Thus there exists a unique global solution
u € C ([0,00); H*!) of (1.2) with the time decay estimate.

We now prove the asymptotics of solutions. By equation (2.8) as in the proof
of Lemma 3.4 we have

) = ¥ )l + [0 = ¥ (g < C=F [ "mtar < Ceterd
with vy € (0, 1), where
W () = e lel st
= (¢) fe“iaz)tu(t)6%<E>2|7~'e“i3w>tu(t)|21Ogt.
Thus we see that there exists a unique final state 1, € H%! N H%! such that
196 = Vel + 16 ©) = bl < CeFerE,
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We consider the asymptotics of the phase function

B (1) - 37“/ (le (P = e ) &

=% [ (P - wor) @

By a direct calculation we have

O (t) — D (s)

=B ([ (P - OF) Z 4 (10 00 ~ o () 085

where 1 < s < 7 < t. Hence

1 (#) = @ ()|~

< C/ 1 () =% g (1Y (Dllpee + 1% @)llp<) —
+C 9 (8) =% OllLes (19 ()lloe + 19 ()|~ ) log s

t
§C€g/ T”fngqLC’ags"’*%logs
S

dr

1011

from which it follows that there exists a unique real valued function ® such that

B (1) — i, ;. < Cedtr™1,
+IilL

Similarly, , .
1@ (1)~ i® |z < 2,

Therefore we have the asymptotics of the phase function

32/1/W) ng:3m /‘]_—”a Qd_T

=i®Py + 7 o P logt

@) -0y + 2 (107 |[F a0 - ) oge,

We also have

<£> ]_-ei(iﬁmﬂu (t) _ ¢+e(i<b++3é“|w+\zlogt)
= (&) Fe 20t (1) — oy HIVOI )

TP+ (eg;u Jilwers e(ith'*'%lﬂ)ﬂz logt))
= () OO _ 2 )

by (63— TGO TRE =N € FE S N 1ogt)) ,
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Collecting these estimates we find

H<£> fei@az)tu(t) _ w+e(i¢++%|¢+\21ogt)

L2
< Ol (8) = dllpe + [l 12(8) — i@ [l
F Yt llne 19 @) = Yt llpe U9+l + 1% @)lg2) logt

< Cesr—1

and similarly,

H<£> Fetl0a)ty (1) — ¢+e(i@++3;“|w+\zlogt)u <oetrt
Lee

Therefore we have

H]_—eiﬁaz)tu (t) _W+e%<§>2|f/{7+‘2logt‘ < Cespr—i (2.12)

HO,1 -

and

(10t T3y Wy logt 3y 1
H}-61<1 >u(t)—W+e 2 I +| s 0,1SCE2t’Y s

where W, = (¢) "¢, exp (i) . Estimate (2.12) means that

3

H“(t) v U5 <5>2|VAV+|21°gtH < Cedtrmi
HLO —

Theorem 1.1 is now proved.

3. Lemmas

In the next lemma we obtain the large time asymptotics for the free Klein-Gordon
evolution group.

Lemma 3.1. The estimates
V(@) bl < C @l
3 1
[ ve-1¢| <Clolgst
_1
W (@) Sl < Cllllgat 2
and )
(V) = 1) 6]l < CEH @] 1 34
hold for 2 <r < o0, 0 < v < 1 provided the right hand sides are finite.

Remark 3.1. The first and the last estimates of Lemma 3.1 will be used to
estimate the remainder in equation (2.8). The second and the third estimates of
Lemma 3.1 imply that the last term of the right-hand side of (2.10) is a remainder
in our functional space.
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Proof. Changing the variable of integration = = £ (£ >71 we see that
_1 .2 “1\|% -3 ! 2 2
15 0l = [ e (107 @ e = [ 10@P da = oliia 1.

By a direct computation

0B~ (x) = €0 (6) 26 (£(9)7)

= —Sdie o (e )+t O ()
and
B~ (iz)? 9, (iz)? ¢ (z) = 28*1 (— (iz) 2 (x) + (iz)° ¢/ (x))
= 2ot (il et o (ko)
w2t ie©™) ¢ (e©7)
= Sdie o () +eT OO0 ()
Therefore

and similarly,

We also have

[N

0.8 =B(€)? 0 (€)* .
Thus the identity
TV () = (€)' T 9:BIBY (1) B7'B
=B (ix)** 8, (ix)? BY (t) BB

holds. In order to prove the first estimate of the lemma we consider the operator
BV (t) B~!. Changing the variable of integration y = £ (€)' we obtain

BY (t)B ¢ =DM (t)D; ' Fle OB ¢
R e T (TE R R
R
1 1 . l—zy . 3
=it [ e Do) () ay
~1
since dy = <§)_3 d¢ = <£>_3/2 (iy>3/2 d¢. Then changing the variable of integration

(1 —ay) (iy) " — (ix) = 0% 2ndn = (y — ) (iy) > dy
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we find

1

BY(O5-te=Clt [ e U g ) i) ay

-1

1 s d
=t [ ey ) M
R y—x

for all x € (—1,1), ¢t > 0, where ¢ (y) = ¢ (v) <zy>% . Now we differentiate the last
identity with respect to x

1 2 z — d
9,8V (1) B¢ = C|i]} /R (w W) ve +0 () u) e

r—1Y y—x

Ty

= Cltlé/ MU =) (f (y) g1 (2, 9) + 0 () 92 (2, 9)) dy,

g1 (2.y) = e (i)~ = (v (i) =y i)™ ) (@ =)~

and

oy —1 (i) = 9 (z,y) — 91 (v,9)
Tr—y r—y '

Then we have

H(ix>2+78 BY (t) B‘lqu2

<C't'// (6= )y () T @ (1, 2) dyd

el / / (0627 =) () G ()G (19, 2) dydz
with kernels
Gj (ty,2) = / 11 =) g (2,) g5 (2, 2) (i) 7 dar
By virtue of the mean value theorem we have
1@ 10 = [ 16000y,

Therefore

. (M) = /1 FEFY (20 4+ y (1 — 0)) 0 do.

dzxk xT—y o
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Taking f () = (i)™ e fnd {440 0] < € )~ ana

‘ dF ( )‘ - 0/1 0% do
791 \T,Y)| >
dat7! o (i (20 +y(1—0))>

0*de
<c/ -
(1-6) (iy)°)
< c<ix>‘1ﬂ‘2’“ i [ <O
0 (1—0)' 265

for all z,y € (—1,1), where v € (0,1). In the same manner

g2 0" do
GRS
12 [} 0% do
< Cliy)*
/0 (64i2)* + (1= 0) (1))

1
< ()7 ™ [ < O™

dk
‘@92 (z,y)

for all x,y € (—=1,1), where v € (0,1) . Applying the identity
eitm(z(iz)_lfy@y)_l)

_ (1 2 (y (i)™ — 2 (iz>_1)2> - (1 2) eitaletie)  utin) ™)

we integrate two times by parts

G (t,y,2)| < C (1 + (y (iy) ™' — 2 (iz>_1)2>
. /1 ‘(1 ) (91 (z,9) 91 (2, 2) <ix>4+2ﬂy) ’ de

-1

C {iy)* ~* (i) / iy 2 g < S0 (i)
_1+t2(y<z‘y>*1—z<iz>*1)2 -1 T+ (y—2)
and similarly
G ()| < C ) " (iz)”
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Then

i oyl <cm [ [ (|l 2vwl[ei e
dydz

| e )] 627 e (2)]) 1+e(y—2)

B C/R 1 ttr' iyyZ /z<1,|y+z|<1 (‘<Z (y+ Z>>%72 Y (y + Z)‘ ‘<iz>%72 Y’ (2)‘
(i(y+ Z)>%_4w (y+2) <iz>%_4w (2) ) dz

<cfamio. (s )|, + o= o)

+

2 2
L <olB

L
Since

(T 0V (1) = B (ix) 217 0, (ix)? BY (1) BB
we have the first estimate of the lemma. To prove the second estimate of the lemma

(that is the estimate of the remainder in the asymptotics of the free evolution group
inside of the light cone) we represent

©F V) -1)(© 6= % [ @ i ()
— ()72 9(9).

In view of the asymptotics (see [5])

Vit [ (O ) (=2 g — ey =
VoL [ et ) )y — 7+ 0 (17%)

changing the variable of integration n =y <iy>71 and putting y = £ (5)71 we have
3 — _1
©F V-1 e+0(t})

}/% /R€“(<f>”+%"—<”>> (¢ (n) — 6 (&) (m) "2 dn

\/\/; /11 ot () +355) <¢ (y (iy>_1> — (X <iX>_1>) (i) ™" dy.

Then via the identity

T = Aliy)* 9y (-0 )
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. . \3 . 2\ 7! . .
with A = ((zy) —it(y — x) ) we integrate by parts with respect to y

<§>% ®- ©7o+0 (1)

- m (42 (3w =) () + 2t (v~ x)°)

~2y <y - x) 4) (<z> (vl ™) =0 (x 0 ™)) ) ay
P (y - x) A (y (iy>_1) (iy) " dy.

\/ 271'
‘We have

(i)' (v <z‘y>*1)‘ v = </11 (i)~ |¢' (v (iy>1)’2dy>

([ erwere) = ey
( )

Furthermore by the inequality
6 (i) ™) =& (x 00 ™")| < C U Ny Iy — X1

for all x,y € (—1,1) we have
©F VB -1© 0| +0(t})

1
1 ly — x|
< Ct2 oo/
1ohe [, (i) +t(y —x)°

3
1 (i)’ +t (- x)°

1 2 2 \?
+Ct2 [ 0.3 (/1 <<zy<>l‘°’y:— ly(y _XL)2> dy) .

(S

We find

"y Gl -t -0t
/_1 (iy)® +t(y —x)° v /_1 ((iy>3+t(y—x)2)2y

=

<Ot 1.

This yields the second estimate of the lemma.
To prove the third estimate (i.e., estimates of the free evolution group outside
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of the light cone) we write for all x| > 1 changing £ =y (iy>71

W(t)¢ = % Re““é*%(f) d¢

_ % /R e (y tiy) ™) (i)~ dy.

Employing the identity

L ay—1 <zy>3 L ay—1
elt (iy) — '7877 (eZtW)
it (x —y)

we integrate by parts with respect to y

W(t) ¢
. \—3
- [ (e )+ e (o) )

Since
(-2 < |yl — 117 (@)~ (i)™
and
ly — a7t <yl =177 () iy) 2,
then
1 1 1 1
W (t) 6 < Ct [ Bllgon (@) / =1 dy
1 o N3
Ot [l () (/ sl -1 2dy) .
Therefore

W () 6l < Ct % [[pllggs

where 2 < r < co. This yields the third estimate of the lemma.
We now prove the last estimate. Changing y = n (1)~ we have

3 1 . \
VI ()T T e = \/% /71 It —Ey—() ¢ (y (iy>_1) <Z-y>—z+v dy

\/% /R MO () ()~ .

In view of the asymptotics (see [5])

VE [ t(©-550) (v -3 g — (o3 =
oo [ O g = 7 w0 (1)
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we get

(v—l () =1)(& FTo+0 (1)

~ Vair / U= (4 () — 6. (&) (m) ™+ dn.
Then via the identity

—jr&nt

T =B )0, (- e

—1
with B = ((7})3 +it(n— £)2> we integrate by parts with respect to n

Vi) -1)(© i ¢+0 (t’%)

= m/ 5) £(n) ) (B2 (377 (77—5) <77>%*'Y + 2t (77 _5)2 <77>%7W)
+ 3 84’777<n>—§—’v (n—¢) B) (6 (n) — ¢ (€))dn
\/ﬂ/ (OS5 (5 — &) B¢ (n) () dn.

Furthermore by the inequality
(o) — ()| < C Bl [n—&I2

we find

’(V’l (t) —1) <5>*%*7¢] ) (f%)
()1 In— €| dn

N >(7]§) <0t ol [, e

3 ! -9 |
+Ct2 || @]l g A(<n>3+t(n—f)2)2

‘We have
1

[ = €l (n H+\n T, /<n>32”<n—s>2dnz
)t =gy R+t -¢°)

<Oti.
This yields the forth estimate of the lemma. Lemma 3.1 is proved.

We next prove the time decay estimate in terms of the operator 7.
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Lemma 3.2. The estimate s valid
it (ol H)
lelle <O lelldy (el + 17012,
for all t > 0, provided that the right-hand side is finite.

1 1
Proof. Since [|¢[|p,, < Cllze|fs |l¢llfz, by applying the L — L' time decay esti-
mate of the free evolution group e~*#=)t (see Lemma 1 in [17]) we get

1

ol = et < cend

(i0,) e“w”””cp’

L1

1 1
< Ct—% x<231>% ei(iaz)t(p 2 <7,(91>% ez(zaz)t(p 2

L? L?
Ct=3 3 3
<Ct e
<ot g0l el
for all ¢ > 0. Then by the Sobolev inequality we have ||¢|| < C|l¢|lg - Thus
the desired estimate follows. Lemma 3.2 is proved. O

In the next lemma we obtain the asymptotics for the nonlinear term. Denote
)\1:%’i,)@:%,)\g:?’—;&,&:—%,wj:2aj—3,a1:2,a2:3,a3:1,
Qy = 0.

Lemma 3.3. Let ¢ € H*!. Then the asymptotic formula for large time t holds
Feilie)t (i9 ) \f <€7i<iam>t¢>
3—aj

4 —
— it~ Leit(©) Z/\jpwje—itwj © (£)3 §

Jj=1

(© 5% (€ +0 (6l

uniformly with respect to & € R.

Proof. First we prove the following representation

iTa

]_-emam)f, (E:S—O/, (t) u® (t)) = e % t_leit<£>,Dw€_itw<£> <£>3¢3—a@a +R, (31)

where ¢ = Fe'li%)ty (1), w = 2a — 3, a € [0,3], & # 2, and
Rl < CE 7 [l
We introduce the operators
Q(t) =BV (t)+ W(t) = MD; ' F~le
so that we have the representation for the free evolution group
e W01 =D, MQ(t).

We also have
]_-ei<i3m>t _ Q—l (t) M,Dt—l,
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where the inverse operator
Q') =V ()BT + W (1) = MU FD M.
Since Dy = D, Dy, D! = D, and FD1 =D, F we find
QL (t) M¥t = MO FD, MY = 9D, FD, MY
= & eitwle) g1 (wt)
with w # 0. Therefore putting
u(t)=U ) F o =DMQ(t) ¢
and taking w = 2a — 3 we get
Fu (1) (@ (#)u” (1))
— o~ (MO (DA R)  (DMQ(D) )"

3—«a
=t71Q 7! (t) Mot (Q (t) w) Q)¢

= OO0 ) (QlDw)  (@(1)9)"
Since Q (t) = BV (t) for |x| <1 and Q(t) = W (¢t) for |z| > 1 we then have

3—a

(eWe) (ewe)

- (W)H BY 1)+ (WHe)  WHe)*

for all x € R. In the same manner we obtain
o (@) (QW %) (@We)
— Vv B (BV M) BV e
W @) (We) e
Applying the identity

B (B)" (Bo) = 5 (6 (21©) ¢ (©
we get
FU (—t) (@ (t)u® (t))
= _emiFT Lt OD it ()1 (o) <§>3 (V (1) <p)37a V(t)p)*
+ Lt O p e itwl€) )1 (wt) (W (t) gp) e (W (t) p)*

_ —e_i%at_leit<£>Dw€_itw<§> <£>3 ¢3—a@a + R,

1021
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where the remainder
R= —e_i%at_leit<£>Dw6_itw<5>

< (veot! (V)

3—a

V() o) — <s>3¢3-aw)
1O D et Y1 () (w ) cp) W (1) )"

By Lemma 3.1 we obtain

3—«a

|0 -y (@) e e

Lo()
3—«a

O (VoY) voe"

Hl

1 11 2 _1
<ot @ V@ el IV® el < O el

if 0 < < {. Then

[ (7@e) " v -ge)

<o(fiovo-ve + @i, ) 100 - el
< Ct Il

and

le (wt) (w (t) so) W (t) p)"

S OVEIW () ¢llgs < Ct1 1ol -

Loe

Thus we find the estimate for the remainder R (%)

IR~ < C | (v ) - 1) (0° (V) @)

Loe

ot (v09) T w0 -7 )

Lo

+Ct™! <Ot |l

Wt en (Wie) " ovier|

Therefore representation (3.1) is true. We now take u (t) = e~ *(@)t¢ in (3.1) to
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find
Felli9ot (9, \ N = —’LZ)\ o Fellideit (@ (t)u™ (t))
4 P
=it SN DL, e O G ()6 (€)+0 (47 9llge )
j=1
Lemma 3.3 is proved. 0

In order to prove that the second term JipFet(?9=)t (u3 + 3 4 3 uf’ ﬂ) of the

right-hand side of (1.4) is a remainder we now consider the following ordinary
differential equations for t > 1 depending on a parameter £ € R

{ 2 =it 9P 6+ e T, A D, e 09 T L h (D), gy
¢(1,€) = ¢°,

where A1 € R, A, A3, M €C,wj =205 -3, 01 =2, 0 =3, a3 =1, gy = 0, and

h(t)y=0 (6325_%) in L. Note that the first term in the right-hand side of (3.2)

is divergent when integrating over an unbounded time interval.

Lemma 3.4. Let the initial data ¢° € L™ with a norm ||¢OH « = &. Then there

exists g > 0 such that for all 0 < € < g¢ the initial value problem (3.2) has a
unique solution ¢ € C ([1,00); L) satisfying the a-priori estimate

0
Sup ¢ (D)~ < Cll6° e -

Proof. We consider the linearized version of (3.2)

3a]

0o — i\t g [* dn + 1O YT, \D e 10600 6.7V + (1),
b (1,§) = ¢O €,
(3.3)
where n € {0} UN and

o (t,6) = ¢" (€) -
We apply the contraction mapping principle to (3.3) in the set

Yo~ {0 1ol L) lally = supllg Ol + supt 1009 ()] < 22 .
t>1 t>1
where € = ||¢o]|1,« - Multiplying both sides of (3.3) by emiMldnallogt we obtain

iqﬁ e—“\l\%—l\z logt
n

. 4
_ %efiA1‘¢n71‘2logteit<£> ZAijjefimj@d)z; . i fia e —ih]én_1|*logty, (t)
=2
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We assume that ¢, _1 € Y.. Denote

v; (€) = (€) — wj (€wj ') = (6) — \/w] + Esignwy,
then we get e?(&)D,, e~"i(&) = ¢ ()D,, and using the identity

efti(€) — B;0, (teituj(g))

with B; (¢,€) = (1 + ity (€)' we represent
d et 1 e~ M 1 ity —3—aq;
d_ ( iA1|pn— | logt iA “bn ‘ IOth)\ B et ](f D ¢n 1 nflj
j=2
4
:—zZt/\ i (©)g, (t Lg—iAil¢n-1]? st R D, 0, i (;J)
Jj=2
+e—iMlon]?logty, (t). (3.4)
We have

N 5]

1B; (:€) Tty ()

TG
<Ct Tt <ot

and

) lv; (€] -2 -1 -2
10:B; (t,8)] < 071 2, (O] SCt 7y (9 T <o

Then integrating (3.4) with respect to time we find
I6n ()l < e+ Ce?
and by (3.3)

E106n Ol < C (I6n-1 O~ 60 Ollgee + 01 Ol ) +C2

Ce3.

Therefore

Sup || n || Lo +supt |0t <€+ Ce3 < 2
t>1 t>1

since € > 0 is sufficiently small. Therefore ¢,, € Y. for any n. In the same manner
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by (3.4)

Onsr (1) em I8t g, (1) = halonaMloet

4
g 2 it —3—a
< |ite iX1|dn | logtZ}\ijeztyj(g),ij(szd)n %}
=2
. 3
4 2 . o 3—a
_ite—Mlbn—1] loth)\ijer(E)ijquil M

Jj=2
t| 4 . .
+C/ Zt)\jem/j(ﬁ)at <t71671)\1|¢”| logtijijqszj(ﬁnfaJ
1 |4
j=2

n—1

=1 —i\|bn_1|*logt . a; T3-aj
t e n B;Dy; ¢, 4

+ ‘ (efi/\l\aﬁnplogt _ e*i/\1\¢n71|2 logt) h (t)‘ dt
< Ce? (Sup [én — dn—1llp +supt |0 (¢n — ¢n1)||Loo>
t>1 t>1

from which it follows that

|¢n+1 (t’ 5) - d)n (t’ §)| = (¢n+1 (t) - an (t)) e*i)\1|¢n|2 logt

Guen (1) e~ NI08E g (1) e Nalon s

<

+ ‘d)n (t) (efi)\1|¢n|2 logt 67i>‘1|¢‘"71\2 10gt> ‘

S CEQ <Sup ||¢n - qsnleLoo + Supt ||at (¢n - ¢n1)|L°°> . (35)
t>1 t>1
We also have

|at¢n+1 (ta §) - at¢n (t7€)|
< Cctle? <sup lfn = dn-1llpe +supt||0; (én — ¢n1)le) . (36)
t>1 t>1

Thus by (3.5) and (3.6) we get

1
||¢n+1 - ¢nHY < 5 H(bn - ¢n—1||Y

which means that {¢,} is a Cauchy sequence in Y.. Lemma 3.4 is proved. O
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4. Remark

In this section we consider briefly the Klein—-Gordon equation with dissipative
cubic nonlinearity

{Utt+v_vmx:_vga (t,IL')ERXR, (41)

v (0) = vg, v (0) =v1,2 € R.

The usual energy method yields the space-time estimate of solutions

t
o @ dr < 0 (ol + )

which implies dissipativity. Sunagawa studied in [28] the asymptotic behavior of

small solutions of (4.1) under the condition that the initial data are regular, small

and have a compact support. He showed that solutions have a more rapid time
1

decay of order (tlog (1 +t))” 2. By applying our method to the problem (4.1) we

can remove the compactness of the initial data. If we put u = 3 (v +1 (i(‘?zfl vt),

then for the real-valued function v the nonlinear Klein-Gordon equation (4.1) can
be written as

{ﬂuzN(U), (t,z) e R xR, (4.2)

u(0,2) =wug (z), z € R,

where £ = 8; + i (i0,) , and N (u) = —3i (i0,) " (=i (i0,) (u —w))* . In the same
way as in the proof of Theorem 1.1 we find that

<>:§ i0,) ((< Ju-TaTa) )

(
( ((i0p) u)® — <z8w> u)d — 3|(i0y) ul? (i0) u + 3 |(i0,,) u|2m>

1
2

= 3 (0.7 |02 ul Gi0.) w - R,

where R is a remainder. By Lemma 3.3 we have

(<€>m ]:ei(i@mﬁu)t
3

_ 2.1 5—2m
=3

—5tomFeo (o~ (@iTw) - 3ol i02) o)

+0 (17 ullfaens )

where m > 3. We let v (t) = (&)™ Fe'(i02)ty (t). Then v satisfies the ordinary
differential equation

L 2 L
<§>m fez(18m>tu <§>m ]_-ez(zamﬂu

3 m
vt:—at_ €° ™ v>v + R.
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We define
(1)

v
w(t) =
V143072 o) logt
which is a solution of the Cauchy problem

SRS A
w(l)=v(1).

We can find a solution v in the neighborhood of w. Then the estimate

=

& Feoru )| <c b (1) < C(log(1+1)”
= 37 o ()P logt

follows, which leads to the time decay rate (tlog (1 + t))fé for solutions.
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