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Abstract. This work is concerned with the two-dimensional boundary layer flow of an upper-
convected Maxwell (UCM) fluid in a channel with chemical reaction. The walls of the channel
are porous. Employing similarity transformations the governing non-linear partial differential
equations are reduced into non-linear ordinary differential equations. The resulting ordinary
differential equations are solved analytically using homotopy analysis method (HAM). Expres-
sions for series solutions are derived. The convergence of the obtained series solutions are shown
explicitly. The effects of Reynold’s number Re, Deborah number De, Schmidt number Sc and
chemical reaction parameter γ on the velocity and the concentration fields are shown through
graphs and discussed.
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1. Introduction

For the last few decades the interest of scientists and engineers in viscoelastic
flows has grown considerably due to their applications in biorheology, geophysics,
chemical and petroleum industries. Due to complexity of fluids there is no single
fluid model which exhibits all properties of viscoelastic fluids. Such fluids exhibit
non-linear relationship between stress and the rate of strain and the corresponding
flow equations in general are much more complicated, non-linear and higher order
in comparison with that of the Newtonian fluids. There are very few cases in which
the exact solutions of Navier-Stokes equations can be obtained. These are even
rare if the constitutive relations for viscoelastic fluids are considered. Amongst
the class of viscoelastic fluids the so-called second order fluid, first introduced
by Rivlin and Ericksen [1] is that for which one can reasonably hope to obtain
the analytic solutions. A series of interesting papers [2− 13] on the topic have
appeared recently. But second order fluid model does not give reasonable results
for flows of highly elastic fluids (polymer melts) that occur at high Deborah number
[14]. For this reason the upper-convected Maxwell (UCM) fluid model is quite
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appropriate. Therefore such flow of UCM fluid is studied by Choi et al. [15].
Sadeghy et al. [16] analyzed the hydrodynamic flow of UCM fluid over a steadily
moving plate. Hayat et al. [17] discussed the magnetohydrodynamic flow of UCM
fluid over a porous stretching sheet.

All the above mentioned attempts involving UCM fluid describe the flow anal-
ysis without chemical reaction. Therefore in the present work we take important
step towards obtaining the analytic solutions for porous channel flow with chemical
reaction when the fluid belongs to the UCM category. We have developed HAM
[18− 35] solutions for velocity and concentration fields. The convergence of the
obtained solution is explored. The influence of various interesting parameters on
the velocity and concentration fields has been shown through graphs and discussed
in great length.

2. Mathematical formulation

Let us consider the two-dimensional boundary layer flow of an incompressible
Maxwell fluid in a porous channel with chemical reaction. Here x-axis is selected
along the centerline of the channel, parallel to the channel surfaces and the y-axis
transverse to these. The flow is symmetric about both the axes. The porous walls
of the channel are at y = H/2 and y = −H/2 (H is the channel width). The fluid
injection or extraction takes place through the porous walls with velocity V/2.
Here V > 0 corresponds to suction and V < 0 for injection. The concentration at
y = 0 and y = H/2 are Cw and CH , respectively. Denoting x and y components of
the velocity by u and v the equations of mass, momentum and the concentration
field are

∂u

∂x
+

∂v

∂y
= 0, (1)
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∂u

∂x
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∂u

∂y
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]
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∂y2
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u
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∂C

∂y
= D

∂2C

∂y2
− k1C. (3)

In above equations ν is the kinematic viscosity, λ is the relaxation time, D is the
mass diffusion, C is the concentration field and k1 denotes the reaction rate con-
stant of the first-order homogeneous and irreversible reaction. Moreover, Eq. (2)
has been derived in reference [16] and thus omitted here.

The symmetry about the x-axis and no-slip conditions at y = H/2 yield

∂u

∂y
= v = 0, C = Cw at y = 0,

u = 0, v =
V

2
, C = CH at y =

H

2
. (4)
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Defining the following non-dimensional transformations

x∗ =
x

H
, y∗ =

y

H
, u = −V x∗f ′(y∗), v = V f(y∗), φ =

C − CH

Cw − CH
, (5)

Eq. (1) is satisfied identically and Eqs. (2)–(4) become

f ′′′ + Re(f ′2 − ff ′′) + De
(
2ff ′f ′′ − f2f ′′′

)
= 0, (6)

φ′′ − ReScfφ′ − Scγφ = 0, (7)

f = 0, f ′′ = 0, φ = 1, at y = 0,

f =
1
2
, f ′ = 0, φ = 0, at y =

1
2
. (8)

Here the Reynold’s number (Re), Deborah number (De), the Schmidt number
(Sc) and the chemical reaction parameter γ are denoted by

Re = HV/ν, De = λV 2/ν, Sc =
ν

D
, γ =

H2k

ν

and asterisks have been dropped for brevity. Further Re > 0 corresponds to
suction and Re < 0 for injection. For the analytic solution of Eqs. (6)–(8) we
employ HAM in the next section.

3. Analytical solution

In order to obtain the HAM solution we choose the initial guess and auxiliary
linear operators in the following form

f0 (y) = y(
3
2
− 2y2), (9)

φ0 (y) = 1− 2y, (10)

L1 (f) = f ′′′ (11)

L2 (f) = f ′′ (12)

L1

[
C1 + C2y + C3y

2
]

= 0, (13)

L2 [C5 + C4y] = 0, (14)

in which Ci, (i = 1, 2....5) are arbitrary constants.
The problems at zeroth order satisfy

(1− p)L1

[
f̂ (y, p)− f0 (y)

]
= p~1N1

[
f̂ (y, p)

]
, (15)

(1− p)L2

[
φ̂ (y, p)− φ0 (y)

]
= p~2N2

[
f̂ (y, p) , φ̂ (y, p)

]
, (16)



Vol. 59 (2008) Channel flow of a Maxwell fluid with chemical reaction 127

f̂ (0, p) = 0, f̂ ′′ (0, p) = 0, f̂
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N2

[
f̂ (y, p) , φ̂ (y, p)

]
=

∂2φ̂ (η, p)
∂η2

− Scγφ̂ (η, p)− ReSc
∂φ̂ (η, p)

∂η
f̂ (η, p) . (20)

Here p ∈ [0, 1] is an embedding parameter and ~1 and h2 are the auxiliary nonzero
parameters. For p = 0 and p = 1 we have

f̂ (y, 0) = f0 (y) , f̂ (y, 1) = f (y) ,

φ̂ (y, 0) = φ0 (y) , φ̂ (y, 1) = φ (y) . (21)

Note that as p increases from 0 to 1, f̂ (y, p) and φ̂ (y, p) vary from f0 (y) and
φ0 (y) to f (y) and φ (y) respectively. Due to Taylor’s theorem and Eq. (21) one
obtains

f̂ (y, p) = f0 (y) +
∞∑

m=1

fm (y) pm, (22)

φ̂ (y, p) = φ0 (y) +
∞∑

m=1

φm (y) pm, (23)

fm (y) =
1
m!

∂mf̂ (y, p)
∂pm

∣∣∣∣∣
p=0

, φm (y) =
1
m!

∂mφ̂ (y, p)
∂pm

∣∣∣∣∣
p=0

. (24)

Assume that ~1 and h2 are so properly chosen that the series (22) and (23) are
convergent at p = 1, we obtain from Eq. (21) that

f (y) = f0 (y) +
∞∑

m=1

fm (y) , φ (y) = φ0 (y) +
∞∑

m=1

φm (y) . (25)

In order to get the mth-order deformation equation, we first differentiate Eqs. (15)
and (16) m times with respect to p at p = 0 and then divide by m!

L1 [fm (y)− χmfm−1 (y)] = ~1R1m (y) , (26)

L2 [φm (y)− χmφm−1 (y)] = ~2R2m (y) . (27)
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The boundary conditions are

fm (0) = f ′′m (0) = fm

(
1
2

)
= f ′m

(
1
2

)
= 0,

φm (0) = φm

(
1
2

)
= 0, (28)

where

R1m (y) = f ′′′m−1 +
m−1∑
k=0

[
Re

(
f ′m−1−kf ′k − fm−1−kf ′′k

)

+ Defm−1−k

k∑
l=0

{
2f ′k−lf

′′
l − fk−lf

′′′
l

} ]
, (29)

R2m (y) = φ′′m−1 − Scγφm−1 − ReSc

m−1∑
k=0

φ′m−1−kfk, (30)

χm =
∣∣∣∣ 0, m ≤ 1,

1, m > 1.
(31)

It should be noted that in Eq. (28), there are four boundary conditions for fm.
However, we use the third-order linear operator defined by Eq. (11) to get the
reasonable ~-curve. Here we use such a solution expression that one of the bound-
ary conditions must be automatically satisfied. The solution of problem consisting
of Eqs. (26)–(28) up to first few order of approximations can be obtained using
symbolic software MATHEMATICA. It is found that fm(y) and φm(y) can be
expressed by

fm (y) =
6m+3∑
n=0

am,nyn, m ≥ 0, (32)

φm (y) =
6m+1∑
n=0

bm,nyn, m ≥ 0, (33)

where am,n and bm,n are the coefficients. Invoking Eqs. (32) and (33) into Eqs. (26)
and (27) we have for m ≥ 1, 0 ≤ n ≤ 6m + 3 and m ≥ 1, 0 ≤ n ≤ 6m + 1 as

am,1 = χmχ6m−2am−1,1 +
6m+3∑
n=0

∆m,n

(n + 1)(n + 2)2n+2
,

am,2 = χmχ6m−4am−1,2 −
6m+3∑
n=0

∆m,n

(n + 1)(n + 2)2n+1
,

am,n = χmχ6m−1−nam−1,n +
6m+3∑
n=0

∆m,n−3

n(n− 1)(n− 2)
, n ≥ 3,
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bm,1 = χmχ6m−4bm−1,1 −
6m+1∑
n=0

Γm,n

(n + 1)(n + 2)2n+1
,

bm,2 = χmχ6m−5bm−1,2 +
6m+1∑
n=0

Γm,n

(n + 1)(n + 2)
,

bm,n = χmχ6m−3−nbm−1,n +
6m+1∑
n=0

Γm,n−2

n(n− 1)
, n ≥ 2,

∆m,n = ~1 [χ6m−1−ndm−1,n + χ6m−n+2Re (αm,n − βm,n) + De (2γm,n − δm,n)] ,
(34)

Γm,n = ~2 [χ6m−3−n(gm−1,n − Scγbm−1,n)− χ6m−nReScδ1m,n] . (35)

The coefficients αm,n, βm,n, γm,n, δm,n and δ1m,n, when m ≥ 1, 0 ≤ n ≤ 6m + 3
and 0 ≤ n ≤ 6m + 1 are

αm,n =
m−1∑
k=0

min{n,6k+3}∑
j=max{0,n−6m+6k+3}

ck,jcm−1−k,n−j ,

βm,n =
m−1∑
k=0

min{n,6k+3}∑
j=max{0,n−6m+6k+3}

dk,jam−1−k,n−j ,

γm,n =
m−1∑
k=0

k∑
l=0

min{n,6k+6}∑
q=max{0,n−6m+6k+3}

min{r,6l+3}∑
j=max{0,q−6k+6l−3}

dk,jck−l,q−jam−1−k,n−q,

δm,n =
m−1∑
k=0

k∑
l=0

min{n,6k+6}∑
q=max{0,n−6m+6k+3}

min{r,6l+3}∑
j=max{0,q−6k+6l−3}

ek,jak−l,q−jam−1−k,n−q,

δ1m,n =
m−1∑
k=0

min{n,6k+3}∑
j=max{0,n−6m+6k+5}

ak,jfm−1−k,n−j ,

where

cm,n = (n + 1) am,n+1,

dm,n = (n + 1) cm,n+1,

em,n = (n + 1) dm,n+1, (36)

fm,n = (n + 1) bm,n+1,

gm,n = (n + 1) fm,n+1 (37)



130 T. Hayat and Z. Abbas ZAMP

and the detailed procedure for the derivation of the above relations is given in
reference [20]. Due to above recurrence formulae, we can calculate all coefficients
am,n and bm,n using only the first few

a0,0 = a0,2 = 0, a0,1 =
3
2
, a0,3 = −2, b0,0 = 1, b0,1 = −2 (38)

given by the initial guess approximation in Eqs. (9) and (10).
Therefore, we obtain an explicit analytic solution of the following form

f (y) =
∞∑

m=0

fm (y) = lim
M→∞

[
6M+3∑
n=1

(
6M+2∑

m=n−1

am,nyn

)]
, (39)

φ (y) =
∞∑

m=0

φm (y) = lim
M→∞

[
6M+1∑
n=1

(
6M∑

m=n−1

bm,nyn

)]
. (40)

4. Convergence of the HAM solution

The analytic solution of the considered problem is obtained and given in Eqs. (39)
and (40). One needs to guarantee the convergence of the series (39) and (40).
Liao [18] pointed out that the convergence and rate of approximation for the
HAM solution strongly depends on the values of auxiliary parameters ~1 and ~2.
One can check the range of the admissible values of ~1 and h2 by drawing the so-
called ~-curves. For the present analysis the ~-curves are plotted for two different
orders of approximations in Figs. 1 and 2. It is evident from these Figs. that the
admissible range for the values of ~1 and h2 is −1.8 ≤ ~1,2 ≤ −0.2. It is also noted
that the interval for the admissible values of ~1 and ~2 increases by increasing the
order of approximation. It is found that the series (39) and (40) converge in the
whole region of y when ~1,2 = −1.

5. Results and discussion

In this section the results are obtained just to see the variations of De, Re, Sc
and γ on the velocity components f and f ′ and concentration field φ for both
suction and injection. Subsections 5.1 and 5.2 describe the respective results of
Newtonian (De = 0) and viscoelastic fluids (De 6= 0). For this purpose Figs. 3–24
have been plotted. Note that for suction case Re > 0 and Re < 0 corresponds to
the injection case.
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Figure 1. ~1-curve for the 25th and 30th-order of approximations.

Figure 2. ~2-curve for the 25th and 30th-order of approximations.

5.1. Newtonian fluid (De = 0)

Figs. 3–8 are plotted in order to see the effects of Reynolds number Re, the Schmidt
number Sc and the chemical reaction parameter γ on the velocity components
f and f ′ and the concentration field φ for a Newtonian fluid with suction and
injection.

Figs. 3 and 4 show the variation of Re on f and f ′. It is quite apparent from
these figures. that for large Re (> 0) f decreases and f ′ initially decreases. But f ′

increases by increasing suction Reynolds number after y = 0.25. Fig. 4 elucidates
that the behavior for Re (< 0) is quite opposite to that given in Fig. 3. But the
change in f (Fig. 4) is noted very small.

Figs. 5–8 have been prepared for the variations of Re, Sc and γ on φ for both
suction and injection. The effects of Re (> 0) on φ are plotted in Fig. 5. It is
evident that φ increases by increasing suction Reynolds number Re (> 0) whereas
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Figure 3. Effects of suction Re on f and f ′at ~1 = −1.

Figure 4. Effects of injection Re on f and f ′at ~1 = −1.

it decreases in injection case (Fig. 6). Fig. 7 gives that φ increases by increasing
the suction Reynolds number Re (> 0) and it decreases in the case of injection Re
(< 0). Moreover it is noted from Fig. 8 that φ is an increasing function of γ in
both suction and injection cases. But it is worth mentioning that the magnitude of
φ in suction case is greater when compared with that of injection and this change
occurs at very large values of γ.

5.2. Viscoelastic (non-Newtonian) fluid (De 6= 0)

5.2.1. Suction flow (Re ≥ 0, De > 0)
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Figure 5. Effects of suction Re on φ at ~2 = −1.

Figure 6. Effects of injection Re on φ at ~2 = −1.

Here Figs. 9–18 depict the variations of Re, De, Sc and γ on f, f ′ and φ.
From Figs. 9–11, we can see the effects of Re and De on f and f ′. Fig. 9

illustrates the variation of Re (> 0) on f and f ′ by keeping De fixed. It is
interesting to note that here results of f and f ′ are almost similar to that of
Newtonian fluid for small Deborah number De = 0.1. Fig. 10 has been prepared
for the variation of De on f and f ′ when Re = 0. Here although f increases for
large De but this increment is almost very small. However f ′ increases initially
and decreases after y = 0.3. The variation of De on f and f ′ for Re = 0 is shown
in Fig. 11. It is worthnoting that results here are quite opposite in comparison to
Fig. 10. Further, the more flattening of velocity occurs by increasing De and large
Re.

In order to see the effects of Re, De, Sc and γ on φ, we depict Figs. 12–18.
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Figure 7. Effects of Sc on φ at ~2 = −1.

Figure 8. Effects of γ on φ at ~2 = −1.

η De f f ′ φ
0.1 0.0 0.134246 1.317430 1.199770

0.5 0.133665 1.311560 1.197280
1.0 0.133168 1.306340 1.196370
1.5 0.132857 1.302650 1.198260
2.0 0.132828 1.301220 1.204460
5.0 0.096590 0.942991 1.422180

Table 1. Variations of physical parameters on f , f ′ and φ at Re = 40 in case of suction.
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Figure 9. Effects of suction Re on f and f ′at ~1 = −1.

Figure 10. Effects of De on f and f ′at ~1 = −1.

Fig. 12 shows that φ is an increasing function of De 6= 0 when suction Reynolds
number Re is increased. Figs. 13 and 14 indicate the behavior of De on φ for
fixed Re. The concentration field φ is a decreasing function of De for Re (fixed).
But the behavior of De on φ is larger for small Re (approximately equal to zero)
when compared with high Re. Fig. 15 shows that φ increases for small Re and
large values of Sc. Fig. 16 depicts that φ increases for small Sc and large Re. The
comparison of these two figures indicates that the variation in Fig. 16 is more.
Figs. 17 and 18 further elucidate the influence of γ on φ. These figures show that
φ is an increasing function of γ. For small Re the change in φ is greater at high
Deborah number De = 1. For Re = 20 and De = 0.1 the change is small (Fig.18).

Table 1 shows the valid range of the physical parameters De and suction/injec-
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Figure 11. Effects of De on f and f ′at ~1 = −1.

Figure 12. Effects of suction Re on φ at ~2 = −1.

tion Reynold’s number Re on the velocity profiles f and f ′ and the concentration
field φ in the suction case. It is observed that for 0 ≤ De ≤ 5 and 0 ≤ Re ≤ 40
the convergent solution exists.
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Figure 13. Effects of De on φ at ~2 = −1.

Figure 14. Effects of De on φ at ~2 = −1.

5.2.2 Injection flow (Re < 0, De < 0)
Figs. 19–24 are drawn in order to see the effects of Re, De, Sc and γ on f , f ′

and φ for a viscoelastic fluid (De < 0) in the case of injection Re (< 0).
Figs. 19 and 20 present the effects of Re and De on f and f ′. Fig. 19 shows

that f and f ′ are increased by increasing the injection Reynolds number Re. Here
f ′ initially increases and then decreases after y = 0.3. From Fig. 20 we can see
that f and f ′ decrease when De increases but f ′ increases much after y = 0.3.
Fig. 21 illustrates the variation of Re (< 0) on φ. It is noted that φ decreases
by increasing injection Reynolds number Re. Fig. 22 gives the effects of De on
φ. Obviously φ is an increasing function of De. Further the variations of Sc and
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Figure 15. Effects of Sc on φ at ~2 = −1.

Figure 16. Effects of Sc on φ at ~2 = −1.

γ on φ can be seen through Figs. 23 and 24. Fig. 23 elucidates that φ decreases
and increases in Fig. 24 by increasing Sc and γ respectively. But from Fig. 24 it
is noted that the change in φ occurs at very high γ.

Table 2 shows the valid range of the physical parameters De, suction/injection
Reynold’s number Re, Sc and γ on the velocity profiles f and f ′ and the concen-
tration field φ in the injection case, respectively. It is noted that for 0 ≤ De ≤ −5,
0 ≤ Re ≤ −40, 0 ≤ Sc ≤ 1 and 0 ≤ γ ≤ 20 the convergent solution exists.
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Figure 17. Effects of γ on φ at ~2 = −1.

Figure 18. Effects of γ on φ at ~2 = −1.

6. Concluding remarks

The present study describes the boundary layer flow of Maxwell fluid with chem-
ical reaction in a porous channel. The governing non-linear equations are solved
analytically using HAM. Graphical results of velocity and concentration fields are
plotted and discussed. The following observations have been made.

• For suction and injection, the influence of Re on the velocity and concen-
tration fields is opposite when De = 0.
• The velocity has opposite behavior in viscoelastic fluid (De 6= 0) by in-

creasing Reynolds number Re but has the same behavior for the variation of
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η De f f ′ φ
0.1 0.0 0.151645 1.471380 0.775865

−0.5 0.151608 1.471420 0.774516
−1.0 0.151538 1.471140 0.772980
−1.5 0.151362 1.469870 0.771257
−2.0 0.150994 1.466370 0.769325
−5.0 0.134322 1.321900 0.751991

Table 2. Variations of physical parameters on f , f ′ and φ at Re = −40, Sc = 1 and γ = 20 in
case of injection.

Figure 19. Effects of suction Re on f and f ′at ~1 = −1.

De.
• For suction and injection, the effects of Re on the concentration field are

opposite De 6= 0.
• For De 6= 0, the concentration field has opposite behavior in suction and

injection.
• The concentration field has opposite results for Sc and same for γ in suction

and injection when De 6= 0.
• All results given in Figs. 3–24 are convergent at ~1 = ~2 = −1.
• To the best of our knowledge the present solutions are not reported in the

literature. Even such solutions are not yet available for a Newtonian fluid. The
results corresponding to Newtonian fluid can be obtained by putting De = 0.

Acknowledgements

We are thankful to the referees for their helpful suggestions. The financial support
from Higher Education Commission (HEC) is also gratefully acknowledged.



Vol. 59 (2008) Channel flow of a Maxwell fluid with chemical reaction 141

Figure 20. Effects of De on f and f ′at ~1 = −1.

Figure 21. Effects of De on f and f ′at ~1 = −1.
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