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Abstract. For Newtonian flow through micro or nano sized channels, the no-slip boundary con-
dition does not apply and must be replaced by a condition which more properly reflects surface
roughness. Here we adopt the so-called Navier boundary condition for the sliding plate prob-
lem, which is one of the fundamental problems of fluid mechanics. When the no-slip boundary
condition is used in the study of the motion of a viscous Newtonian fluid near the intersection
of fixed and moving rigid plane boundaries, singular pressure and stress profiles are obtained,
leading to a non-integrable force on each boundary. Here we examine the effects of replacing the
no-slip boundary condition by a boundary condition which attempts to account for boundary
slip due to the tangential shear at the boundary. The Navier boundary condition, possesses a
single parameter to account for the slip, the slip length `, and two solutions are obtained; one
integral transform solution and a similarity solution which is valid away from the corner. For
the former the tangential stress on each boundary is obtained as a solution of a set of coupled
integral equations. The particular case solved is right-angled corner flow and equal slip lengths
on each boundary. It is found that when the slip length is non-zero the force on each boundary
is finite. It is also found that for a sufficiently large distance from the corner the tangential
stress on each boundary is equal to that of the classical solution. The similarity solution involves
two restrictions, either a right-angled corner flow or a dependence on the two slip lengths for
each boundary. When the tangential stress on each boundary is calculated from the similarity
solution, it is found that the similarity solution makes no additional contribution to the tangen-
tial stress of that of the classical solution, thus in agreement with the findings of the integral
transform solution. Values of the radial component of velocity along the line θ = π/4 for increas-
ing distance from the corner for the similarity and integral transform solutions are compared,
confirming their agreement for sufficiently large distances from the corner.

Keywords. Sliding plate problem, Navier boundary condition, nanofluidics.

1. Introduction

For many problems at the micro or nano scale, the boundary surface roughness may
be significant in comparison to the dimensions of the flow. In this event the usual
no-slip boundary condition of fluid mechanics does not apply, and must be replaced
by a condition which reflects boundary slip as a consequence of the tangential shear
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at the boundary. The simplest linear boundary condition to accommodate this is
the so-called Navier boundary condition, first proposed by Navier in 1823 [23]
and later independently by Maxwell in 1879 [16]. This condition suggests that the
boundary slip is directly proportional to the tangential shear at the boundary, and
the constant of proportionality is referred to as the slip length. The slip length
may be regarded as the distance at which the velocity of the fluid is equal to that
of the boundary if it were linearly extrapolated beyond the boundary (Lauga et
al. [14]). In this paper we consider the problem of viscous flow between fixed
and moving rigid plane boundaries, assuming a Navier boundary condition with
generally distinct constant slip lengths on each boundary.

When an incompressible viscous fluid is contained in a corner between two
boundaries and one moves at a constant velocity parallel to itself, the flow gener-
ated is dominated by viscous forces sufficiently close to the corner (Hancock et al.
[6]). This problem is generally known as the sliding plate problem, and was first
considered by Taylor [35] and Goodier [5]. In the region near the corner where
viscous forces are dominant, the stream function ψ satisfies the biharmonic equa-
tion ∇4ψ = 0, and for no-slip at the boundaries a solution may be found which
satisfies all the required boundary conditions. Contour plots of the streamline
patterns near the corner provide the well-known picture of declined streamlines
(Meleshko [19]).

Expressions for the pressure and stress for the classical solution vary as r−1,
that is there is a logarithmic singularity when the force on each boundary is cal-
culated. As pointed out by Shikhmurzaev [33, 32] the presence of this singularity
is physically unacceptable. There have been many suggestions for this singular-
ity; for example Koplik and Banavar [11] suggest that the fluid is non-Newtonian
in the corner. However, the breakdown in the analysis may be seen to be a di-
rect consequence of the no-slip boundary condition applied at the boundaries.
The above-mentioned analysis employees the no-slip boundary condition at each
boundary, that is zero relative velocity is assumed between the fluid and boundary,
which is a fundamental notion in classical fluid mechanics (see for example Batch-
elor [2]). Since one boundary is stationary while the other moves with a constant
velocity, the no-slip boundary condition implies that at the corner where the two
boundaries meet, there is a discontinuity in the fluid velocity. This requires an
infinite acceleration of the fluid, which violates the slow flow assumption.

There are at least two ways to attempt to remove this singularity. The first is to
assume that the velocity of the fluid at each boundary is not equal to the constant
velocity of the boundary, but instead has some functional dependence. This has
been assumed for the sliding plate problem in the analysis of Krasnopolskaya
[12] and also for the moving contact line problem by Dussan [3]. The moving
contact line problem is where one fluid displaces another fluid along a boundary,
and similarity solutions obtained by Huh and Scriven [10] show a non-integrable
stress and pressure singularity, similar to that of the sliding plate problem. The
method of replacing the constant velocity boundary condition with a functional
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dependence has proven successful in removing these singularities, however these
mathematical devices do not correspond to physical experimental conditions.

The second method involves replacing the no-slip boundary condition by one
depending on the tangential shear, such as the Navier boundary condition. Al-
though the amount of slip depends on molecular details, Hocking [8] and Lamb [13]
have suggested that the overall effect on the flow on a macroscopic scale can be ob-
tained by postulating a dynamic boundary condition in which the relative velocity
at the boundary is proportional to the tangential viscous stress there; that is the
net tangential force per unit area exerted on the solid due to the hydrodynamic
motion of the surrounding fluid (Qian et al. [25]). The constant of proportionality
which expresses the ratio of the relative velocity to the tangential viscous stress is
termed the slip length, denoted by `. As demonstrated by Qian and Wang [24], for
a Newtonian fluid, the tangential viscous stress is proportional to the shear rate;
consequently, the amount of slip is proportional to the shear rate. As pointed out
by Hocking [9] such an analysis does not provide a complete analysis of the flow,
but overall features such as the total stress on a boundary may be inferred. A
complete analysis is only possible for relatively simple flows, such as that around
a nanosphere or nanocylinder (Matthews and Hill [15]). For micro-cylinders the
present authors show conclusively that the Navier boundary condition gives rise
to results which are in excellent agreement with longstanding experimental results
which were poorly represented by the then existing theory. In two papers, Hocking
[8, 9] details the microscopic origin of the Navier boundary condition as a result of
surface irregularities and studied the moving contact line problem with a Navier
boundary condition. The tangential stress on each boundary is obtained from a
set of coupled integral equations, and these results demonstrate that the force on
each boundary is finite for a nonzero slip length.

The validity of the Navier boundary condition has been shown Qian and Wang
[24] for the sliding plate problem through molecular dynamic and continuum hy-
drodynamic simulation for a Newtonian fluid. The (constant) slip length is deter-
mined from molecular dynamics simulations, usually ranging from one to a few
nanometers, and when used as an input for the continuum hydrodynamic simula-
tion it has been shown by Qian et al. [26, 27] that molecular dynamics results can
be successfully reproduced.

The Navier boundary condition assumes that the degree of slip is independent of
the shear rate, that is ` is constant, although recent molecular dynamic simulations
by Thompson and Troian [36] have indicated that ` is a nonlinear function of
the shear rate over a large range of shear rates. At low shear rates, the Navier
boundary condition is valid, that is ` is constant, but at high shear rates the Navier
boundary condition breaks down as ` increases rapidly with the shear rate. Thus,
the Navier boundary condition is a low-shear-rate limit of a more generalized
universal relationship which is significantly nonlinear and divergent at a (high)
critical shear rate. Modelling flows based on a functional dependence of the slip
length on the tangential viscous stress would be inherently difficult, and possibly
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intractable analytically except for specific problems with simple flow geometries.
Since in the problem studied here the flow is assumed to be slow, these matters
are of little consequence.

In this paper the linear Navier boundary condition with a constant but general
slip length is applied to the steady viscous flow of a Newtonian fluid between a
fixed and moving boundary, at length scales where the slip length is relevant. In
the following section, the equations describing the Navier boundary condition are
presented. In section 3 an overview of the solution corresponding to a no-slip
boundary condition at each boundary is presented. In sections 4 and 5 we develop
an integral transform solution assuming the Navier boundary condition applies
on each boundary, while in section 6 we determine a similarity solution which
is valid away from the corner. In section 7 some numerical results and general
features of the solutions obtained are discussed, as well as concluding remarks. In
appendix A we present a derivation of an approximate analytical expression for
the governing set of integral equations, while in appendix B we present the details
for the derivation of the radial component of velocity along the line θ = π/4 for
the integral transform solution. Given that a large number of transformations are
necessary a nomenclature for some of the basic variables are presented in appendix
C. Finally, we comment that in principle we might adopt for the integral transform
solution either a two-sided Laplace transform or a Mellin transform; the two are
theoretically equivalent. However, in practice depending on the task at hand,
one is often more convenient than the other. Accordingly, the two-sided Laplace
transform is used in the main paper, while the Mellin transform is exploited in
appendix B.

2. Navier boundary condition

The standard no-slip boundary condition at the boundary is replaced by the Navier
boundary condition, where the slip velocity is assumed to be proportional to the
tangential viscous stress and the degree of slip is measured by a constant slip
length. For an incompressible Newtonian fluid the viscous portion of the stress
tensor or the extra stress is given by S = 2µD, where µ is the viscosity and the
rate of deformation tensor is

D =
1
2

[
∇v + (∇v)T

]
, (2.1)

i.e. S ∝ D. For the sliding plate problem in cylindrical coordinates, the Navier
boundary condition at the corresponding boundary implies vθ ∝ Drθ, where from
Slattery [34]

Drθ =
1
2

[
∂vθ

∂r
− 1

r

(
vθ − ∂vr

∂θ

)]
. (2.2)

At each boundary the normal velocity is vθ = 0 and therefore ∂vθ/∂r = 0 (see
Happel and Brenner [7]), so that the Navier boundary condition at the boundary
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is given by

vr =
`

r

∂vr

∂θ
, (2.3)

where ` is the slip length.

3. Basic equations and no-slip solution

Consider the flow of a viscous fluid in a corner between two rigid solid plates,
one of which slides with a steady velocity U relative to the other at a constant
inclination angle θ0. The problem can be considered steady by choosing an origin of
coordinates fixed and moving with the intersection of the two plates. A cylindrical
coordinate system (r, θ, z) will be used such that

vr = vx cos θ + vy sin θ, vθ = −vx sin θ + vy cos θ. (3.1)

The relevant boundary conditions are given by

vr = −U, vθ = 0, θ = 0,

vr = 0, vθ = 0, θ = θ0.
(3.2)

It is assumed that

vr = vr (r, θ) , vθ = vθ (r, θ) , vz = 0, (3.3)

so that a stream function ψ (r, θ) defined by

vr =
1
r

∂ψ

∂θ
, vθ = −∂ψ

∂r
, (3.4)

may be introduced such that the differential mass conservation equation is auto-
matically satisfied. In terms of this stream function the boundary conditions may
be written

1
r

∂ψ

∂θ
= −U,

∂ψ

∂r
= 0, θ = 0,

∂ψ

∂θ
= 0,

∂ψ

∂r
= 0, θ = θ0.

(3.5)

The Navier-Stokes equation in cylindrical coordinates with a stream function
defined as above is given by

ν∇4
rψ = −1

r

∂
(
ψ,∇2

rψ
)

∂ (r, θ)
, (3.6)

where ν = µ/ρ is the kinematic viscosity and ρ is the density, and the Laplacian
∇2

r is given by

∇2
r =

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
. (3.7)
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By introducing the dimensionless variables r∗ = r/L, v∗ = v/U, ψ∗ = ψ/UL
where L is some characteristic length, the Navier-Stokes equation and no-slip
boundary conditions become

∇4
r∗ψ

∗ = −R

r∗
∂

(
ψ∗,∇2

r∗ψ
∗)

∂ (r∗, θ)
,

1
r∗

∂ψ∗

∂θ
= −1,

∂ψ∗

∂r∗
= 0, θ = 0,

∂ψ∗

∂θ
= 0,

∂ψ∗

∂r∗
= 0, θ = θ0,

(3.8)

where R is the dimensionless Reynolds number defined by R = UL/ν.
Assuming R ¿ 1 the Navier-Stokes equation reduces to the biharmonic equa-

tion ∇4
r∗ψ

∗ = 0, corresponding to creeping flow. On reverting back to physical
variables, assuming a solution of the form ψ (r, θ) = Urf (θ) implies

d4f

dθ4
+ 2

d2f

dθ2
+ f = 0, (3.9)

which from Eq. (3.5) is subject to

f (0) = 0, f ′ (0) = −1, f (θ0) = 0, f ′ (θ0) = 0. (3.10)

The general solution for f (θ) is given by

f (θ) = C1 sin θ + C2 cos θ + θ (C3 sin θ + C4 cos θ) , (3.11)

where throughout C1, C2, C3 and C4 denote arbitrary integration constants. Ap-
plying the boundary conditions yields

C1 = − θ2
0

θ2
0 − sin2 θ0

, C2 = 0, C3 =
θ0 − 1

2 sin 2θ0

θ2
0 − sin2 θ0

, C4 =
sin2 θ0

θ2
0 − sin2 θ0

. (3.12)

Hence the classical stream function ψ (r, θ) corresponding to no-slip at the bound-
aries is given by

ψ (r, θ) =
Ur

θ2
0 − sin2 θ0

{[(
θ0 − 1

2 sin 2θ0

)
θ − θ2

0

]
sin θ

+θ sin2 θ0 cos θ
}

. (3.13)

The tangential and normal components of stress may be calculated from T =
−pI + 2µD, where

Trr = −p + 2µDrr = −p + 2µ
∂vr

∂r
,

Trθ = 2µDrθ = µ

[
r

∂

∂r

(vθ

r

)
+

1
r

∂vr

∂θ

]
.

(3.14)

The mean pressure p is calculated from the Navier-Stokes equation consistent with
the approximation employed, that is neglecting the convective inertial term, which
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is given by
r component:

∂p

∂r
=

µ

r

∂

∂θ

[
1
r

∂vr

∂θ
−

(
∂vθ

∂r
+

vθ

r

)]
, (3.15)

θ component:
1
r

∂p

∂θ
= −µ

∂

∂r

[
1
r

∂vr

∂θ
−

(
∂vθ

∂r
+

vθ

r

)]
, (3.16)

while the z component yields ∂p/∂z = 0. By calculating the r and θ components
of velocity from the definition of the stream function and integrating yields the
following expression for p

p =
2µU

[(
θ0 − 1

2 sin 2θ0

)
sin θ + sin2 θ0 cos θ

]
r
(
θ2
0 − sin2 θ0

) . (3.17)

Substituting this expression and the expressions for the r and θ components of
velocity into the expression for Trr and Trθ yields

Trr = −2µU
[(

θ0 − 1
2 sin 2θ0

)
sin θ + sin2 θ0 cos θ

]
r
(
θ2
0 − sin2 θ0

) ,

Trθ =
2µU

[(
θ0 − 1

2 sin 2θ0

)
cos θ − sin2 θ0 sin θ

]
r
(
θ2
0 − sin2 θ0

) .

(3.18)

It can immediately be seen that the classical analysis predicts an unphysical stress
singularity since Trr = O

(
r−1

)
= Trθ. Thus the distribution of viscous stress

along the boundaries involves nonintegrable singularities, leading to a logarith-
mically infinite force between the fluid and the boundaries. This singularity is a
consequence of the imposed discontinuity of velocity at the corner, that is where
the fixed and moving boundaries intersect, the velocity variation becomes infinitely
fast because two different velocities are assumed along the two boundaries.

The tangential stresses on each boundary may be written

Trθ|θ=0 = µUr−1k̂1, Trθ|θ=θ0 = µUr−1k̂2, (3.19)

where

k̂1 =
2

(
θ0 − 1

2 sin 2θ0

)
θ2
0 − sin2 θ0

, k̂2 =
2 (θ0 cos θ0 − sin θ0)

θ2
0 − sin2 θ0

. (3.20)

Note that k̂1 and k̂2 depend on θ0 only, which is an assumed input parameter, and
hence are constant.

3.1. Right-angled corner flow

When the boundaries meet at an angle of π/2, the stream function is given by

ψ (r, θ) =
4Ur

π2 − 4

[π

2

(
θ − π

2

)
sin θ + θ cos θ

]
, (3.21)
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the pressure is given by p = −Trr, and the normal and tangential components of
stress become

Trr = −4µU (π sin θ + 2 cos θ)
r (π2 − 4)

,

Trθ =
4µU (π cos θ − 2 sin θ)

r (π2 − 4)
.

(3.22)

Then k̂1 and k̂2 are given by

k̂1 =
4π

π2 − 4
, k̂2 = − 8

π2 − 4
. (3.23)

4. Navier boundary condition and solution via coupled integral
equations

With the Navier boundary condition the relevant boundary conditions are given
by

vr = −U +
`1
r

∂vr

∂θ
, vθ = 0, θ = 0,

vr = −`2
r

∂vr

∂θ
, vθ = 0, θ = θ0,

(4.1)

where for generality it is assumed that each boundary has a constant but general
slip length. In terms of a stream function ψ (r, θ) the boundary conditions may be
written

1
r

∂ψ

∂θ
= −U +

`1
r2

∂2ψ

∂θ2
,

∂ψ

∂r
= 0, θ = 0,

1
r

∂ψ

∂θ
= − `2

r2

∂2ψ

∂θ2
,

∂ψ

∂r
= 0, θ = θ0.

(4.2)

To determine the flow near the corner with the Navier boundary condition, we
follow closely the analysis of Hocking [8, 9] and define

ψ (r, θ) = Urψ̄ (ρ, θ) , (4.3)

where

ρ = ln (r/`2) . (4.4)

Then the biharmonic equation ∇4
rψ = 0 becomes[(

∂

∂ρ
+ 1

)2

+
∂2

∂θ2

][(
∂

∂ρ
− 1

)2

+
∂2

∂θ2

]
ψ̄ = 0, (4.5)
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and the boundary conditions may be written

ψ̄ (ρ, 0) +
∂ψ̄

∂ρ
(ρ, 0) = ψ̄ (ρ, θ0) +

∂ψ̄

∂ρ
(ρ, θ0) = 0,

∂ψ̄

∂θ
(ρ, 0)− ˜̀e−ρ ∂2ψ̄

∂θ2
(ρ, 0) = −1,

∂ψ̄

∂θ
(ρ, θ0) + e−ρ ∂2ψ̄

∂θ2
(ρ, θ0) = 0,

(4.6)

where ˜̀= `1/`2.
For the slip solution to reduce to the no-slip solution as `i → 0, that is as

ρ→∞, we must have
ψ̄ (∞, θ) = f (θ) , (4.7)

and to ensure that the tangential stress is finite at the origin, that is as ρ→ −∞,
we must have

ψ̄ (ρ, θ) = O (eρ) as ρ→ −∞. (4.8)

The tangential stress is given by

Trθ =
µU

r

(
−∂2ψ̄

∂ρ2
+ ψ̄ +

∂2ψ̄

∂θ2

)
. (4.9)

The tangential stresses on each boundary may be written

Trθ|θ=0 = µUr−1k1 (ρ) , Trθ|θ=θ0 = µUr−1k2 (ρ) , (4.10)

where the derivatives with respect to ρ are zero on the boundaries [7], so that

k1 (ρ) =
∂2ψ̄

∂θ2
(ρ, 0) , k2 (ρ) =

∂2ψ̄

∂θ2
(ρ, θ0) , (4.11)

and it is required that

k1 (∞) = k̂1, k2 (∞) = k̂2,

k1 (ρ) = k2 (ρ) = O (eρ) as ρ→ −∞.
(4.12)

The slip boundary conditions may then be written

1− ˜̀e−ρk1 (ρ) = −∂ψ̄

∂θ
(ρ, 0) ,

−e−ρk2 (ρ) =
∂ψ̄

∂θ
(ρ, θ0) .

(4.13)

We now introduce the two-sided Laplace transform

ψ̃ (s, θ) =
∫ ∞

−∞
e−sρψ̄ (ρ, θ) dρ, (4.14)
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which has inverse transformation

ψ̄ (ρ, θ) =
1

2πi

∫ ε+i∞

ε−i∞
esρψ̃ (s, θ) ds. (4.15)

The condition imposed on ψ̄ as ρ → ∞ imply Re (s) > 0, while the condition
imposed on ψ̄ as ρ → −∞ imply Re (s) < 1, thus the transform exists for 0 <
Re (s) < 1.

The two-sided Laplace transform for the modified biharmonic equation, Eq. (4.5),
is

∂4ψ̃

∂θ4
+ 2

(
s2 + 1

) ∂2ψ̃

∂θ2
+

(
s2 − 1

)2
ψ̃ = 0, (4.16)

which has solution

ψ̃ (s, θ) = C1 (s) sin [(s + 1) θ] + C2 (s) cos [(s + 1) θ]
+ C3 (s) sin [(s− 1) θ] + C4 (s) cos [(s− 1) θ] , (4.17)

where Ci are functions of s to be found. The boundary conditions given by
Eq. (4.6a) become

ψ̃ (s, 0) = ψ̃ (s, θ0) = 0, (4.18)

which imply

ψ̃ (s, θ) = A (s) sin (sθ) sin (θ − θ0) + B (s) sin [s (θ − θ0)] sin θ. (4.19)

The boundary conditions given by Eq. (4.11) become

k̃1 (s) =
∂2ψ̃

∂θ2
(s, 0) , k̃2 (s) =

∂2ψ̃

∂θ2
(s, θ0) , (4.20)

where k̃i (s) denotes the two-sided Laplace transform of ki (ρ). Hence

ψ̃ (s, θ) =

[
k̃2 (s) cos (sθ0)− k̃1 (s) cos θ0

]
sin (sθ) sin (θ − θ0)

2s [cos2 (sθ0)− cos2 θ0]

+

[
k̃1 (s) cos (sθ0)− k̃2 (s) cos θ0

]
sin θ sin [s (θ − θ0)]

2s [cos2 (sθ0)− cos2 θ0]
. (4.21)

Thus we find

− ∂ψ̃

∂θ
(s, 0) =

k̃1 (s)
[
sin (sθ0) cos (sθ0)− 1

2s sin 2θ0

]
2s [cos2 (sθ0)− cos2 θ0]

+
k̃2 (s) [s cos (sθ0) sin θ0 − sin (sθ0) cos θ0]

2s [cos2 (sθ0)− cos2 θ0]
, (4.22)
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∂ψ̃

∂θ
(s, θ0) =

k̃1 (s) [s cos (sθ0) sin θ0 − sin (sθ0) cos θ0]
2s [cos2 (sθ0)− cos2 θ0]

+
k̃2 (s)

[
sin (sθ0) cos (sθ0)− 1

2s sin 2θ0

]
2s [cos2 (sθ0)− cos2 θ0]

. (4.23)

The inversion of these expressions may be written as convolution integrals, so that

−∂ψ̄

∂θ
(ρ, 0) =

∫ ∞

−∞
[k1 (u)P (ρ− u) + k2 (u) Q (ρ− u)] du,

∂ψ̄

∂θ
(ρ, θ0) =

∫ ∞

−∞
[k1 (u)Q (ρ− u) + k2 (u)P (ρ− u)] du,

(4.24)

where

P (ρ) =
1

2πi

∫ ε+i∞

ε−i∞
esρ sin (sθ0) cos (sθ0)− 1

2s sin 2θ0

2s [cos2 (sθ0)− cos2 θ0]
,

Q (ρ) =
1

2πi

∫ ε+i∞

ε−i∞
esρ s cos (sθ0) sin θ0 − sin (sθ0) cos θ0

2s [cos2 (sθ0)− cos2 θ0]
,

(4.25)

and 0 < ε < 1. Substituting Eqs. (4.24) into Eqs. (4.13) yields

1− ˜̀e−ρk1 (ρ) =
∫ ∞

−∞
[k1 (u)P (ρ− u) + k2 (u) Q (ρ− u)] du,

−e−ρk2 (ρ) =
∫ ∞

−∞
[k1 (u) Q (ρ− u) + k2 (u) P (ρ− u)] du.

(4.26)

If we write F1 (r) and F2 (r) for the force on each of the boundaries then

F1 (r) =
∫ r

0

Trθ|θ=0dr = µU

∫ ln(r/`)

−∞
k1 (ρ) dρ,

F2 (r) =
∫ r

0

Trθ|θ=θ0dr = µU

∫ ln(r/`)

−∞
k2 (ρ) dρ.

(4.27)

Thus for any set of values of the parameters θ0 and ˜̀ Eqs. (4.26) represent a
set of coupled integral equations for the unknowns k1 (ρ) and k2 (ρ). These may
be solved numerically for k1 (ρ) and k2 (ρ) and applied to Eq. (4.27) to obtain the
force on each boundary.

5. Solution for right-angled corner flow

When the boundaries meet at an angle of θ0 = π/2 and when the slip lengths for
each boundary are equal, that is ˜̀= 1, the integral equations given by Eq. (4.26)



886 M. T. Matthews and J. M. Hill ZAMP

become

1− e−ρk1 (ρ) =
∫ ∞

−∞
[k1 (u) P (ρ− u) + k2 (u) Q (ρ− u)] du,

−e−ρk2 (ρ) =
∫ ∞

−∞
[k1 (u) Q (ρ− u) + k2 (u) P (ρ− u)] du,

(5.1)

where

P (ρ) =
1

2πi

∫ ε+i∞

ε−i∞
esρ tan (πs/2)

2s
ds =

1
2π

ln
∣∣∣∣1 + e−|ρ|

1− e−|ρ|

∣∣∣∣ ,

Q (ρ) =
1

2πi

∫ ε+i∞

ε−i∞
esρ sec (πs/2)

2
ds =

1
2π cosh (ρ)

.

(5.2)

If we define k1 + k2 = ka and k1 − k2 = kb then the above integral equations may
be uncoupled by addition to give

1− e−ρka (ρ) =
∫ ∞

−∞
[P (ρ− u) + Q (ρ− u)] ka (u) du, (5.3)

and subtraction to give

1− e−ρkb (ρ) =
∫ ∞

−∞
[P (ρ− u)−Q (ρ− u)] kb (u) du. (5.4)

Thus we must solve two independent integral equations. To the author’s knowledge
an exact analytical solution is possible only for Q (ρ) = 0 (see Hocking [8, 9]).

5.1. Numerical solution

The function P (ρ− u) has a logarithmic singularity at ρ = u, which may be
removed by noting that Eqs. (5.3) and (5.4) may be written

1− e−ρka (ρ) =
∫ ∞

−∞
[P (ρ− u) + Q (ρ− u)] [ka (u)− ka (ρ)] du

+ ka (ρ)
∫ ∞

−∞
[P (ρ− u) + Q (ρ− u)] du, (5.5)

and

1− e−ρkb (ρ) =
∫ ∞

−∞
[P (ρ− u)−Q (ρ− u)] [kb (u)− kb (ρ)] du

+ kb (ρ)
∫ ∞

−∞
[P (ρ− u)−Q (ρ− u)] du. (5.6)
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It follows from Eq. (5.2) that∫ ∞

−∞
[P (ρ− u) + Q (ρ− u)] du = k̂−1

a ,

∫ ∞

−∞
[P (ρ− u)−Q (ρ− u)] du = k̂−1

b .

(5.7)

where
k̂a = k̂1 + k̂2 =

4
π + 2

, k̂b = k̂1 − k̂2 =
4

π − 2
(5.8)

Hence the integral equations to be solved are

1−
(

e−ρ +
π + 2

4

)
ka (ρ)

=
∫ ∞

−∞
[P (ρ− u) + Q (ρ− u)] [ka (u)− ka (ρ)] du, (5.9)

and

1−
(

e−ρ +
π − 2

4

)
kb (ρ)

=
∫ ∞

−∞
[P (ρ− u)−Q (ρ− u)] [kb (u)− kb (ρ)] du. (5.10)

The numerical method used to solve the integral equations Eqs. (5.9) and (5.10)
is to define the functions ka (ρ) and kb (ρ) by their values at a set of equally
spaced points in the finite interval −N to N , and evaluate the integral using the
trapezoidal rule. The resulting set of 2N + 1 linear equations for each ka (ρ) and
kb (ρ) are then solved numerically for the function values. The results are plotted
in Fig. 1, where

k1 =
ka + kb

2
, k2 =

ka − kb

2
. (5.11)

Numerical calculations imply that for a large enough N we have ki (ρ) ≈ 0 for
ρ < −N and ki (ρ) ≈ k̂i for ρ > N , so that for ln (r/`) > N the integral given by
Eq. (4.27) may be written

Fi (r) = µU

∫ ln(r/`)

−∞
ki (ρ) dρ ≈ µU

[∫ N

−N

ki (ρ) dρ + k̂i

∫ ln(r/`)

N

dρ

]

= µU

{∫ N

−N

ki (ρ) dρ + k̂i [ln (r/`)−N ]

}

= µU
[
k̂i ln (r/`) + hi

]
, (5.12)

where

hi =
∫ N

−N

ki (ρ) dρ−Nk̂i, (5.13)
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may also be evaluated by the trapezoidal rule. From numerical calculation we find
that

ha = 0.312, hb = −4.344, (5.14)

hence

h1 =
ha + hb

2
= −2.016, h2 =

ha − hb

2
= 2.328. (5.15)

5.2. Approximate analytical solution

Appendix A outlines an approximate analytical solution for ka (ρ) and kb (ρ), which
are

ka (ρ) =
2eρ

π

{
Ci

[
(π + 2) eρ

2π

]
sin

[
(π + 2) eρ

2π

]

−si
[
(π + 2) eρ

2π

]
cos

[
(π + 2) eρ

2π

]}
,

(5.16)

and

kb (ρ) =
2eρ

π

{
Ci

[
(π − 2) eρ

2π

]
sin

[
(π − 2) eρ

2π

]

−si
[
(π − 2) eρ

2π

]
cos

[
(π − 2) eρ

2π

]}
,

(5.17)

where Ci and si are the cosine and sine integrals as defined in Abramowitz and
Stegun [1] and given by

Ci (x) = −
∫ ∞

x

cos t

t
dt, si (x) = −

∫ ∞

x

sin t

t
dt. (5.18)

As can be verified from numerical calculations,

ka (∞) = k̂a, kb (∞) = k̂b,

ka (ρ) = kb (ρ) = O (eρ) as ρ→ −∞.
(5.19)

Comparisons of the numerical solution and these approximate analytical solutions
are shown in Table 1 and compared graphically in Fig. 2, which show excellent
agreement. From these approximate analytical solutions we may deduce the finite
expressions for the force on each boundary as a function of r > 0 and ` > 0 from
Eq. (4.27)

Fa (r) =
4µU

π + 2

{
ln

(r

`

)
− Ci

[
(π + 2) r

2π`

]
cos

[
(π + 2) r

2π`

]

−si
[
(π + 2) r

2π`

]
sin

[
(π + 2) r

2π`

]
+ γ − ln 2 + ln

(
π + 2

π

)}
,

(5.20)
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and

Fb (r) =
4µU

π − 2

{
ln

(r

`

)
− Ci

[
(π − 2) r

2π`

]
cos

[
(π − 2) r

2π`

]

−si
[
(π − 2) r

2π`

]
sin

[
(π − 2) r

2π`

]
+ γ − ln 2 + ln

(
π − 2

π

)}
,

(5.21)

where γ is the Euler-Masheroni constant. Note that F1 = (Fa + Fb) /2 and F2 =
(Fa − Fb) /2.

From the above expressions approximate values of ha and hb may be found by
taking the limit r/` → ∞ and comparing Eq. (4.27) with Eq. (5.12). Equation
(5.18) implies that Ci (x) and si (x) approach 0 as x→∞, hence we find that

ha =
4

π + 2

[
γ − ln 2 + ln

(
π + 2

π

)]
= 0.293,

hb =
4

π − 2

[
γ − ln 2 + ln

(
π − 2

π

)]
= −3.953,

(5.22)

which are in relative agreement with the numerical results given by Eq. (5.14).

6. Solution away from the corner

Assuming a similarity solution which is slightly more general than the classical
solution of the form ψ (r, θ) = U [rf1 (θ) + f2 (θ)] splits the problem into two parts.
The solution f1 (θ) corresponds to the classical solution, while the solution f2 (θ)
satisfies

d4f2

dθ4
+ 4

d2f2

dθ2
= 0, (6.1)

which from Eq. (4.1) is subject to

f ′2 (0) = `1f
′′
1 (0) , f ′′2 (0) = 0, f ′2 (θ0) = −`2f

′′
1 (θ0) , f ′′2 (θ0) = 0. (6.2)

The general solution for f2 (θ) is given by

f2 (θ) = C1 + C2θ + C3 sin 2θ + C4 cos 2θ, (6.3)

and applying the boundary conditions yields two distinct cases, which are outlined
below.

6.1. Solution for arbitrary θ0

For an arbitrary contact angle between the boundaries it is required that `2 =
[(θ0 − sin θ0 cos θ0) / (sin θ0 − θ0 cos θ0)] `1, and we find

f2 (θ) = C1 +
2`1

(
θ0 − 1

2 sin 2θ0

)
θ2
0 − sin2 θ0

θ. (6.4)
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Hence the stream function is given by ψ (r, θ) = ψ1 (r, θ)+ψ2 (r, θ), where ψ1 (r, θ)
is given by the classical solution and ψ2 (r, θ) is given by ψ2 (r, θ) = Uf2 (θ), with
an arbitrary constant C1, which may be set to zero without loss of generality.

The pressure and tangential and normal components of stress are given by
p = p1 + p2, Trr = Trr1 + Trr2 and Trθ = Trθ1 + Trθ2, where p1, Trr1 and Trθ1 are
given by the classical solution, and

p2 = 0 = Trθ2,

Trr2 = −4µU`1
(
θ0 − 1

2 sin 2θ0

)
r2

(
θ2
0 − sin2 θ0

) .
(6.5)

6.2. Solution for right-angled corner flow

When the boundaries meet at an angle of θ0 = π/2 we find

f2 (θ) = C1 +
2 (π`1 + 2`2) θ

π2 − 4
+

(π`1 − 2`2) sin 2θ
π2 − 4

. (6.6)

Hence the stream function is given by ψ (r, θ) = ψ1 (r, θ)+ψ2 (r, θ), where ψ1 (r, θ)
is given by the classical solution with θ0 = π/2 and ψ2 (r, θ) is given by ψ2 (r, θ) =
Uf2 (θ), with an arbitrary constant C1, which may be set to zero without loss of
generality

The pressure and tangential and normal components of stress are given by
p = p1 + p2, Trr = Trr1 + Trr2 and Trθ = Trθ1 + Trθ2, where p1, Trr1 and Trθ1 are
given by the classical solution with θ0 = π/2 and

p2 =
4µU (π`1 − 2`2) cos 2θ

r2 (π2 − 4)
,

Trr2 = −4µU [2 (π`1 − 2`2) cos 2θ + π`1 + 2`2]
r2 (π2 − 4)

,

Trθ2 = −4µU (π`1 − 2`2) sin 2θ
r2 (π2 − 4)

.

(6.7)

It can be seen that this analysis predicts a further singularity since Trr2 = O
(
r−2

)
= Trθ2, which as a consequence implies a singularity in the r component of velocity
since vr = O

(
r−1

)
. This confirms that the solution is valid away from the corner.

Also note that Trθ2|θ=0 = 0 = Trθ2|θ=π/2, that is the similarity solution far from
the corner makes no contribution to the tangential stress on the boundaries to
that of the classical solution.
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When `1 = `2 = ` the above expressions reduce to

f2 (θ) =
2`θ

π − 2
+

` sin 2θ
π + 2

,

p2 =
4µU` cos 2θ

r2 (π + 2)
,

Trr2 = −4µU` [2 (π − 2) cos 2θ + π + 2]
r2 (π2 − 4)

,

Trθ2 = −4µU` sin 2θ
r2 (π + 2)

.

(6.8)

Streamline plots for ` = 1 and ` = 2 are shown in Figs. 3 and 4 for the cases
ψ = −0.5 and ψ = −0.1, respectively (exaggerated values of ` are chosen so that
each curve is clearly distinguishable).

6.3. Comparison of radial velocities

Although accurate streamline profiles cannot be obtained easily for the integral
transform solution, it is however possible to compare the radial component of
velocity values for θ0 = π/2, θ = π/4 and `1 = `2 = ` as a function of r∗ ≡ r/`
for the similarity and integral transform solutions. For the similarity solution we
have

vr (r∗, π/4)
U

=
1

Ur

∂ψ

∂θ
= −

√
2 (π − 4)

4 (π − 2)
+

2
r∗ (π − 2)

, (6.9)

while Appendix B gives the equivalent expression, using the approximate analytical
expression for kb given by Eq. (5.17), for the integral transform solution

vr (r∗, π/4)
U

= −
√

2
4π2

∫ ∞

0

r∗

u2

[
ln

(
u2 +

√
2u + 1

u2 −√2u + 1

)
− 2

√
2u

(
u2 + 1

)
u4 + 1

]

×
{

Ci
[
(π − 2) r∗

2πu

]
sin

[
(π − 2) r∗

2πu

]

−si
[
(π − 2) r∗

2πu

]
cos

[
(π − 2) r∗

2πu

]}
du,

(6.10)

which may be evaluated numerically using MAPLE. The results of the calculations
are shown in Figs. 5 and 6 for two ranges of r∗. It can be immediately seen that for
low values of r∗ there is a significant difference between the values of vr (r∗, π/4),
since Eq. (6.9) approaches infinity and Eq. (6.10) approaches zero as r∗ → 0. As r∗

increases the similarity solution approaches the constant value of vr (r∗, π/4) for
the classical solution from above as r∗ →∞, while the integral transfrom solution
approaches the constant value of vr (r∗, π/4) for the classical solution from below
as r∗ → ∞. Thus in the limit r∗ → ∞ (that is, ` → 0) the two solutions agree,
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Table 1. Numerical and approximate analytical values of ka and kb as determined by
Eqs. (5.9), (5.10) and Eqs. (5.16), (5.17) for −10 ≤ ρ ≤ 10.

Numerical Analytical

ρ ka kb ka kb

-10 0.000 0.000 0.000 0.000
-9 0.000 0.000 0.000 0.000
-8 0.000 0.000 0.000 0.000
-7 0.001 0.001 0.001 0.001
-6 0.002 0.002 0.002 0.002
-5 0.007 0.007 0.007 0.007
-4 0.017 0.018 0.018 0.018
-3 0.045 0.049 0.045 0.048
-2 0.108 0.130 0.110 0.127
-1 0.237 0.331 0.239 0.318
0 0.439 0.772 0.440 0.739
1 0.646 1.527 0.638 1.496
2 0.755 2.390 0.744 2.457
3 0.777 3.005 0.772 3.171
4 0.778 3.307 0.777 3.440
5 0.778 3.430 0.778 3.494
6 0.778 3.476 0.778 3.503
7 0.778 3.494 0.778 3.504
8 0.778 3.500 0.778 3.504
9 0.778 3.503 0.778 3.504
10 0.778 3.504 0.778 3.504

confirming the findings of the previous sections that away from the corner the
similarity and integral transform solutions agree for any finite `.

7. Discussion and concluding remarks

For the integral transform solution the numerical and approximate analytical
results for the tangential stress on each boundary for the case θ0 = π/2 and
`1 = `2 = ` are shown in Table 1, and are plotted in Figs. 1 and 2. Examina-
tion of Fig. 1 reveals that for a large enough ρ ≡ ln (r/`) the tangential stress
on each boundary coincides with that of the classical no-slip solution. Numerical
calculations reveal that for a non-zero slip length `, the force on each boundary
is finite and approximate analytical expressions for calculating these forces may
be obtained from Eqs. (5.20) and (5.21). These findings support those of Hocking
[8, 9], that is that a non-zero slip length is capable of removing the non-integrable
stress singularity that occurs in many fluid mechanics problems, particularly for
the sliding plate and moving contact line problems.

For the similarity solution, the streamline plots for the case θ0 = π/2 and
`1 = `2 = ` are shown in Figs. 3 and 4 for the cases ψ = −0.5 and ψ = −0.1
for various values of `. Note that the flow is reversible; that is, if U is replaced
with −U then identical streamline patterns are obtained with ψ replaced with −ψ.
These streamline plots are similar to the results obtained by Hancock et al. [6] in
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Figure 1. Numerical values of ka, kb, k1 and k2 for θ0 = π/2 and equal slip lengths `1 = `2 = `.

Figure 2. Comparison of numerical and approximate analytical values of ka and kb as given by
Eqs. (5.9), (5.10) and Eqs. (5.16), (5.17) for θ = π/2 and equal slip lengths `1 = `2 = `.
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Figure 3. Streamlines for the similarity solution for θ0 = π/2, ψ = −0.5, U = 1 for various
values of the slip length `1 = `2 = `.

Figure 4. Streamlines for the similarity solution for θ0 = π/2, ψ = −0.1, U = 1 for various
values of the slip length `1 = `2 = `.
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Figure 5. Comparison of radial components of velocity as given by Eqs. (6.9) and (6.10) for the
similarity and integral transform solutions for θ0 = π/2 and θ = π/4 for various values of
r∗ ≡ r/`. The constant radial component of velocity for the classical solution is also plotted for
comparison.

Figure 6. Comparison of radial components of velocity as given by Eqs. (6.9) and (6.10) for the
similarity and integral transform solutions for θ0 = π/2 and θ = π/4 for various values of
r∗ ≡ r/`. The constant radial component of velocity for the classical solution is also plotted for
comparison.
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their study of the effects of inertia in the sliding plate problem for the case −U ;
that is, the streamline patterns for nonzero ` are moved in the opposite direction
to those where the effects of inertia are included.

Concerning the tangential stress on the boundary, the results of the similarity
solution away from the corner, Eq. (6.8d), imply that the stress is equal to that of
the classical solution; that is, the similarity solution away from the corner makes
no additional contribution to the tangential stress on the boundaries. This is in
agreement with the integral transform solution, which implies for large enough ρ
the stress is equal the classical solution. Ideally, we would like to compare the
streamlines for both the integral transform solution and the similarity solution.
However, this is not straight forward, and instead we calculate the radial compo-
nent of velocity for the two solutions along the line θ = π/4 for increasing distance
from the corner. These are shown in Figs. 5 and 6, and confirm that for a sufficient
distance from the corner, the two solutions indeed agree.

The nature of the Navier boundary condition on each boundary makes it dif-
ficult to obtain a solution to the biharmonic equation which is valid everywhere.
The similarity solution is valid away from the corner, but the solution near the
corner cannot be obtained explicitly by separation of variables, and only the tan-
gential stress on each boundary may be obtained, and then only either numerically
or by an approximate analytical solution, which turns out to be very accurate. A
more complicated problem is that of the so-called lid-driven cavity, which has
been extensively studied by Shankar [28, 29, 30], Shankar et al. [31], Meleshko
[19, 17, 18], Meleshko et al. [20, 21] and Gomilko et al. [4]. This problem involves a
two-dimensional creeping flow of a Newtonian fluid in a rectangular cavity, where
the motion is produced by applying constant but general velocities on the top
and bottom walls. Although more complicated, the problem is usually studied in
Cartesian coordinates, and solved using Fourier series. The advantage of studying
such a problem is that, as demonstrated by Meleshko [19], the stream function
near the corner points may be inferred by locally expanding the full solution in
terms of suitably defined polar coordinates. For the no-slip boundary condition,
the solutions obtained correspond to the classical solution stated earlier, along
with higher-order terms identical to those obtained by Krasnopolskaya [12] and
Moffatt [22]. The Navier boundary condition in Cartesian coordinates provides less
restrictions on a similarity solution than that in cylindrical coordinates, making
the problem more tractable; in particular it may provide more accurate streamline
behavior near the corner than the solution obtained here.
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A. Appendix - Approximate analytical solution

Consider the integral equation

1− e−ρkε (ρ) =
1
2π

∫ ∞

−∞

{
ln

∣∣∣∣1 + e−|ρ+u|

1− e−|ρ+u|

∣∣∣∣ +
ε

cosh (ρ− u)

}
kε (u) du, (A.1)

where ε = 1 for kε = ka and ε = −1 for kε = kb. When ε = 0 Eq. (A.1) reduces to
that of Hocking [8, 9], which has an analytical solution given by

k0 (ρ) =
4eρ

π

∫ ∞

0

sin (seρ)
1 + 2s

ds

=
2eρ

π

[
Ci

(
1
2eρ

)
sin

(
1
2eρ

)− si
(

1
2eρ

)
cos

(
1
2eρ

)]
, (A.2)

which can be verified by direct substitution, where Ci and si are the cosine and
sine integrals as defined in Abramowitz and Stegun [1]. Hence we assume that kε

has the form
kε (ρ) =

4eρ

π

∫ ∞

0

Aε (s) sin (seρ) ds, (A.3)

where Aε (s) is a function of s to be found for ε = ±1, with the property that
Aε (s)→ 0 as s→∞. For ε = 0, Aε (s) reduces to

A0 (s) =
1

1 + 2s
. (A.4)
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Substituting Eq. (A.3) into (A.1) and rearranging yields∫ ∞

0

Aε (s) (1 + 2s) sin (seρ)
s

ds + εeρ

∫ ∞

0

Aε (s) e−seρ

ds =
π

2
. (A.5)

The second integral may be integrated by parts so that∫ ∞

0

Aε (s) (1 + 2s) sin (seρ)
s

ds + ε

∫ ∞

0

A′
ε (s) e−seρ

ds =
π

2
− εAε (0) . (A.6)

Using the result

e−seρ

=
2
π

∫ ∞

0

t sin (teρ)
t2 + s2

dt, (A.7)

we may write∫ ∞

0

sin (seρ)
s

[
Aε (s) (1 + 2s) +

2εs2

π

∫ ∞

0

A′
ε (t)

s2 + t2
dt

]
ds

=
π

2
− εAε (0) . (A.8)

Since ∫ ∞

0

sin (seρ)
s

ds =
π

2
, (A.9)

one possibility might be

Aε (s) (1 + 2s) +
2εs2

π

∫ ∞

0

A′
ε (t)

s2 + t2
dt = 1− 2ε

π
Aε (0) . (A.10)

Making the substitution t = s tan θ transform the above equation to

Aε (s) (1 + 2s) +
2εs

π

∫ π
2

0

A′
ε (s tan θ) dθ = 1− 2ε

π
Aε (0) . (A.11)

The second integral may be integrated by parts to obtain

Aε (s) (1 + 2s) +
2ε

π

∫ π
2

0

Aε (s tan θ) sin 2θdθ = 1. (A.12)

Thus we may find an expression for Aε (0) by substituting s = 0 into the above
equation, which yields

Aε (0) =
π

π + 2ε
. (A.13)

Taking the ordinary Laplace transform

F (p) =
∫ ∞

0

e−pxf (x) dx, (A.14)

with inverse transformation

f (x) =
1

2πi

∫ ε+i∞

ε−i∞
epxF (p) ds, (A.15)
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of Eq. (A.5) with x = eρ yields∫ ∞

0

Aε (s)

[
1 + 2s
p2 + s2

+
ε

(p + s)2

]
ds =

π

2p
. (A.16)

Making the substitution s = p tan θ transforms the above equation to∫ π
2

0

Aε (p tan θ)
[
1 + 2p tan θ +

ε

1 + sin 2θ

]
dθ =

π

2
. (A.17)

When p = 0 the above equation implies

Aε (0) =
π

π + 2ε
, (A.18)

as required. Since ∫ π
2

0

dθ =
π

2
, (A.19)

then ideally we would like to have

Aε (p tan θ)
[
1 + 2p tan θ +

ε

1 + sin 2θ

]
= 1, (A.20)

from which it is apparent why the exact solution of Hocking [9] applies when ε = 0.
However, for ε nonzero the additional term is not a function of p tan θ solely, and
for this case we can only deduce an approximate analytical expression. Hence we
assume

Aε (p tan θ) =
1

1 + 2p tan θ + aε
, (A.21)

where a is a constant that may be determined from the requirement that

Aε (0) =
π

π + 2ε
, (A.22)

which implies a = 2/π. Some insight into why this provides such a good approxi-
mation might be inferred from calculating the difference∫ π

2

0

Aε (p tan θ)
[
1 + 2p tan θ +

ε

1 + sin 2θ

]
dθ

−
∫ π

2

0

Aε (p tan θ) (1 + 2p tan θ + aε) dθ,

(A.23)

which is seen to be minimized since

ε

∫ π
2

0

Aε (p tan θ)
[

1
1 + sin 2θ

− a

]
dθ ≤ εAε (0)

∫ π
2

0

[
1

1 + sin 2θ
− a

]
dθ

= εAε (0)
(
1− πa

2

)
= 0, (A.24)
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for a = 2/π (recall Aε (s) → 0 as s → ∞). Thus we have the approximate
analytical expression

Aε (s) =
1

1 + 2ε
π + 2s

, (A.25)

which implies

kε (ρ) =
4eρ

π

∫ ∞

0

sin (seρ)
1 + 2ε

π + 2s
ds

=
2eρ

π

{
Ci

[
(π + 2ε) eρ

2π

]
sin

[
(π + 2ε) eρ

2π

]
(A.26)

−si
[
(π + 2ε) eρ

2π

]
cos

[
(π + 2ε) eρ

2π

]}
.

B. Appendix - Velocity comparisons

Although the main problem has been studied using the two-sided Laplace trans-
form to simplify the numerical analysis, equally well it could also have been ana-
lyzed using the Mellin transform

Ψ (s, θ) =
∫ ∞

0

r∗s−1ψ∗ (r∗, θ) dr∗, (B.1)

with inverse transformation

ψ∗ (r∗, θ) =
1

2πi

∫ ε+i∞

ε−i∞
r∗−sΨ(s, θ) ds, (B.2)

where r∗ = r/` and ψ (r, θ) = Urψ∗ (r∗, θ). The form of Ψ (s, θ) is identical to
that of Eq. (4.21) for ψ̃ (s, θ), and the approximate analytical solutions of k∗a (r∗)
and k∗b (r∗) are identical to that of Eqs. (5.16) and (5.17) for ka (ρ) and kb (ρ)
with eρ replaced with r∗. Now Ki (s) denotes the Mellin transform of k∗i (r∗). For
θ0 = π/2 the function Ψ (s, θ) has the simple form

Ψ (s, θ) =
sin θ sin

[
s
(
θ − π

2

)]
K1 (s)− cos θ sin (sθ) K2 (s)

2s cos (πs/2)
. (B.3)

Hence we have

∂Ψ
∂θ

(
s,

π

4

)
= −

√
2

4

[
sin (πs/4)

s cos (πs/2)
− cos (πs/4)

cos (πs/2)

]
Kb (s) . (B.4)

where Kb (s) = K1 (s)−K2 (s). It may be shown that the inverse Mellin transform
of cos (πs/4) / cos (πs/2) is given by

√
2r∗

(
r∗2 + 1

)
π (r∗4 + 1)

. (B.5)
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Similarly it may be shown that the inverse Mellin transform of sin (πs/4) / cos (πs/2)
is given by √

2r∗
(
r∗2 − 1

)
π (r∗4 + 1)

. (B.6)

The inverse Mellin transform of 1/s is 1 for 0 < r∗ < 1 and 0 for 1 < r∗ <
∞. Hence by the convolution theorem for the Mellin transform, the inverse of
sin (πs/4) /s cos (πs/2) is given by

√
2

π

∫ 1

0

r∗
(
r∗2 − u2

)
r∗4 + u4

du =
1
2π

ln

(
r∗2 +

√
2r∗ + 1

r∗2 −√2r∗ + 1

)
. (B.7)

By applying the convolution theorem for the Mellin transform again to ∂Ψ/∂θ (s, π/4)
we have

∂ψ∗

∂θ

(
r∗,

π

4

)
= −

√
2

4π2

∫ ∞

0

r∗

u2

[
ln

(
u2 +

√
2u + 1

u2 −√2u + 1

)
− 2

√
2u

(
u2 + 1

)
u4 + 1

]

×
{

Ci
[
(π − 2) r∗

2πu

]
sin

[
(π − 2) r∗

2πu

]
−

si
[
(π − 2) r∗

2πu

]
cos

[
(π − 2) r∗

2πu

]}
du,

(B.8)

which may be evaluated numerically using standard routines and we have assumed
the approximate analytical expression Eq. (5.17) for k∗b (r∗) obtained by replacing
eρ with r∗.

C. Appendix - Nomenclature

ψ (r, θ) stream function in physical variables (r, θ).
ψ̄ (ρ, θ) (Ur)−1

ψ (r, θ); modified stream function in
variables (ρ, θ) where ρ = ln (r/`).

ψ̃ (s, θ) two-sided Laplace transform of ψ̄ (ρ, θ).
ψ∗ (r∗, θ) (Ur)−1

ψ (r, θ); modified stream function in
variables (r∗, θ) where r∗ = r/`.

Ψ (s, θ) Mellin transform of ψ∗ (r∗, θ).
k1 (ρ), k2 (ρ) ∂2ψ̄/∂θ2 (ρ, 0) ≡ rTrθ|θ=0/µU ,

∂2ψ̄/∂θ2 (ρ, θ0) ≡ rTrθ|θ=θ0/µU .
k̂1, k̂2 k1 (∞), k2 (∞).
k̃1 (ρ), k̃2 (ρ) two-sided Laplace transform of k1 (ρ), k2 (ρ).
ka (ρ), kb (ρ) k1 (ρ) + k2 (ρ), k1 (ρ)− k2 (ρ).
k̂a, k̂b k̂1 + k̂2, k̂1 − k̂2.
k̃a (ρ), k̃b (ρ) k̃1 (ρ) + k̃2 (ρ), k̃1 (ρ)− k̃2 (ρ).
k∗1 (r∗), k∗2 (r∗) ∂2ψ∗/∂θ2 (r∗, 0) ≡ rTrθ|θ=0/µU ,
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∂2ψ∗/∂θ2 (r∗, θ0) ≡ rTrθ|θ=θ0/µU .
k∗a (r∗), k∗b (r∗) k∗1 (r∗) + k∗2 (r∗), k∗1 (r∗)− k∗2 (r∗).
K1 (s), K2 (s) Mellin transform of k∗1 (r∗), k∗2 (r∗).
Ka (s), Kb (s) K1 (s) + K2 (s), K1 (s)−K2 (s).
`1, `2 slip lengths along θ = 0 and θ = θ0.
˜̀ `1/`2.
` slip length for that case `1 = `2 = `.
P (ρ), Q (ρ) functions defined by the inverse transforms Eq.

(4.25) and given explicitly by Eq. (5.2) for θ0 = π/2.

Miccal T. Matthews and James M. Hill
University of Wollongong
School of Mathematics and Applied Statistics
Wollongong, N.S.W. 2522
Australia
e-mail miccal@uow.edu.au

(Received: November 9, 2005)

Published Online First: June 8, 2006


