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plane wall in micropolar fluid
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Abstract. The Stokes axisymmetrical flow caused by a sphere translating in a micropolar fluid

perpendicular to a plane wall at an arbitrary position from the wall is presented using a combined
analytical-numerical method. A linear slip, Basset type, boundary condition on the surface
of the sphere has been used. To solve the Stokes equations for the fluid velocity field and

the microrotation vector, a general solution is constructed from fundamental solutions in both
cylindrical, and spherical coordinate systems. Boundary conditions are satisfied first at the

plane wall by the Fourier transforms and then on the sphere surface by the collocation method.
The drag acting on the sphere is evaluated with good convergence. Numerical results for the
hydrodynamic drag force and wall effect with respect to the micropolarity, slip parameters and

the separation distance parameter between the sphere and the wall are presented both in tabular
and graphical forms. Comparisons are made between the classical fluid and micropolar fluid.
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1. Introduction

In recent years there exist several new developments in fluid mechanics that are
concerned with structures within fluid, fluids which the classical theory has proved
to be inadequate to describe their behavior. The simplest theory considered for
structured fluids, the theory for micropolar fluid introduced by Eringen [1]. In
micropolar fluids, rigid particles contained in a small volume element can rotate
about the center of the volume element described by the microrotation vector. This
local rotation of the particles is in addition to the usual rigid body motion of the
entire volume element. In micropolar fluid theory, the laws of classical continuum
mechanics are augmented with additional equations that account for conservation
of microinertia moments and balance of first stress moments that arise due to
consideration of the microstructure in a material. Thus, new kinematic variables,
e.g., the gyration tensor and microinertia moment tensor, and the concepts of body
moments, stress moments, and microstress are combined with classical continuum
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mechanics. Extensive reviews of the theory and applications can be found in the
recent books by ÃLukaszewicz [2] and Eringen [3]

When one tries to solve the Navier–Stokes equation, it is usually assumed that
no slippage arises at the solid-fluid interface. For almost a hundred years scientists
and engineers have applied the no-slip boundary condition to fluid flow over a solid
surface. While the well accepted no-slip boundary condition has been validated
experimentally for a number of macroscopic flows, it remains an assumption not
based on physical principles. In fact, nearly two hundred years ago Navier [4]
proposed a general boundary condition that permits the possibility of fluid slip at
a solid boundary. This boundary condition assumes that the tangential velocity
of the fluid relative to the solid at a point on its surface is proportional to the
tangential stress acting at that point. Basset [5] derived the expressions for the
force and torque exerted by the fluid on a translating and rotating rigid sphere with
a slip-flow boundary condition at its surface (e.g., a settling aerosol sphere). Neto
et al. [6] summarized a review of experimental studies regarding the phenomenon
of slip of Newtonian liquids at solid interfaces, discussed the influence of various
factors on the results and proposed new lines of research.

The practical interest in the hydrodynamic interaction between small particles
and a wall are important for various applications; e.g., in chemical engineering,
for separation processes and filtration, in civil engineering for transport of sedi-
ments, in biology for motion of cells in blood vessels. The wall effect on the rate
of settling a spherical particle is, in many ways, similar to the effect of a sec-
ond particle. In order to treat the behavior of a group of particles settling in a
container, it is necessary firstly to establish the effect of walls on the particle sep-
arately. The interaction of a particle with walls will depend on the particle shape,
orientation, and position as well as the geometry of the containing walls. For pre-
scribed translational and angular particle velocities, the macroscopic parameters
of primary physical interest are the hydrodynamic forces and torques exerted by
the fluid on the particles. Once these parameters are known for a given particle
array, one may immediately solve the inverse problem of determining the state
of motion of the particle from the known gravitational body forces and torques
acting on them. Wall effects on the motion of a solid particle were extensively
studied over the past three decades. Classical solutions of the Stokes equations
for the flow due to a sphere which translates along or rotates around an axis or-
thogonal to smooth wall or parallel to the smooth wall, are investigated by many
authors [7, 8, 9, 10, 11, 12, 13, 14].

Many biological and industrial processes involve fluid flows in which viscos-
ity is large and/or particle lengths are small. Practical observation shows that,
the Reynolds number expresses the relative magnitude of inertia forces to viscous
forces, around a small particle moving close to a wall is assumed to be sufficiently
small and therefore the Stokesian approximation may be applied. Maude [7] and
Brenner [8] analyzed the fluid motion generated by a no-slip sphere moving per-
pendicular to a solid plane surface or to a free-surface plane. These problems are
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investigated in the literature by many methods. Happel and Brenner [15] used
the reflection method and obtained analytic expression for the drag in a power
series of the ratio of the sphere radius to the distance of the sphere center to the
wall. Brenner [8], apply the bipolar coordinate method. The advantage of this
method enables one to describe the particle surface and the boundary wall very
conveniently at any separation distance except at the point of contact. The drag
force is determined under the condition of no-slip. Jeffrey [16] treated the Stokes
flow between two converging spheres, using lubrication analysis which is appro-
priate in the case of small spacing between the particle and the boundary. Kohr
and Pop [17] discussed the implementation of the singularity method for Stokes
flow past or due to the motion of a solid sphere above a plane wall. The boundary
collocation method has been used by many authors to solve flow problems in vis-
cous fluids. The collocation series solution technique is developed by Gluckman
et al. [18] for unbounded, axisymmetric multispherical Stokes flow, and later it is
extended to bounded flows by Leichtberg et al. [19] for coaxial chains of spheres
in tubes. A review of application of boundary collocation method in mechanics of
continuous media up to late eighties can be found in an article by Kolodziej [20].
Ganatos et al. [21] used a combined analytical-numerical solution to evaluate the
drag on a sphere moving perpendicular between two plane parallel boundaries un-
der no-slip condition for viscous flows. Keh and Hsu [22] employed the boundary
collocation technique to examine the photophoretic motion of an aerosol sphere
perpendicular to an infinite plane wall. The parallel motion of a spherical droplet
in a quiescent immiscible fluid at an arbitrary position between two parallel plane
walls was studied by Shapira and Haber [23] using the method of reflections and
by Keh and Chen [24] using a boundary collocation technique.

The slip boundary condition has been studied by many authors in the literature.
Chen and Keh [25] examined the creeping motion of a rigid sphere normal to an
infinite plane wall, where the fluid may slip at the solid surfaces. Recently, the
slow translational and rotational motions of a slip sphere along the symmetric axis
of a circular cylindrical pore was considered by Lu and Lee [26] and parallel to
two plane walls at an arbitrary position between them have been investigated by
Chen and Keh [27] with the use of the boundary collocation method. Numerical
results for the hydrodynamic drag force and torque acting on the particle were
obtained for various cases. Chang and Keh [28] studied the slow translational
motion of a spherical fluid or solid particle with a slip-flow surface in a viscous
fluid perpendicular to two parallel plane walls at an arbitrary position between
them.

All results cited above concern viscous fluids. For micropolar fluids, Kucaba-
Piȩtal [29] used the traditional no-slip boundary condition on the surfaces of the
sphere and plane wall to study the problem of a sphere moving perpendicular to
a smooth plane wall. The slip-flow boundary condition is generally applicable in
the micropolar flows. There are only few authors working with the slip boundary
condition in microppolar fluids, e.g., Faltas and Saad [30], who considered the
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axisymmetric motion of a translating sphere with slip in an unbounded incom-
pressible micropolar fluid at rest at infinity.

In micropolar fluids there are six Reynolds’ numbers: three for translational
viscosities and three for rotational viscosities. Thus for small Reynolds numbers
the inertia terms of the field equations can be neglected. Therefore, the equations
of motion describing this flow are the Stokes equations for micropolar fluid.

This paper presents the solution of the micropolar fluid flow due to translational
motion of a sphere moving perpendicular to a plane wall. A linear slip boundary
condition on the surface of the sphere is used. A combined analytical-numerical
solution procedure is used. The drag on the translating sphere is evaluated. The
effects of the variation of the micropolarity, slip and separation distance parameters
on the drag as revealed by numerical studies is shown through figures. Wall effects
are then examined.

2. Field equations

The equations governing the steady flow of an incompressible micropolar fluid
under Stokesian assumption in the absence of body force and body couples are
given by

∇ · ~q = 0, (2.1)

∇p + (µ + k)∇∧∇ ∧ ~q − k∇∧ ~ν = 0, (2.2)

k∇∧ ~q − 2 k ~ν − γ ∇∧∇ ∧ ~ν + (α + β + γ)∇∇ · ~ν = 0. (2.3)

where ~q, ~ν and p are velocity vector, microrotation vector and pressure, respec-
tively, µ is the viscosity coefficient of the classical viscous fluid, and k, α, β and γ
are the new viscosity coefficients for micropolar fluids.

The equations for the stress tensor tij and the couple stress tensor mij are
defined by the constitutive equations

tij = −p δij + µ (qi,j + qj,i) + k (qj,i − ǫijm νm), (2.4)

mij = α νm,m δij + β νi,j + γ νj,i, (2.5)

where the comma denotes the partial differentiation, δij and ǫijm are the Kronecker
delta and the alternating tensor, respectively.

3. Statement of the problem

Let us consider a quasi-steady flow of an incompressible micropolar fluid due to a
translating sphere, of radius a, at a constant velocity Uz perpendicular to imper-
meable plane wall, as shown in figure 1. The absence of explicit time dependence
classifies the flow of an incompressible fluid as a quasi-steady flow, meaning in
general that the instantaneous structure of the flow depends on the instantaneous
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boundary geometry and boundary conditions, and is independent of the motion
at previous times. Thus, if all boundaries are stationary at a particular time, the
fluid will also be stationary at that time, independent of the history of fluid and
boundary motion.

A linear slip boundary condition, originally introduced by Basset [5] that the
tangential velocity of fluid relative to the solid at a point on its surface is propor-
tional to the tangential stress acting at the point, on the surface of the sphere has
been used. The equality of the normal components of the velocity at the bound-
ary arises from purely kinematical considerations when there is no mass transfer
across the boundary (kinematic condition). The distance of the sphere center to
the wall is b. In order to conveniently describe the surfaces of the sphere and plane,
we choose the sphere center as the origin and use both the spherical coordinates
(r, θ, φ) and the cylindrical coordinates (ρ, φ, z). The relations between the two
coordinate systems are

r = (ρ2 + z2)1/2, θ = cos−1 z

(ρ2 + z2)1/2
. (3.1)

The flow generated is axially symmetric and all the flow functions are independent
of φ. We can choose the velocity and microrotation vectors as

Figure 1. Schematic representation of a sphere translating perpendicularly to a plane wall.

~q = qρ(ρ, z)~eρ + qz(ρ, z)~ez, (3.2)

~ν = νφ(ρ, z)~eφ, (3.3)
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the stream function ψ(ρ, z) can be used, and the axial and radial velocity compo-
nents expressed as

qρ =
1

ρ

∂ψ

∂z
, qz = − 1

ρ

∂ψ

∂ρ
. (3.4)

Since the speed Uz is supposed to be small, therefore the assumption of the Stoke-
sian flow may be used, the problem is then governed by the following equations

0 = −∂p

∂ρ
− k

ρ

∂

∂z
(ρ νφ) +

µ + k

ρ

∂

∂z
(L1ψ), (3.5)

0 = −∂p

∂z
+

k

ρ

∂

∂ρ
(ρ νφ) − µ + k

ρ

∂

∂ρ
(L1ψ), (3.6)

2 ρ νφ = L1ψ +
γ

k
L1(ρ νφ), (3.7)

where L1 is the axisymmetric Stokesian operator

L1 =
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

∂2

∂z2
. (3.8)

After elimination of the pressure and the microrotation vector component νφ from
equations (3.5)–(3.7), we get

L2
1

(

L1 − ℓ2
)

ψ = 0, (3.9)

with the microrotation being given by

νφ =
1

2 ρ

(

L1ψ +
2µ + k

k ℓ2
L2

1ψ
)

, (3.10)

where ℓ2 = k (2µ + k)/(γ (µ + k)).
To solve equation (3.9), which is equivalent to the Stokes equations of microp-

olar fluid equations (3.5)–(3.7), the boundary conditions have to be specified.
At a surface of the sphere, we shall assume slip and use the most likely hypoth-

esis [5, 15]. In our case this hypothesis takes the form

β1 (~q − Uz ~ez) = (I − ~n~n) · (~n · t), (3.11)

where I is the unit dyadic, ~n is the unit normal vector at the particle surface
pointing into the fluid and t is the stress tensor (dyadic), the constant, β1, termed
as the coefficient of sliding friction. This coefficient is a measure of the degree of
tangential slip existing between the fluid and solid at its surface. It is assumed
to depend only on the nature of the fluid and solid surface. In the limiting case
of β1 = 0, there is a perfect slip at the surface of the sphere and the solid sphere
acts like a spherical gas bubble, while the standard no-slip boundary condition for
solids is obtained by letting β1 → ∞.

According to the above remarks the slip boundary condition in cylindrical
coordinates and the condition for the microrotation component on the sphere
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surface, r = a, can be expressed as

β1 qρ = (1 − n2
ρ)nρ tρρ − nρ n2

z tzz + nz

(

(1 − n2
ρ) tzρ − n2

ρ tρz

)

, (3.12)

β1 (qz − Uz) = (1 − n2
z)nz tzz − n2

ρ nz tρρ + nρ

(

(1 − n2
z) tρz − n2

z tzρ

)

, (3.13)

νφ = 0, (3.14)

where nρ and nz are the local ρ and z components of the unit normal vector ~n.
The no-slip boundary conditions, vanishing of normal velocity qz, and micro-

rotation νφ along the wall, z = −b, are given by

qρ = 0, (3.15)

qz = 0, (3.16)

νφ = 0, (3.17)

the velocity components as well as the microrotation have to vanish, as r → ∞.

4. Method of solution

The solution of (3.9) can be expressed in the form

ψ = ψs + ψw, (4.1)

where the part ψs represents the general solution of the Stokes equation in the
spherical coordinates. It can be expressed as an infinite series, and the part ψw

represents the general solution of the Stokes equation in the cylindrical coordinates
regular in the flow field and is given by an integral.

Firstly, we should find the general solutions of the Stokes equation for the
micropolar fluid in the cylindrical and spherical coordinates. The stream function
ψ can be expressed in the form ψ = ψ(1) + ψ(2), where

L2
1ψ

(1) = 0, (L1 − ℓ2)ψ(2) = 0. (4.2)

The general solution regular in the flow field for the stream function in the spherical
coordinates is given by

ψs =

∞
∑

n=2

(

An r−n+1 + Bn r−n+3 +
√

r Cn Kn− 1

2

(r ℓ)
)

In(ζ), (4.3)

where An, Bn and Cn are unknown constants which will be determined using the
boundary conditions, Km is modified Bessel function of order m of the second
kind, ζ = cos θ and In is the Gegenbauer polynomial of the first kind of order n
and degree −1/2.

The general solution regular in the flow field for the stream function in the
cylindrical coordinates, given by the Fourier-Bessel integral

ψw =

∫ ∞

0

(

A(τ) e−τz + τ z B(τ) e−τz + C(τ) e−ξz
)

ρ J1(τ ρ) dτ, (4.4)
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where A(τ), B(τ), C(τ) are unknown functions of the separation variable τ and
J1 is the Bessel function of the first kind of order unity and ξ = (τ2 + ℓ2)1/2. In
the expressions (4.3) and (4.4) and in all subsequent expressions in this paper r
is nondimensional with respect to the sphere radius a, i.e., r is r/a and also the
parameters ρ, z, ℓ, τ, ξ are ρ/a, z/a, ℓ a, τ a, ξ a, respectively.

Then, the microrotation component can be written as

a3 νφ = (1 − ζ2)−1/2
∞
∑

n=2

(

(3 − 2n)
Bn

rn
+

(µ + k) ℓ2

k
√

r
Cn Kn− 1

2

(r ℓ)
)

In(ζ)

−
∫ ∞

0

(

τ2 B(τ) e−τz − (µ + k) ℓ2

k
C(τ) e−ξz

)

J1(τ ρ) dτ. (4.5)

The corresponding pressure field may be obtained by integration of the Stokes flow
equations (3.5) and (3.6), then

a3 p = −(2µ+k)
[

∞
∑

n=2

(2n − 3)Bn Pn−1(ζ)

n rn
+

∫ ∞

0

τ2 B(τ) e−τz J0(τ ρ) dτ
]

, (4.6)

where a constant of integration has been neglected without loss of generality.
The expressions for the axial and radial components of velocity qρ and qz, and

the microrotation component νφ are given by

a2 qρ =

∞
∑

n=2

[An A1n(ρ, z) + Bn B1n(ρ, z) + Cn C1n(ρ, z)]

+

∫ ∞

0

L(τ, z) τ J1(τ ρ) dτ, (4.7)

a2 qz =
∞
∑

n=2

[An A2n(ρ, z) + Bn B2n(ρ, z) + Cn C2n(ρ, z)]

+

∫ ∞

0

M(τ, z) τ J0(τ ρ) dτ, (4.8)

a3 νφ =
∞
∑

n=2

[Bn B3n(ρ, z) + Cn C3n(ρ, z)]

+

∫ ∞

0

N(τ, z) τ J1(τ ρ) dτ, (4.9)

where the functions Ain(ρ, z), Bin(ρ, z), Cin(ρ, z) with i = 1, 2, 3 and L(τ, z) −
N(τ, z) are listed in Appendix A.
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The expressions for the stress components are therefore as follows

a3 tρρ =
∞
∑

n=2

[An α1n(ρ, z) + Bn β1n(ρ, z) + Cn γ1n(ρ, z)]

+

∫ ∞

0

(

R(τ, z) τ J0(τ ρ) + S(τ, z) τ J1(τ ρ)
)

dτ, (4.10)

a3 tzz =
∞
∑

n=2

[An α2n(ρ, z) + Bn β2n(ρ, z) + Cn γ2n(ρ, z)]

+

∫ ∞

0

T (τ, z) τ J0(τ ρ) dτ, (4.11)

a3 tρz =

∞
∑

n=2

[An α3n(ρ, z) + Bn β3n(ρ, z) + Cn γ3n(ρ, z)]

+

∫ ∞

0

Q(τ, z) τ J1(τ ρ) dτ, (4.12)

a3 tzρ =

∞
∑

n=2

[An α4n(ρ, z) + Bn β4n(ρ, z) + Cn γ4n(ρ, z)]

+

∫ ∞

0

W (τ, z) τ J1(τ ρ) dτ, (4.13)

where the functions αjn(ρ, z), βjn(ρ, z), γjn(ρ, z) with j = 1, 2, 3, 4 and R(τ, z) −
W (τ, z) are also listed in Appendix A.

The boundary conditions (3.15)–(3.17) can be easily inverted and integration
can be performed using results of Hankel transforms [31]. It is

L(τ, zp)=−
∞
∫

0

t
∞
∑

n=2

[An A1n(t, zp) + Bn B1n(t, zp) + Cn C1n(t, zp)]J1(τ t) dt, (4.14)

M(τ, zp)=−
∞
∫

0

t
∞
∑

n=2

[An A2n(t, zp) + Bn B2n(t, zp) + Cn C2n(t, zp)]J0(τ t) dt, (4.15)

N(τ, zp)=−
∞
∫

0

t
∞
∑

n=2

[Bn B3n(t, zp) + Cn C3n(t, zp)]J1(τ t) dt, (4.16)

where each of the above integral relations is applied at a plane wall, zp = −b,
where b is nondimensional, i.e., b/a.
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The expressions (4.14)–(4.16) can be now rewritten as

L(τ, zp) =
∞
∑

n=2

[An e1n(τ, zp) + Bn f1n(τ, zp) + Cn h1n(τ, zp)], (4.17)

M(τ, zp) =

∞
∑

n=2

[An e2n(τ, zp) + Bn f2n(τ, zp) + Cn h2n(τ, zp)], (4.18)

N(τ, zp) =

∞
∑

n=2

[Bn f3n(τ, zp) + Cn h3n(τ, zp)], (4.19)

where the expressions for ein(τ, zp), fin(τ, zp), hin(τ, zp) are given in Appendix B.
Now, we have to determine the functions A(τ), B(τ) and C(τ) which appear

in the above equations. The boundary conditions on the wall are used, therefore

A(τ) =
1

∆

[

ℓ2 (µ + k)
(

τ bL(τ, zp) − τ bM(τ, zp) − M(τ, zp)
)

+ k τ
(

b (ξ − τ)N(τ, zp) − τ L(τ, zp) + ξ M(τ, zp) − N(τ, zp)
)]

e−τb, (4.20)

B(τ) =
1

∆

[

ℓ2 (µ + k)
(

L(τ, zp) − M(τ, zp)
)

+ k (ξ − τ)N(τ, zp)
]

e−τb, (4.21)

C(τ) =
k τ

∆

[

τ L(τ, zp) − τ M(τ, zp) + N(τ, zp)
]

e−ξb, (4.22)

where ∆ = ℓ2 (µ + k) + k τ (τ − ξ).
To determine the unknown constants An, Bn and Cn, we apply the boundary

conditions (3.12)–(3.14) at the sphere surface to these velocity and microrotation
components to give

0 =

∞
∑

n=2

[

An

(

A∗
1n(ρ, z) + a1n(ρ, z)

)

+ Bn

(

B∗
1n(ρ, z) + b1n(ρ, z)

)

+Cn

(

C∗
1n(ρ, z) + c1n(ρ, z)

)]

, (4.23)

Uz a2 =

∞
∑

n=2

[

An

(

A∗
2n(ρ, z) + a2n(ρ, z)

)

+ Bn

(

B∗
2n(ρ, z) + b2n(ρ, z)

)

+Cn

(

C∗
2n(ρ, z) + c2n(ρ, z)

)]

, (4.24)

0 =
∞
∑

n=2

[

An a3n(ρ, z) + Bn

(

B3n(ρ, z) + b3n(ρ, z)
)

+Cn

(

C3n(ρ, z) + c3n(ρ, z)
)]

, (4.25)

where the expressions for ain(ρ, z), bin(ρ, z) and cin(ρ, z) are listed in Appendix
B, these expressions containing several integrals, which are very complicated to
evaluate them analytically, so that they may be calculated numerically.

To satisfy the boundary conditions (4.23)–(4.25) exactly along the surface of the
sphere, the solution of the entire infinite array of unknown constants An, Bn and
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Cn is required. However, the collocation method [21, 22, 29] satisfies the boundary
conditions at a finite number of discrete points on the half-circular generating
arc of the sphere (from θ = 0 to π) and truncates the infinite series in (4.23)–
(4.25) into finite ones. If the spherical boundary is approximated by satisfying the
conditions of (4.23)–(4.25) at M discrete points (values of θ) on its generating arc,
then infinite series are truncated after Mth terms, resulting in a system of 3M
simultaneous linear algebraic equations in the truncated form of equations (4.23)–
(4.25). This matrix equation can be numerically solved to yield the 3M unknown
constants An, Bn and Cn required in the truncated equations for the flow field.
The accuracy of the boundary-collocation/truncation method can be improved to
any degree by taking a sufficiently large value of M . Naturally, the truncation
error vanishes as M → ∞, and the overall accuracy of the solution depends only
on the numerical integration required in evaluating the matrix elements.

The hydrodynamic drag force exerted by the fluid on the particle can be de-
termined by using the simple formula derived by authors [32, 33]. Therefore,

Fz = 4π (2µ + k) lim
r→∞

ψ

r a sin2 θ
, (4.26)

=
2π (2µ + k)

a
B2. (4.27)

For comparison purposes we note that for the case where the wall is absent (b →
∞), so that the fluid is infinite. The formula for the drag on a translating sphere
with slip in a micropolar fluid at rest at infinity is obtained by Faltas and Saad [30]
as

F∞
z = − 6π aUz (2µ + k) (µ + k) (1 + ℓ) (1 + λ1)

(µ + k) (2λ1 + 3) (1 + ℓ) − k (1 + λ1)
, (4.28)

where λ1 = β1 a/(2µ + k).
Having regard to (4.28) we write (4.27) in the form

Fz = − 6π aUz (2µ + k) (µ + k) (1 + ℓ) (1 + λ1)

(µ + k) (2λ1 + 3) (1 + ℓ) − k (1 + λ1)
K, (4.29)

where the wall correction factor K is defined by

K =
Drag in the presence of the wall

Drag in an infinite medium
.

When specifying the points along the semi-circular generating arc of the sphere
where the boundary conditions are to be exactly satisfied, the first point that
should be chosen is θ = π/2, since this point defines the projected area of the
sphere normal to the direction of motion. In addition, the points θ = 0 and
θ = π are also important because they control the gap between the sphere and the
plane. However, an examination of the systems of linear algebraic equations for
the unknown constants An, Bn and Cn shows that the coefficient matrix becomes
singular if these points are used. To overcome the difficulty of singularity and to
preserve the geometric symmetry of the spherical boundary about the equatorial
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plane θ = π/2, points at θ = ε, π/2∓ε, π−ε are taken to be four basic collocation
points. Additional points along the boundary are selected as mirror-image pairs
about the plane θ = π/2 to divide the θ coordinate into equal parts. The optimum
value of ε in this work is found to be 0.01◦, with which the numerical results of the
hydrodynamic drag force acting on the sphere can converge satisfactorily. All of
these results were obtained by choosing the number of collocation points (M = 20)
to show their convergence.

Figure 2. Variation of the drag coefficient with b for different values of k/µ for β1 a/µ = 10.

Figures 2 and 3 indicate the variation of the nondimensional drag coefficient
−Fz/µ aUz with the separation distance parameter b between the particle and
the walls, for different values of the micropolarity coefficient k/µ and the sliding
friction parameter β1 a/µ when the parameter γ/µ a2 = 0.3. Obviously, the value
of drag coefficient become infinite when the separation distance between the sphere
and a plane wall vanishes (b = 1), where the tangential stresses, normal velocity
and microrotation vanish, and tends to a constant value as b is greater than unity
and there is an increase in the values of the drag coefficient when it is compared
with the viscous fluid. As the micropolarity coefficient k/µ increases the drag
coefficient increases and it can be seen that the drag coefficient is to be finite
in both the perfect slip and nonslip limits in the entire range of the separation
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Figure 3. Variation of the drag coefficient with b for different values of β1 a/µ for k/µ = 2.

distance parameter. In Table 1, numerical values of the wall correction factor
K are presented for different values of b, k/µ with various values of β1 a/µ. As
expected, K = 1 as b → ∞ and will become infinite in the limit b = 1 for any
given values of β1 a/µ and k/µ.

5. Conclusion

In this paper, we have presented a combined analytical-numerical solution proce-
dure for the Stokes flow caused by a sphere translating with slip axisymmetrically
in a micropolar fluid perpendicular to a plane wall at an arbitrary position from the
wall. The result for the drag force acting on the sphere by the fluid indicates that
the solution procedure converges rapidly and accurate solutions can be obtained
for various cases of the micropolarity, separation distance and slip parameters.
Analysis shows that the drag force and wall correction factor is finite for all val-
ues of the slip parameter, in addition, they are increasing monotonically with an
increase in the slip parameter but increasing and decreasing as the micropolarity
parameter increasing, respectively. On the other hand, they become infinite when
the sphere touches a plane wall and the wall correction factor tends to unity as
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the sphere translating far away from the wall for any given values of the sliding
friction and micropolarity parameters. However, the wall correction factor of a
micropolar fluid is smaller than a classical fluid.

Table 1. Wall correction factor for a sphere translating with slip perpendicular to a plane wall
for various values of the micropolarity, separation distance and slip parameters.

β1a/µ b K

k/µ = 0 k/µ = 1 k/µ = 3 k/µ = 6

0 1.2 3.4742 2.1246 2.0982 2.0694
1.5 2.1325 1.8278 1.8080 1.7897
5 1.1968 1.1816 1.1786 1.1765
10 1.0911 1.0839 1.0827 1.0820

1 1.2 3.7290 2.1391 2.1047 2.0727
1.5 2.2942 1.8517 1.8214 1.7977
5 1.2020 1.1950 1.1869 1.1819
10 1.0920 1.0909 1.0872 1.0848

10 1.2 4.9010 3.2195 3.1578 3.1069
1.5 2.8126 2.2195 2.1578 2.1069
5 1.2582 1.2350 1.2208 1.2090
10 1.1155 1.1112 1.1046 1.0990

∞ 1.2 6.3434 5.4587 5.3297 4.9967
1.5 3.2054 2.9769 2.8203 2.6709
5 1.2851 1.2612 1.2550 1.2509
10 1.1262 1.1242 1.1218 1.1202
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Appendix A

The functions appearing in equations (4.7)–(4.13) are defined as

A1n(ρ, z) = −ρ−1 (n + 1) (ρ2 + z2)−n/2
In+1(ω), (A.1)

B1n(ρ, z) = −ρ−1 (ρ2 + z2)−(n−2)/2
(

(n + 1)In+1(ω) − 2ω In(ω)
)

, (A.2)

C1n(ρ, z) = −ρ−1 (ρ2 + z2)−1/4
(

(n + 1)Kn− 1

2

(χ)In+1(ω)

+ω χKn− 3

2

(χ)In(ω)
)

, (A.3)

A2n(ρ, z) = −(ρ2 + z2)−(n+1)/2 Pn(ω), (A.4)

B2n(ρ, z) = −(ρ2 + z2)−(n−1)/2
(

2In(ω) + Pn(ω)
)

, (A.5)

C2n(ρ, z) = −(ρ2 + z2)−3/4
(

Kn− 1

2

(χ)Pn(ω) − χKn− 3

2

(χ)In(ω)
)

, (A.6)

B3n(ρ, z) = ρ−1 (3 − 2n) (ρ2 + z2)−(n−1)/2
In(ω), (A.7)

C3n(ρ, z) = ρ−1 k−1 χ2 (µ + k) (ρ2 + z2)−3/4 Kn− 1

2

(χ)In(ω), (A.8)

L(τ, z) = −A(τ) e−τz + B(τ) (1 − τ z) e−τz − ξ τ−1 C(τ) e−ξz, (A.9)

M(τ, z) = −A(τ) e−τz − B(τ) τ z e−τz − C(τ) e−ξz, (A.10)

N(τ, z) = −τ B(τ) e−τz + ℓ2 k−1 τ−1 (µ + k)C(τ) e−ξz, (A.11)

α1n(ρ, z) = ρ−2 (2µ + k) (ρ2 + z2)−(n+1)/2
[

(nρ2 + ρ2 + z2)Pn−1(ω)

− (2nρ2 + 2 ρ2 + z2)ω Pn(ω)
]

, (A.12)

β1n(ρ, z) = ρ−2 (2µ + k) (n − 1) (ρ2 + z2)−n/2

·
[(

z2 − (n − 2) (2nρ2 + z2)
)

ω Pn(ω)

+
(

(n − 3) [(n + 3) ρ2 + z2] + (7 + 3n−1) ρ2
)

Pn−1(ω)
]

, (A.13)

γ1n(ρ, z) = ρ−2 (2µ + k) (n − 1)−1 (ρ2 + z2)−5/4
[(

[ω2 ρ2 χ2

+(n − 1) (nρ2 + z2)]Kn− 1

2

(χ)

+ [z2 + (2 − n) ρ2 + (2n − 3) (ρ2 + z2)−1 ρ4]χKn− 3

2

(χ)
)

Pn−1(ω)

−
(

[χ2 ρ2 + (n − 1) (2nρ2 + 2 ρ2 + z2)]Kn− 1

2

(χ)

+ (z2 + 2 ρ2)χKn− 3

2

(χ)
)

ω Pn−1(ω)
]

, (A.14)

α2n(ρ, z) = (2µ + k) (ρ2 + z2)−(n+2)/2
[

(2n + 1)ω Pn(ω) − nPn−1(ω)
]

, (A.15)

β2n(ρ, z) = (2µ + k) (ρ2 + z2)−n/2
[

(2n − 3)ω Pn(ω)

−(1 − n−1) (n − 3)Pn−1(ω)
]

, (A.16)

γ2n(ρ, z) = (2µ + k) (n − 1)−1 (ρ2 + z2)−5/4
[(

[χ2 + (2n + 1) (n − 1)]Kn− 1

2

(χ)

+χKn− 3

2

(χ)
)

ω Pn(ω) −
(

[ω2 χ2 + n (n − 1)]Kn− 1

2

(χ)

+ [2 − n + ρ2 (2n − 3) (z2 + 2 ρ2)−1]χKn− 3

2

(χ)
)

Pn−1(ω)
]

, (A.17)

α3n(ρ, z) = ρ−1 (2µ + k) (ρ2 + z2)−(n+1)/2
[

nω Pn−1(ω)

+ (nρ2 + ρ2 − n z2) (ρ2 + z2)−1 Pn(ω)
]

= α4n(ρ, z), (A.18)

β3n(ρ, z) = ρ−1 (2µ + k) (n − 1)−1 (ρ2 + z2)−(1+n)/2

·
[

(n2 − 3n + 3) (ρ2 + z2)ω Pn−1(ω)

+ [z2 (n − 3) + n (n − 2) (ρ2 − z2)]Pn(ω)
]

= β4n(ρ, z), (A.19)
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γ3n(ρ, z) = ρ−1 (2µ + k) (n − 1)−1 (ρ2 + z2)−7/4

·
[(

[z2 χ2 + n (n − 1) (ρ2 + z2)]Kn− 1

2

(χ)

+ ρ2 (2n − 3)χKn− 3

2

(χ)
)

ω Pn−1(ω)
]

+
(

ρ2 χKn− 3

2

(χ)

− [z2 χ2 + (1 − n) (nρ2 + ρ2 − n z2)]Kn− 1

2

(χ)
)

Pn(ω)
]

, (A.20)

γ4n(ρ, z) = ρ−1 (2µ + k) (n − 1)−1 (ρ2 + z2)−7/4

·
[(

[n (n − 1) (ρ2 + z2) − ρ2 χ2]Kn− 1

2

(χ)

+ ρ2 (2n − 3)χKn− 3

2

(χ)
)

ω Pn−1(ω)
]

+
(

ρ2 χKn− 3

2

(χ)

+ [ρ2 χ2 − (1 − n) (nρ2 + ρ2 − n z2)]Kn− 1

2

(χ)
)

Pn(ω)
]

, (A.21)

R(τ, z) = −(2µ + k)
(

τA(τ)e−τz − τB(τ)(2 − τz)e−τz + ξC(τ)e−ξz
)

, (A.22)

S(τ, z) = ρ−1(2µ + k)
(

A(τ)e−τz − B(τ)(1 − τz)e−τz + ξτ−1C(τ)e−ξz
)

, (A.23)

T (τ, z) = (2µ + k)
(

τA(τ)e−τz + B(τ)τ2ze−τz + ξC(τ)e−ξz
)

, (A.24)

Q(τ, z) = (2µ + k)
(

τA(τ)e−τz − τB(τ)(1 − τz)e−τz + ξ2τ−1C(τ)e−ξz
)

, (A.25)

W (τ, z) = (2µ + k)
(

τA(τ)e−τz − τB(τ)(1 − τz)e−τz + τC(τ)e−ξz
)

, (A.26)

where ω = z (ρ2 + z2)−1/2, χ = ℓ (ρ2 + z2)1/2, and Pn is the Legendre polynomial
of order n.
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Appendix B

The functions appearing in equations (4.17)–(4.19) are defined as

e1n(τ, zp) =
1

n!

(τ |zp|
zp

)n−1

e−τ |zp|, (B.1)

f1n(τ, zp) =
1

n!

(τ |zp|
zp

)n−3
(

(2n − 3) τ |zp| − n (n − 2)
)

e−τ |zp|, (B.2)

h1n(τ, zp) = −
∫ ∞

0

t C1n(t, zp)J1(τ t) dt, (B.3)

e2n(τ, zp) =
τn−1

n!

( |zp|
zp

)n

e−τ |zp|, (B.4)

f2n(τ, zp) =
τn−3

n!

( |zp|
zp

)n
(

(2n − 3) τ |zp| − (n − 1) (n − 3)
)

e−τ |zp|, (B.5)

h2n(τ, zp) = −
∫ ∞

0

t C2n(t, zp)J0(τ t) dt, (B.6)

f3n(τ, zp) =
3 − 2n

n!

(τ |zp|
zp

)n−2

e−τ |zp|, (B.7)

h3n(τ, zp) = −
∫ ∞

0

t C3n(t, zp)J1(τ t) dt, (B.8)

where the integrations in equations (B.3), (B.6) and (B.8) can be performed nu-
merically after the substitution of equations (A.3), (A.6) and (A.8). Also the
functions appearing in equations (4.23)–(4.25) are defined as

A∗
1n(ρ, z) = ρ−1 (ρ2 + z2)−n/2

[(

1 + (1 + n)λ−1
)

ω Pn(ω)

−
(

1 + (1 + n)ω2 λ−1
)

Pn−1(ω)
]

, (B.9)

B∗
1n(ρ, z) = ρ−1 (n − 1)−1 (ρ2 + z2)−(n−2)/2

[(

n − 3 + n (n − 2)λ−1
)

ω Pn(ω)

−
(

n − 1 − 2 z2 (ρ2 + z2)−1 + n (n − 2)ω2 λ−1
)

Pn−1(ω)
]

, (B.10)

C∗
1n(ρ, z) = ρ−1 (ρ2 + z2)−1/4

[(

[1 + (1 + n)λ−1]Kn− 1

2

(χ)

+ (n − 1)−1 (1 + λ−1)χKn− 3

2

(χ)
)

ω Pn(ω)

−
(

[1 + (1 + n)ω2 λ−1]Kn− 1

2

(χ)

+ (n − 1)−1 (1 + λ−1)ω2 χKn− 3

2

(χ)
)

Pn−1(ω)
]

, (B.11)

A∗
2n(ρ, z) = (ρ2 + z2)−(n+1)/2

[

(1 + n)λ−1 ω Pn−1(ω)

−
(

1 + (1 + n)λ−1
)

Pn(ω)
]

, (B.12)

B∗
2n(ρ, z) = (n − 1)−1 (ρ2 + z2)−(n−1)/2

[(

3 − n − n (n − 2)λ−1
)

Pn(ω)

−
(

2 − n (n − 2)λ−1
)

ω Pn−1(ω)
]

, (B.13)

C∗
2n(ρ, z) = (ρ2 + z2)−3/4

[(

(1 + n)λ−1 Kn− 1

2

(χ)
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+(n − 1)−1 (1 + λ−1)χKn− 3

2

(χ)
)

ω Pn−1(ω)

−
(

[1 + (1 + n)λ−1]Kn− 1

2

(χ)

+ (n − 1)−1 (1 + λ−1)χKn− 3

2

(χ)
)

Pn(ω)
]

, (B.14)





a1n(ρ, z)
b1n(ρ, z)
c1n(ρ, z)



 =

∫ ∞

0

{

H1(τ, z)





e1n(τ, zp)
f1n(τ, zp)
h1n(τ, zp)



 + H2(τ, z)





e2n(τ, zp)
f2n(τ, zp)
h2n(τ, zp)





+H3(τ, z)





0
f3n(τ, zp)
h3n(τ, zp)





}

τ J0(τ ρ) dτ +

∫ ∞

0

{

H4(τ, z)





e1n(τ, zp)
f1n(τ, zp)
h1n(τ, zp)





+H5(τ, z)





e2n(τ, zp)
f2n(τ, zp)
h2n(τ, zp)



 + H6(τ, z)





0
f3n(τ, zp)
h3n(τ, zp)





}

τ J1(τ ρ) dτ, (B.15)





a2n(ρ, z)
b2n(ρ, z)
c2n(ρ, z)



 =

∫ ∞

0

{

H7(τ, z)





e1n(τ, zp)
f1n(τ, zp)
h1n(τ, zp)



 + H8(τ, z)





e2n(τ, zp)
f2n(τ, zp)
h2n(τ, zp)





+H9(τ, z)





0
f3n(τ, zp)
h3n(τ, zp)





}

τ J0(τ ρ) dτ +

∫ ∞

0

{

H10(τ, z)





e1n(τ, zp)
f1n(τ, zp)
h1n(τ, zp)





+H11(τ, z)





e2n(τ, zp)
f2n(τ, zp)
h2n(τ, zp)



 + H12(τ, z)





0
f3n(τ, zp)
h3n(τ, zp)





}

τ J1(τ ρ) dτ, (B.16)





a3n(ρ, z)
b3n(ρ, z)
c3n(ρ, z)



 =

∫ ∞

0

{

H13(τ, z)





e1n(τ, zp)
f1n(τ, zp)
h1n(τ, zp)



 + H14(τ, z)





e2n(τ, zp)
f2n(τ, zp)
h2n(τ, zp)





+H15(τ, z)





0
f3n(τ, zp)
h3n(τ, zp)





}

τ J1(τ ρ) dτ, (B.17)

where

H1(τ, z) =
2 τ ρ z2

λ∆(ρ2 + z2)
[k τ ξ e−δ + ϑ1 e−σ], (B.18)

H2(τ, z) =
−2 τ ρ z2

λ∆(ρ2 + z2)
[k τ ξ e−δ + ϑ2 e−σ], (B.19)

H3(τ, z) =
2 k τ ρ z2

λ∆(ρ2 + z2)
[ξ e−δ + ϑ3 e−σ], (B.20)

H4(τ, z) =
1

λ∆(ρ2 + z2)
[k τ ϑ4 e−δ + ϑ1 ϑ5 e−σ], (B.21)
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H5(τ, z) =
−1

λ∆(ρ2 + z2)
[k τ ϑ4 e−δ + ϑ2 ϑ5 e−σ], (B.22)

H6(τ, z) =
k

λ∆(ρ2 + z2)
[ϑ4 e−δ + ϑ3 ϑ5 e−σ], (B.23)

H7(τ, z) =
−1

λ∆(ρ2 + z2)
[τ ϑ6 e−δ + {ϑ1 ϑ7 + λ ℓ2 (µ + k) (ρ2 + z2)} e−σ], (B.24)

H8(τ, z) =
1

λ∆(ρ2 + z2)
[τ ϑ6 e−δ + {ϑ2 ϑ7 + λ ℓ2 (µ + k) (ρ2 + z2)} e−σ], (B.25)

H9(τ, z) =
−1

λ∆(ρ2 + z2)
[ϑ6 e−δ − {ϑ6 − k τ (δ − σ)ϑ7} e−σ], (B.26)

H10(τ, z) =
−ρ

λ∆(ρ2 + z2)
[k τ ϑ8 e−δ + ϑ1 ϑ9 e−σ], (B.27)

H11(τ, z) =
ρ

λ∆(ρ2 + z2)
[k τ ϑ8 e−δ + ϑ2 ϑ9 e−σ], (B.28)

H12(τ, z) =
k ρ

λ∆(ρ2 + z2)
[ϑ8 e−δ − ϑ3 ϑ9 e−σ], (B.29)

H13(τ, z) =
ℓ2 τ (µ + k)

∆
[e−δ − e−σ], (B.30)

H14(τ, z) =
−ℓ2 τ (µ + k)

∆
[e−δ − e−σ], (B.31)

H15(τ, z) =
1

∆
[ℓ2 (µ + k) e−δ + k τ (τ − ξ) e−σ], (B.32)

with

λ = β1 a (ρ2 + z2)1/2/(2µ + k), σ = τ (z + b), δ = ξ (z + b),

ϑ1 = ℓ2 (µ + k) (σ − 1) − k τ2, ϑ2 = ℓ2 σ (µ + k) − k τ ξ, ϑ3 = τ (δ − σ) − ξ,

ϑ4 = z (ξ2 ρ2 − τ2 z2) − ξ [λ ρ2 + (1 + λ) z2],

ϑ5 = (τ z − λ) (ρ2 + z2) − z2 (1 + 2 τ z),

ϑ6 = k τ [λ (ρ2 + z2) + 2 ξ z ρ2], ϑ7 = λ (ρ2 + z2) + 2 τ z ρ2,

ϑ8 = ξ2 ρ2 − τ2 z2 − ξ z, ϑ9 = τ (ρ2 − z2) − z.
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