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On some axial Couette flows of non-Newtonian fluids
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Abstract. The velocity fields corresponding to some flows of second grade and Maxwell fluids,
induced by a circular cylinder subject to a constantly accelerating translation along its symme-
try axis, are presented as Fourier-Bessel series in terms of the eigenfunctions of some suitable
boundary value problems. These solutions satisfy both the associate partial differential equations
and all imposed initial and boundary conditions. For α or λ → 0, they are going to those for
a Newtonian fluid. Finally, for comparison, some diagrams corresponding to the solutions for
the flow through a circular cylinder are presented for different values of t and of the material
constants.
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1. Introduction

Mechanics of non-Newtonian fluids present a special challenge to engineers, physi-
cists and mathematicians. The non-linearity can manifest itself in a variety of
ways. Among the many models, which have been used to describe the non-
Newtonian behavior exhibited by different liquids, the fluids of differential type [1,
2] and those of rate type [2 4] have received much attention. Two recent and very
interesting reviews regarding these models were given by Dunn and Rajagopal [5]
and Rajagopal and Srinivasa [6]. Amid these fluids, a major attractiveness was
secured by the incompressible second grade and Maxwell fluids whose constitutive
equations are [1-5]

T = −pI + S S = µA1 + α1A2 + α2A2
1, (1.1)

respectively,
T = −pI + S S + λ(Ṡ − LS − SLT ) = µA1. (1.2)

Here T is the Cauchy stress tensor, S is the extra-stress tensor, −pI denotes
the indeterminate spherical stress, L is the velocity gradient, A1 and A2 are the
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first two Rivlin–Ericksen tensors, µ is the dynamic viscosity, α1 and α2 are the
normal stress moduli, λ is the relaxation time and the superposed dot indicates
the material time derivative.

In the following we shall study unidirectional motions of the form [7]

v = v(r, t)ez, (1.3)

of second grade and Maxwell fluids. In (1.3) v is the velocity vector and ez is the
unit vector in the z-direction of the system of cylindrical coordinates r, θ and z.
For these flows the constraint of incompressibility is automatically satisfied. On
substituting (1.1)–(1.3) into the balance of linear momentum, dropping the body
forces and assuming that there is no pressure gradient in the z-direction, we attain
to the linear partial differential equations [7]

(µ + α1∂t)
(

∂2
r +

1
r
∂r

)
v(r, t) = ρ∂tv(r, t), (1.4)

respectively [8],

µ

(
∂2

r +
1
r
∂r

)
v(r, t) = ρ∂tv(r, t) + ρλ∂2

t v(r, t). (1.5)

The main goal of this work is to establish the analytical solutions corresponding
to the unsteady flows (1.3) of the non-Newtonian fluids (1.1) and (1.2), induced by
a circular cylinder subject to a constantly accelerating translation along its axis
of symmetry. Their governing equations (1.4) and (1.5) can be solved in principle
by several methods. The Laplace transform can be applied to eliminate the time
variable. However, the inversion procedure for obtaining the solution is not always
a trivial matter. Further, the solution so obtained for a second grade fluid does not
satisfy the initial condition [9, 10]. This is due to the incompatibility between the
prescribed data. Here we used the Fourier sine transform and the solutions that
have been obtained satisfy both the governing equations and all imposed initial
and boundary conditions. Similar solutions for the flow induced by a constantly
accelerating plate in a second grade fluid, have been recently obtained in [9] and
[11]. The unsteady flows of a fluid in cylindrical pipes of uniform circular cross-
section have applications in medicine, chemical and petroleum industries.

2. Axial Couette flow of a second grade fluid

Let us consider a second grade fluid in the annular region between two infinitely
long coaxial cylinders of radii R0 and R(> R0). The inner cylinder is held fixed†
while the outer one is subject, after time zero, to a translation along its axis of
symmetry with a constant acceleration A. Due to the shear the fluid is gradually

† The case when both cylinders are subject to translations of constant accelerations does not
present any more difficulty.
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moved, its velocity field being of the form (1.3). The governing equation is (1.4)
and the initial and boundary conditions are

v(r, 0) = 0, R0 ≤ r ≤ R (2.1)

and
v(R0, t) = 0, v(R, t) = At; t > 0. (2.2)

Making the change of unknown function

v(r, t) =
ln(r/R0)
ln(R/R0)

At + u(r, t), (2.3)

we attain to the next problem with initial and boundary conditions

(ν + α∂t)∆u(r, t) = ∂tu(r, t) + A
ln(r/R0)
ln(R/R0)

; r ∈ (R0, R), t > 0,

u(r, 0) = 0, r ∈ [R0, R]; u(R0, t) = u(R, t) = 0, t > 0,

(2.4)

where ν = µ/ρ is the kinematic viscosity of the fluid, α = α1/ρ and the operator
∆ = ∂2

r + 1
r ∂r.

In order to solve this problem we shall use, as in [12], the expansion theorem of
Steklov. In view of this theorem our solution u(r, t), whose partial derivatives ∂ru
and ∂2

ru have to be piecewise continuous, can be written, for each t > 0, as Fourier-
Bessel series absolutely and uniformly convergent in terms of the eigenfunctions

B(rrn) = An

[
J0(rrn) − J0(R0rn)

Y0(R0rn)
Y0(rrn)

]
, (2.5)

of the eigenvalue problem ∆Φ + γ2Φ = 0, Φ(R0) = Φ(R) = 0, i.e.,

u(r, t) =
∞∑

n=1

un(t)B(rrn). (2.6)

Here, J0(·) and Y0(·) are Bessel functions of order zero of the first and second
kind in standard notations, rn are the positive roots of the transcendental equation

J0(Rr)Y0(R0r) − Y0(Rr)J0(R0r) = 0

and the constants An are chosen so that the normalization conditions
R∫

R0

r[B(rrn)]2dr = 1, n = 1, 2, 3, . . . (2.7)

are satisfied.
Now, introducing (2.6) into (2.4)1, multiplying then by rB(rrp), integrating

the result with respect to r from R0 to R and taking into account (2.4)2−4, we
find that

(1 + αr2
n)u̇n(t) + vr2

nun(t) + AVn = 0, un(0) = 0; n = 1, 2, 3, . . . (2.8)
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where Vn (n = 1, 2, 3, . . . ) are the modified finite Hankel transforms of ln(r/R0)/
ln(R/R0).

Solving the ordinary differential equation (2.8)1 subject to the initial condition
(2.8)2 and using (2.3) and (2.6), we find for the velocity field v(r, t) the expression

v(r, t) =
ln(r/R0)
ln(R/R0)

At − A

ν

∞∑
n=1

[
1 − exp

(
− νr2

n

1 + αr2
n

t

)]
VnB(rrn)

r2
n

, (2.9)

from which the solution for the Navier-Stokes fluid

v(r, t) =
ln(r/R0)
ln(R/R0)

At − A

ν

∞∑
n=1

[
1 − exp(−νr2

nt)
] VnB(rrn)

r2
n

, (2.10)

appears as a limiting case for α → 0.

3. Axial Couette flow of a Maxwell fluid

Suppose now that a Maxwell fluid fills the space between the same infinitely coaxial
cylinders of radii R0 and R. The inner cylinder is again fixed and the outer one is
subject, after time zero, to a translation along its axis of symmetry with a constant
acceleration A. The governing equation is (1.5), the boundary conditions are the
same as in (2.2) while the initial conditions are [8] (the equation (1.5) being of a
higher order in t than the equation (1.4))

v(r, 0) = ∂tv(r, 0) = 0, R0 ≤ r ≤ R. (3.1)

Making the same change of unknown function as before we attain to the next
partial differential equation

λ∂2
t u(r, t) + ∂tu(r, t) + A

ln(r/R0)
ln(R/R0)

= ν∆u(r, t); r ∈ (R0, R), t > 0, (3.2)

with the initial and boundary conditions

u(r, 0) = 0, ∂tu(r, 0) = −A
ln(r/R0)
ln(R/R0)

; r ∈ [R0, R] (3.3)

and
u(R0, t) = u(R, t) = 0, t > 0. (3.4)

Introducing (2.6) into (3.2), multiplying then by rB(rrp), integrating the result
after r from R0 to R and having in mind (3.3) and (3.4) we get

λün(t) + u̇n(t) + νr2
nun(t) + AVn = 0, t > 0, n = 1, 2, 3, . . . (3.5)

where
un(0) = 0 and u̇n(0) = −AVn; n = 1, 2, 3, . . . (3.6)
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From (3.5), (3.6), (2.6) and (2.3), it easily results the velocity field v(r, t) under
form

v(r, t) =
ln(r/R0)
ln(R/R0)

At − A

ν

p∑
n=1

[
1 − p2

1n exp(p2nt) − p2
2n exp(p1nt)

p2n − p1n
λ

]
VnB(rrn)

r2
n

−

− A

ν

∞∑
n=p+1

{
1 − exp

(
− t

2λ

)[
cos

(
βnt

2λ

)
+

1 − 2νλr2
n

βn
sin

(
βnt

2λ

)]}
·

· VnB(rrn)
r2
n

,

(3.7)

where p1n,2n = −1±
√

1−4νλr2
n

2λ , βn =
√

4νλr2
n − 1 and rp ≤ 1

2
√

νλ
< rp+1.

By letting λ → 0 in (3.7) we again attain to the solution (2.10) corresponding
to a Navier–Stokes fluid.

4. Axial Couette flow through a circular cylinder

Let us consider a second grade fluid or a Maxwell fluid at rest in an infinite circular
cylinder of radius R. After time zero, the cylinder is subject to a translation along
its symmetry axis with the constant acceleration A. By the influence of shear the
fluid is gradually moved. The governing equations are again (1.4) and (1.5) and
the initial conditions are (2.1), respectively, (3.1). The boundary conditions reduce
to

v(R, t) = At, t > 0 (4.1)

and the natural condition

|v(0, t)| < ∞, t > 0. (4.2)

Taking the limits of Eqs. (2.5) and (2.7) when R0 → 0 we find the associate eigen-
functions

√
2J0(rrn)/[RJ1(Rrn)], (see [13], Eq. (7) pp. 522). The corresponding

velocity fields

v(r, t) = At − 2A

νR

∞∑
n=1

[
1 − exp

(
− νr2

n

1 + αr2
n

t

)]
J0(rrn)

r3
nJ1(Rrn)

, (4.3)

v(r, t) = At − 2A

νR

∞∑
n=1

[
1 − exp(−νr2

nt)
] J0(rrn)

r3
nJ1(Rrn)

(4.4)
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and

v(r, t) = At − 2A

νR

p∑
n=1

[
1 − p2

1n exp(p2nt) − p2
2n exp(p1nt)

p2n − p1n
λ

]
J0(rrn)

r3
nJ1(Rrn)

−

− 2A

νR

∞∑
n=p+1

{
1 − exp

(
− t

2λ

) [
cos

(
βnt

2λ

)
+

1 − 2νλr2
n

βn
sin

(
βnt

2λ

)]}
·

· J0(rrn)
r3
nJ1(Rrn)

,

(4.5)

where rn are positive roots of the transcendental equation J0(Rr) = 0, are also
obtained from (2.9), (2.10) and (3.7) for R0 → 0. Making α → 0 in (4.3) or λ → 0
in (4.5) one certainly obtains (4.4).

5. Numerical solutions and conclusions

In this paper we established the analytical expressions of the velocity fields cor-
responding to an axial Couette flow of a second grade fluid and a Maxwell one
in cylindrical domains. A circular cylinder that, after time zero, is subject to a
linear translation of constant acceleration induces the motion. The solutions cor-
responding to the flow through a circular cylinder are obtained as a limiting case
(R0 → 0 ) of those between two cylinders.

Direct computations show that all solutions satisfy both the associate partial
differential equations and all imposed initial and boundary conditions, the differen-
tiation of the respective series, term by term, being clearly permissible. Moreover,
the similar solutions corresponding to a Navier-Stokes fluid appear as limiting
cases of our solutions for α, respectively, λ → 0. It is important to note that the
solutions for a Maxwell fluid, (3.7) and (4.5), contain sine and cosine terms. This
indicates that in contrast with the second grade and Newtonian fluids, whose solu-
tions do not contain such terms, oscillations are set up in the fluid. The amplitudes
of these oscillations decay exponentially in time, the damping being proportional
to exp(−t/2λ).

In Figs. 1 and 2, for comparison, the variations of the velocity fields (4.3),
(4.4) and (4.5) are plotted for different values of t and of the material constants.
The positive roots of the transcendental equation J0(Rr) = 0 have been approxi-
mated by (4n− 1)π/(4R) (see for instance [13], pp.195). For small values of t, one
can observe both the differences between the associated diagrams and the more
pronounced oscillations corresponding to the Maxwell fluid. The diagrams for a
Navier-Stokes fluid, as it was to be expected, are situated between those corre-
sponding to a Maxwell fluid and a second grade one. For large values of t the
non-Newtonian effects become weak and the profiles of the three velocity fields are
close by.
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a) t = 5s.

b) t = 15s.

c) t = 30s.

d) t = 50s.

Figure 1. Velocity profiles v(r, t) corresponding to the relations (4.3) - curves v1, (4.4) - curves
v2 and (4.5) - curves v3, for A = 2, ν = 0.0011746 (glycerin), R = 0.25, λ = 10 and α = 0.009.
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a) t = 5s.

b) t = 15s.

c) t = 30s.

d) t = 50s.

Figure 2. Velocity profiles v(r, t) corresponding to the relations (4.3) - curves v1, (4.4) - curves
v2 and (4.5) - curves v3, for A = 2, ν = 0.0011746 (glycerin), R = 0.5, λ = 10 and α = 0.009.



1106 C. Fetecau and C. Fetecau ZAMP

Acknowledgement

Part of the work of this paper was done while the first author was a Fulbright
Scholar at the A&M University, College Station, Texas. He is thankful to Profes-
sor K. R. Rajagopal for his hospitality and many helpful discussions and sugges-
tions. The authors would like also to express their gratitude to the referee for his
constructive comments and suggestions regarding an earlier version of this paper.

References

[1] Rivlin, R. S., Ericksen, J. L., Stress deformation relation for isotropic materials, J. Rat.
Mech. Anal. 4 (1995), 323–425.

[2] Truesdell, C., Noll, W., The Non-Linear Field Theories of Mechanics, 2nd edition, Springer,
New York 1992.

[3] Rajagopal, K. R., Mechanics of non-Newtonian Fluids, Recent Developments in Theoretical
Fluids Mechanics, Pitman Res. Notes Math. 291 (1993), 129–162.
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