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Abstract. In this paper, we explicitly characterize a class of solutions to the first order quasilin-

ear system of partial differential equations (PDEs), governing one dimensional unsteady planar
and radially symmetric flows of an adiabatic gas involving shock waves. For this, Lie group
analysis is used to identify a finite number of generators that leave the given system of PDEs

invariant. Out of these generators, two commuting generators are constructed involving some
arbitrary constants. With the help of canonical variables associated with these two generators,

the assigned system of PDEs is reduced to an autonomous system, whose simple solutions provide
non trivial solutions of the original system. It is interesting to remark that one of the special
solutions obtained here, using this approach, is precisely the blast wave solution known in the

literature.
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1. Introduction

Many flow fields involving wave phenomena are governed by quasi linear hyper-
bolic systems of PDEs [1]. The solutions of the system are either continuously
differential functions, or continuous but non-differentiable functions (weak solu-
tions), or discontinuous (shock) solutions. Indeed, for nonlinear systems involving
discontinuities such as shocks, we do not normally have the luxury of complete
exact solutions, and for analytical work have to rely on some approximate analyt-
ical or numerical methods which may be useful to set the scene and provide useful
information towards our understanding of the complex physical phenomenon in-
volved. One of the most powerful methods to determine particular solutions to
PDEs is based upon the study of their invariance with respect to one parameter
Lie group of point transformations (see [2]–[9]). Indeed, with the help of symme-
try generators of these equations, one can construct similarity variables which can
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reduce these equations to ordinary differential equations (ODEs); in some cases,
it is possible to solve these ODEs exactly. Besides these similarity solutions, the
symmetries admitted by given PDEs enable us to look for appropriate canonical
variables which transform the original system to an equivalent one whose simple
solutions provide nontrivial solutions of the original system (see Refs. [10], [11],
[12] and [13]). Using this procedure, Ames & Donato [14] obtained solutions for
the problem of elastic-plastic deformation generated by a torque, and analyzed the
evolution of a weak discontinuity in a state characterized by invariant solutions.
Donato & Ruggeri[15] used this procedure to study similarity solutions for the
system of a monoatomic gas, within the context of the theory of extended ther-
modynamics, assuming spherical symmetry. In this paper, we use this approach
to characterize a class of solutions of the basic equations governing the one di-
mensional planar and radially symmetric flows of an adiabatic gas involving shock
waves. Since, the system involves only two independent variables, we need two
commuting Lie vector fields, which are constructed by taking a linear combination
of the infinitesimal operators of the Lie point symmetries admitted by the system
at hand. It is interesting to note that one of the special exact solutions obtained
in this manner is the well known solution to the blast wave problem studied in the
theory of explosion in the gaseous media (see Refs. [14], [15], [16], [17] and [18]).

2. Symmetry group analysis

Following [10], [11], [12] and [13], let us assume that the system of N nonlinear
partial differential equations

FR

(

x, t, u,
∂u

∂x
,
∂u

∂t

)

= 0, R = 1, 2, · · · , N, (1)

involving two independent variables x, t and the unknown vector u(x, t), where
u(x, t) = (u1(x, t), u2(x, t), · · · , uN (x, t)) ∈ RN , admits s− parameter Lie group of
transformations with infinitesimal operators

ζi = Xi(x, t, u)
∂

∂x
+ Ti(x, t, u)

∂

∂t
+

N
∑

j=1

Uij(x, t, u)
∂

∂uj
, i = 1, 2, . . . , n (2)

such that there exist r(≤ s) infinitesimal generators ζ1, ζ2, · · · ζr that form a solv-

able Lie Algebra. Let us now construct generators Y1 =
r

∑

k=1

αkζk and Y2 =
r

∑

k=1

βkζk,

where αk and βk are constants, to be determined, such that [Y1, Y2] = 0.
Now we introduce the canonical variables τ, ξ and ν̄ = (ν1, ν2, · · · , νN ) ∈ RN

related to the infinitesimal generator Y1, defined by Y1τ = 1, Y1ξ = 0, and Y1νi =
0, i = 1, 2, · · · , N . In terms of these canonical variables, the infinitesimal operator

Y1 reduces to Ỹ1 =
∂

∂τ
, i.e., it corresponds to a translation in the variable τ only;
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consequently, owing to the invariance, the system (1) must assume the form

F̃R

(

ξ, ν̄,
∂ν

∂ξ
,
∂ν

∂τ

)

= 0, R = 1, 2, · · · , N. (3)

In terms of these new variables, the operator Y2 can be written as

Ỹ2 = (Y2ξ)
∂

∂ξ
+ (Y2τ)

∂

∂τ
+

N
∑

j=1

(Y2νj)
∂

∂νj
, (4)

where we require that the condition Y2ξ 6= 0 holds; thus, it is possible to introduce
new canonical variables η, τ∗ and w̄ = (w1, w2, · · · , wN ) ∈ RN defined by Ỹ2η = 1,
Ỹ2τ

∗ = 0, and Ỹ2wi = 0, i = 1, 2, · · · , N which transform (3) to the form

F̂R

(

w̄,
∂w̄

∂η
,

∂w

∂τ∗

)

= 0, R = 1, 2, · · · , N. (5)

The resulting system (5) is an autonomous system associated with (1) to illustrate
the method, outlined as above, we consider the system of Euler equations of ideal
gasdynamics in the next section.

3. Euler equations of ideal gas dynamics

The equations governing the one dimensional unsteady planar and radially sym-
metric flows of an adiabatic gas with adiabatic index γ in the absence of viscosity,
heat conduction and body forces can be written in the form [1]:

ρt + uρx + ρux +
mρu

x
= 0,

ut + uux + ρ−1px = 0, (6)

pt + upx + γpux +
mγpu

x
= 0,

where t is the time, x the spatial coordinate being either axial in flows with planar
(m = 0) geometry or radial in cylindrically (m = 1) and spherically (m = 2)
symmetric flows. The state variable u denotes the gas velocity, p the pressure, and
ρ the density. By a straight forward analysis, it is found that the Lie groups of point
transformations that leave the system (6) invariant constitute a 4 - dimensional
Lie algebra generated by the following infinitesimal operators:

ζ1 = ρ
∂

∂ρ
+ p

∂

∂p
, ζ2 = t

∂

∂t
− u

∂

∂u
− 2p

∂

∂p
,

ζ3 = x
∂

∂x
+ u

∂

∂u
+ 2p

∂

∂p
, ζ4 =

∂

∂t
.
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In order to construct generators Y1, Y2 such that [Y1, Y2] = 0, let

Y1 = α1ζ1 + α2ζ2 + α3ζ3 + α4ζ4,

= (α2t + α4)
∂

∂t
+ α3x

∂

∂x
+ α1ρ

∂

∂ρ
+ (α3 − α2)u

∂

∂u

+(α1 − 2α2 + 2α3) p
∂

∂p
,

Y2 = β1ζ1 + β2ζ2 + β3ζ3 + β4ζ4,

= (β2t + β4)
∂

∂t
+ β3x

∂

∂x
+ β1ρ

∂

∂ρ
+ (β3 − β2)u

∂

∂u

+(β1 − 2β2 + 2β3) p
∂

∂p
,

where α2β4−α4β2 = 0 and α1, α3, β1, β3 are arbitrary constants. Since the system
is invariant under the group generated by the generator Y1, we introduce canonical
variables τ̄ , ξ̄, R̄, Ū and P̄ such that Y1τ̄ = 1, Y1ξ̄ = 0, Y1R̄ = 0, Y1Ū = 0 and
Y1P̄ = 0. This implies that when α2, α3 6= 0, we have

τ̄ = (1/α2)log (α2t + α4) , ξ̄ = (α2t + α4)x−α2/α3 , (7)

R̄ = ρ x−α1/α3 , Ū = u x(α2−α3)/α3 , P̄ = p x(2α2−α1−2α3)/α3 .

In terms of these new variables, Y2 becomes

Ȳ2 =
β2

α2

∂

∂τ̄
+

β2α3 − β3α2

α3
ξ̄

∂

∂ξ̄
+

β1α3 − β3α1

α3
R̄

∂

∂R̄
+

α2β3 − β2α3

α3
Ū

∂

∂Ū

+
(α3β1 − α1β3) + 2 (α2β3 − β2α3)

α3
P̄

∂

∂P̄
.

Now, we introduce canonical variables τ, ξ, R, U and P such that Ȳ2τ = 0, Ȳ2ξ = 1,
Ȳ2R = 0, Ȳ2U = 0 and Ȳ2P = 0; thus, the corresponding characteristic conditions
yield

ξ = (α3/A)log
(

ξ̄
)

, τ = τ̄ − (β2/α2)ξ, (8)

R = R̄ ξ̄ (α1β3−α3β1)/A, U = Ū ξ̄, P = P̄ ξ̄ 2+((α1β3−α3β1)/A),

where A = α3β2 − α2β3 6= 0. In view of (7) and (8), we are led to the following
transformations

τ = (−β3/A)log{(α2t + α4)x−β2/β3}, ξ = (α3/A) log{(α2t + α4)x−α2/α3},

ρ = R(ξ, τ)xL (α2t + α4)
K

, u = U(ξ, τ)x (α2t + α4)
−1

, (9)

p = P (ξ, τ)xL+2 (α2t + α4)
K−2

,
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where L = (α1β2 − α2β1)/A, K = (α3β1 − α1β3)/A with β3 6= 0, and R,U, P are
arbitrary functions of τ and ξ. Using (9) in (6) we get

(α2α3 − Uα2)
∂R

∂ξ
+ (β2U − β3α2)

∂R

∂τ
+ β2R

∂U

∂τ
− α2R

∂U

∂ξ

+(Kα2 + LU + U + mU)AR = 0,

(α2α3 − Uα2)
∂U

∂ξ
+ (β2U − β3α2)

∂U

∂τ
+

β2

R

∂P

∂τ
−

α2

R

∂P

∂ξ
(10)

+
(

U2 − α2U
)

A + (L + 2) A
P

R
= 0,

(α2α3 − Uα2)
∂P

∂ξ
+ (β2U − β3α2)

∂P

∂τ
+ β2γP

∂U

∂τ
− α2γP

∂U

∂ξ

+(Kα2 − 2α2 + LU + 2U + γU + mγU)AP = 0,

where A is same as in (8). The above equations can be solved completely when
U ≡ constant. We, therefore, consider the following cases:

Case-I

Let U ≡ constant 6= α3. Then the equations (10)1,3 have the closed form
solutions as

R(ξ, τ) = R1(η) exp {−((Kα2 + (L + 1 + m)U)/(α2(α3 − U)))Aξ}, (11)

P (ξ, τ) = P1(η) exp {−((Kα2 − 2α2 + (L + 2 + γ + mγ)U)/(α2(α3 − U)))Aξ},

where

η = τ −
β2U − α2β3

α2(α3 − U)
ξ =

1

α3 − U
log

(

x (α2t + α4)
−U/α2

)

,

and R1(η) is an arbitrary function of η. Using (11) into (10)2, we get the compat-
ibility conditions for U and P1(η) as

U = 2α2/(γ + 1 + m(γ − 1)) or U = α2, (12)

and

P ′

1(η) + (α1 + 2α3 + mU − U)P1(η) + (α3 − U)U (U − α2)R1(η) = 0.

Thus, in view of (9), (11) and (12), the solution of the system (6) can be expressed
as follows.
Case-Ia:

When U = α2 6= α3, the solution of the system (6) takes the form

ρ = R1(η) x(α1+(m+1)α2)/(α3−α2) (α2t + α4)
−(α1+(m+1)α3)/(α3−α2) , (13)

u = α2x/(α2t + α4), p = C (α2t + α4)
−(m+1)γ

,

where C is an arbitrary constant, R1(η) is an arbitrary function of η, and

η = (1/α3 − α2)log (x/ (α2t + α4)).
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Case-Ib:

When U = 2α2/Γ 6= α3, where Γ = γ + 1 + m(γ − 1) 6= 0, the solution of the
system (6) takes the form

ρ = R1(η)xA1 (α2t + α4)
−A2 , u = (2α2/Γ)x/(α2t + α4) (14)

p =

{

C − A3

∫

R1(η)eA4ηdη

}

(α2t + α4)
−2(m+1)γ/Γ

,

where C is an arbitrary constant, R1(η) is an arbitrary function of η, and

η =
Γ

Γα3 − 2α2
log

(

x (α2t + α4)
−2/Γ

)

,

A1 =
Γα1 + 2(m + 1)α2

Γα3 − 2α2
, A2 =

2 (α1 + (m + 1)α3)

Γα3 − 2α2
,

A3 =
2(α2)

2(m + 1)(1 − γ) (Γα3 − 2α2)

Γ3
, A4 =

Γ (α1 + 2α3) + 2(m − 1)α2

Γ
.

Case-II

Let U ≡ α3. Then (10)1,3 imply that

R(ξ, τ) = R1(ξ) exp{−(Kα2 + (L + 1 + m)U)τ},

P (ξ, τ) = P1(ξ) exp{−(Kα2 − 2α2 + (L + 2 + γ + mγ)U)τ}, (15)

where τ and ξ are same as defined in (9), and R1(ξ) and P1(ξ) are arbitrary func-
tions of ξ. Moreover, on using (15) into (10)2, we get the compatibility conditions
for U and P1(ξ) as

U = α3 = 2α2/Γ, (16)

P
′

1(ξ) +

(

β1 + 2β3 +
2(m − 1)β2

Γ

)

P1(ξ)

+
2α2(γ − 1)(m + 1) (α3β2 − α2β3)

Γ2
R1(ξ) = 0.

Thus, in view of the equations (9), (15) and (16), the solution of the system (6)
can be written as

ρ = R1(ξ)x
B1 (α2t + α4)

−B2 , u = (2α2/Γ) x/(α2t + α4), (17)

p =

{

C − B3

∫

R1(ξ)e
B4ξdξ

}

(α2t + α4)
−2(m + 1)γ/Γ

,

where C is an arbitrary constant, R1(ξ) is an arbitrary function of ξ, and

ξ = (Γ/(Γβ3 − 2β2))log
(

x (α2t + α4)
−2/Γ

)

with Bi (i = 1, 2, 3, 4) defined as follows

B1 =
Γβ1 + 2(m + 1)β2

Γβ3 − 2β2
, B2 =

2 (β1 + (m + 1)β3)

Γβ3 − 2β2
,

B3 =
2(α2)

2(m + 1)(1 − γ) (Γβ3 − 2β2)

Γ3
, B4 =

Γ (β1 + 2β3) + 2(m − 1)β2

Γ
.
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It may be remarked that the solution (13) (respectively, (14)) involves arbitrary
parameters, α1, α2 and α3 with α2 6= α3 (respectively, α3 6= 2α2/Γ), whereas the
solution (17) depends on the parameters, α2, β1, β2 and β3. In fact, solution (17)
is exactly the same as (14) i.e., the constants B1, B2, B3, B4 and ξ are exactly the
same as A1, A2, A3, A4 and η when α1, α2 and α3 are replaced by β1, β2 and β3.

4. Solution with shocks

As is well known that a shock wave may be initiated in the flow region, and once it
is formed, it will propagate by separating the portions of the continuous region. At
shock, the correct generalized solution satisfies the Rankine–Hugoniot (RH) jump
conditions. Let x = X(t) be the shock location in the x − t plane propagating in
to the medium where ρ = ρ0(x), u ≡ 0 and p = p0 = constant. If the shock speed
V = dX/dt is very large compared with the sound speed a0 =

√

γp0/ρ0(x), and
the medium behind the shock is given by the solution (13) or (14), then at the
shock front the following relations hold [1]:

ρ =
γ + 1

γ − 1
ρ0(X(t)), u =

2

γ + 1
V, p =

2

γ + 1
ρ0(X(t))V 2. (18)

I. Let the medium behind the shock be represented by the solution (13). Then
equations (18) imply

R1(ηs)X(t)

[

α1 + (m + 1)α2

α3 − α2

]

(α2t + α4)
−





α1 + (m + 1)α3

(α3 − α2)





=
γ + 1

γ − 1
ρ0(X(t)),

(19)

α2X(t)

α2t + α4
=

2

γ + 1
V, C (α2t + α4)

−(m+1)γ
=

2

γ + 1
ρ0(X(t))V 2,

where C is an arbitrary constant and ηs = (α3 − α2)
−1log

(

X(t) (α2t + α4)
−1

)

.

From (19)2, the shock speed V (t) can be written as V = ((γ + 1)α2/2) X(t)/
(α2t + α4), implying thereby that

X(t) = X0 (T/T0)
(γ+1)/2

, (20)

where T = α2t + α4 and T0 = α2t0 + α4, with X0 and t0 being related with the
position and time of the shock. Thus, on using (20) in equations (19)1,3, we find
that R1(ηs) and ρ(X(t)) must have the following forms:

R1(ηs) =
2CR̂10

(γ − 1)α2
2

(

T

T0

)

(1−γ)[α1−(m+3)α2+2(m+2)α3]

2(α3−α2)

,

ρ0(X(t)) = ρc (X(t)/X0)
2

γ+1 (1−2γ−mγ)
, (21)
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where ρc =
2CT 2−mγ−γ

0

(γ + 1)(α2)2(X0)2
and R̂10 = X−B1

0 TB2
0 with

B1 =
α1 + (m − 1)α2 + 2α3

α3 − α2
,

B2 =
α1 − (2 − mγ − γ)α2 + (3 − mγ − γ + m)α3

α3 − α2
.

In view of (20), ηs can be written as

ηs =
1

α3 − α2
log

(

X0

T0

(

T

T0

)

γ−1
2

)

,

and hence R1(ηs) = R10 exp [−α1 + (m + 3)α2 − 2(m + 2)α3] ηs, where R10 =
2C

(γ − 1)(α2)2
X

2(m + 1)
0 T

−(m+1)(γ+1)
0 . Thus, for a shock, X(t) = X0(T/T0)

(γ+1)/2,

propagating into a nonuniform region ρ(x) = ρc(x/X0)
2

γ+1 (1−2γ−mγ), u = 0,
p = p0, the downstream flow given by (13) takes the form

ρ =
γ + 1

γ − 1
ρc

(

x

X0

)

−2(m+2) (

T

T0

)m+3

, u =
α2x

T
, (22)

p =
γ + 1

2
ρc

(

α2X0

T0

)2 (

T

T0

)

−(m+1)γ

.

II. Similarly, when the medium behind a shock is represented by (14), conditions
(18) imply that the speed of such a shock is given by

X(t) = X0

(

α2t + α4

α2t0 + α4

)δ

, (23)

where δ = (γ + 1)/Γ, and the following conditions for R1(ηs) and ρ0(x) must hold:

A3

∫

R1(ηs)e
A4ηsdηs + A5R1(ηs) (α2t + α4)

A6 − C = 0,

ρ0(X(t)) =
γ − 1

γ + 1
XA1

0 (α2t0 + α4)
δA1−A2

(

α2t + α4

α2t0 + α4

)δA1−A2

,

where A3 is same as in (14), ηs = Γ
Γα3−2α2

ln
(

X0 (α2t + α4)
γ−1
Γ

)

and

A5 =
2(γ − 1)(α2)

2X2+A1
0

Γ2 (α2t0 + α4)
(2+A1)(δA1−A2)

, A6 = δA1 − A2 +
2(m + γ)

Γ
.

The solution of the above integral equation exits when C = 0, and it can be
expressed as

R1(η) ∝ exp {−(α1 + (1 − m)α3 + (4m/Γ)α2)η}. (24)
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Thus, in view of (24), equations (14), which describe the flow downstream from
the shock x = X(t), yield

ρ =
γ + 1

γ − 1
ρc

(

x

X0

)(m−1) (

α2t + α4

α2t0 + α4

)

−4m/Γ

, u =
2α2

Γ

x

(α2t + α4)
,

p =

(

2(γ + 1)ρcα2X0

Γ2(α2t0 + α4)

)2 (

x

X0

)(m+1) (

α2t + α4

α2t0 + α4

)

−2(m+1)(γ+1)/Γ

, (25)

ρ0(X(t)) = ρc

(

α2t + α4

α2t0 + α4

)

mγ−3m−γ−1
Γ

, X(t) = X0

(

α2t + α4

α2t0 + α4

)(γ+1)/Γ

,

where Γ is same as in (14). It is interesting to note that the above solution (25) is
exactly the same as the one obtained in the literature, using different approaches,
for describing a blast wave (strong shock) propagating into a medium the density
of which varies according to a power law of the distance measured from the source
of explosion (see, Refs. [16], [17] and Chapter 2 in [18]).
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