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Abstract. The nonlinear theory of the Kelvin-Helmholtz instability is employed to analyze the
instability phenomenon of two ferrofluids through porous media. The effect of both magnetic
field and mass and heat transfer is taken into account. The method of multiple scale expansion
is employed in order to obtain a dispersion relation for the first-order problem and a Ginzburg–
Landau equation, for the higher-order problem, describing the behavior of the system in a non-
linear approach. The stability criterion is expressed in terms of various competing parameters
representing the mass and heat transfer, gravity, surface tension, fluid density, magnetic perme-
ability, streaming, fluid thickness and Darcy coefficient. The stability of the system is discussed
in both theoretically and computationally, and stability diagrams are drawn.
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1. Introduction

The Rayleigh-Taylor instability (RTI) occurs when a heavy fluid is supported by a
lighter one in a gravitational, or equivalently, when a heavy fluid is accelerated by
a lighter one. The RTI has been addressed in several studies owing to its impor-
tance in stratified system, among which planetary and stellar atmospheres are two
examples. The effect of external forces has importance mainly in planetary and
stellar systems. Coriolis and centrifugal forces are more common in these systems
and play an important role in determining many phenomena including the RTI.
The effect of rotation at an angle with gravity was first investigated by Hide [1],
who gave a detailed analysis for the case of rotation parallel to gravity. Different
properties of fluids have been included in the RTI through theoretical investiga-
tions. For instance, Chandrasekhar [2] included the viscosity and Reid [3] added
the effects of both viscosity and surface tension. Fluids can also be supposed to
be made of a number of layers or to be continuously stratified (for an excellent
review see Chandrasekhar [4]). A new and original experiment has been done by
Fermigier et al. [5], who have made progress in the development of the RTI, not
seen before. Jun and Norman [6] concluded that the magnetic field influences the
development of the RTI considerably and that the instability amplifies the field.
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Their investigations were intended to study the basic physics of the instability
rather than a specific application. The literature of the pure hydrodynamic non-
linear RTI (Hasimoto and Ono [7] and Nayfeh [8]) reveals that the perturbation
technique may be chosen so that it renders uniformly valid expansions near the
cutoff wave number. The method of multiple scale introduced by Nayfeh [8] has
the advantage that it leads to two nonlinear Schrödinger equations describing the
finite amplitude wave propagation through the surface. One is valid near the cut-
off wave number, while the other equation can be used to study the stability of
the system. Malik and Singh [9] studied the motion of inviscid, incompressible,
non-conducting ferrofluids with a magnetic field and surface tension under gravity,
and demonstrated the formation of bubbles by means of Lagrangian transforma-
tions. They showed as well how the magnetic field and the surface tension stabilize
the interface to conserve the contours. The formation of bubbles can be inhibited
by using a magnetic field with a higher permeability and /or by increasing the
strength of the applied magnetic field.

The Kelvin-Helmholtz instability (KHI) occurs when two fluids are in relative
motion on either side of a common boundary. The KHI is important in under-
standing a variety of space and astrophysical phenomena involving plasma flow
(e.g. the stability of the solar-wind-magnetosphere interface, interaction between
adjacent streams of different velocities in the solar wind, and dynamo generation
of cosmic magnetism). The linear theory of the KHI was investigated by Chan-
drasekhar [4]. He discussed the effect of surface tension, variable density, rotation
and applied magnetic field on the behavior of the stability. Lyon [10] added the
effect of compressibility and applied electric field, but he neglected the surface ten-
sion. The nonlinear development of the KHI has been studied by Drazin [11] for
the case where the amplitude of an unstable wave is uniform in space and growing
in time. Weissman [12] extended the Drazin [11] work, and treated the case where
the amplitude of an unstable wave is dependent on both time and space. Hsieh
and Chen [13] first formulated the KHI problem in terms of a variational prin-
ciple. By choosing a single Fourier mode with time-dependent amplitudes, they
derived the evolution equations of the amplitudes. They analyzed and discussed
the limiting states and their stability of the evolution equation. Also, they studied
a sinusoidal wave state and derived a nonlinear dispersion relation. Elhefnawy [14]
studied the nonlinear KHI problem under the influence of an oblique electric field
by employing the method of multiple scales. He combined the cases of normal
and tangential fields. He found that the nonlinear effects may be stabilized or
destabilized depending on both density and dielectric constant.

The magnetic fluids are colloidal suspensions of fine magnetic particles in non-
conducting liquids. They behave like a homogeneous continuum and exhibit a
variety of surprising phenomena [15]. Magnetic fluids are not found in nature
but are artificially synthesized due to widespread interest in diverse applications
[16] as well as scientific study. The study of magnetic fluids, when subjected to
normal and tangential magnetic fields, has received considerable interest during
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the present decade, because of their wide range in important industrial applications
such as the design of sprays and ink jet printers. Because of the wide range of
important industrial applications, there has been a growing interest in recent years
in the study of magnetic fluids when subjected to normal and tangential magnetic
fields. It was shown by Cowley and Rosensweig [17] that a magnetic field along the
normal to a flat interface between a magnetizable and a nonmagnetic fluid has a
destabilizing effect; this leads to the appearance of stable regular hexagonal cells at
the interface. Zelazo and Melcher [18] considered the propagation of plane waves
on the interface between two ferrofluids in the presence of a tangential magnetic
field. Their analysis, based on the linear theory, revealed that the magnetic field
has a stabilizing effect on the waves. The linear KHI problem in the context of
magnetic fluids was investigated by Rosensweig [15]. His analysis revealed that the
velocity difference that can be supported by the fluids before the instability sets in,
is enhanced if the difference in the permeabilities of the fluids across the interface
and the strength of the applied magnetic field are increased. In their investigation
of the nonlinear evolution of wave packets on the surface of a magnetic fluid,
Malik and Singh [19] showed that the wave train solution of constant amplitude
is unstable against modulation if the product of the group velocity rate and the
nonlinear interaction coefficient is negative. Furthermore, the magnetic field has
a stabilizing influence on the modulation instability for small wave numbers.

Many technological processes involve the parallel flow of fluids of different vis-
cosity and density through porous media. Such parallel flows exist in packed bed
reactor in the chemical industry, in petroleum production engineering, in boiling
in porous media (countercurrent flow of liquid and vapor), and in many other
processes. The instability of a plane interface between two uniform superposed
fluids through a porous medium was investigated by Kumar [20], and the KHI
for flow in porous media was studied by El-Sayed [21]. They used linear stability
analysis to obtain a characteristic equation for the growth rate of the disturbance.
A linear theory of the KHI for parallel flow in porous media was introduced by
Bau [22] for the Darcian and non-Darcian flows. In both cases, Bau found that the
velocities should exceed some critical value for the instability to manifest itself.
El-Sayed [23] investigated the RTI problem of a rotating stratified conducting fluid
layer through porous medium in the presence of an inhomogeneous magnetic field.
This problem corresponds physically (in astrophysics) to the RTI of an equatorial
section of a planetary magnetosphere or of stellar atmosphere when rotation and
magnetic field are perpendicular to gravity. It is also of great importance in the
area of geophysics, civil engineering, soil sciences, ground water hydrology, and
petroleum production engineering [24].

The mechanism of heat and mass transfer across an interface is of great im-
portance in numerous industrial and environmental processes. These include the
design of many types of contacting equipment, e.g. boilers, condensers, evapo-
rators, gas absorbers, pipelines, chemical reactors, nuclear reactors, and in other
problems such as the aeration of rivers and the sea. In most cases of practical
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importance, the liquid flow is turbulent and the transport across the gas-liquid in-
terface is governed by the liquid side. As a result, characteristics of turbulence in
liquid flows near the interface are of significant value in understanding the trans-
port across the gas-liquid interface. Hsieh [25] formulated the general problem of
interfacial fluid flow with mass and heat transfer and applied it to discuss the RTI
in the problem of film-boiling heat transfer. However, the dispersion relation, in
the general case, is too complicated to help us to understand the essential features
of the problem. Therefore, he gave a simplified formulation of the problem [26]
of interfacial flow with mass and heat transfer by analyzing his previous inves-
tigation [25] carefully. Hsieh [26] discussed both the RTI and KHI problems in
a plane geometry, taking into account interfacial heat and mass transfer, follow-
ing his simplified formulation. He obtained the instability criterion in the KHI
problem. In studying the nonlinear RTI with mass and heat transfer, Hsieh [27]
found that when the heat transfer rate is strong enough, the classically unstable
system is stabilized by the nonlinear approach and the effect of mass and heat
transfer across the interface. He, also, estimated the size of the bubbles detached
from the interface. Recently, Moatimid [28] investigated the stability of two rigidly
rotating magnetic fluid columns in the presence of mass and heat transfer. His
boundary-value problem leads to a transcendental differential equation. Therefore,
the method of multiple scales is adopted to determine the necessary and sufficient
conditions for stability. In addition, the stability properties of ferromagnetic fluids
in the presence of an oblique field and mass and heat transfer, is investigated by
Moatimid [29]. His analysis reveals the case of a uniform magnetic field as well
as the periodic one. A most recent work on this topic is introduced by Moatimid
[30]. His system is composed of a streaming dielectric fluid sheet of finite thickness
embedded between two different streaming finite dielectric fluids. The interfaces
permit mass and heat transfer. His analysis reveals that the sheet thickness and
mass and heat transfer parameters have a dual influence on the stability picture,
especially at small values of the wave number. Elhefnawy [31] studied the nonlin-
ear stability problem of ferromagnetic fluids with mass and heat transfer effect.
He showed that the mass and heat transfer coefficient plays an important role in
the nonlinear stability of the system.

The aim of this work is to make an extension of our previous study [29] to
include the nonlinear effects. Therefore, we shall introduce the nonlinear KHI in
magnetic fluids in the presence of a tangential magnetic field and mass and heat
transfer across the interface. Because of the instability in a porous medium of a
plane interface between two fluids may be of interest in geophysics and biomechan-
ics, the present study is considered through porous media. The analysis includes
the linear as well as the nonlinear effects. The plan of this work, which is of the
nonlinear KHI type, is outlined as follows: In section 2, we give a description of the
problem including the basic equations that govern the motion of our model and
also the appropriate boundary conditions. The lines of solutions are reported in
section 3. Section 4 is devoted to introduce the nonlinear characteristic equation.
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The linear stability analysis is investigated in section 5. The Ginzburg–Landau
equation is derived in section 6. Finally, in section 7, we give conclusions for this
work based on the obtained results of the stability analysis.

2. Definition of the problem

2.1. Basic equations

The system under consideration is composed of two incompressible magnetic fluids
separated by the plane y = 0. Each fluid is of infinite horizontal extent. We take
the origin o at the mean level of the interface, and the axis oy pointing vertically
upwards into the upper fluid. Let the two fluids be confined between two rigid
horizontal planes y = −h1 (the lower boundary) and y = h2 (the upper one). The
temperatures at y = −h1, y = h2 and y = 0 are taken as τ1, τ2 and τ0, respectively.
The media are considered as porous, where the resistance term (−νv) is only taken
into account, where v is the filter velocity of the fluid and ν is the Darcy’s coefficient
which depends on the ratio of the fluid viscosity to the flow permeability through
the voids. The two fluids are influenced by a uniform magnetic field H0 acting
along the positive x-direction, where the axis ox is the mean level of the wave.
Also, the fluids are streaming with velocities V1 and V2 along the same direction.
Acceleration due to gravity acts in the negative y-direction. A schematic diagram
of the configuration in the steady state is given in Figure 1.

Figure 1. A schematic diagram of the system under consideration.

The upper fluid has density ρ2 and magnetic permeability µ2, while the lower
one has density ρ1 and magnetic permeability µ1. A surface tension exists between
the two fluids and is denoted by σ.
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Assuming the motion of the system to be irrotational, it can be described by the
potential φ1(x, y, t) in the lower fluid and φ2(x, y, t) in the upper one. Therefore,
for incompressible fluids, φ1(x, y, t) and φ2(x, y, t) satisfy the following Laplace’s
equations:

∇2φ1 = 0, −h1 < y < η(x, t), (2.1)

∇2φ2 = 0, η(x, t) < y < h2, (2.2)

where
η = γei(kx−wt) + c.c., (2.3)

denotes the elevation of the interface at time t, k is the wave number, which is
assumed to be real and positive, w is the growth rate, γ is an arbitrary constant,
which determines the amplitude of the disturbance of the interface and c.c. indi-
cates the complex conjugate of the preceding term. It should be noted that an
imaginary part for w indicates a disturbance which either grows with time (insta-
bility) or decays with time (stability), depending on whether this imaginary part
is positive or negative, respectively.

In case of a magneto-quasistatic system with negligible displacement current,
Maxwell’s equations in the absence of free currents reduce to Gauss’s law ∇.B = 0,
and Ampère’s law (no currents) ∇ ∧ H = 0, where B = µH is the magnetic
induction vector. From Ampere’s law, the magnetic field H can be expressed in
terms of a magnetic scalar potential ψj(x, y, t) in each of the regions occupied by
the fluids, i.e.

Hj = H0ex −∇ψj , j = 1, 2 (2.4)

where ex is the unit vector along the x-direction and the subscripts 1 and 2 refer
to quantities in the lower and upper fluids, respectively.

Combining the latter equations (2.4) with Gauss’s law, considering µ as a
constant, one finds that the magnetic scalar potentials, also, obey the Laplace’s
equations:

∇2ψ1 = 0, −h1 < y < η(x, t), (2.5)

∇2ψ2 = 0, η(x, t) < y < h2. (2.6)

To complete the formulation of the problem, we must define the surface ge-
ometry and supplement the magnetic equations with the corresponding boundary
conditions. The interface may be represented by the expression

S(x, y, t) ≡ y − η(x, t) = 0, (2.7)

for which the unit outward normal vector is given by

n = (−∂η

∂x
, 1, 0)(1 + (

∂η

∂x
)2)−1/2. (2.8)
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2.2. Boundary conditions

The boundary conditions represented here are prescribed at the interface y =
η(x, t). As the interface is deformed, all variables are slightly perturbed from their
equilibrium values. Because the interfacial displacement is small, the boundary
conditions on the perturbed interfacial variables need to be evaluated at the po-
sition of equilibrium position rather than the interface. The development of the
weak nonlinear approach, considered here, is based on the idea of linearization
of the hydrodynamic equations of motion, under the non-linearizing boundary
conditions.

The solutions for both φj and ψj have to satisfy the following relevant boundary
conditions for our configuration [15, 26, 31]
(i) On the rigid boundaries y = h1 and y = −h2:

(1) The normal fluid velocities vanish on both the bottom and top boundaries,
require

∂φ1

∂y
= 0 on y = −h1, (2.9)

∂φ2

∂y
= 0 on y = h2. (2.10)

(2) The tangential components of the magnetic field vanish on these boundaries,
give

∂ψ1

∂x
= 0 on y = −h1, (2.11)

∂ψ2

∂x
= 0 on y = h2, (2.12)

(ii) On the interface y = η(x, t):
(1) The tangential components of the magnetic field are equal at the interface.

This may be written as n∧ ‖ H ‖= 0, or
∥
∥
∥
∥

∂ψ

∂x

∥
∥
∥
∥

+
∂η

∂x

∥
∥
∥
∥

∂ψ

∂y

∥
∥
∥
∥

= 0, (2.13)

where ‖‖ represents the difference in a quantity as we cross the interface,
i.e. ‖ X ‖= X2 − X1, where the subscripts refer to upper and lower fluids,
respectively.

(2) The normal components of the magnetic induction vector are equal, since
we have assumed that there are no free currents at the interface, i.e.

n. ‖B‖ = 0 or
∥
∥
∥
∥
µ

∂ψ

∂y

∥
∥
∥
∥

+ H0
∂η

∂x
‖µ‖ =

∂η

∂x

∥
∥
∥
∥
µ

∂ψ

∂x

∥
∥
∥
∥

. (2.14)
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For the hydrodynamic part, let v = V ex + ∇φ be the velocity vector field of
the fluid particles.
(3) The conservation of mass across the interface, yields

∥
∥
∥
∥
ρ

(
∂S

∂t
+ v.∇S

)∥
∥
∥
∥

= 0, (2.15)

or ∥
∥
∥
∥
ρ
∂φ

∂y

∥
∥
∥
∥
− ∂η

∂x
‖ρV ‖ − ∂η

∂t
‖ρ‖ =

∂η

∂x

∥
∥
∥
∥
ρ
∂φ

∂x

∥
∥
∥
∥

. (2.16)

(4) The interfacial condition for energy is

L∗ρ1

(
∂S

∂t
+ v.∇S

)

= F (η), (2.17)

where L∗ is the latent heat of the transformation from the fluid of density ρ1 to
the fluid of density ρ2 and F (η) is a function of the instantaneous profile of the
interface and is determined by the heat transfer relation at equilibrium.

Physically, the left-hand side of equation (2.17) represents the latent released
during the phase transformation, while F (η) on the right-hand side of equation
(2.17) represents the net heat flux across the interface, so that the energy will be
conserved.

Let us consider a specific equilibrium state. Since the two fluids are confined
between two parallel planes y = −h1 and y = h2, the heat fluxes, then in the
positive y-direction in the two regions 1 and 2 are K1(τ1 − τ0)/h1 and K2(τ0 −
τ2)/h2, where K1 and K2 represent the lower and upper thermal conductivities,
respectively. As in [26], we denote

F (y) =
K2(τ0 − τ2)

h2 − y
− K1(τ1 − τ0)

h1 + y
, (2.18)

and we expand it about y = 0, by Maclaurin series, such as

F (y) = F (0) + ηF ′(0) +
1
2!

η2F ′′(0) +
1
3!

η3F ′′′(0) + .... (2.19)

It is clear that F (0) represents the net heat flux from the interface into the fluid
regions. Since it is an equilibrium state, we have F (0) = 0, so that

K2(τ0 − τ2)
h2

=
K1(τ1 − τ0)

h1
= G (say), (2.20)

indicating that in the equilibrium state, the heat fluxes are equal across the inter-
face between the two fluids.



Vol. 57 (2006) Nonlinear Kelvin–Helmholtz instability of two miscible ferrofluids 141

Substituting (2.7) and (2.18)–(2.20) into (2.17), we have

ρ1

(
∂φ1

∂y
− ∂η

∂t
− ∂η

∂x

∂φ1

∂x

)

= α(η + α2η
2 + α3η

3), (2.21)

where

α =
G

L∗

(
1
h1

+
1
h2

)

α2 =
1
h2

− 1
h1

and α3 =
1
h2

2

− 1
h1h2

+
1
h2

1

.

If we state that the lower fluid is hotter than the upper one (τ1 > τ0 > τ2), then
L∗ and G are both positive. In the opposite, if the upper fluid is hotter than the
lower one (τ2 > τ0 > τ1), then L∗ and G are both negative. In both cases α is
positive.

(5) Finally, at the boundary between the two fluids, the fluids and the mag-
netic stresses must be balanced. The components of these stresses consist of the
hydrodynamic pressure, surface tension, mass and heat transfer effects and mag-
netic stresses. These stresses lead to the following conservation of the momentum
balance:

∥
∥
∥
∥
ρ(v.∇S)

(
∂S

∂t
+ v.∇S

)∥
∥
∥
∥

+
(∥

∥
∥P̂

∥
∥
∥ − 1

2

∥
∥
∥µ(H2

n − H2
t )

∥
∥
∥ + σ∇.n

)

|∇S|2 = 0,

(2.22)
where P̂ is the pressure, Hn and Ht represent the normal and tangential compo-
nents of the magnetic field, respectively.

By eliminating the pressure by Bernoulli’s equation and using equations (2.4),
(2.7), (2.16) and (2.21), condition (2.22) may be rewritten as

α(η + α2η
2 + α3η

3)

(

1 +
(

∂η

∂x

)2
)−1 {∥

∥
∥
∥

∂φ

∂y

∥
∥
∥
∥
− ∂η

∂x

(∥
∥
∥
∥

∂φ

∂x

∥
∥
∥
∥

+ ‖V ‖
)}

− ‖ρ‖ gη −
∥
∥
∥
∥
ρ
∂φ

∂t

∥
∥
∥
∥
−

∥
∥
∥
∥
ρV

∂φ

∂x

∥
∥
∥
∥
− ‖νφ‖ − σ

∂2η

∂x2

(

1 +
(

∂η

∂x

)2
)−3/2

− H0

∥
∥
∥
∥
µ

∂ψ

∂x

∥
∥
∥
∥
− 1

2

∥
∥
∥
∥
∥
µ

(
∂ψ

∂y

)2
∥
∥
∥
∥
∥

+
1
2

∥
∥
∥
∥
∥
µ

(
∂ψ

∂x

)2
∥
∥
∥
∥
∥
− 2H0

∂η

∂x

∥
∥
∥
∥
µ

∂ψ

∂y

∥
∥
∥
∥

− H2
0

(
∂η

∂x

)2

‖µ‖ + 2
∂η

∂x

∥
∥
∥
∥
µ

∂ψ

∂x

∂ψ

∂y

∥
∥
∥
∥

+ 2H0

(
∂η

∂x

)2 ∥
∥
∥
∥
µ

∂ψ

∂x

∥
∥
∥
∥

= 0.

(2.23)
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3. Lines of solution

The analysis of linear stability as presented by Chandrasekhar [4] depends on ne-
glecting the nonlinear terms from the equations of motion as well as from the
boundary conditions. Therefore, a dispersion relation should be arisen without
nonlinear terms. The idea for the weak nonlinear approach is slightly some de-
parture from the linearity technique. At this stage, the nonlinear problem will
contain the linear description with some additional terms that make a correction
of the main solution. The weakly nonlinear description given here depends on
neglecting the nonlinear terms from the equations of motion and applying the ap-
propriate nonlinear boundary conditions. Therefore, the dispersion relation should
be extended to include the nonlinear terms.

To solve the linearized equations of motion for the fluid phases under consid-
eration, two dimensional finite disturbances are introduced to the boundary-value
problem. As a customary in hydrodynamic stability theory [4], all quantities have
exponential time dependence and a periodic spatial dependence. Also, in view of a
standard Fourier decomposition, we may similarly assume that the bulk solutions
are in the form

φj(x, y, t) = φ̂j(y)ei(kx−wt), j = 1, 2, (3.1)

ψj(x, y, t) = ψ̂j(y)ei(kx−wt), j = 1, 2, (3.2)

where φ̂j(y) and ψ̂j(y) are arbitrary functions of y.
Substituting (3.1) and (3.2) into equations (2.1), (2.2), (2.5) and (2.6). The

solutions which are consistent with the foregoing nonlinear boundary conditions
stated in subsection 2.2, may be represented in the form:

φ1 =
cosh k(y + h1)

k sinh kh1(1 + kη coth kh1)

[
∂η

∂t
+ ikV1η +

α

ρ1
(η + α2η

2 + α3η
3)

]

, (3.3)

φ2 = − cosh k(y − h2)
k sinh kh2(1 − kη coth kh2)

[
∂η

∂t
+ ikV2η +

α

ρ2
(η + α2η

2 + α3η
3)

]

,

(3.4)

ψ1 =
iH0

∆
(µ2 − µ1)(1 − kη coth kh2)sinh kh2 sinh k(y + h1) η, (3.5)

ψ2 = − iH0

∆
(µ2 − µ1)(1 + kη coth kh1)sinh kh1 sinh k(y − h2) η, (3.6)

where
∆ =µ1cosh kh1 sinh kh2(1 + kη tanh kh1)(1 − kη coth kh2)

+ µ2cosh kh2 sinh kh1(1 − kη tanh kh2)(1 + kη coth kh1).

The above distributions of the velocity and magnetic potentials contain non-
linear terms in the elevation parameter η. As the nonlinear terms are ignored, the
linear profile arises and equivalent to those obtained by Rosensweig [15], Chan-
drasekhar [4] and Elhefnawy [31].
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4. Nonlinear characteristic equation

In what follows, we shall derive the nonlinear equation which governs the surface
elevation. To relax the mathematical manipulation, without loss of generality,
we shall restrict the analysis to the case of two equal layers, i.e. h1 = h2 =
h. Combining equations (3.3), (3.4), (3.5), (3.6) and (2.23), after lengthy but
straightforward calculations, one finds the following nonlinear equation:

D(w, k)η = λ(w, k)η2 + β(w, k)η3, (4.1)

where

D(w, k) =(ρ1 + ρ2)w2 + [−2k(ρ1V1 + ρ2V2) + i(2α + ν1 + ν2)] w

+
[

−kΣ tanh kh − µ0k
2H2

0 tanh2kh − α(
ν1

ρ1
+

ν2

ρ2
)

+ k2(ρ1V
2
1 + ρ2V

2
2 ) − ik((α + ν1)V1 + (α + ν2)V2)

]

,

λ(w, k) =k coth kh
[

(ρ1 − ρ2)w2 + [−2k(ρ1V1 − ρ2V2) + i(ν1 − ν2)] w

+
[

α(
ν2

ρ2
− ν1

ρ1
) + k2(ρ1V

2
1 − ρ2V

2
2 ) + α2(

1
ρ2

− 1
ρ1

)tanh2kh

+ k2H2H
2
0 tanh kh − ik((α + ν1)V1 − (α + ν2)V2)

]]

,

β(w, k) = k2coth2kh
[

−(ρ1 + ρ2)w2

+
[

2k(ρ1V1 + ρ2V2) − i(2α + ν1 + ν2 + 2α
α3

k2
tanh2kh

]

w

+
[

α(
ν1

ρ1
+

ν2

ρ2
)(1 +

α3

k2
tanh2kh) − k2(ρ1V

2
1 + ρ2V

2
2 ) +

3
2
σk3tanh3kh

+ k2H2
0H3 tanh2kh

+ i
(

α
α3

k
(V1 + V2)tanh2kh + k((α + ν1)V1 + (α + ν2)V2

)]]

.

Σ, µ0,H2 and H3 are given by

Σ = (ρ1 − ρ2)g + σk2, µ0 =
(µ1 − µ2)2

(µ1 + µ2)

H2 =
(µ1 − µ2)

2(µ1 + µ2)2
[

(4 − coth kh + (−5 + 3sech2 kh)tanh kh)µ2
1

+ 2(4 + coth kh − 3(1 + sech2kh)tanh kh)µ1µ2

+ (4 − coth kh + (−5 + 3sech2kh)tanh kh)µ2
2

]

,



144 G. M. Moatimid ZAMP

and

H3 =
(µ1 − µ2)2

(µ1 + µ2)3
[

(5 − 6sech2 kh + 2sech4 kh − 4tanh kh))µ2
1

+ 2(5 + 2csch2 kh − 2(2 + cosh 2kh)sech4 kh − 4tanh kh)µ1µ2

+ (5 − 6sech2 kh + 2sech4kh − 4tanh kh)µ2
2

]

.

As a limit case, for two semi-infinite layers, h1, h2 → ∞, one finds that the contri-
bution of the magnetic fields intensities of the first and third-orders are the same.
This is in agreement with the result recently obtained by El-Dib [32].

Equation (4.1) is more general than those obtained by Bau [22], Hsieh [26] and
Elhefnawy [31]. In addition to the nonlinear contribution, it includes the magnetic
field influence.

According to the Grimshaw theory [33], the nonlinear terms of the character-
istic equation (4.1) consist of two parts. The first part contains the interaction
of the second harmonic term. The second one represents the cubic interactions of
the primary harmonic term. Neglecting the higher orders of η, the linearized form
of equation (4.1) yields

D(w, k)η = 0. (4.2)

Equation (4.2) represents the linear dispersion relation which is corresponding to
the linear differential equation

L

(
∂

∂t
,

∂

∂x

)

η = 0, (4.3)

where L is a linear operator involving the temporal and spatial partial derivatives.
Firstly, we study equation (4.3), then return to equation (4.1) to incorporate the
nonlinear effects. Consider a uniform harmonic wave train solutions of equation
(4.3) in the light of (2.3). The existence of the harmonic wave trains in a dispersive
medium and the correspondence between the wave number and frequency leads to
several physical consequences. Combining equations (4.3) and (2.3), gives

L(−iw, ik)η = 0, (4.4)

from which, it follows that
D(w, k)γ = 0. (4.5)

As γ �= 0, we obtain

D(w, k) =(ρ1 + ρ2)w2 + [−2k(ρ1V1 + ρ2V2) + i(2α + ν1 + ν2)] w

+
[

−kΣ tanh kh − k2µ0H
2
0 tanh2kh − α

(
ν1

ρ1
+

ν2

ρ2

)

+ k2(ρ1V
2
1 + ρ2V

2
2 ) − ik((α + ν1)V1 + (α + ν2)V2)

]

= 0

(4.6)
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Equation (4.6) represents the linear dispersion relation that is satisfied by the
values of w and k. To develop the nonlinear effects, for the amplitude of the
progressive waves, we need to go to the full nonlinear equation (4.1) taking into
account the linear dispersion relation (4.6). Before going to the nonlinear analysis,
let us investigate the linear stability analysis.

5. Linear stability analysis

The goal of this item is to analyze the stability throughout the linear approach.
Therefore, we consider the linear dispersion relation (4.6). This equation may be
rewritten in the form

a0w
2 + (a1 + ib1)w + (a2 + ib2) = 0, (5.1)

where

a0 = ρ1 + ρ2, a1 = −2k(ρ1V1 + ρ2V2), b1 = 2α + ν1 + ν2

a2 = −kΣ tanh kh − k2µ0H
2
0 tanh2kh + α

(
ν1

ρ1
+

ν2

ρ2

)

+ k2(ρ1V
2
1 + ρ2V

2
2 )

b2 = −k((α + ν1)V1 + (α + ν2)V2).

Before dealing with the dispersion relation (5.1), we first consider some special
cases:

(i) Consider the case where the media are non-porous, in addition, in absence
of the rate of interfacial mass and heat transfer. In this case, the system is
stable if

a2
1 − 4a0a2 ≥ 0, (5.2)

or
H2

0 ≥ HC1, (5.3)

where

HC1 = −Σ coth kh

µ0k
+

ρ1ρ2(V1 − V2)2coth2kh

µ0(ρ1 + ρ2)
.

(ii) Consider the case where the media are porous, but in absence of the rate
of interfacial mass and heat transfer. Applying Routh-Hurwitz [34] stabil-
ity criterion to equation (5.1), we obtain the stability conditions (in other
words, to have the imaginary part of w less than zero) as

b1 > 0 and a1b2b2 − a0b
2
2 − a2b

2
1,≥ 0. (5.4)

Since ν1 and ν2 are always positive, the first condition in (5.4) is trivially
satisfied, while the second one is satisfied if

H2
0 ≥ HC2, (5.5)
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where

HC2 = −Σ coth kh

µ0k
+

(ρ1ν
2
2 + ρ2ν

2
1)(V1 − V2)2coth2kh

µ0(ν1 + ν2)2
.

(iii) Consider the case where the media are non-porous, but in presence of the
rate of interfacial mass and heat transfer. Applying the same condition as
in case (ii), it follows that the stability criterion may be written as

H2
0 ≥ HC3, (5.6)

where

HC3 = −Σ coth kh

µ0k
+

ρ1ρ2(V1 − V2)2coth2kh

µ0(ρ1 + ρ2)

(

1 +
(ρ1 − ρ2)2

4ρ1ρ2

)

.

It is worthwhile to note that although the parameter α does not appear
in HC3, but HC3 differs from HC1 by the additional last term. This term
appears due to the presence of mass and heat transfer. Thus condition (5.6)
is still valid for infinitesimal α and when α = 0, the last term is absent. Also,
when V1 = V2 (the RTI problem) or ρ1 = ρ2, then the last term disappears.
These results are already reported by Hsieh [26]. On the other hand, we see
that the last term in HC3 is always positive. It means that the mass and
heat transfer has a destabilizing influence. Therefore, however α is small or
large, the mass and heat transfer has a linearly destabilizing influence on
the KHI problem.

Now, we consider the general case of two superposed magnetic fluids in the
presence of interfacial mass and heat transfer through porous media. Since α, ν1

and ν2 are always positive, the stability criterion becomes

H2
0 ≥ HC4, (5.7)

where

HC4 = − Σ coth kh

µ0k
+

(ρ1(α + ν2)2 + ρ2(α + ν1)2)(V1 − V2)2coth2kh

µ0(2α + ν1 + ν2)2

− α(ρ1ν2 + ρ2ν1)coth2kh

µ0ρ1ρ2k2
.

It should be noted that the porous media show, frequently, the presence of the
parameter α on the stability criterion.

From the foregoing results, in all cases, it is apparent that the uniform stream-
ing has a destabilizing influence. This role is enhanced as the relative motion
between the two fluid layers is increased. This result is in agreements with all
studies in the linear stability theory, for example (see Chandrasekhar [4]). In
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contrast, the magnetic field has a stabilizing influence on the wave motion. This
theoretical result was first obtained and confirmed experimentally by Zelazo and
Melcher [18] (see also Rosensweig [15]). It is also clear that the mass and heat
transfer parameter has no implication on the stability criterion in the case of the
RTI through the non-porous media as pointed out by Hsieh [26].

Before dealing with some numerical estimation, it is convenient to write the
above stability conditions in an appropriate dimensionless form. This can be
done in a number of ways depending primarily on the choice of the characteristic
length. Consider the following dimensionless forms: The characteristic length =
h, the characteristic time =

√
h
g and the characteristic mass = σ

g . The other
dimensionless quantities are given by:

k =
k∗

h
, ρj =

σρ∗j
gh2

, νj =
σν∗

j

h2
√

gh
, Vj = V ∗

j

√

gh,

α =
σα∗

h2
√

gh
, H2

0 =
σ

h
H∗

0
2, HCr =

σ

h
H∗

Cr, j = 1, 2, r = 1, 2, 3, 4
(5.8)

where the superposed asterisks refer to the dimensionless quantities. From now on,
it will be omitted for simplicity. To this end, the critical magnetic field intensities
may be written as:

HC1 = − Σ̂ coth k

µ0k
+

ρ1ρ2(V1 − V2)2coth2k

µ0(ρ1 + ρ2)
, (5.9)

HC2 = − Σ̂ coth k

µ0k
+

(ρ1ν
2
2 + ρ2ν

2
1)(V1 − V2)2coth2k

µ0(ν1 + ν2)2
, (5.10)

HC3 = − Σ̂ coth k

µ0k
+

ρ1ρ2(V1 − V2)2coth2k

µ0(ρ1 + ρ2)
, (5.11)

HC4 = − Σ̂ coth k

µ0k
+

(ρ1(α + ν2)2 + ρ2(α + ν1)2)(V1 − V2)2coth2k

µ0(2α + ν1 + ν2)2

− α(ρ1ν2 + ρ2ν1)coth2k

µ0k2ρ1ρ2
,

(5.12)

where
Σ̂ = ρ1 − ρ2 + k2.

In what follows, we shall make a numerical estimation for the stability pic-
ture for the surface waves propagating in the miscible magnetic fluids throughout
porous media. In order to screen this examination, numerical calculation for the
transition curves (5.9), (5.10), (5.11) and (5.12) are made for the variation of the
magnetic field intensity H2

0 versus the wave number k. As we conclude, these
transition curves separate the stable from instable regions. The region above the



148 G. M. Moatimid ZAMP

Figure 2. Represents the stability diagram on the (H2
0 − k)-plane according to equations (5.9),

(5.10), and (5.11) for a system having the particulars ρ1 = 0.0123, ρ2 = 0.9987, µ1 = 1, µ2 = 5,

V1 = 20, V2 = 2, ν1 = 1, ν2 = 2, and α = 1.

Figure 3. As in Figure 2, to indicate equation (5.12), but when the densities are interchanged

and for various values of α.

transition curve is stable, while the lower area is unstable. The stable region is
referred by the letter S, while the letter U stands for the unstable one.

The special cases are discussed numerically through Figure 2. This figure in-
cludes the cases (i), (ii) and (iii). The inspection of this figure shows the destabi-
lizing influence of both mass and heat transfer (α) and the porosity of the medium,
which is represented by the Darcy’s coefficients ν1 and ν2. It is also observed that
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Figure 4. As in Figure 3, but when α = 1 and for various values of ν2.

Figure 5. As in Figure 4, but when ν2 = 1 and for various values of ν1.

the instability is enhanced when the media are considered as non-porous.
The general case is pictured in Figure 3. The inspection of this figure shows

that the parameter α has a stabilizing influence. Actually, this role depends on
the structure of the media. It follows that the parameter α has a dual role in the
stability criterion. In the case of non-porous media, α has a destabilizing influence
and vice versa in the porous media. The effect of the Darcy’s coefficients ν1 and
ν2 are displayed in Figures 4 and (5). From Figure 4, where ν2 > ν1, a dual role
in the stability criterion is found. For large values of k, a destabilizing influence
is observed and vice versa for small k. As ν1 > ν2 and for all values of the wave
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number k, a stabilizing influence is seen as shown in Figure 5.

6. The nonlinear Ginzburg–Landau equation

In order to investigate the nonlinear stability criteria of the system under consider-
ation, we make a modulation to the problem so that the linear dispersion relation
D(w, k) represents the slowly modulated wave train. At this stage, we may use
the expansion procedure formed by the method of multiple scales [8]. The under-
lying idea of this method is to make an expansion, representing the solution of the
problem, as a function of two or more independent variables. Consider a small
parameter δ which measures the ratio of a typical wave length or time scale of the
modulation. The independent variables x and t may be expanded to introduce
alternative independent variables as:

Tn = δnt, Xn = δnx, n = 0, 1, 2 (6.1)

Therefore, defining T0,X0 as variables appropriate to fast variation, T1,X1, T2

and X2 are slow ones. The differential operators can now be expressed as the
derivative expansion

∂

∂t
= −w

∂

∂θ0
+ δ

∂

∂T1
+ δ2 ∂

∂T2
+ ..., (6.2)

∂

∂x
= k

∂

∂θ0
+ δ

∂

∂X1
+ δ2 ∂

∂X2
+ ..., (6.3)

where θ0 = kX0 − wT0.
The operator L then becomes

L

[

(−iw, ik) + δ

(
∂

∂T1
,

∂

∂X1

)

+ δ2
(

∂

∂T2
,

∂

∂X2

)

+ ...

]

(6.4)

The expression for the operator L may be expanded in powers of δ. This may be
achieved by making use of Taylor’s theory about (−iw, ik) up to O(δ2). Therefore,
we may obtain

L → L0 + δL1 + δ2L2 + ..., (6.5)

combining (6.5) and (4.3), yields

(L0 + δL1 + δ2L2 + ...)η = 0. (6.6)

It follows that
(D0 + δD1 + δ2D2 + ...)γ = 0, (6.7)
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where D0 ≡ 0 describes the linear dispersion relation,

D1 ≡ i

{
∂D

∂w

∂

∂T1
− ∂D

∂k

∂

∂X1

}

D2 ≡ i

{
∂D

∂w

∂

∂T2
− ∂D

∂k

∂

∂X2

}

− 1
2

∂2D

∂w2

∂2

∂T 2
1

+
∂2D

∂w∂k

∂2

∂X1∂T1
− 1

2
∂2D

∂k2

∂2

∂X2
1

At this end, the nonlinearity of η, in terms of δ, may be written as:

η =
3∑

n=1

δ2ηn(θ0,X1,X2;T1, T2) + 0(δ4). (6.8)

Combining equations (4.1), (6.5) and (6.8), then equating like powers of δ on both
sides, one finds the following three orders in δ as:

L0η1 = 0, (6.9)

L0η2 = −L1η1 + λ η2
2 , (6.10)

L0η3 = −L1η2 − L2η1 + 2λ η1η2 + β η3
1 . (6.11)

In the lowest order approximation, we may assume the following quasi-monochro-
matic wave solution

η1 = γ(X1,X2;T1, T2)eiθ0 + c.c. (6.12)

Equation (6.10) then becomes

L0η2 = −i

[
∂D

∂w

∂γ

∂T1
− ∂D

∂k

∂γ

∂X1

]

eiθ0 + λ(γ2e2iθ0 + 2γγ̄) + c.c., (6.13)

where γ̄ denotes the complex conjugate of γ.
Equation (6.13) contains secular terms, corresponding to the factor eiθ0 . The

elimination of this term, leads to the following solvability condition

∂D

∂w

∂γ

∂T1
− ∂D

∂k

∂γ

∂X1
= 0, (6.14)

which gives a complex relation. With the aid of this condition, a uniformly valid
expansion of η2 arises in the form

η2 =
λ

Ω
γ2e2iθ0 + c.c. (6.15)

The non zero denominator may be derived from the linear dispersion relation
by replacing both w and k by 2w and 2k, respectively. The vanishing of the
denominator Ω refers to the second harmonic resonance. In general, the harmonic
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resonance may occur if (w, k) and (nw, nk), when n is a positive integer, satisfying
the same dispersion relation [8].

Combing equations (6.11), (6.12) and (6.15), the uniformly third order solution
yields the following solvability condition

i

(
∂D

∂w

)
∂γ

∂T2
− i

(
∂D

∂k

)
∂γ

∂X2
− 1

2

(
∂2D

∂w2

)
∂2γ

∂T 2
1

− 1
2

(
∂2D

∂k2

)
∂2γ

∂X2
1

+
∂2D

∂w∂k

∂2γ

∂T1∂X1
=

(

2
λ2

Ω
+ 3β

)

γ2γ̄.

(6.16)

It is well known that the nonlinear Schrödinger equation is a generic equation
describing unidirectional wave modulation. It has been used to describe the spatial
and temporal evolution of the envelope of a sinusoidal wave with phase (kX0 −
wT0), drawing potential energy from some background field. In fact, the nonlinear
Schrödinger equation generally describes the competition between nonlinearity and
dispersion. To derive the equation of amplitude evolution, we proceed to solve the
second and third-order problems. Following the procedure developed by Nayfeh
[8], the non secularity conditions for the existence of the uniformly valid solutions
in the second-order, as given by equation (6.14), may be written as

∂γ

∂T1
+ Vg

∂γ

∂X1
= 0, provided that

∂D

∂w
�= 0, (6.17)

where Vg = − (
∂D
∂k

) (
∂D
∂w

)−1
is the group velocity of the wave train.

Equation (6.17) implies that the wave moves with group velocity in the sec-
ond order approximation. This means that the amplitude γ depends on the slow
variables X1, T1 through the combination (X1 − VgT1).

To develop the amplitude modulation for the progressive waves, we need to go
to the third-order problem as given by equation (6.6). It is interesting to observe
that equation (6.16) has a singularity at Ω = 0. This corresponds to the case
of second harmonic resonance. We should remark that the analysis given in this
paper is not valid in the neighborhood of such resonance.

The solvability conditions (6.14) and (6.16) may be simplified and combined
together to produce a single equation. By using equation (6.17), the derivatives
in T1 may be eliminated from equation (6.16). Therefore, let us write

∂2γ

∂X1∂T1
= −Vg

∂2γ

∂X2
1

,
∂2γ

∂T 2
1

= V 2
g

∂2γ

∂X2
1

. (6.18)

Substituting (6.18) into (6.16), dividing through
(

∂D
∂w

)

, and using (6.1), one gets

i

(
∂γ

∂t
+ Vg

∂γ

∂x

)

+ P
∂2γ

∂x2
= δ2Qγ2γ̄, (6.19)
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where P (the group velocity rate) and Q (the nonlinear interaction coefficient) are
given by

P =
1
2

d2Vg

dk2
= −1

2

(

V 2
g

∂2D

∂w2
+ 2Vg

∂2D

∂w∂k
+

∂2D

∂k2

) (
∂D

∂w

)−1

,

Q =
(

2
λ2

Ω
+ 3β

) (
∂D

∂w

)−1

.

Introducing the Grander–Morikawa transformation [14].

ξ = δ(x − Vgt) and τ = δ2t, (6.20)

equation (6.19) is then reduced to

i
∂γ

∂τ
+ P

∂2γ

∂ξ2
= Qγ2γ̄. (6.21)

Equation (6.21) is the well-known Ginzburg–Landau equation. The coefficients
P and Q are complex, so that

P = Pr + iPi and Q = Qr + iQi, (6.22)

P is simply the derivatives of the characteristic function D(w, k), while Q repre-
sents the nonlinear interaction term. These terms are lengthy and not included
here. They are available from the author on request.

An equation similar to (6.21) was derived, for waves in cylinder wakes, by
Fujimura et al. [35]. Kinds and solitons in the generalized Ginzburg–Landau
equation are discussed by Malomed and Nepomnyashchy [36]. Landman [37] stud-
ied a particular class of solution of equation (6.21), which he called quasi-steady
solutions, and found that their spatial variation may be periodic, quasi-periodic,
or apparently chaotic. Rotenberry and Saffman [38] used Landman’s formalism
to study the quasi-steady solutions of the Ginzburg–Landau equation for compli-
ant walls. The stability of the Ginzburg–Landau equation (6.21) is discussed by
Lange and Newell [39]. If the solution of this equation is linearly perturbed, the
perturbations are stable under the conditions

Qi < 0 and PrQr + PiQi > 0. (6.23)

Otherwise, the system is unstable. The absence of the imaginary parts Pi and Qi in
the above criteria reduces to those obtained by Nayfeh [8] and others. Finally, the
transition curves separate the stable from the unstable regions are corresponding
to

Qi = 0 and PiQi + PrQr = 0 (6.24)
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These marginal curves may be borne out by numerical estimation. Before dealing
with these calculations, it is convenient to write the stability condition (6.23) in
an appropriate dimensionless form: consider the characteristic length, time and
mass are h, 1

w , σ
w2 , respectively. The other dimensionless quantities are given by:

k =
k̂

h
, ρj =

ρ̂jσ

w2h3
, νj =

ν̂jσ

wh3
, Vj = V̂jhw,

α =
α̂σ

wh3
, α3 =

α̂3

h2
and H2

0 =
Ĥ2

0σ

h
, (j = 1, 2),

(6.25)

where the superposed hats refer to the dimensionless quantities, it will be omitted
for simplicity. At this stage, the stability can therefore be discussed by dividing
the (H2

0 −k) plane into stable and unstable regions. After lengthy but straightfor-
ward calculations, the transition curve Qi = 0, may be arranged in a third-degree
polynomial on H2

0 as:

A1(H2
0 )3 + A2(H2

0 )2 + A3(H2
0 ) + A4 = 0, (6.26)

while the transition curve PrQr + PiQi, can be arranged in a fifth-degree polyno-
mial on H2

0 as:

C1(H2
0 )5 + C2(H2

0 )4 + C3(H2
0 )3 + C4(H2

0 )2 + C5(H2
0 ) + C6 = 0, (6.27)

where A′s and C ′s are functions of ρ1, ρ2, µ1, µ2, ν1, ν2, V1, V2, g, α, α3 and k.

Figure 6. Represents the stability diagram on the (H2
0 − k)-plane according to equations (5.12),

and (6.24) for a system having the particulars ρ1 = 0.5432, ρ2 = 0.0123, µ1 = 1, µ2 = 5,

V1 = 0.2, V2 = 0.1, ν1 = 0.52, ν2 = 0.70, α3 = 0.1, g = 100, and α = 1.



Vol. 57 (2006) Nonlinear Kelvin–Helmholtz instability of two miscible ferrofluids 155

Figure 7. As in Figure 6, but for various values of α.

Figure 8. As in Figure 6, but for various values of V1.

In what follows, we consider the linear as well as the nonlinear stability criteria,
through the Figures 6, 7, 8 and 9. The transition curves (6.24) are plotted in
Figure 6. As shown in this figure, the solid curve represents one root from equation
(6.27), where the other roots are either negative or complex. At the same time,
the dotted curve represents one root from equation (6.26) for the same reason
as stated above. The linear curve, equation (5.7), is not found in this figure,
since it lies in the negative part. Therefore, in the light of the linear theory, the
whole plane becomes stable. So, the transition curves (6.24) generally describe the
competition between linearity and dispersion. The inspection of this figure shows
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Figure 9. As in Figure 6, but for various values of V2.

that the nonlinear effects partition the stable region into stable and unstable parts.
It is also found that the stability is governed by the transition curve Qi = 0. The
influence of the parameter α is computed through Figure 7. In this figure, the
transition curve Qi = 0 is only graphed. It is observed that the parameter α has
a stabilizing influence. This result is in agreement with the case of linear scope as
reported previously. During the pervious analysis in the linear approach, we see
that the streaming has a destabilizing influence regardless of the values of V1 or
V2. Figures 8 and 9 are devoted to indicate the influence of streaming. In contrast
to the linear theory, it is found that the streaming has a stabilizing influence.

7. Conclusion

The instability of two layers of incompressible magnetic fluids in the presence of a
tangential magnetic field and mass heat transfer is studied with allowance for small
but finite, disturbances and for spatial as well as temporal development. No free
currents at the surface of separation are assumed. Also, in the stationary state,
the fluids are uniformly streaming parallel to each other. Because of the great
importance of the practical applications of the porous media, this work examines
a few representative porous media configurations. By using the method of multiple
scale, we obtain a dispersion relation in the linear approximation and a generalized
formulation of the amplitude equation in the nonlinear approximation. In this
problem, the effects of mass and heat transfer are revealed through one single
parameter α, and the porous influence through Darcy’s coefficients ν1 and ν2.

From the linearized problem, we have shown that both the tangential magnetic
field and the surface tension are stabilizing, while the streaming velocity is strictly
destabilizing. As shown by many researches [25, 31], in the non-porous media, we
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have shown that the parameter α has a destabilizing influence. Several special
cases are reported. In contrast with the case of non-porous media, the parameter
α has a stabilizing influence through the porous medium. We have, also, shown
that Darcy’s coefficients play a dual role in the stability picture.

From the nonlinear stability analysis, we have obtained a Ginzburg–Landau
equation. The transition curves Qi = 0 and PiQi + PrQr = 0 are rearranged, to
be plotted in the (H2

0 − k)-plane, in third and fifth-degrees in H2
0 , respectively.

The numerical calculations, for some range of the wave number k, showed that the
stability criteria are governed by the transition curve Qi = 0. In contrast to the
linear theory, we have seen that the streaming velocities have stabilizing influence.
It is also found that the mass and heat transfer has the same effect as in the linear
theory through the porous media.
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